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ABSTRACT SUBDIFFERENTIAL CALCULUS AND

SEMI-CONVEX FUNCTIONS
∗

Milen Ivanov, Nadia Zlateva

Communicated by S. L. Troyanski

Abstract. We develop an abstract subdifferential calculus for lower
semicontinuous functions and investigate functions similar to convex functions.
As application we give sufficient conditions for the integrability of a lower
semicontinuous function.

1. Introduction. Throughout this paper we develop in an abstract form
subdifferential calculus for lower semicontinuous functions on Banach spaces and
give a number of applications.

The aim, as stated by Thibault in [13] is to prove at once theorems valid
for various subdifferentials.

Related work can be found in [13], [1], [9] and references given there.
There is another reason for the recent development of this topic. Starting with
the famous paper of Borwein and Preiss [3], attention has been focused on so
called smooth subdifferentials. The methods developed provided unified treat-
ment of the locally Lipschitz and the lower semicontinuous functions. They had
been successfully applied to the theory of Clarke-Rockafellar’s subdifferential.
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Thus it is a natural attempt to refine some properties, satisfied by the smooth
subdifferentials and Clarke-Rockafellar’s subdifferential, that in turn would pro-
vide a reasonable calculus.

The presubdifferentials defined by Thibault in [13] almost do this, but it
is not clear whether Gâteaux subdifferential is a presubdifferential if the space
admits Gâteaux differentiable norm and is nonseparable.

Aussel, Corvellec and Lassonde in [1] give a definition of subdifferential
which is satisfied by the smooth subdifferentials if the norm is appropriately
smooth.

In this paper we define a property called Υ. Given a proper lower
semicontinuous function, the multivalued operator T from X to X∗ satisfies the
property Υ for f if the directional subdifferential of f can be approximated
by elements of the graph of T . The operator T is to be regarded as some
subdifferential of f .

The property Υ is a version of the Smooth Variational Principle with
Constraints proved in [7] - an argument which goes back to Borwein and Preiss,
see [3], especially the proof of Theorem 3.2 there.

In Section 2 we give the definition of the property Υ and show that
if the space is β-smooth (see the definitions at the end of this section) then
the subdifferential D−

β of each proper lower semicontinuous function has the
property Υ for this function. The same conclusion holds for Clarke-Rockafellar’s
subdifferential on arbitrary Banach space.

Section 3 is inspired by an assertion due to Correa, Jofre and Thibault,
[5], which characterizes the proper lower semicontinuous functions which have a
monotone Clarke-Rockafellar’s subdifferential.

We call the proper lower semicontinuous function semi-convex if its Clarke-
Rockafellar’s subdifferential is ϕ-monotone. We show that such functions have
properties similar to those of convex functions. The class of semi-convex functions
generalizes the class of primal lower nice functions, introduced by Poliquin in [11],
as well as the semi-convex functions considered in [8].

In Section 4 we prove that if the Clarke-Rockafellar’s subdifferential of a
proper lower semicontinuous function is ϕ-monotone then it is actually maximal
ϕ-monotone, generalizing the well-known theorem of Rockafellar.

The Section 5 is devoted to the question of integrability of certain lower
semicontinuous functions. We prove that the perturbation of a semi-convex
function with locally Lipschitz regular function is integrable. As corollaries we
obtain some results of Poliquin, [11], and Thibault and Zagrodny, [14].

Notations. X denotes a real Banach space, SX , BX , (B0
X) are respectively

the unit sphere, the closed (open) unit ball there. The dual space is X∗ while
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the duality pairing is always written as 〈·, ·〉. R denotes the extended real line,
i. e. R = R ∪ {+∞} ∪ {−∞}. We say that a function f : X → R is proper, if
domf = {x ∈ X : f(x) ∈ R} is nonempty.

When we consider an operator on X its domain by definition is the
set domT = {x ∈ X : T (x) 6= Ø}. With ∂cf(x) we will denote the usual
subdifferential of a convex function f at point x.

For a proper lower semicontinuous function f the Clarke-Rockafellar’s
subdifferential at the point x ∈domf is the set

∂CRf(x) = {p ∈ X∗ : f0(x; v) ≥ 〈p, v〉, ∀v ∈ X},

where

f◦(x; v) = lim
ε↓0

lim sup
y→f x

t↓0

inf
w∈v+εB

f(y + tw) − f(y)

t

and y →f x means that (y, f(y)) tend to (x, f(x)) in X × R. If f(x) = ∞ then
∂CRf(x) = Ø.

Let β be a bornology on X. A Banach space X is said to be β-smooth if
it has a Lipschitz continuous, β differentiable bump function (see [10]). f ∈ C1

β,
where f : X → R, means that f is Gâteaux differentiable and the derivative is a
continuous mapping from X to the dual space X∗, equipped with the topology
of uniform convergence on the members of the bornology β.

Our essential tool will be the Smooth Variational Principle of Deville,
Godefroy and Zizler:

Theorem 1.1 ([6]). Let X be a β-smooth Banach space. Then for each
proper lower semicontinuous and bounded below function f : X → R∪{+∞} and
every ε > 0, there exists a function g ∈ C1

β such that f + g attains its minimum

on X and ‖g‖∞ = sup{|g(x)| : x ∈ X} < ε and ‖g′‖∞ < ε.

Finally, If β is some bornology on X and f : X → R ∪ {+∞} is proper
and lower semicontinuous then the smooth subdifferential of f at x is

D−
β f(x) = {u′(x) : u ∈ C1

β and f − u has a local minimum at x},

if x ∈domf and D−
β f(x) = Ø, if f(x) = ∞.

