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ON THE KAM – THEORY CONDITIONS FOR THE

KIRCHHOFF TOP
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Abstract. In this paper the classical Kirchhoff case of motion of a rigid
body in an infinite ideal fluid is considered. Then for the corresponding
Hamiltonian system on the zero integral level, the KAM theory conditions
are checked. In contrast to the known similar results, there exists a curve
in the bifurcation diagram along which the Kolmogorov’s condition vanishes
for certain values of the parameters.

1. Introduction. The question of integrability of Hamiltonian systems

is one of the oldest problems of classical mechanics [1]. Classical results due

to Poincare and Bruns show that most of the Hamiltonian systems are not

integrable. This has lead Poincare [2] to define the main problem of dynamics to

be the study Hamiltonian systems which are close to integrable ones. The most

powerful approach to such systems is KAM – theory. Before giving a brief ac-

count of KAM – theory we remind the structure of the integrable Hamiltonian

systems.
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The phase space of the generic integrable Hamiltonian systems with n–

degrees of freedom is foliated into invariant manifolds the typical fibre being a

n–dimensional torus, on which the motion is quasiperiodic. A natural question is

whether small perturbations destroy these tori. KAM – theory gives conditions

for the integrable systems which guarantee the survival of most of the invari-

ant tori. The conditions are given in terms of so-called action – angle variables

J1, J2, . . . , Jn; ϕ1, ϕ2, . . . , ϕn. Without going into details, we remind that the

action – angle variables can be introduced for any integrable system locally near

a fixed torus and have a property that J = (J1, J2, . . . , Jn) maps a neighbour-

hood of a fixed torus on an open subset of Rn. The functions ϕ1, ϕ2, . . . , ϕn

are the co-ordinates on any of the nearby tori. Moreover the first integrals be-

come functions of the action variables J1, J2, . . . , Jn. At last to any fixed torus

there corresponds an invariant torus on which the motion is quasiperiodic with

frequencies (ω1(J), . . . , ωn(J)) = (∂H/∂J1, . . . , ∂H/∂Jn) (see [3] for details).

One condition, stated by Kolmogorov [3, app.8 and literature there] on

the Hamiltonian of the integrable system that ensures the survival of most of the

invariant tori under small perturbations is that the frequency map

J → (ω1(J), ω2(J), . . . , ωn(J))

should be non-degenerate. Analytically this means that the Hesseian

det

(

∂2H

∂Jj∂Jk

)

j, k = 1, . . . , n(1)

does not vanish. We should note that the measure of the surviving tori decreases

with the increase of both perturbation and measure of the set where the above

hesseian is too close to zero.

Another condition of this type, stated by Arnold and Moser [3, appl. 8]

is that of isoenergetical non-degeneracy which we explain next. Fix the energy

level H0 = h0. If we write the Hamiltonian H0 in action variables, then define

the following map Fh0
from the (n − 1) dimensional variety H−1

0 (h0) into the

projective space Pn−1:

Fh0
: J → (ω1(J) : ω2(J) : . . . : ωn(J))

then the system is isoenergetically non-degenerate if the map Fh0
is a homeomor-

phism. Analytically the isoenrgetical non-degeneracy is tantamount to nonvan-
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ishing of the determinant

det











∂2H0

∂J2

∂H0

∂J

∂H0

∂J
0











.(2)

Usually for the interesting systems studied by mathematical physics KAM

– theory conditions can be expressed in terms of Abelian integrals. This makes

them complicated for checking. (see References in [4] for existing results)

In this paper we study the KAM – theory conditions for the special case

of the so called Kirchhoff top of the motion of a rigid body in an ideal infinite fluid

[5, 6, 7]. The approach from one paper of Horozov [8] is adopted. One should

note that in this case the algebraic curve is of 4th degree and the asymptotic

behaviour of the corresponding Abelian integrals is different. In contrast to the

similar works where the Hesseian is negative it turns out that in this case the

Hesseian vanishes on a curve in bifurcation diagram for certain values of the

parameters.

2. The Kirchhoff top. The free motion of a rigid body in an infinite

ideal fluid can be described by the Kirchhoff equations [6]

ẏ = y×ω + x×u,

ẋ = x×ω,(3)

where ω = ∂H/∂y, u = ∂H/∂x and H(x,y) is a positive definite quadratic form

H =
1

2
{(Ay,y) + (By,x) + (Cx,x)}(4)

The vectors ω and y are called the angular velocity and the kinetic momentum of

the body, x and u are called the impulsive force and the impulsive momentum.

The Kirchhoff equations (2) have three integrals F1 = H, F2 = (y,x), and F3 =

(x,x). In general, the equations (2) are not integrable. The classical Kirchhoff

case [5, 1] (usually called the Kirchhoff top) is when the body is axially symmetric.

