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EXTREMAL SOLUTIONS FOR A CLASS OF FUNCTIONAL
DIFFERENTIAL EQUATIONS

Rita Ceppitelli, Loris Faina

Communicated by Il. D. Iliev

Abstract. We study, in Carathéodory assumptions, existence, continuation
and continuous dependence of extremal solutions for an abstract and rather
general class of hereditary differential equations. By some examples we prove
that, unlike the nonfunctional case, solved Cauchy problems for hereditary
differential equations may not have local extremal solutions.

1. Introduction. It is well known that the theory of differential in-
equalities finds application in the study of the uniqueness and the continuous
dependence for solutions of ordinary and partial differential equations.

In the nonfunctional case several authors considered differential inequali-
ties: we limit ourselves to quote to V. Lakshmikantham–S. Leela [24], J. Szarski
[27], W. Walter [29], [30]. In these monographs estimates of solutions of dif-
ferential inequalities are obtained by extremal solutions of the corresponding
differential equations.

The wide theory of functional differential equations has given rise to a
natural development of a functional differential inequalities theory, mainly in
C1− setting ([1], [2], [23], [28]). In order to develop an analogous theory for func-
tional differential inequalities in Carathéodory assumptions, we start studying
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the properties of Carathéodory extremal solutions; in particular, in the present
paper we study existence, continuation, and continuous dependence of extremal
solutions for a class of hereditary differential equations introduced and studied
in [10].

As remarked in [10], let us point out that this hereditary structure is
rather general and includes several previous formulations as particular case ([14],
[15], [16], [17], [18], [19], [20], [21], [22]).

Let E be a closed, connected subset of R and let C(E) be the space of all
continuous functions mapping E into R, with the compact-open topology. Let
C be the set of all closed nonempty subsets of E. Let α : E → C denote a lag
function that maps every t ∈ E into a closed set α(t) ⊂ (−∞, t] ∩ E. Given
a Carathéodory function g : E × C(E) → R with the Volterra property (with
respect to α)
(vα)
for every x, y ∈ C(E) and t ∈ E, if x |α(t)= y |α(t) then g(t, x) = g(t, y),

we study the functional differential equation

(∗) ẋ = g(t, x)

where t ∈ E, x ∈ C(E).
The hereditary structure does not explicitly appear in the formulation of (∗),
but it is a consequence of the Volterra property assumed on the function g. The
generality of the hereditary structure depends, in addition to the particularly
abstract formulation of (∗), on the definition of the lag function. We assume that
α is not necessarily continuous, nor a compact neither a connected valued map.
Such a lag function was introduced and studied in [3], where its generality was
illustrated by examples and references ([16], [17], [19], [20], [22]).

About the existence of extremal solutions for the initial value problem re-
lated to (∗), it should be emphasized that, unlike the nonfunctional case, solved
Cauchy problems related to hereditary differential equations may not have ex-
tremal solutions, as we shall prove with the Example 5.4.

We prove the existence of the Carathéodory maximal (minimal) solution
under the hypothesis, property (+), that the maximum (minimum) between two
solutions is again a solution. This property is naturally verified in the non-
functional case; moreover it also holds, for example, when the past α(t) is con-
tained in (−∞, t0] for every t ∈ [t0, t0 +p0] or when g is monotone with respect
to the functional argument. The Example 5.5 proves that the property (+) can
be verified even if the function g is not monotone.

The continuous dependence result for the extremal solutions is proved
assuming an additional condition, property (++), which is immediately verified
both in the nonfunctional case and in monotonicity hypothesis on function g.
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Examples 6.10, 6.11 show that the monotonicity condition with respect to the
functional argument is strictly stronger than condition (++), even if both of them
are not necessary for the continuous dependence of extremal solutions.

2. Notations and definitions. Given a closed, connected subset E of
R, let C(E) be the space of all continuous functions mapping E into R, with the
compact open topology. Let d indicate a metric that provides such a topology in
C(E) (cf. [26], page 31).

Let C be the set of all closed, nonempty subsets of E. Let α : E → C be
a set valued function nonnecessarily continuous, which maps every t ∈ E into a
closed set α(t) ⊂ (−∞, t]∩E of the class C. Let g : E×C(E) → R be a function
with the Volterra property (with respect to α)

(vα) for every x, y ∈ C(E) and t ∈ E, if x |α(t)= y |α(t) then g(t, x) = g(t, y).

We consider the following differential equation

(∗) ẋ(t) = g(t, x)

where t ∈ E, x ∈ C(E). The property (vα) insure that (∗) is a functional
differential equation.

Given x ∈ C(E) and Ω ∈ C, let Γ(x,Ω) = {(t, x(t)) ∈ R
2 : t ∈ Ω} be the

graph of the restriction of x to Ω and let G = {Γ(x,Ω) : x ∈ C(E), Ω ∈ C} be
the set of all graphs.

Endowed the set G with a natural topology (see Section 3), let Z be
the family of all continuous functionals X : G → C(E) with the property
X (Γ(x,Ω)) |Ω= x |Ω for every x ∈ C(E), Ω ∈ C and, for every Ω upper bounded,
X (Γ(x,Ω))(t) = x(t̂) for every t ≥ t̂, where t̂ = supΩ. This family is not empty,
as it was proved in [4] (see also Section 3).

Let us denote with ΠE(·) and ΠC(E)(·) the standard projections of the
product topology in E × C(E) into E and C(E), respectively.

Given an open subset W ⊂ E × C(E), let t0 ∈ ΠE(W) and let p0 be a
fixed positive number such that [t0, t0 + p0] ⊂ ΠE(W). We put

I(t0,p0) = cl




⋃

t0≤t≤t0+p0

(α(t) ∩ (−∞, t0])



 ∪ {t0}.

A pair (t0, φ0) with t0 ∈ ΠE(W) and φ0 : I(t0,p0) → R continuous function,
is called admissible data with respect to W and α ((W, α)-admissible) if there is
a functional X ∈ Z such that (t0,X (Γ(φ0, I(t0,p0)))) ∈ W.

Given a (W, α)-admissible pair (t0, φ0), let Z0 ⊂ Z be the subset of all
functionals X such that (t0,X (Γ(φ0, I(t0,p0)))) ∈ W. Let g : W → R be a function
with the Volterra property (vα).
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We consider the following Cauchy problem

(θ)

(θ1) ẋ(t) = g(t, x) a.e. in [t0, t0 + p0]

(θ2) x(t) = φ0(t) in I(t0,p0).

