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ABSTRACT. We consider the existence and uniqueness problem for partial
differential-functional equations of the first order with the initial condition
for which the right-hand side depends on the derivative of unknown function
with deviating argument.

1. Introduction. We consider the following Cauchy problem
{ Dyz(z,y) = f(z,y,2(), Dyz(a(z,y), B(2))), (z.y) €E
Z(07y) = v(y)v yE [07 b]?

where E = [0,a]x[0,b], a,b > 0, f € C(ExC(E;R")xR™R"), v € C([0,b]; R™),
a € C(E;[0,a]), f € C([0,a];[0,b]) and Dpg means the partial derivative of g
with respect to p.

(1)
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The problem D z(x,y) = f(z,y, 2(:), Dyz(x,y)), 2(0,y) = v(y) has been
investigated intensively in the literature (see [5], [6], [7] for references). But there
are only few results concerning equations with D,z depending on a deviating
argument (see [1]-[3], [8]-[10]). In the present paper we consider such an equation.
But notice that the deviating argument we consider is of peculiar type and it is
not a generalization of not deviating argument (z,y).

The proof of our result is based on Bielecki method of changing norm (see

[4])-

2. Notations and assumptions. We denote E, = {(s,y) € E: 0 <
s<z}, C=C(E;R"),

|l zllo,e = sup{|z(s,y)| : (s,9) € E.},

2l = sup{|z(z,y)le” " : (2,y) € B}

for z € C, x € [0,a], K € R, where | - | means a fixed norm in R". Notice that
|| - || is @ norm equivalent to the supremum norm and C'is a Banach space with
this norm.
D, f means the partial derivative of f with respect to the fourth argument
We need the following assumptions.

(H1) The function f satisfies the following Volterra condition: for all (z,y) € E,
f(xu Y, /U(')u Q)

(Hz) The functions f, Dyf, Dyf, o, Dya, B, v, Dyv are continuous and there
exists L > 0 such that

|Dyf($7y7p7 Q) - Dyf(%% Pu Q)| S L(Hp - PHO,:U + ‘q - QD:

|qu($7y7p7 Q) - qu($7y7 Pu Q)| S L(Hp - PHO,I + ‘q - QD:
for (xay) € E’ p,P € Ca QaQ € R"

(H3) a(z,y) <z for (z,y) € E and

| = sup{|Dya(z,y) Do f(x,y,p,q)| : (x,y) €E,peC,qeR"} <1
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Notice that (Hs) implies that the growth of f(z,y,p,-) is at most linear
except for Dya(x,y) = 0.

3. The result. Now we state

Theorem.  Suppose that assumptions (Hy), (H2), (Hs3) are satisfied,
then there exists exactly one solution Z of (1) such that Dy Dy% and DyD,% exist
and they are continuous functions.

Proof. Let us define

F(U,u)(z,y) = 0/ O/y u(s, t)dtds +v(y)+
4 0/ £(5,0.U.0/(8(s)) + a:/s’y)u(a,ﬂ(s))da)ds
G(U,w)(w,y) = Dyf (w,,U,v'(B(x)) + a:/x,wu(& B(x)) ds)+
+Dya(x,y)Dy f (2,4, U,/ (B(@)) + a:/xﬁy)u@,ﬁ(x» ds)u(a(z, ), B(x))

for Uyu € C, (xz,y) € E. We prove that there exists exactly one pair (U , ) of
continuous functions, which are solutions of the equations

(2) U=F{U,u) and uv=G(U,u).

Let K > L be fixed. For every Uy, Us, u € C assumption (Hs) gives

T
P, w)(ay) = FU2w)(w,)| < [ LI = Valo.ds <
0

X
L
< L/ U1 = Uallic eXds < —e*U) = Uallc,
0

SO
L
1E(U1, w) = F(U2, )l < 21U = Uzl k-
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Therefore F(-,u) is a contraction and for each u € C there exists exactly one
fixed point U(u) of F(-,u). Moreover

U(ur)(z,y) = Uluz)(@,y)| = [F(U(u1), ur) (2, y) = F(U(u2), u2)(,y)| <
S UE(U(u1), un) (2, y) = F(U (u2), u1)(2, y) |+
+[F(U(uz), ur)(z,y) — F(U(u2), u2)(x,y)| <