In this case, A = diag (A1, A1, A3), B = diag (B1, B1, B3), C = diag (C1, C1, C3),

and there is an additional integral, namely the momentum with the respect to

the symmetry axis

L(x,y) = y3.(5)

Then the system can be integrated via elliptic functions.
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Define a Poisson bracket on R6 by putting

{yi, yj} = ǫijkyk, {yi, xj} = ǫijkxk,

{xi, xk} = 0, i, j, k = 1, 2, 3.(6)

and extend {·, ·} to C∞(R6) in the natural way. Then, the Kirchhoff equations

(2) can be expressed in the Hamiltonian form

ẏi = {H, yi}, ẋi = {H,xi}, i = 1, 2, 3.(7)

However, the bracket (5) is degenerate – every smooth function commutes with

the integrals F2 and F3. This permits us to restrict {·, ·} to the integral surface

level Mc
def
= {F2 = c, F3 = 1} in the usual way. Thus, the Kirchhoff top is

effectively a two degree of freedom system. It can be easily checked that the

symplectic leaves Mc are all diffeomorphic to T ∗S2 by the transformation y =

z + cx (we identify TS2 with T ∗S2 via the standard Riemannian metric).

To simplify computation we shall consider the special case when the body

has three mutually perpendicular planes of symmetry (like ellipsoid for example).

In this case B = 0. Using (x,x) = 1 and a rescaling of time, the Hamiltonian

can be written in the following way

H =
1

2
{(y2

1 + y2
2) +Ay2

3 +Cx2
3}.(8)

Here A > 1/2, C are some parameters which depend on the shape of the rigid

body and the density of the fluid. There are two topologically different cases:

A > 1, C > 0 – prolate (ovrary) ellipsoid case and A > 1/2, C < 0 – oblate

(planetary) ellipsoid case.

On T ∗S2 the following coordinates are introduced [9]:

x1 = cos θcosφ, z1 = pφ tan θcosφ− pθsin θ,

x2 = cos θsinφ, z2 = pφ tan θsinφ+ pθcos θ,

x3 = −sin θ, z3 = pφ.

where θ ∈ (−π/2, π/2), φ ∈ (0, 2π), pφ, pθ ∈ R. The Poisson brackets (6) reduce

to

{θ, φ} = {pθ, φ} = {pφ, θ} = 0,

{θ, pθ} = {φ, pφ} = 1, {pθ, pφ} = ccos θ.
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The corresponding 2-form is dσ, where

σ = pθdθ + pφdφ−−csin θdφ.(9)

Thus the symplectic structure onMc is the standard symplectic structure on T ∗S2

distorted by the magnetic term F = −ccos θdθ ∧ dφ. As noted by Novikov in [9],

the Kirchhoff top is mathematically equivalent to a classical charged particle

moving on S2 under the influence of monopole like magnetic field given by F ,

albeit with a nonstandard metric, gyroscopic terms and an unusual potential.

In this paper we consider the Kirchhoff top in a special case i.e. on the

special integral level M0(c = 0) (see the final remarks on the general case).

Remark. We note that the particular case A = 1 is equivalent to the

system governed the so called square potential spherical pendulum, studied by

[10]. See also [4] for additional comments.

Then, in the coordinates φ, θ, pφ, pθ the Hamiltonian (8) reads (C = 1)

H =
1

2
(p2

θ + p2
φ(tan2 θ +A) + sin 2θ) = h(10)

with a second integral L = pφ = l.

In order to introduce the action–angle variables, we need to find the set

of regular values of energy-momentum map

EM : TS2 → R2 : (x,y) → (H,L).

Lemma 2.1 [7]. The regular values of the energy-momentum map are

given by Ur = {(h, l) ∈ R2, h > Al2/2} \ (1/2, 0) Moreover, for each (h, l) ∈ Ur

the level sets EM−1(h, l) is diffeomorphic to the two-torus Th,l .

Choose a basis γ1, γ2 of the homology group H1(Th,l, Z) with the following

representatives. For γ1 take the curve on Th,l defined by fixing θ, pθ, pφ and letting

φ run through [0, 2π]. For γ2 fix φ and let θ, pθ make one circle on the curve given

by the equation

p2
θ + l2(tan2 θ +A) + sin 2θ = 2h.

Now, following [4] we can define the action co-ordinates J1, J2 by the formula

Jj =

∫

γj

σ, j = 1, 2,

where σ is canonical one - form (8) with c = 0. Trivial computations give

J1 = 2πl,(11)
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J2 =

∫

γ2

pθdθ = 2

∫ θ+

θ−

√

2h− sin 2θ − l2(A+ tan2 θ)dθ,(12)

where θ+ > θ− are the two roots of the equation

l2(tan2 θ +A) + sin 2θ = 2h

in the interval (−π/2, π/2). For later use we make a change of the variables in the

integral defining J2 . Put z = sin θ, y2 = 2h(1−z2)−l2(A+z2(1−A))−z2(1−z2).