Given a (W, α)-admissible pair (t0, φ0), the function x = x(t0, φ0) is said
to be a solution of the problem (θ) in the extended sense [in the classic sense]
if there is a positive constant p, p ≤ p0 such that x is defined and continuous
on I(t0,p) ∪ [t0, t0 + p], absolutely continuous on [t0, t0 + p], coincides with φ0

on I(t0,p) and there is a X̂ ∈ Z0 such that, almost everywhere [everywhere] in
[t0, t0 + p] (t,ΥX̂x) ∈ W and ΥX̂x satisfies the equation (θ1), where we put

ΥX̂x =






X̂ (Γ(φ0, I(t0,p0))), in (−∞, t0] ∩ E
x in [t0, t0 + p] ∩ E
x(t0 + p) in [t0 + p,+∞).

Remark 1. Let us point out that the Volterra property assumed on g
makes this definition independent of the choice of X̂ in Z0.

Indeed, let x ∈ C(E); if there is a X̂ ∈ Z0 such that

[t0, t0 + p0] × {ΥX̂x} ⊂W,

then g can be extended to the set

W̃ = W ∪ {(t,ΥXx) : t ∈ [t0, t0 + p0],X ∈ Z0}

by defining g(t,ΥXx) = g(t,ΥX̂x).

This means that if there is 0 < p ≤ p0 and X̂ ∈ Z0 such that [t0, t0 +p]×{ΥX̂x} ⊂
W and ΥX̂x satisfies the equation (θ1), then [t0, t0 + p] × {ΥXx} ⊂ W̃ and ΥXx
satisfies the equation (θ1) for every X ∈ Z0.

As it was remarked in [3], [10], we observe that I(t0,p0) contains the set of
real numbers on which an initial data must be defined in order to integrate the
problem (θ) on [t0, t0 + p0].

We shall study the Cauchy problem (θ) for functions g satisfying the
Volterra property (vα) and the Carathéodory condition (c).

A function g(t, z) : W → R is said to satisfy the property (c) if
(c1) is measurable in t for each fixed z and continuous in z for each fixed t,
(c2) for any fixed (t, z) ∈ W, there is a neighborhood V of (t, z) and a
Lebesgue

integrable function m(s) such that | g(s, ψ) |≤ m(s) for every (s, ψ) ∈ V.
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A set of functions G is said to verify the property (c) if each function g of
G satisfies the property (c), and (c2) holds uniformly with respect to g.

It is immediately verified that, if g : W → R satisfies the property (c) on
W, the problem (θ) is equivalent to the following integral equation

(θ̂)
x(t) = φ0(t0) +

∫ t

t0

g(s, x)ds in [t0, t0 + p0]

x(t) = φ0(t) in I(t0,p0).

The lag function α is not necessarily continuous, nor a compact neither a con-
nected valued map. Such a lag function was introduced and studied in [3], where
its generality was illustrated by examples and references (we limit ourselves to
refer to [16], [17], [19], [20], [22]).

For problem (θ), existence, continuation, and continuous dependence for
extremal solutions are given. The existence theorem is a functional version of a
classical result (see theorem 1.2 of [13]); the continuous dependence proof follows
the outline of the Theorem 3 of [10].

In [8], [9] the authors proved existence and continuous dependence of
extremal solutions, using the method of the under-solutions and over-solutions.

3. A topology on G.As in [4], we endow the set G={Γ(x,Ω):x∈C(E),Ω∈C}
with a topology which represents a localization on compact sets of the Hausdorff
metric topology.

Given two elements Γ(x,Ω),Γ(y,∆) in G and a compact subset K of E,
we consider the quasi-distance

ρ
K

(Γ(x,Ω),Γ(y,∆)) = max{e(Γ(x,Ω ∩K),Γ(y,∆)), e(Γ(y,∆ ∩K),Γ(x,Ω))},

where e(A,B) = supa∈A infb∈B |a− b|, A, B subsets of R
2, denotes the excess of

A over B, with the convention e(Ø, B) = 0 and e(A,Ø) = +∞ if A 6= Ø.

Definition 3.1. A sequence (Γ(xm,Ωm))m ⊂ G, is said to be τ -
convergent to Γ(x0,Ω0) if for every compact subsetK of E, the numerical sequence
(ρ

K
(Γ(x0,Ω0),Γ(xm,Ωm)))m converges to 0.

The space G with the topology induced by the τ -convergence will be
denoted by (G, τ).

In [4] the τ -topology inG is studied. Particularly, the connections between
this latter, the compact-open, the Attouch-Wets, the Kuratowski, and the graph
topology are given.



Rita Ceppitelli, Loris Faina 74

The τ -topology induces a natural topology on C (still denoted by τ) which
coincides with the topology of the uniform convergence of distance functionals on
bounded sets of R.

In [4] the authors proved that the topological space (G, τ) is homeomorphic
to the quotient space [(C, τ)×C(E)]/R with respect to the equivalent relation R
defined as follows:

(Ω1, x)R(Ω2, y) provided Ω1 = Ω2 and x|Ω1
= y|Ω2

.

The homeomorphic property of the τ -topology has a great relevance in the study
of functional differential equations of type (∗). In fact, in [10] this homeomor-
phism allowed us to get existence, uniqueness, and continuous dependence of the
solutions of problem (θ) in (G, τ) by means of a classical fixed point theorem ap-
plied to the homeomorphic functional space; here, we apply this same procedure
dealing with extremal solutions.

The fundamental tool for proving the homeomorphic result is the exis-
tence of continuous functionals X ∈ Z from the topological space (G, τ) into
C(E). An example is provided by the ‘linear extension’ Xℓ : G → C(E). Pre-
cisely, for every Ω ∈ C let (a, b) be the smallest closed interval, bounded or
not, containing Ω and let (ai, bi), i ∈ N be the open intervals whose union is
the complement of Ω in (a, b). For every continuous function x : Ω → R, let
us consider the linear extension, say Xℓ(Γ(x,Ω)) : E → R, obtained by putting
Xℓ(Γ(x,Ω))(t) = x(a) for t ∈ (−∞, a)∩E, Xℓ(Γ(x,Ω))(t) = x(b) for t ∈ (b,+∞)∩
E and Xℓ(Γ(x,Ω))(t) = x(ai) if t ∈ [ai, ai], Xℓ(Γ(x,Ω))(t) = x(bi) if t ∈ [bi, bi],

linear in the interval [ai, bi], where ai = ai +
bi − ai

3
, bi = bi −

bi − ai
3

.