2. Υ property. Examples. We are going to introduce in an axiomatic
way a class of subdifferential operators. To this end we need some preliminaries.

Let f : X → R∪{+∞} be a proper lower semicontinuous function, h ∈ SX

and λ ∈ R. We define the sets

δ
λ
hf(x) = {p ∈ X∗ : ∃τ > 0 : ∀t : | t |< τ, f(x+ th) − f(x) ≥ t〈p, h〉 + λt2},
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if x ∈ domf, and δ
λ
hf(x) = Ø, if x /∈ domf. We put

δhf(x) =
⋃

λ∈R

δλ
hf(x).

The main fact about the directional subdifferential δh is the following
easy mean value inequality:

Lemma 2.1. Let f : R → R ∪ {+∞} be a proper lower semicontinuous
function with a ∈ domf and f(b) ≥ r ∈ R, b > a. Then there are c ∈ [a, b)
and sequences xn −→f

n→∞

c, pn ∈ δf(xn), such that pn(b− a) ≥ r − f(a), where δ

stands for δ1.

P r o o f. Put s =
r − f(a)

b− a
, g(x) = f(x) − sx. The proper lower semicon-

tinuous function g(x) attains its minimum on the interval [a, b]. If a is a point of

minimum of g(x) then for each n ∈ N there exists αn > 0 such that for yn = a−
1

n

f(yn) − syn +
αn

n2
> f(a) − sa.

Then the lower semicontinuous function fn(x) = g(x) + αn(x − a)2 attains its

minimum on the interval [a−
1

n
, a] at some point xn ∈ (a−

1

n
, a] and in fact xn

is a local minimum for the latter function, hence for t ≤ min{n−1, b− a}

fn(xn + t) ≥ fn(xn),

i.e.
f(xn + t) − f(xn) ≥ [s− 2αn(xn − a)]t− αnt

2,

from where pn = s − 2αn(xn − a) ∈ δf(xn). Since xn is a point of minimum of
fn(x) it is easy to see that f(xn) ≤ f(a)+s(xn−a) and having in mind the lower
semicontinuity of f(x) and that xn −→

n→∞
a we conclude that f(xn) −→

n→∞
f(a),

hence xn −→f
n→∞

a.

It remains to put c = a and observe that pn(b−a) = [s−2αn(xn−a)](b−
a) ≥ s(b− a) = r − f(a).

If b is a point of minimum of g(x) then it is easy to see that a is a point
of minimum too and this case is already considered.

In the last case – when a minimal point c of g(x) is such that c ∈ (a, b)
is obvious that s ∈ δf(c), so we put xn = c and pn = s and this completes the
proof. �
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Following the above proof it is easy to show that for the proper lower
semicontinuous function f : X → R ∪ {+∞} δh is graphically dense in domf , i.
e. for any x ∈ domf there is a sequence {xn}

∞
n=1 ⊂ domδhf such that xn −→f

n→∞

x.

Let us introduce the following class of real valued functions:

A := {α : R
+ → R

+ ∪ {+∞}, α(0) = 0,
α strictly increasing, continuous at 0}.

+

For x ∈ X, f(x) ≥ 0 define ωxf(t) = sup{0,−f(y) : ‖y − x‖ ≤ t} and
for a compact set K, such that f |K≥ 0, ωKf(t) = sup

x∈K
ωxf(t).

Proposition 2.2. Let f : X → R ∪ {+∞} be a proper lower semicon-
tinuous function. If f |K≥ 0, where K is a compact set, then there exists α ∈ A
such that α(t) ≥ ωKf(t) for sufficiently small positive t.

P r o o f. From the lower semicontinuity of f it is clear that for arbitrary
ε > 0 and for every x ∈ K, there exists δx > 0 such that from ‖y − x‖ < δx
it follows that f(y) > −ε. Define the open set U =

⋃

x∈K

B0
X(x, δx) ⊃ K and let

δ =
1

2
dist(K,X \ U). Then δ > 0 since K is compact and for every x ∈ K, such

that ‖y − x‖ ≤ δ we have y ∈ U and f(y) > −ε, hence ωKf(δ) ≤ ε. Since
ωKf(0) = 0 and ωKf(t) is an increasing function, it follows that it is continuous
at 0. Then the function α = ωKf(t) + t has the desired property. �

Definition 2.3. An operator T : X → 2X∗

has the property Υ for the
proper lower semicontinuous function f , written T ∈ Υ(f), if the following holds:
There exists a map Φ : A → A such that if p ∈ δ

λ
hf(x) and

(2.1) α(t) ≥ ω[x−δh,x+δh](f(·) − f(x) − 〈p, · − x〉 − λ‖Ph(· − x)‖2)(t)

where δ > 0 and Ph is a projector of norm one over x + Rh, then there exist
xn ∈ X, xn −→f

n→∞

x, pn + ξn ∈ T (xn) such that for γ = Φ(α) are fulfilled

(i) ‖ξn‖ −→
n→∞

0;

(ii) 〈pn, h〉 = 〈p, h〉, ∀n ∈ N;
(iii) dx

h(xn) := dist(xn, x+ Rh) ≤ γ( 1
n
) for sufficiently large n ∈ N;

(iv) ‖pn‖γ(
1
n
) −→

n→∞
0.