Denote the oval of the curve

Γh,l = {(y, z) : y2 = 2h(1 − z2) − l2(A+ z2(1 −A)) − z2(1 − z2)}

by γ. Then we have

ψ(h, l)
def
= J2 =

∫

γ

ydz

1 − z2
.(13)

Remark. It turns out that the action variables are not defined globally

due to the existing of monodromy. However, one can construct them explicitly

(see [10] for details) in the two simply connected domains where the global action

variables exist. We continue our consideration in anyone of these domains.

3. Main results. Denote by H̃(J1, J2) the Hamiltonian of the considered

system in action co-ordinates. We state the theorems which are the aim of this

paper.

Theorem 1.

(i) When 1/2 < A ≤ 1, for (h, l) ∈ Ur the following determinant

det













∂2H̃

∂J2
1

∂2H̃

∂J1∂J2

∂2H̃

∂J1∂J2

∂2H̃

∂J2
2













.(14)

does not vanish.

(ii) When A > 1, there exists a curve in Ur, passing through the singular point

(1/2, 0) on which the above determinant vanishes.
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Theorem 2. The isoenergetical non-degeneracy condition is fulfilled

almost everywhere in Ur.

det























∂2H̃

∂J2
1

∂2H̃

∂J1∂J2

∂H̃

∂J1

∂2H̃

∂J1∂J2

∂2H̃

∂J2
2

∂H̃

∂J2

∂H̃

∂J1

∂H̃

∂J2
0























6≡ 0.(15)

We shall give the conditions (14) and (15) the explicit form in terms of

Abelian integrals of the second kind. Using the expressions (11) and (13) for J1

and J2 we can determine L̃ and H̃ implicitly from the equations

J1 = 2πL̃, J2 = ψ(L̃, H̃).

The following lemma gives the expression (14) in terms of Abelian integrals.

Lemma 3.1 ([10]).

(2π)2
(

∂ψ

∂h

)4

det













∂2H̃

∂J2
1

∂2H̃

∂J1∂J2

∂2H̃

∂J1∂J2

∂2H̃

∂J2
2













= det











∂2ψ

∂h2

∂2ψ

∂h∂l

∂2ψ

∂h∂l

∂2ψ

∂l2











.

Obviously we have

ψh =

∫

γ

dz

y
6= 0

in Ur. So, instead of proving the theorem with the expression (14) it is enough

to consider the last Hesseian which we denote by D. Similarly we have that

the isoenrgetical non-degeneracy condition is reduced to ψll up to nonvanishing

factor. We denote D1 = ψll for simplicity.

Next we would like to show that the entries of D and D1 can be repre-

sented as elliptic integrals. Introduce functions

wj(h, l) =

∫

γ

zjdz

y3
, j = 0, 1, . . .(16)
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It was proven in [11] that w0 6= 0 in Ur. Then obviously we have also that w2 6= 0

in Ur. The next lemma gives a representation of D as a quadratic form in w0,

w2.

Lemma 3.2. The determinant D has the following representation

D = w2
2{1 − (1 −A)[2h + 1 + l2(1 −A)]} +

w0w2{2(1 −A)(2h −Al2) −A[2h + 1 + l2(1 −A)]} +(17)

w2
0{(2h −Al2)(2A− 1)}.

Similarly we have for D1.

D1 = ψll = [(2h −Al2)(1 −A) − 2hA]w0 − [2h(1 −A) −A]w2.(18)

It is seen that D and D1 do not depend on the sign of l. That is why it

is enough to prove theorems only for l ≥ 0. We denote U+
r = Ur

⋂

l ≥ 0.

4. The Kolmogorov’s condition. The idea of the proof (see [8]) is first

to evalute the sign of the determinant D on line l = 0 and then to spread it along

curves which filled all U+
r . The monotonicity of certain function plays essential

role. The proof is done in several steps and the cases A < 1, A = 1, A > 1 are

considered separately. Here we only state the corresponding results. (see [4] for

the proofs)

Lemma 4.1. Let l = 0. Then the functions w0, w2 satisfy the following

system of Picard-Fuchs equations:

2h(1 − 2h)
dw0

dh
= 3w2 + 2(3h − 1)w0,

(1 − 2h)
dw2

dh
= 3w2 + w0.(19)

We also need the function

σ(h) =
w2(h, 0)

w0(h, 0)
(20)

Easy calculations give that σ satisfies the Riccati equation

2h(1 − 2h)
dσ

dh
= −3σ2 + 2σ + 2h(21)
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When l = 0 the expression for D factors:

D = w2
0σ1σ2,

where

σ1(h) = σ(h) − 1, σ2(h) = [A+ (A− 1)2h]σ(h) − 2h(2A − 1).