In particular, we use the following proposition (see [4]).

Proposition 1. If (xn)n is a sequence of functions in C(E) converging
to x0 and (Ωn)n is a sequence in C τ -converging to Ω0, then (Γ(xn,Ωn))n →
Γ(x0,Ω0) with respect to the τ -topology in G.

4. Continuation result. Let W be an open subset of E×C(E) and let p0

be a positive constant such that [t0, t0 + p0] ⊂ ΠE(W). Suppose that g : W → R

satisfies property (vα) and (c), and let (t0, φ0) be a given (W, α)-admissible pair.
By virtue of property (c2), in correspondence with the point (t0,X (Γ(φ0, I(t0,p0))))
there exists a positive constant not greater than p0, that we again denote p0, and
a Lebesgue integrable function m(·) such that the ball

B(t0, φ0) = B((t0,X (Γ(φ0, I(t0,p0)))); p0) ⊂ W

and

(4.1) |g(t, ψ)| ≤ m(t) for every (t, ψ) ∈ (t0, φ0).
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Moreover, let p ≤ p0 be such that

(4.2)

∫ t+p

t0

m(s) ds ≤ p0.

4.a. Continuation of the solution for a particular lag function.

In this section we consider a particular definition of the lag function. For the
sake of clarity, we denote this particular lag function by α̃.

Let α̃ : E → C be the set valued map defined by α̃(t) = (−∞, t] ∩ E.
So, given t0 ∈ E and p0 ∈ R

+, I(t0,p0) = (−∞, t0] ∩ E = α̃(t0). Moreover, a
pair (t0, φ0) with t0 ∈ ΠE(W) and φ0 : α̃(t0) → R continuous function, is called
admissible data with respect to W and α̃ ((W, α̃)-admissible) if there is X ∈ Z
such that (t0,X (Γ(φ0, α̃(t0)))) ∈ W. We note that, by virtue of the definition of
α̃ and the property of family Z, all the functionals of Z map Γ(φ0, α̃(t0)) into
the same element of C(E). So given a (W, α̃)-admissible pair (t0, φ0), we have
Z0 = Z. Therefore, in the present Section 4, X will denote an arbitrary element
of Z. Finally, we denote by (θ̃) the Cauchy problem related to α̃. Moreover, in
this setting for every x ∈ C(E) we have ΥXx = X (Γ(x, α̃(t0 + p0))).

Theorem 4.1 (continuation). Suppose that g : W → R satisfies proper-

ties (vα̃) and (c). If x0 is a solution of (θ̃) on [t0, t0 +β0] passing through (t0, φ0),
with β0 < p, then the solution x0 can be extended to the whole interval [t0, t0 +p],

i.e. there exists a solution x̃ of (θ̃) passing through (t0, φ0) on [t0, t0 + p] such
that x̃(t) = x0(t) for every t ∈ α̃(t0) ∪ [t0, t0 + β0].

P r o o f. Let T ⊂ [β0, p] ×G be the set defined by:

(t,Γ(x,Ω)) ∈ T iff

(a1) Ω = I(t0,t) ∪ [t0, t0 + t],
(a2) x is a continuation of x0 in Ω,
(a3) for every (s,Γ(y, [t0, t0 + s])) ∈ T , with s < t, we have that x is a continu-
ation

of y in Ω.
By definition (β0,Γ(x0,Ω)) ∈ T .

Let p = sup{t : (t,Γ(x,Ω)) ∈ T , for some Γ(x,Ω) ∈ G}.
Let ((tn,Γ(xn,Ωn)))n ∈ T be a sequence such that (tn)n converges to p.

We define a continuous function x̃ on [t0, t0 + p[ by

x̃(t) = xn(t), if t ∈ Ωn, n ≥ 1.

Now, for any two points t1 < t2 in [t0, t0 + p[ it follows that |x̃(t1) − x̃(t2)| ≤
t2∫

t1

m(s) ds.
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This implies, by the Cauchy theorem for convergence, that x̃ can be ex-
tended with continuity to [t0, t0+p]. We shall show that x̃ is a solution of problem

(θ̃) passing through (t0, φ0) on [t0, t0 + p].

It is sufficient to prove x̃(t0 +p) = φ0(t0)+
t0+p∫

t0

g(s,X (Γ(x̃, α̃(t0 +p)))) ds.

Indeed, by definition, we have

(4.3) x̃(t0 + λn) = xn−1(t0 + λn−1) +

∫ t0+λn

t0+λn−1

g(s,X (Γ(xn, α̃(t0 + λn)))) ds,

and by means of the property (vα̃), we can rewrite (4.3) into the form

(4.4) x̃(t0 + λn) = φ0(t0) +

∫ t0+λn

t0

g(s,X (Γ(x̃, α̃(t0 + λn)))) ds.

By construction, the first term of (4.4) converges to x̃(t0 + p) and, by (4.2) and
the Lebesgue dominate convergence theorem, the second term of (4.4) converges

to
t0+p∫

t0

g(s,X (Γ(x̃, α̃(t0 + p)))) ds as n diverges.

This proves that (p,Γ(x̃, I(t0,t0+p)∪[t0, t0+p])) ∈ T . Now assume that p <

p. Since (t0 +p, x̃) is an admissible pair for problem (θ̃) on [t0 +p, t0 +p0], in light

of the existence Theorem 2 of [10], there is a solution x of (θ̃) on [t0 +p, t0 +p+ ǫ]
with ǫ > 0, passing through (t0 + p, x̃).

Thus, (t0 +p+ ǫ,Γ(x, [t0, t0 +p+ ǫ])) ∈ T , and we get a contradiction. �

4.b. General continuation result. In this section we will deal with
the general formulation of lag function α. We observe that if (t0, φ0) is (W, α)-
admissible, then (t0,X (Γ(φ0, I(t0,p)))|α̃(t0)

) is (W, α̃)-admissible for every X ∈ Z0.