Note that Proposition 2.2 implies that there does exist α ∈ A satisfying
(2.1). Also both (iii) and (iv) imply that dx

h(xn)‖pn‖ −→
n→∞

0.
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The above notion is well fitted for dealing with mean value properties.
We give the first application:

Theorem 2.4 (Zagrodny, [15]). Let T ∈ Υ(f), where the function
f : R → R∪{+∞} is proper and lower semicontinuous. Then for every x ∈ domf ,
y ∈ R, y 6= x and every r ∈ R, such that r ≤ f(y) there exist c ∈ [x, y), xn −→f

n→∞

c

and pn ∈ T (xn) such that

(i)
‖x− y‖

‖y − c‖
lim inf
n→∞

〈pn, y − xn〉 ≥ r − f(x);

(ii) lim inf
n→∞

〈pn, y − x〉 ≥ r − f(x).

P r o o f. Let h = ‖x−y‖−1(y−x) and d = dx
h. From Lemma 2.1 there are

c ∈ [x, y) and yn ∈ x+ Rh, yn −→f
n→∞

c and qn ∈ δhf(yn) such that 〈qn, y − x〉 ≥

r − f(x). Since T ∈ Υ(f) we can find for n large xn ∈ X and rn + ξn ∈ T (xn)
such that
a) ‖xn − yn‖ < n−1, |f(xn) − f(yn)| < n−1;
b) ‖ξn‖ < n−1, 〈rn, h〉 = 〈qn, h〉 and d(xn)‖rn‖ < n−1.
Now xn −→f

n→∞

c, since yn −→f
n→∞

c. If x′n ∈ x+ Rh is such that ‖xn − x′n‖ = d(xn)

then x′n −→
n→∞

c and for pn = rn + ξn

〈pn, y − xn〉 = 〈rn, y − x′n〉 + 〈rn, x
′
n − xn〉 + 〈ξn, y − xn〉

≥ 〈qn, y − x′n〉 − ‖rn‖d(xn) − ‖ξn‖ ‖y − xn‖

≥ (r − f(x)).
‖y − x′n‖

‖y − x‖
− ‖rn‖d(xn) − ‖ξn‖ ‖y − xn‖.

But ‖rn‖d(xn) tends to zero as long as ‖ξn‖ ‖y − xn‖, so

lim inf
n→∞

〈pn, y − xn〉 ≥ (r − f(x))
‖y − c‖

‖y − x‖
,

which is (i). Similarly 〈pn, y− x〉 ≥ 〈qn, y − x〉−‖ξn‖ ‖y − x‖ and (ii) follows. �

It takes some effort to give nontrivial examples of operators having the
property Υ for huge classes of functions.

We are going to prove that on a β-smooth space D−
β f ∈ Υ(f) for each

proper lower semicontinuous function f . The following lemma is a variant of
Smooth Variational Principle with Constraints (see [7]). Recall that if the Banach
space X is β smooth, then there exists Lipschitz continuous function ψ on X (the
Leduc’s function) such that ψ ∈ C1

β away from the origin, ψ(tx) =| t | ψ(x), x ∈
X, t ∈ R and there is a constant b > 0 such that ‖x‖ ≤ ψ(x) ≤ b‖x‖ for x ∈ X (see
[6]). It is easy to derive that ψ2 ∈ C1

β, Dβψ
2(0) = 0 and limx→0 ‖Dβψ

2(x)‖ = 0.
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For α ∈ A define the inverse function α ∈ A as α(α(t)) = t and the map

Φ : A → A as Φ(α)(t) = α(
t2

2
).

Lemma 2.5. Let X be a β smooth Banach space, f : X → R∪{+∞} be
a proper lower semicontinuous function such that f(0) = 0, f ≥ 0 over [−δh, δh]
and α ≥ ω[−δh,δh]f, where δ > 0 and α ∈ A. Then there exist xn −→f

n→∞

0,

pn + ξn ∈ D−
β f(xn), such that

(i) ‖ξn‖ −→
n→∞

0;

(ii) 〈pn, h〉 = 0, ∀n ∈ N;
(iii) d0

h(xn) ≤ γ( 1
n
) for sufficiently large n ∈ N;

(iv) ‖pn‖γ(
1
n
) −→

n→∞
0,

where γ = Φ(α) and Φ is as above.

P r o o f. Let us define for n ∈ N the closed sets

Un = {x : ‖Phx‖ ≤
1

n
, ‖x− Phx‖ ≤ γ(

1

n
)},

set cn = [n2γ2(
1

n
)]−1 and consider the lower semicontinuous functions

en(x) =

{

f(x) + ψ2(Phx) + cnψ
2(x− Phx), x ∈ Un

+∞, x 6∈ Un.

For sufficiently large n and x ∈ Un, we have that Phx ∈ [−δh, δh] and ‖x−Phx‖ ≤
γ( 1

n
). Then en(x) ≥ f(x) ≥ −α(d0

h(x)) and d0
h(x) ≤ ‖x−Phx‖ ≤ γ( 1

n
). So, using

that α is increasing and the definition of γ

en(x) ≥ f(x) ≥ −α(γ(
1

n
)) = −α(α(

1

2n2
)) = −

1

2n2
.

When x is at the boundary of Un (∂Un), then it is possible that

‖Phx‖ =
1

n
and then en(x) ≥ −

1

2n2
+ ψ2(Phx) ≥ −

1

2n2
+

1

n2
≥

1

2n2
, or

‖x−Phx‖=γ(
1

n
) and then en(x) ≥ −

1

2n2
+cnψ

2(x−Phx)≥−
1

2n2
+

1

n2γ2( 1
n
)
γ2(

1

n
)

≥
1

2n2
.