L
< EHU(Ul) (U2)HK€KI+//‘U1 s,t) — ua(s,t)| ds dt+

z a(st

+L / / u1(,8(5)) — (o 5(s) | dor ds <
L
< EHU(ul) — Ul(u2)||x e +b/ llug — ual|x s ds+
0

xr S
—|—L//||u1 — ug| g eX%dods <

b al Ko

< (U ) = U + (2 + 5l = wall i)',

hence

[U(u1) = U(uz)llx <lklur — uallk,

where I = (K — L)~'(b+ aL). For sufficiently large K let us define
Wik ={ueC: |ul|x <M},

where

L
M == (Lx+2+0))7'P P=1+ (nax, [Dyf @y, U(©),v'(5(x)))]
7y
and ©(x,y) =0 for (x,y) € E. Denote also Gy(u) = G(U(u),u). We prove that
L
Gy(Wk) C Wi for K > 0 such that Lix + e +1<1.
If w € Wik then
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G(U(u), u)(z,y)| <

(z,y)
<Dy (.9.U .0 B@)+ [ ulsBa))ds) = Dyf (., U(0),0' () |+
0
+IDy f (2., U(0),v' (B()) )| + lulaz, ), (=) <

a(z,y)
< L|U(w) =U®O)llox+ L / u(s, B(z))|ds + P + lfu(a(z,y), B(z))| <
0
< (L|U(uw) —UO)|k + %IIUHK + P+ 1ul| )™ <

L
< (Llg + =+ D|ulk 5% + PeXe,

therefore .
Gyl < (Llx + 2 + )M + P = M.

We have just showed that Gy (Wyx) C Wi for sufficiently large K. We
prove that Gy is a contraction on Wy with respect to the norm || - || s for suffi-
ciently large J and K.

For u,u € Wk, ¢ =max(,)cp |Dya(z,y)| we have

G(U(u), u)(z,y) = GU(a),u)(z,y)| <
o(z,y)

< LU~ U@lloa+ L [ [uls, B(x) - als, fa)] ds +
0

0

o(z,y)

HDya(a, IID,f (2.3, U (@), (Ba@) + [ s, Ba) ds)|

0

x[u(a(z,y), B(x)) — u(a(z,y), B(x))] <
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L
< LIU(w) = U@ s e’ + Sl —als e’ +

Ot(:l?,y)
L (U@~ U@lloa+ [ Juls, @) s, f))| ds) Mk +
0

Hlu — |y e’®

L 1
< (Lly+ 5 +eLly + j)MeK’” +0)e’®|lu —al|;

SO

L 1
|Gy (w) — Gy (a)|; < (Lly + <+ cLM(ly + j)MeKa +D)|ju—al|y.

Now it is clear that the operator Gy is contractive in Wy if K and J are
sufficiently large and this operator has exactly one fixed point @ in Wy . Since
every fixed point @ of Gy in C satisfies |u(0,y)| < P—1 for y € [0,b] and M > P,
then there exists K such that u € Wx. We get from the above that the function
@ is the unique fixed point of Gy in C. Of course the pair (U (%), 4) is the unique
solution of (2). Now we demonstrate that V = U(4@) is a solution of (1). From

the definition of the operators F' and G we get

V(0,y) = v(y),

DV(ay) = [ als,y)ds+ /).
0

a(zy)
i) = GV 0)(a.9) = 5 flap Vo' (Ba) + [ s, Ba)) ds) =
0

— %f(x,y, V, D,V (a(x,y), B(x))),

D$V($,y) = ’ll(l‘,t) dt + f(x>07 v, DyV(a(m,O),ﬁ(aj))) =

St —

= f(xvyu Va DyV(a(a:,y),B(ac))),
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so V is a solution of (1) and it is obvious that D,D,V = DyD,V = 1, hence
these derivatives are continuous. On the other hand, if z is a solution of (1) and
DD,z = DyD,z then differentiating equation (1) with respect to y we obtain

Dnyz(a:,y) = Dyf(fz:,y,z,Dyz(a(az,y),ﬁ(az)))+

and

+ Dof(z,y, 2, Dyz(a(z,y), 5(2))) De Dyz(alz,y), 6(x)) Dya(z,y)

Dy2(w,) = [ DaDye(s.y)ds +v'(y),
0

hence D, Dyz = G(z,D;Dyz) and it is easy to verify that z = F(z, D;D,z), so

Zz =

U(DyDyz) and D;Dyz = 4. We get that z is a solution of (1) if and only if

(2, DyDyz) is a solution of (2). The proof is complete.

Remark. Under analogous assumptions we can prove a similar result

for equation (1) with y = (y1,¥2,...,yr) € RF.
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