Theorem 4.2. Suppose that g : W → R satisfies properties (vα) and
(c). If x is a solution of (θ) passing through (t0, φ0) on [t0, t0 + β0] with β0 < p,
then the solution x can be extended to the whole interval [t0, t0 + p].

P r o o f. For any X ∈ Z0, the function

x0(t) =

{ X (Γ(φ0, I(t0,p)))(t), if t ∈ α̃(t0);

x(t), if t ∈ [t0, t0 + β0]

is a solution of (θ̃) on [t0, t0 + β0] passing through (t0,X (Γ(φ0, I(t0,p)))|α̃(t0)).

By virtue of Theorem 4.1, there exists a solution x̃ of (θ̃) on [t0, t0 + p]
passing through (t0,X (Γ(φ0, I(t0,p)))) such that x̃ = x0 on α̃(t0 + β0).
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It is trivial to verify that x̃ is also a solution of (θ) on [t0, t0 + p] passing
through (t0, φ0) with x̃ = x on I(t0,β0) ∪ [t0, t0 + β0]. �

5. Existence of extremal solutions.

Definition 5.1. If xM (xm) is a solution of (θ) passing through (t0, φ0),
existing on some interval [t0, t0 + p0], with the property that, every other solution
x of (θ) passing through (t0, φ0) and existing on [t0, t0 + p], with p ≤ p0, is such
that x(t) ≤ xM (t) (x(t) ≥ xm(t)) in [t0, t0 +p], then xM (xm) is called a maximal
(minimal) solution of (θ) on the interval [t0, t0 + p0] passing through (t0, φ0).

Clearly, the functions xM and xm, if they exist, must be unique.
About the existence, it should be remarked that, unlike the nonfunctional

case, solved Cauchy problem related to hereditary differential equations may
not have extremal solutions (see Example 5.4). The existence of the extremal
solutions for problem (θ) has been proved under the further following condition:

(+)
if x, y are two solutions of problem (θ) in [t0, t0 + p0], then
(x ∨ y)(t) = max{x(t), y(t)}, (x ∧ y)(t) = min{x(t), y(t)}, t ∈ [t0, t0 + p0]
is also a solution of problem(θ)in[t0, t0 + p0].

Remark 5.2. In the nonfunctional case property (+) is naturally
verified. Moreover property (+) holds in the following remarkable cases:

(5.1) α(t) ⊂ (−∞, t0], for every t ∈ [t0, t0 + p0];

(5.2) g is monotone with respect to the functional argument.

The following result is a functional version of Theorem 1.2 of [13].

Theorem 5.3. Let g : W → R be a function satisfying the properties (c),
and (vα). If problem (θ) verifies property (+) then, for every (W, α)-admissible
pair (t0, φ0), t0 ∈ ΠE(W), φ0 : I(t0,p) → R, there exist the extremal solutions
xm, xM of problem (θ) on [t0, t0 + p] passing through (t0, φ0).

P r o o f. We prove only the existence of xM ; analogously one can prove
the existence of xm.

By the continuation theorem 4.2, all the solutions F = {x} of (θ) passing
through (t0, φ0) exist on [t0, t0 + p] and satisfy

(5.3) |x(t1) − x(t2)| ≤
∣∣∣∣
∫ t2

t1

m(s) ds

∣∣∣∣ for every t1, t2 ∈ [t0, t0 + p].

From (5.3) it follows that the set F is an equicontinuous set of functions.
Further, from (5.3), putting t1 = t0, the set F is uniformly bounded on [t0, t0+p].
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Let Φ be the function defined by Φ(t) = supx∈F{x(t)}. Clearly, Φ exists
and is uniformly continuous on [t0, t0 + p]. It will be shown that Φ ∈ F , hence
Φ = xM .

Fixed ǫ > 0, let δǫ be the positive number related to the equiuniform
continuity of the family F and the uniform continuity of Φ.

Subdivide the interval [t0, t0 + p] into n intervals by the points t0 = τ0 <
τ1 < · · · < τn = t0 + p in such a way that max(τi+1 − τi) < δǫ.

For every τi, (i = 1, . . . , n), choose a solution xi ∈ F so that

0 ≤ Φ(τi) − xi(τi) < ǫ.

This is possible from the definition of Φ. Now, for the given ǫ, define the function
xǫ as

xǫ(t) = max
0<i≤n

xi(t) t ∈ [t0, t0 + p].

By property (+), xǫ is a solution of (θ) passing through (t0, φ0), and having the
property

(5.4) 0 ≤ Φ(τi) − xǫ(τi) < ǫ (i = 0, 1, . . . , n).

Since the variation of Φ and xǫ in each interval [τi, τi+1] is less that ǫ, it
results from (5.4)

(5.5) 0 ≤ Φ(t) − xǫ(t) < 3ǫ for every t ∈ [t0, t0 + p].

Letting ǫ =
1

k
(k ∈ N), one obtain a sequence xk of solutions which converges

uniformly, unless of passing to a subsequence, to Φ on [t0, t0 + p].

By the integral representation of xk and the Lebesgue dominate conver-
gence theorem, we have

Φ(t) = φ0(t0) +

∫ t

t0

g(s,Φ)ds t ∈ [t0, t0 + p],

that is, Φ is a solution of (θ) passing through (t0, φ0). �

Now, the Example 5.4 proves that the problem (θ) may not admit, in
general, local extremal solutions if the property (+) is not satisfied; while the
Example 5.5 shows that the property (+) is strictly weaker than the monotonicity
condition with respect to the functional argument of g.
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Example 5.4. Let g : [0, 1] × C([0, 1]) → R and α : [0, 1] → [0, 1] be
defined by

g(t, x) =






√∣∣∣∣x(t) − x

(
1

5n

)∣∣∣∣, (t, x) ∈
[

1

5n
,

2

5n

[
× C([0, 1]), n ∈ N;

−
√∣∣∣∣x

(
t− 1

5n

)
− x

(
1

5n

)∣∣∣∣, (t, x) ∈
[

2

5n
,

3

5n

[
× C([0, 1]), n ∈ N;

−
√∣∣∣∣x

(
t− 2

5n

)
− x

(
1

5n

)∣∣∣∣, (t, x) ∈
[

3

5n
,

4

5n

[
× C([0, 1]), n ∈ N;

√∣∣∣∣x
(
t− 3

5n

)
− x

(
1

5n

)∣∣∣∣, (t, x) ∈
[

4

5n
,

1

5n−1

[
× C([0, 1]), n ∈ N;

0, otherwise,

α(t) =






0, if t = 0;
{
t− i− 1

5n
,

1

5n

}
, if t ∈

[
i

5n
,
i+ 1

5n

[
, i ∈ {1, 2, 3, 4};n ∈ N;

2

5
, if t = 1.