According to the Smooth Variational Principle of Deville, Godefroy and

Zizler, Theorem 1.1, there exist gn ∈ C1
β such that max{‖gn‖∞, ‖g′n‖∞} <

1

4n2

and such that en + gn attains its minimum at xn. Observe that

(en + gn) |∂Un
>

1

2n2
−

1

4n2
=

1

4n2
> (en + gn)(0),
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which insures that xn ∈ intUn. Obviously d0
h(xn) ≤ ‖xn − Phxn‖ ≤ γ( 1

n
) and

‖xn‖ ≤
1

n
+ γ(

1

n
), hence xn −→

n→∞
0. Also, f(xn) − en(0) ≤ gn(0) − gn(xn), since

(en + gn)(xn) ≤ (en + gn)(0). Then f(xn) ≤ 1
2n2 and, since f(0) = 0 and f is

lower semicontinuous, f(xn) −→
n→∞

0.

Define pn = −cnDβψ
2(·−Ph·)(xn), ξn = −g′n(xn)−Dβψ

2(Ph·)(xn), where
the derivatives exist from the chain rule. From the definition pn + ξn ∈ D−

β f(xn).
We need here an easy consequence of the chain rule for differentiation.

Fact: If f ∈ C1
β(X), T : X → X is a bounded linear operator, then

〈Dβf(T ·)(x), y〉 = 〈Dβf(Tx), T y〉 and in particular
‖Dβf(T ·)(x)‖ ≤ ‖T‖.‖Dβf(Tx)‖.

In our case:
∥

∥

∥Dβψ
2(Ph·)(xn)

∥

∥

∥ ≤ 2b‖xn‖
∥

∥

∥Dβψ(Phxn)
∥

∥

∥,

and using that xn −→
n→∞

0 we have that ‖ξn‖ −→
n→∞

0, which is (i).

Also 〈pn, h〉 = −cn〈Dβψ
2(· − Ph·), h − Phh〉 = 0, which is (ii) and

‖pn‖ ≤ cn
∥

∥

∥Dβψ
2(· − Ph·)(xn)

∥

∥

∥ ≤ 2cnψ(xn − Phxn)
∥

∥

∥Dβψ(· − Ph·)(xn)
∥

∥

∥ ≤

2cnb‖xn − Phxn‖
∥

∥

∥Dβψ(· − Ph·)(xn)
∥

∥

∥ ≤
2b

n2γ2( 1
n
)
γ(

1

n
)
∥

∥

∥Dβψ(· − Ph·)(xn)
∥

∥

∥,

therefore ‖pn‖γ(
1
n
) −→

n→∞
0, which is (iv). �

Theorem 2.6. Let X be a β-smooth Banach space and f : X →
R ∪ {+∞} be a proper lower semicontinuous function. Then D−

β f ∈ Υ(f).

P r o o f. Fix x ∈ X, h ∈ SX , p ∈ δ
λ
hf(x) and δ > 0, such that for |t| ≤ δ

f(x+ th) ≥ f(x) + 〈p, th〉 + λt2. Consider the function

g(y) = f(x+ y) − f(x) − 〈p, y〉 − λψ2(Phy).

Note that if α ∈ A satisfies (2.1), then α ≥ ω[−δh,δh]g and apply the previous

Lemma 2.5 to g to obtain yn −→g
n→∞

0, p1
n + ξ1n ∈ D−

β g(yn) with the listed there

properties.
Set xn = x+ yn. Since yn −→

n→∞
0 and g(yn) −→

n→∞
0 we have xn −→f

n→∞

x. Also it

is fulfilled that

dx
h(xn) = dist(xn, x+ Rh) = dist(yn,Rh) = d0

h(yn) ≤ γ(
1

n
).
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If pn = p + p1
n then, of course, 〈pn, h〉 = 〈p, h〉 and ‖pn‖γ(

1
n
) −→

n→∞
0, since

γ( 1
n
) −→

n→∞
0.

Let ξn = ξ1n + ξ2n, where ξ2n = λDβψ
2(Ph·)(yn) (the existence of the derivative fol-

lows from the chain rule). We have as well ‖ξ2n‖ ≤ 2|λ|‖yn‖‖Dβ(Ph·)(yn)‖ −→
n→∞

0,

hence ‖ξn‖ −→
n→∞

0.

Finally, it is easy to see that pn + ξn ∈ D−
β f(xn), which completes the proof. �

We define a notion, which we need in the sequel, and which only slightly
differs from the subdifferentials defined by Thibault and Zagrodny in [14].

A class F of lower semicontinuous proper functions, defined on the Banach
space X is called admissible (for our purpose) if it contains all convex continuous
functions and for all f ∈ F and g convex continuous, the function f + g ∈ F .

Definition 2.7. An operator ∂f : X → 2X∗

, defined on an admissible
class F is called absubdifferential for F if the following conditions hold:
1) ∀f ∈ F dom∂f ⊂ domf .
2) ∀f, h ∈ F ∂f(x) = ∂h(x), whenever f and h coincide on a neighborhood of
x.
3) 0 ∈ ∂f(x), whenever x is a local minimum of f .
4) 0 ∈ ∂f(x) + ∂cg(x), whenever g is convex continuous and for f ∈ F the
function f + g has a local minimum at x.

Having in mind the properties of the Clarke-Rockafellar’s subdifferential
(see for example [4], Theorem 2.9.8) it is easy to derive the following:

Proposition 2.8. The operator ∂CRf : X → 2X∗

is absubdifferential
for the class of all proper lower semicontinuous functions.