From (21) we obtain easily the Riccati equations for σ1, σ2. They play decissive

role in evaluting the signs of these functions.

We need also some other functions both for study of σ, σ1, σ2 and for the

case l > 0. In order to introduce them we put the family of curves Γh,l into the

normal form:

Γp =

{

(u, v) ∈ C2 :
v2

2
=
u4

4
− u2 + p

}

,(22)

by rescaling y = αv, z = βu where

β2 = [2h+ 1 + (1 −A)l2]/4, α2 = 2β4.(23)

If we put

p(h, l) =
4(2h−Al2)

[2h+ 1 + (1 −A)l2]2
(24)

we get (22). In these variables the integrals w0(h, l), w2(h, l) become

w0 =
β

α3

∫

γ(p)

du

v3
, w2 =

β3

α3

∫

γ(p)

u2du

v3
.

Introduce the new functions

θ0(p) =

∫

γ(p)

du

v3
, b θ2(p) =

∫

γ(p)

u2du

v3

and their ratio

̺(p) = θ2(p)/θ0(p).

In these notations we have

σ(h) = (2h+ 1)̺(p(h, 0))/4.(25)

Obviously the asymptotic behaviour of the functions σ, σ1, σ2 can be

found easily from the function ̺(p). We state the corresponding result in the

following lemma:
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Lemma 4.2. The function ̺(p) is strictly monotonic decreasing in the

interval (0, 1). ̺(0) = 8
3 , ̺(1) = 2.

The proof is based on some elements of the Picard-Lefschetz theory and

the Riccati equation for the function ̺.

Now we begin with case l = 0.

Lemma 4.3. The function σ1(h) satisfies the following inequalities:

(i) σ1(h) < 0, when h ∈ (0, 1/2);

(ii) σ1(h) > 0, when h ∈ (1/2,∞).

Similarly, we have

Lemma 4.4. The function σ2(h) satisfies the following inequalities:

(i) Let 1/2 < A < 1, σ2(h) > 0 in the region (0, 1/2), σ2(h) < 0 in the region

(1/2,∞);

(ii) Let A > 1, σ2(h) > 0 in the region (0, 1/2)
⋃

(1/2,∞).

Corollary. For l = 0

(i) D < 0, when 1/2 < A < 1;

(ii) D < 0 in (0, 1/2),

D > 0 in (1/2,∞) when A > 1.

Next we turn to the case l > 0.

Lemma 4.5. For h > 0, l > 0 we have the representation

D = w2
0ν

2F (p, ν)(26)

where ν = β2 and

F (p, ν) = ̺2(p)[1 − 4(1 −A)ν] + 4[2(1 −A)pν −A]̺(p) + 4p(2A− 1)(27)

The functions ν(h, l), p(h, l) map the set Ur

⋂

{h > 0, l > 0} diffeomorphically on

the set

Vr =

{

(p, ν) : ν ∈ (1/4,∞), p ∈

(

0,
4ν − 1

4ν2

)}

.
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Note that the line l = 0 maps on line p =
4ν − 1

4ν2
.

When A = 1, F factors. One of the terms is positive in Ur. Using the

Riccati equation for the other function we reach that F < 0 and hence D < 0 for

A = 1.

Lemma 4.6. For any fixed p ∈ (0, 1) the function F (p, ) is a

(i) strictly decreasing function of ν , when 1/2 < A < 1;

(ii) strictly increasing function of ν , when A > 1.

Lemma 4.7.

(i) For all (p, ν) ∈ Vr F (p, ν) < 0 when A < 1;

(ii) There exists a curve in Vr along which F (p, ν) = 0, when A > 1.

The last lemma finishes the proof of the Theorem 1.

5. The isoenergetical non-degeneracy condition. In order to prove

Theorem 2, we need only to check that ψll is nonzero in one point of Ur. We take

for instance the point h = A/2, l = 0 for the case A < 1, the point h = 1/3, l = 0

for the case A > 1 and substitute them in (18). Then, using the results from

the previous paragraph, it is seen that ψll 6= 0 in these points. Hence, due to

analyticity ψll is almost everywhere nonzero in Ur.

However, for the particular case A = 1 we can improve the above result,

namely

Theorem 3. Let A = 1.

(i) For h ∈ (0, 1/2]
⋃

[1,∞), D1 = ψll 6= 0.

(ii) For h ∈ (1/2, 1), ψll has exactly two zeros.

Note that in this case ψll =
βθ0
α3

[

̺−
4ν − 1

ν

]

, where ν =
2h+ 1

4
. Then,

the proof of theorem 3 follows the idea of [12].

Remark. It turns out that in the general case c 6= 0 the verification of

the KAM – theory conditions is much more complicated and has not been done

rigorously. However, the results from this paper afford us to claim that the KAM

– theory conditions for the general Kirchhoff top are fulfilled almost everywhere.
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