We consider the following Cauchy problem

(θ)

{
ẋ(t) = g(t, x), a.e. in [0, 1];

x(0) = 0;

Assume that xM is the maximal solution of problem (θ) in [0, ǫ], ǫ > 0. Let n > 1

be such that

[
1

5n
,

1

5n−1

]
⊂ [0, ǫ]. Put x0 = xM

(
1

5n

)
, the expression of xM in

[
1

5n
,

1

5n−1

]
is forced to be the following

xM (t) =






x0 +
(t− 1

5n )
2

4
, in

[
1

5n
,

2

5n

]
;

x0 +
1

4 · 52n
− (t− 2

5n )2

4
, in

[
2

5n
,

3

5n

]
;

x0 −
(t− 3

5n )2

4
, in

[
3

5n
,

4

5n

]
;

x0 −
1

4 · 52n
+

(t− 4
5n )2

4
, in

[
4

5n
,

1

5n−1

]
.
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It follows that xM

(
1

5n

)
= x0, for every n ∈ N, with

1

5n−1
≤ ǫ.

Therefore, x0 is forced to be equal zero. So, xM (t) < 0 in

]
3

5n
,

1

5n−1

[
, for

every n ∈ N
+, with

1

5n−1
≤ ǫ.

This is a contradiction, because the function x(t) ≡ 0 on [0, 1] is also a
solution of problem (θ).

By taking −g(t, x) in place of g(t, x), the same reasoning shows that there
is not minimal solution for problem (θ).

Example 5.5. Let g : [0, 2] × C([0, 2]) → R and α : [0, 2] → [0, 2] be
defined by

g(t, x) =






√
| x(t) |, t ∈ [0, 1[×C([0, 2]);

−
√
| x(t− 1) − x(0) |, t ∈ [1, 2] ×C([0, 2]),

α(t) =

{
0, if 0 ≤ t < 1;

{0, t− 1}, if t ∈ [1, 2].

We consider the following Cauchy problem

(θ∗)

{
ẋ(t) = g(t, x), a.e. in [0, 2];

x(0) = 0.

The function g clearly does not satisfy the monotonicity condition with respect
to the functional argument, but the property (+) holds.

Indeed, every solution of (θ∗) is of the following form:

xc(t) =






0, if t ∈ [0, c];

(t− c)2

4
, if t ∈ [c, 1];

(1 − c)2

4
, if t ∈ [1, 1 + c];

(1 − c)2

4
− (t− 1 − c)2

4
, if t ∈ [1 + c, 2],

with c ∈ [0, 1].
Therefore, since the set of the solutions of (θ∗) is totally ordered with

respect to the relation

x1 ≤ x2 iff x1(t) ≤ x2(t) for every t ∈ [0, 2]
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then the property (+) is trivially satisfied.

6. Continuous dependence of extremal solutions. In this section
we will deal only with maximal solutions, but analogous results hold also for
minimal solutions.

The continuous dependence result for the extremal solutions of problem
(θ) needs some additional conditions with respect to the hypotheses of Theorem
5.3. In particular, we assume the following condition.

Given two triples (t1, φ1, g1) and (t2, φ2, g2), let xi, i = 1, 2, be the maximal
solution of the Cauchy problem

(θi)

ẋi(t) = gi(t, xi) a.e. in [ti, ti + p0]

xi(t) = φi(t) in I(ti,p0).

We say that the triples (t1, φ1, g1) and (t2, φ2, g2) satisfy the property (++) if,
under the conditions

(d.1) | t1 − t2 |< p0,

(d.2) g1(t, x) < g2(t, x) for every (t, x) ∈ W,

(d.3) X (Γ(φ1, I(t1,p0)))(t) < X (Γ(φ2, I(t2,p0)))(t) for every t ∈ E,

(d.4) φ1(t1) +
∫ t
t1
g1(s, x1) ds < φ2(t) for every t ∈ [t1, t2], if t1 < t2,

(d.5) φ2(t2) +
∫ t
t2
g2(s, x2) ds < φ1(t) for every t ∈ [t2, t1], if t2 < t1,

then we have

X (Γ(x1, I(t1,p0) ∪ [t1, t1 + p0]))(t) < X (Γ(x2, I(t2,p0) ∪ [t2, t2 + p0]))(t)

for every t ∈ (−∞, t1 ∧ t2 + p0].(
1)

Remark 6.1. In the nonfunctional case property (++) is naturally
verified.

Now, we prove that if g1, g2 are monotone with respect to the functional
argument then property (++) is verified.

Indeed, by contradiction, let t∗ be the smallest point in (−∞, t1 ∧ t2 + p0]
that verifies x1(t

∗) = x2(t
∗). In light of conditions (d.3), (d.4) and (d.5) t1 ∨ t2 <

t∗, and let t̃ be such that t1 ∨ t2 < t̃ < t∗.

(1)For every a, b ∈ R, we denote a ∧ b = min{a, b} and a ∨ b = max{a, b}.
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Therefore, in force of the monotonicity of g1 and g2, we get

x2(t
∗) = x2(t̃) +

∫ t∗

t̃
g2(s, x2) ds > x1(t̃) +

∫ t∗

t̃
g1(s, x1) ds = x1(t

∗),

which proves a contradiction.

The following lemma is a continuous dependence result for a particular
sequence of Cauchy problems and it will be used in the general continuous
dependence Theorem 6.3.

Lemma 6.2. Suppose W be an open set of E × C(E). Let g : W → R

be a function satisfying (vα) and (c).
Fixed p0 ∈ R

+ such that [t0, t0 + p0] ⊂ ΠE(W), let φ : α̃(t0) → R be a
continuous function. Let (γh)h be a sequence of positive numbers converging to
γ0 = 0.