When restricted to certain admissible classes, the Clarke-Rockafellar’s
subdifferential is written in more convenient form (see Corollary 3.4 below).

In fact the proofs of Lemma 2.5 and Theorem 2.6 could be easily adapted
to any Banach space (if the square of the Leduc’s function be changed to the
square of the norm) to get the following:

Theorem 2.9. If ∂ is absubdifferential for the admissible class of
functions F , defined on arbitrary Banach space, then for each f ∈ F it follows
that ∂f ∈ Υ(f).

P r o o f. One uses Ekeland’s Variational Principle instead of the Smooth
Variational Principle of Deville, Godefroy and Zizler. The elementary sum rule
used at certain steps (i. e. 0 ∈ D−

β f(x) + D−
β g(x) if g is β-smooth and x is a

local minimum for f + g) is replaced by axiom 4) from Definition 2.7 and this is
legal since the functions that appear are convex (as they are sums of square of
the norm and the perturbation). For more details see for example [13], [1]. �
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We just mention that the presubdifferentials considered by Thibault, see
[13], also have Υ property for each proper lower semicontinuous function.

Aussel, Corvellec and Lassonde in their paper [1] recently defined a very
general notion of subdifferential, including the Clarke-Rockaffelar’s and the smooth
subdifferentials. If the Banach space X has an equivalent ∂-smooth norm (see
Definition 2.1 in [1]), then ∂f ∈ Υ(f) for each proper lower semicontinuous f .
(Apply the Smooth Variational Principle of Deville, Godefroy and Zizler instead
of Proposition 2.3 from [1], that is actually a version of Borwein-Preiss Smooth
Variational Principle).

3. Semi-convex functions. It seems that until now the word “semi-
convex” has no fixed meaning, though this way are called different classes of
functions, possessing some of the intrinsic properties of the convex functions. In
this paper we take as a device the following assertion, established by Correa,
Jofre and Thibault (see [5], also Corollary 3.10 bellow):

The proper lower semicontinuous function is convex if and only if its
Clarke-Rockafellar’s subdifferential is a monotone operator.

Therefore we study functions with ϕ-monotone ∂CR and show that they
really deserve the title “semi-convex”.

Definition 3.1. Let ϕ : X → R be even, convex and Gâteaux differentiable
at the origin function satisfying ϕ(0) = 0 and ϕ′(0) = 0.

An operator T : X → 2X∗

is said to be ϕ-monotone, if for every x, y ∈ X

〈Tx− Ty, x− y〉 ≥ −ϕ(x− y).

The above inequality means

∀p ∈ Tx, q ∈ Ty ⇒ 〈p− q, x− y〉 ≥ −ϕ(x− y).

So, it is trivially satisfied if Tx or Ty is empty. All inequalities including sets,
that we meet below, have the same meaning.

For sake of simplicity, we assume from now on that we have some fixed
function ϕ with the above properties.

Definition 3.2. The proper lower semicontinuous function f : X →
R ∪ {+∞} is said to be of class Cϕ (written f ∈ Cϕ) if ∂CRf is ϕ-monotone.

For f ∈ Cϕ define

(3.1) ∂ϕf(x) = {p ∈ X∗ : f(y) ≥ f(x) + 〈p, y − x〉 − ϕ(y − x), ∀y ∈ X}.
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The following lemma which is due essentially to Correa, Jofre and Thibault ([5],
Theorem 2.2) plays a crucial role.

Lemma 3.3 If T ∈ Υ(f), where f : X → R∪{+∞} is proper and lower
semicontinuous, is ϕ−monotone, then T ⊂ ∂ϕf .

P r o o f. Take any p ∈ T (x). Since T ∈ Υ(f) from Zagrodny’s Theorem
2.4 it follows that for every y ∈ domf , y 6= x (we have nothing to prove if there
is no such y) there exist xn −→f

n→∞

c ∈ (x, y] and pn ∈ T (xn) such that

f(x) − f(y) ≤
‖x− y‖

‖x− c‖
lim inf
n→∞

〈pn, x− xn〉.

From the ϕ-monotonicity of T we have

〈pn, x− xn〉 − 〈p, x− xn〉 ≤ ϕ(x− xn)

and then

f(x) − f(y) ≤
‖x− y‖

‖x− c‖
lim

n→∞
〈p, x− xn〉 +

‖x− y‖

‖x− c‖
lim

n→∞
ϕ(x− xn)

=
‖x− y‖

‖x− c‖
〈p, x− c〉 +

‖x− y‖

‖x− c‖
ϕ(x− c)

≤ 〈p, x− y〉 + ϕ(x− y),

where for the last inequality we use that ϕ is convex and ϕ(0) = 0. Finally
f(y) − f(x) ≥ 〈p, y − x〉 − ϕ(y − x), which means that p ∈ ∂ϕf(x). �

Since ∂CRf ∈ Υ(f) (see Theorem 2.9) and, clearly, ∂ϕ ⊂ ∂CR we obtain
immediately the following:

Corollary 3.4. If f ∈ Cϕ then ∂CRf ≡ ∂ϕf.

Lemma 3.5. If f : R → R ∪ {+∞} is a proper lower semicontinuous
function and δf is ϕ−monotone then
a) domf is an interval, in the interior of which f is locally Lipschitz.
b) For every a, b ∈ R, λ ∈ (0, 1)

(3.2) f(λa+ (1 − λ)b) ≤ λf(a) + (1 − λ)f(b) + 2λ(1 − λ)ϕ(a − b).

c) The directional derivatives f ′(x,±1) exist for each x ∈ domf and belong to R.
Moreover, if we define the operator Df : R → 2R with domDf ⊂ domf by

Df(x) = {p ∈ R : p ≤ f ′(x, 1), p ≥ −f ′(x,−1)},
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then Df is ϕ−monotone.