If y0
M is, for h = 0, the maximal solution of the Cauchy problem

(θ̃h)

{
ẋ(t) = g(t, x) + γh, a.e. in [t0, t0 + p0];

x(t) = φ(t) + γh, in α̃(t0),

property (+) holds for the problems (θh)h, h ≥ 0, and property (++) holds for
each pair of triples (t0, φ, g), (t0, φ + γh, g + γh) for h > 0, then there exists an

integer h0 and for h > h0 there exists the maximal solution yhM of problem (θ̃h)
in [t0, t0 + p0], such that X (Γ(yhM , α̃(t0 + p0))) converges to X (Γ(y0

M , α̃(t0 + p0)))
in C(E).

P r o o f. Given X ∈ Z, since Xy0
M = X (Γ(y0

M , α̃(t0 + p0))) is a solution

of (θ̃0) in [t0, t0 + p0], the compact set Q = ∪t∈[t0,t0+p0](t,X (Γ(Xy0
M , α̃(t)))) is

contained in W.
By Lemma 2 of [10], there exists a positive number q and a summable

function m̃(·) such that B(Q, q) ⊂ W and

(6.1) |g(s, z)| ≤ m̃(s) for all (s, z) ∈ B(Q, q).

Moreover there is an h∗ such that

(6.2) X (Γ(φ+ γh, α̃(t0))) ∈ B(X
(

Γ(φ, α̃(t0)));
q

2

)

for every h ≥ h∗.
By virtue of Theorem 5.3 (replacing m(·) with m̃(·)+1), there is p ∈ R

+,

p < min

{
q

2
, p0

}
and there exists the maximal solution yhM1

of (θ̃h) in [t0, t0 + p]

such that (t0 + p,X (Γ(yhM1
, α̃(t0 + p)))) ∈ B(Q, q) for every h ≥ h∗.
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By (6.1), (6.2) the set {yhM1
: h ≥ h∗} is relatively compact; let y be a

limit point of this set. By using (6.1) and the Lebesgue dominate convergence

theorem, it is easy to prove that y is a solution of the problem (θ̃0) in [t0, t0 + p].

By virtue of (++) we can prove that y is the maximal solution of (θ̃0) in [t0, t0+p],
since yhM1

(t) ≥ y0
M(t) for every h ≥ h∗ and t ∈ [t0, t0 + p].

Now, we proceed by steps of width p. There is an integer h∗1 > h∗ such that

for every h > h∗1 we have X (Γ(yhM1
, α̃(t0 + p))) ∈ B

(
X (Γ(y0

M , α̃(t0 + p)));
q

2

)
.

As in the first step, for every h > h∗1, we can construct the maximal

solution yhM2
of the problem (θ̃h) in [t0 +p, t0 +2p] with initial value yhM1

at t0 +p

and we can prove that (X (Γ(yhM2
, α̃(t0+2p))))h converges to X (Γ(y0

M , α̃(t0+2p)))
in C(E).

With a finite number of steps we prove the lemma. �

Theorem 6.3 (continuous dependence). Suppose W is an open set in
E×C(E). Let G = {gk : W → R, k ∈ N} be a function set satisfying the property
(c) and such that

(γ) lim
(k,ψ)→(+∞,τ)

gk(s, ψ) = g0(s, τ)

for almost all s and for every τ .
Assume that gk verifies the property (vα) for every gk ∈ G and

(6.3) gk(s, ψ) ≥ g0(s, ψ) for every ψ and almost all s.

Fixed p0 ∈ R
+ such that [t0, t0 + p0] ⊂ ΠE(W), let (Γ(φtk , I(tk ,p0)))k be a

sequence in (G, τ) τ -convergent to Γ(φt0 , I(t0,p0)).
Finally, suppose that there is X0 ∈ Z0, i.e. X0(Γ(φ0, I(t0,p0))) ∈ W, such

that

(6.4) X0(Γ(φtk , I(tk ,p0)))(t) ≥ X0(Γ(φt0 , I(t0,p0)))(t) for every t ∈ E, k ≥ 1;

(6.5)
there is a neighborhood U of (t0,X0(Γ(φ0, I(t0,p0)))) such that

g0(t, x) ≤ 0 for every (t, x) ∈ U ;

(6.6)
gk(t, x) ≥ 0 for every k ≥ 1 and for every (t, x) ∈ W with t ∈ [tk, t0] if tk < t0.

If x0
M is, for k = 0, the maximal solution of the Cauchy problem

(θk)

(θk.1) ẋ(t) = gk(t, x) a.e. in [tk, tk + p0]

(θk.2) x(t) = φk(t) in I(tk ,p0),
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property (+) holds for the Cauchy problems (θk) for every k ≥ 1 and property
(++) holds for each pair of triples (tk, φk + γ, gk + γ), (t0, φ0, g0) with γ > 0
and k > 0, then there exists an integer k0 and there exists the maximal solution
xkM = xkM (tk, φtk , gk) of the problem (θk), k ≥ k0, defined in I(tk ,p0) ∪ [tk, tk + p0],

such that the sequence (Γ(xkM , I(tk ,p0)∪[tk, tk+p0]))k τ -converges to Γ(x0
M , I(t0,p0)∪

[t0, t0 + p0]).

P r o o f. First of all consider the problems

(θ̃k)
ẋ(t) = gk(t, x) a.e. in [tk, tk + p0]
x(t) = X0(Γ(φtk , I(tk ,p0)))(t) in α̃(tk).

Since

ΥX0x
0
M =





X0(Γ(φt0 , I(t0,p0) ∪ [t0, t0 + p0])), in α̃(t0);

X0(Γ(x0
M , I(t0,p0))), in [t0,+∞) ∩ E

is a solution of (θ̃0) in [t0, t0 + p0], the compact set

Q = ∪
t∈[t0,t0+p0]

(t,ΥX0(Γ(X0x
0
M , α̃(t))))

is contained in W by definition. By Lemma 2 of [10], there is a positive number
q and a summable function m̃(·) such that B(Q, q) ⊂ W and

(6.7) |g(s, z)| ≤ m̃(s) for all (s, z) ∈ B(Q, q) and for all g ∈ G.

Moreover, as (X0(Γ(φtk , I(tk ,p0))))k converges to X0(Γ(φt0 , I(t0,p0))) there is an

integer k such that

(6.8) tk ∈ [t0 −
q

2
, t0 +

q

2
], X0(Γ(φtk , I(tk ,p0))) ∈ B

(
X0(Γ(φt0 , I(t0,p0))),

q

2

)

for every k > k.
By virtue of Theorem 5.3 (replacing m(·) with m̃(·) + 1), there is a p ∈

R
+, p < min

{
q

2
, p0

}
and there exists the maximal solution xkM1

of (θ̃k) on [tk, tk+

p] such that

(tk + p,X0(Γ(xkM1
, α̃(tk + p)))) ∈ B(Q, q) for every k ≥ k.

By virtue of (6.7), (6.8), the set {xkM1
}
k≥k is relatively compact; we denote by x

such a limit point of this set.
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Using (6.7), (γ), and the Lebesgue dominate convergence theorem, one

can verify that x is a solution of (θ̃0) on [t0, t0 + p].

Further x is the maximal solution of the Cauchy problem (θ̃0) on [t0, t0 +
p0]. Indeed, by virtue of properties (6.3), (6.4), (6.5), (6.6), and (++) there is

k∗ ≥ k such that for k > k∗ the maximal solution y
(k,h)
M of the problem

(P kh )






ẋ(t) = gk(t, x) +
1

h
, a.e. in [tk, tk + p];

x(t) = X0(Γ(φtk , I(tk ,p0))) +
1

h
, in α̃(tk),

satisfies y
(k,h)
M (t) ≥ ΥX0x

0
M (t) on α̃(tk∧t0+p) for every h ∈ N. Thus, the assertion

follows from Lemma 6.2.
This implies that x and x0

M must coincide on [t0, t0 + p]. Therefore, by
Proposition 3.2, X0(Γ(xkM1

, α̃(tk + p)))k converges to X0(Γ(ΥX0x
0
M , α̃(t0 + p))) in

C(E).
Now, we proceed by step of width p.

There is an integer k1 > k∗ such that, for every k > k1, we have

tk+p ∈ [t0, t0 +2p], X0(Γ(xkM1
, α̃(tk+p))) ∈ B

(
X0(Γ(ΥX0x

0
M , α̃(t0 + p))),

q

2

)
.

As in the first step, we can construct the maximal solution xkM2
of (θ̃k) in [tk +

p, tk + 2p] with initial value xkM1
at tk + p.

We can prove analogously that (X0(Γ(xkM2
, α̃(tk + 2p))))k converges to

X0(Γ(ΥX0x
0
M , α̃(t0 + 2p))) in C(E).

With a finite number of steps we prove the existence of a k0 ∈ N, such that
for every k ≥ k0, said xkM be the maximal solution of problem (θ̃k) on [tk, tk+p0],
we have that (X (Γ(xkM , α̃(tk + p0))))k converges to X (Γ(ΥX0x

0
M , α̃(t0 + p0))) in

C(E).
It is easy to verify that xkM is also the maximal solution to problem (θk),

for k ≥ k0, and that the sequence (Γ(xkM , I(tk ,p0) ∪ [tk, tk + p0]))k τ -converges to

Γ(x0
M , I(t0,p0) ∪ [t0, t0 + p0]). �

Remark 6.4. In light of Remark 6.1, conditions (+) and (++) are a
consequence of the monotonicity of gk with respect to the functional argument.

Furthermore, we underline that hypothesis (6.5) can be omitted if tk ≤ t0
definitively; and hypothesis (6.6) can be omitted if tk ≥ t0 definitively.

Now, we present some examples, which state the necessity of hypotheses
(6.3), (6.4), (6.5), and (6.6).
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Example 6.5. Let W =] − 2, 2[×R, α(t) = {t}, tk = 0 and φk(0) = 0,
for every k ∈ N. Consider the problems

(θk)

{
ẋ(t) = gk(t, x), a.e. in [tk, tk + 1];

x(tk) = φk(tk),

where for k > 1,

gk(t, x) =






√
x, if x >

1

k
, for every t;

√
k · x, if 0 ≤ x ≤ 1

k
, for every t;

0, if x < 0, for every t.

and

g0(t, x) =

{ √
x, if x ≥ 0, for every t;

0, if x < 0, for every t.

All hypotheses of Theorem 6.3 are satisfied, except (6.3). Each problem
(θk), for k ≥ 1 has an unique solution, xkM ≡ 0 on [0, 1]. But the maximal solution

of problem (θ0) on [0, 1] is x0
M (t) =

t2

4
.

Example 6.6 Let W, α, tk be as in Example 6.5. Consider the problem
(θk), k ∈ N, where for k ≥ 1

gk(t, x) =






√
x, if x >

1

k
, for every t;

k2

k − 1

1√
k
x− 1

(k − 1)
√
k
, if

1

k2
≤ x ≤ 1

k
, for every t;

x− 1

k2
, if 0 ≤ x ≤ 1

k2
, for every t;

− 1

k2
, if x < 0, for every t.

φk(0) =
1

k2

and

g0(t, x) =

{ √
x, if x ≥ 0, for every t;

0, if x < 0, for every t
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φ0(0) = 0.

As in Example 6.5, all the hypotheses of Theorem 6.3 are satisfied except (6.3),
noticing that (6.4) holds strictly.

The problem (θk) has an unique solution, xkM ≡ 1

k2
on [0, 1];but the

maximal solution of (θ0) is x0(t) =
t2

4
.

Example 6.7. Let W, α, tk be as in Example 6.5. Consider the problems
(θk), where for k ≥ 1

gk(t, x) =






√
x+

1

k
, if x ≥ −1

k
, for every t;

0, if x < −1

k
, for every t.

φk(0) = −1

k

and

g0(t, x) =

{ √
x, if x ≥ 0, for every t;

0, if x < 0, for every t.

φ0(0) = 0.

All hypotheses of Theorem 6.3 are satisfied except (6.4). The problem (θk) has

an unique solution, xkM ≡ −1

k
on [0, 1]; but the maximal solution of problem (θ0)

on [0, 1] is x0
M (t) =

t2

4
.

Example 6.8. Let W, α be as in Example 6.5. Consider the problems
(θk), where for k ≥ 1

gk(t, x) =






−2, if x ∈ R, t < −
√

1

k
;

√
x, if x ≥ 1

k
, t ≥ −

√
1

k
;

√
1

k
, if 0 ≤ x ≤ 1

k
, t ≥ −

√
1

k
;

1

2
x+

√
1

k
, if − 2√

k
≤ x < 0, t ≥ −

√
1

k
;

0, if x ≤ − 2√
k
, t ≥ −

√
1

k
;
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φk(−
2√
k
) = 0

and

g0(t, x) =






√
x, if x ≥ 0, t ≥ 0;

0, if x < 0, t ≥ 0;

−2, if x ∈ R, t < 0,

φ0(0) = 0.