P r o o f. If domf is singleton we have nothing to prove, so we assume that
it is not.
a) Let ε > 0 and {x− 2ε, y+ 2ε} ⊂ domf for some x < y. We will show that f is
Lipschitz continuous on [x, y], in particular [x, y] ⊂ domf . Assume the contrary,
then by Lemma 2.1 there exist pn ∈ δf(xn), xn ∈ [x−ε, y+ε], so that | pn |→ ∞.
By taking a subsequence we may assume without loss of generality that pn → ∞.
But then, since obviously δf ∈ Υ(f), by Lemma 3.3 it follows that

f(y + 2ε) ≥ f(xn) + pn(y − xn + 2ε) − ϕ(y − xn + 2ε)

≥ f(xn) + pnε− ϕ(y − x+ 4ε).

So, f(xn) −→
n→∞

−∞. But the lower semicontinuous function f is bounded below

on the compact set [x−2ε, y + 2ε], contradiction.
b) If a or b is not in domf then (3.2) is trivial, so let {a, b} ∈ domf . Since
[a, b] ⊂ domf and domδf is graphically dense in domf it is enough to prove the
inequality for the case when c = λa + (1 − λ)b ∈ domδf . Let then p ∈ δf(c) ⊂
∂ϕf(c), which means that

f(a) ≥ f(c) + p(a− c) − ϕ(a− c)

≥ f(c) + (1 − λ)(a− b)p− (1 − λ)ϕ(a− b)

(note that since ϕ is convex and ϕ(0) = 0, ϕ((1 − λ)(a− b)) ≤ (1 − λ)ϕ(a − b))
and similarly

f(b) ≥ f(c) + λ(b− a)p− λϕ(b− a).

Multiply the first inequality by λ and the second by (1 − λ) and add both,
using that ϕ(a− b) = ϕ(b− a) :

λf(a) + (1 − λ)f(b) ≥ f(c) − 2λ(1 − λ)ϕ(a− b),

which is (3.2).
c) Take arbitrary x ∈ domf and let the sequence {xn} decrease in such a way
that

lim
n→∞

f(xn) − f(x)

xn − x
= lim inf

t↓0

f(x+ t) − f(x)

t
.

We apply (3.2) to derive for λ ∈ (0, 1)

f(λx+ (1 − λ)xn) ≤ λf(x) + (1 − λ)f(xn) + 2λ(1 − λ)ϕ(xn − x) ⇒

f(λx+ (1 − λ)xn) − f(x) ≤ (1 − λ)(f(xn) − f(x)) + 2λ(1 − λ)ϕ(xn − x).
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Multiply the last inequality by [λx+ (1− λ)xn − x]−1 = (1− λ)−1(xn − x)−1 > 0
and take supremum over λ ∈ (0, 1) to obtain

sup
t≤xn−x

f(x+ t) − f(x)

t
≤
f(xn) − f(x)

xn − x
+ 2

ϕ(xn − x)

xn − x
.

Take now limit as n→ ∞ and use that ϕ′(0) = 0 :

lim sup
t↓0

f(x+ t) − f(x)

t
≤ lim inf

t↓0

f(x+ t) − f(x)

t
,

which means the existence of f ′(x, 1). The existence of f ′(x,−1) can be proved
in a similar way.

To conclude take arbitrary x, y ∈ dom f with x < y and p ∈ Df(x), q ∈
Df(y). Fix ε > 0 smaller than 2−1(y − x). By the definition p ≤ f ′(x, 1),
so we can find z > x with z − x < ε and r ∈ R such that r ≤ f(z) and
r − f(x) > (p − ε)(z − x). By Lemma 2.1 there are x1 with | x1 − x |< ε and
p1 ∈ δf(x1) so that p1 > p− ε.

In the same way, using that q ≥ −f ′(y,−1) we obtain y1 such that
|y1 − y| < ε, q1 ∈ δf(y1), q1 < q + ε. Applying the ϕ-monotonicity of δf
we write

−ϕ(y1 − x1) ≤ (q1 − p1)(y1 − x1) < (q − p+ 2ε)(y1 − x1).

The left hand side tends to −ϕ(y− x) as ε→ 0 by the continuity of ϕ, while the
right hand side obviously tends to (q− p)(y−x). Thereby the ϕ-monotonicity of
Df is established. �

Proposition 3.6. Assume that the operator T ∈ Υ(f) and T is ϕ-
monotone, where the function f : X → R ∪ {+∞} is proper and lower semicon-
tinuous. Then for every x ∈ X, h ∈ SX and t ∈ R we have

(3.3) 〈δhf(x+ th) − δhf(x), th〉 ≥ −ϕ(th).

P r o o f. Denote y = x + th and let d = dx
h. Take any p ∈ δhf(x), q ∈

δhf(y).
Since T ∈ Υ(f) if denote α(t) = max{αx(t), αy(t)} ∈ A, γ(t) = Φ(α(t)) we have
by the definition of the property Υ that there exist xn −→f

n→∞

x, pn + ξn ∈ T (xn)

such that
(∗) (i) ‖ξn‖ −→

n→∞
0, (ii) 〈pn, h〉 = 〈p, h〉, (iii) d(xn) ≤ γ( 1

n
), (iv) ‖pn‖γ(

1
n
) −→

n→∞
0
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and there exist yn −→f
n→∞

y, qn + ηn ∈ T (yn) such that

(∗∗) (i) ‖ηn‖ −→
n→∞

0, (ii) 〈qn, h〉 = 〈q, h〉, (iii) d(yn) ≤ γ( 1
n
), (iv) ‖qn‖γ(

1
n
) −→

n→∞
0.