All the hypotheses of Theorem 6.3 are satisfied except (6.6). The unique solution

of the problem (θk) in

[
− 2√

k
, 1

]
is

xkM =






−2(t+
2√
k
), if − 2√

k
≤ t ≤ −

√
1

k
;

− 2√
k
, if t ≥ −

√
1

k
,

and xkM converges to x(t) ≡ 0.

But the maximal solution of problem (θ0) in [0, 1] is x0
M (t) =

t2

4
.

Example 6.9. Let W, α be as in Example 6.5. Consider the problem
(θk), where for k ≥ 1

gk(t, x) =






1, if x ∈ R, t ≤ 1;

√
x− 1, if x ≥ 1 +

1

k
, t > 1;

1√
k
, if 1 ≤ x ≤ 1 +

1

k
, t > 1;

√
k · x+

1√
k
−

√
k, if 1 − 1

k
≤ x ≤ 1, t > 1;

0, if x ≤ 1 − 1

k
, t > 1,

φk(
1

k
) = 0

and

g0(t, x) =






1, if x ∈ R, t ≤ 1;
√
x− 1, if x ≥ 1, t > 1;

0, if x ≤ 1, t > 1.
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φ0(0) = 0.

All the hypotheses of Theorem 6.3 are satisfied except (6.5). The unique solution

of problem (θk) in

[
1

k
,
3

2

]
is

xkM (t) =






t− 1

k
, if

1

k
≤ t ≤ 1;

1 − 1

k
, if 1 ≤ t ≤ 3

2

and xkM converges to

x(t) =






t, if 0 ≤ t ≤ 1;

1, if 1 ≤ t ≤ 3

2
.

But the maximal solution of (θ0) on

[
0,

3

2

]
is

x0
M (t) =






t, if 0 ≤ t ≤ 1;

1 +
(t− 1)2

4
, if 1 ≤ t ≤ 3

2
.

Finally, we study the relation between condition (++), the monotonicity condi-
tion with respect to the functional argument (see Remark 6.1), and the continuous
dependence of extremal solutions; in short, we give examples which prove that
the monotonicity condition with respect to the functional argument is strictly
stronger that condition (++), and both of them are not necessary for the con-
tinuous dependence of extremal solutions.

Example 6.10. This example shows that condition (++) is strictly
weaker than the monotonicity of gk with respect to the functional argument. Let
W be as in Example 6.5. Let

gk(t, x) =






−
√
| x | if t ≥ 0

2k if − 1

22k
≤ t < 0

0 if t < − 1

22k
,

g0(t, x) =

{ −
√
| x | if t ≥ 0

0 if t < 0,
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α(t) = t.

Consider the Cauchy problems

(θk)

ẋ(t) = gk(t, x(α(t))) a.e. in

[
− 1

22k
, 1

]

x(− 1

22k
) = 0

k ≥ 1, and

(θ0)
ẋ(t) = g0(t, x(α(t))) a.e. in [0, 1]

x(0) = 0.

It is easy to check that hypotheses (γ), (6.3), (6.4), (6.5), and (6.6) hold, but
(gk), k ≥ 0 do not satisfy the monotonicity condition with respect to the second
argument.

Problem (θk) has as unique solution

xkM (t) =






2k
(
t+

1

22k

)
if − 1

22k
≤ t ≤ 0

1

4

(
t− 1

2
k

2
−1

)2

if 0 ≤ t ≤ 1

2
k

2
−1
,

0 if t ≥ 1

2
k

2
−1

and problem (θ0) has x0(t) = 0, t ∈ [0, 1] as maximal solution. Therefore (++) is
verified and (xkM )k converges to x0.

If, in Example 6.10, we modify the lag function as follows:

α(t) =

{
t if t < 0

0 if t ≥ 0,

then problem (θk) admits as unique solution

xkM (t) =






2k
(
t+

1

22k

)
if − 1

22k
≤ t ≤ 0

− 1√
2k
t+

1

2k
if t ≥ 0,
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and problem (θ0) has still x0(t) = 0, t ∈ [0, 1] as maximal solution. This proves

that (++) is not verified since xkM (t) < x0(t) for t >
1√
2k

, but (xkM )k still

converges to x0.

Finally, we give a sequence of Cauchy problems (θk) which do not satisfy (++)
and for which there is not continuous dependence of extremal solutions.

Example 6.11. Let gk : [−2, 2] × C([−2, 2]) → R, k ≥ 0 and α :
[−2, 2] → [−2, 2] be defined by

gk(t, x) =






−
√
|x(t) − x(0)| if t ≥ 1

2

−
√
|x(−t− 1

2
) − x(0)| if 0 ≤ t <

1

2

2k if − 1

22k
≤ t < 0

0 if t < − 1

22k
,

g0(t, x) =






−
√
|x(t) − x(0)| if t ≥ 1

2

−
√
|x(−t− 1

2
) − x(0)| if 0 ≤ t <

1

2

0 if t < 0,

α(t) =






t if − 2 ≤ t < 0
{
−t− 1

2

}
∪ {0} if 0 ≤ t <

1

2

{t} ∪ {0} if
1

2
≤ t ≤ 2.

Consider the following Cauchy problems,

(θk)

ẋ(t) = gk(t, x) a.e. in

[
− 1

22k
, 2

]

x(t) = 0 in

[
−1,−1

2

]
∪

{
− 1

22k

}

k ≥ 1, and
ẋ(t) = g0(t, x) a.e. in [0, 2]

x(t) = 0 in

[
−1,−1

2

]
∪ {0}.
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All the hypotheses (γ), (6.3), (6.4), (6.5), and (6.6) hold; furthermore, problem
(θk) has as unique solution

xkM (t) =






2k
(
t+

1

22k

)
if − 1

22k
≤ t ≤ 0

− 1√
2k
t+

1

2k
if 0 ≤ t <

1

2

1

2k
−

(t+
√

2

2
k

4
− 1

2 )2

4
if

1

2
≤ t ≤ 2

and problem (θ0) has x0(t) = 0, t ∈ [0, 2] as maximal solution. Thus, condition
(++) is not verified and (xkM )k does not converge to x0.
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