From ϕ-monotonicity of T it follows that

(3.4) 〈xn − yn, pn + ξn − qn − ηn〉 ≥ −ϕ(xn − yn),

i.e. 〈xn − yn, ξn − ηn〉 + 〈xn − yn, pn − qn〉 ≥ −ϕ(xn − yn), and using (i) we see
that the first term tends to zero. Take x′n, y

′
n ∈ x + Rh so that ‖x′n − xn‖ =

d(xn), ‖y′n − yn‖ = d(yn) and note that x′n −→
n→∞

x, y′n −→
n→∞

y. Then

〈xn − yn, pn − qn〉 = 〈xn − x, pn − qn〉 + 〈y − yn, pn − qn〉 + 〈x− y, pn − qn〉.

Note that the last term is equal to 〈x− y, p− q〉 from (ii), while

|〈xn − x, pn − qn〉| ≤ ‖xn − x′n‖ ‖pn − qn‖ + ‖x− x′n‖ |〈h, p − q〉|

≤ d(xn)(‖pn‖ + ‖qn‖) + ‖x− x′n‖ |〈h, p − q〉|.

Then ‖x − x′n‖ −→
n→∞

0 and the conditions (iii) and (iv) from (∗) and (∗∗) imply

〈xn − x, pn − qn〉 −→
n→∞

0. Similarly, 〈y − yn, pn − qn〉 −→
n→∞

0. So, taking limit as

n→ ∞ in both sides of (3.4) and using the continuity of ϕ we derive 〈x−y, p−q〉 ≥
−ϕ(x− y). �

Proposition 3.7. Assume that the function f is proper lower semi-
continuous and the condition (3.3) is satisfied for all x ∈ X and h ∈ SX . Then
f ∈ Cϕ.

P r o o f. We first mention that for x ∈ domf the function f ′(x, ·) : X → R,
which is well defined by Lemma 3.5, is convex. Indeed, for u, v ∈ X, α ∈ (0, 1),
from (3.2) it follows that

f ′(x, αu + (1 − α)v) = lim
t↓0

f(x+ αtu+ (1 − α)tv) − f(x)

t
=

lim
t↓0

f(α(x+ tu) + (1 − α)(x+ tv)) − f(x)

t
≤

lim
t↓0

αf(x+ tu) + (1 − α)f(x+ tv) − f(x) + cϕ(t(u− v))

t
≤

αlim
t↓0

f(x+ tu) − f(x)

t
+ (1 − α)lim

t↓0

f(x+ tv) − f(x)

t
+ clim

t↓0

ϕ(t(u− v))

t
,
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where c = 2α(1 − α). But then, since ϕ′(0) = 0 we can write

f ′(x, αu + (1 − α)v) ≤ αf ′(x, u) + (1 − α)f ′(x, v).

Next, for g convex and continuous we define the operator

D(f + g)(x) = {p ∈ X∗, 〈p, h〉 ≤ f ′(x, h) + g′(x, h), ∀h ∈ X}.

We assert that D is an absubdifferential for the class f+Conv, where Conv = {g :
X → R : g convex and continuous}. To this end let g ∈ Conv and f + g attains
its local minimum at some point x. This means that 0 ∈ ∂c(f ′(x, ·) + g′(x, ·))(0).
By the well known formula from convex analysis 0 ∈ ∂cf ′(x, ·)(0)+∂cg′(x, ·)(0) =
Df(x) + ∂cg(x), which is axiom 4) in the definition of absubdifferentials. The
other axioms are even more obvious.

From part c) of Lemma 3.5 and condition (3.3), which means that δhf is
ϕ(·h)-monotone we deduce that Df is ϕ-monotone. By Lemma 3.3 Df ⊂ ∂ϕf.
Since obviously ∂ϕf ⊂ Df we have

Df = ∂ϕf.

To conclude we show that Df = ∂CRf , so the latter is ϕ-monotone and f ∈ Cϕ.
It is enough to prove that f◦(x, v) ≤ f ′(x, v) for each x ∈ domf and v ∈ X.
Recall that

f◦(x, v) = lim
ε→0

lim sup
y→f x

t↓0

inf
w∈v+εB

f(y + tv) − f(y)

t
.

Let M ∈ (−∞,+∞] and M ≥ f ′(x, v). Fix arbitrary ε1 > 0. We can find t > 0
so small that

f(x+ tv) − f(x)

t
< M + ε1,

ϕ(tv)

t
<
ε1
2

(since ϕ′(0) = 0).

By continuity of ϕ there is δ > 0 so that ‖v′ − tv‖ < δ imply t−1ϕ(v′) < ε1.
For any 0 < ε < ε1 and y ∈ X such that it is graphically close enough to x, i.e.
‖x − y‖ < min{tε, δ} and | f(y) − f(x) |< tε (and hence y ∈ domf), for any
positive s < t and w ∈ v + εB in virtue of (3.2) we have

f(y + sw) ≤
s

t
f(y + tw) +

t− s

t
f(y) +

2s(t− s)

t2
ϕ(tw).

Consequently

f(y + sw) − f(y)

s
≤
f(y + tw) − f(y)

t
+

2(t− s)

t2
ϕ(tw).
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Since
1

t
(x+ tv − y) ∈ v + εB and t− s ≤ t

inf
w∈v+εB

f(y + sw) − f(y)

s
≤ inf

w∈v+εB
{
f(y + tw) − f(y)

t
+

2

t
ϕ(tw)}

≤
f(x+ tv) − f(x)

t
+

2

t
ϕ(tv + x− y) + ε,

where we used that | f(x)−f(y) |< tε. But ‖x−y‖ < δ and hence
ϕ(tv + x− y)

t
<

ε1. Finally

inf
w∈v+εB

f(y + sw) − f(y)

s
≤
f(x+ tv) − f(x)

t
+ 3ε1 ≤M + 4ε1

if s < t and y is graphically close enough to x. So

lim sup
y→f x

s↓0

inf
w∈v+εB

f(y + sw) − f(y)

s
≤M + 4ε1

for all ε small enough. Letting ε ↓ 0 we obtain f0(x, v) ≤ M + 4ε1. Since
M ≥ f ′(x, v) was arbitrary as long as ε1:

f◦(x, v) ≤ f ′(x, v). �

Theorem 3.8. If some ϕ-monotone operator has the property Υ for the
proper lower semicontinuous function f , then f ∈ Cϕ.

P r o o f. Follows immediately from Proposition 3.6 and Proposition 3.7. �

We now put together the above properties:

Theorem 3.9. Let X be a Banach space, f : X → R ∪ {+∞} be a
proper lower semicontinuous function and ϕ be as in Definition 3.1. Then

a) f ∈ Cϕ if and only if for all x ∈ domf, h ∈ SX the function gx,h(t) =
f(x+ th) ∈ Cϕh

, where t ∈ R and ϕh(t) = ϕ(th);
b) If f ∈ Cϕ then domf is a convex set. The function f is locally Lipschitz

and regular in the (probably empty) interior of domf . Moreover, ∀x, y ∈ domf
and λ ∈ (0, 1) one has

(3.5) f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) + 2λ(1 − λ)ϕ(x − y).
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P r o o f. If gx,h ∈ Cϕh
for all x ∈ domf and h ∈ SX then, since δgx,h(t) =

〈δhf(x+th), h〉 and δgx,h ⊂ ∂CRgx,h, the condition (3.3) is satisfied for all x ∈ X,
h ∈ SX and Proposition 3.7 implies that f is in Cϕ.

If f ∈ Cϕ then for every x ∈ domf and h ∈ SX it follows that δgx,h is ϕh-
monotone and consequently gx,h ∈ Cϕh

. The inequality (3.5) follows from (3.2).
It is obvious then that domf is a convex set. The proof of the local Lipschitz
continuity of f on intdomf goes through the same patterns as in the case of
convex lower semicontinuous function, see [10]. Using Baire Category Theorem
one shows that f is bounded on some open set. After that an application of
the inequality (3.5) and the continuity of ϕ shows that f is locally bounded
on intdomf . Then it is straightforward to see that ∂ϕf is locally bounded on
intdomf , which means that f is locally Lipschitz there.

The regularity of f is a part of the proof of Proposition 3.7. �

Corollary 3.10 ([5], Theorem 2.4). The proper and lower semicontinuous
function f is convex if and only if ∂CRf is monotone.

P r o o f. As it is easy to check, ∂c is an absubdifferential for the class of
all convex proper lower semicontinuous functions, hence if f is such function then
∂cf ∈ Υ(f) and ∂cf is monotone by definition. So by Corollary 3.4 (note that
∂c = ∂0) ∂CR = ∂c and the former is monotone.

If ∂CRf is monotone then we apply Theorem 3.9 with ϕ ≡ 0. �

If ∂cf ∈ Υ(f) then f is convex, since ∂cf is monotone for each f . In
contrast by definition ∂ϕ is only 2ϕ-monotone, so ∂ϕf ∈ Υ(f) implies only that
f ∈ C2ϕ. Considering function on the real line f(x) = −xα, 1 < α < 2, for
which ∂ϕf coincides with its usual derivative if ϕ(x) = −xα, one can see that
nevertheless f 6∈ Cϕ, so one can not expect that f ∈ Cϕ if ∂ϕf ∈ Υ(f) for a
general function ϕ satisfying the conditions of Definition 3.1 and non identically
equal to 0.

4. Maximality. The well known Rockafellar’s theorem asserts that
the subdifferential of each convex lower semicontinuous function is a maximal
monotone operator. It is natural to ask whether something similar holds true
for the functions in Cϕ. In this section we answer in the affirmative by slightly
modifying in Lemma 4.2 the Simons’ proof (see [10], Section 3) of Rockafellar’s
theorem.

Definition 4.1. The ϕ-monotone operator T : X → 2X∗

is called
maximal if for each ϕ-monotone S : X → 2X∗

, such that T ⊂ S, it follows that
T = S.

Of course, T ⊂ S means that GrT ⊂ GrS, where GrT = {(x, x∗) :
x∗ ∈ T (x)}. Equivalently, the ϕ-monotone T is maximal when the following



Milen Ivanov, Nadia Zlateva 52

relation holds:

∀(x, x∗) /∈ GrT ⇒ ∃(z, z∗) ∈ GrT : 〈z − x, z∗ − x∗〉 < −ϕ(z − x).

Lemma 4.2. If f ∈ Cϕ, x ∈ X and r < f(x) is such that r >
inf
y∈X

{f(y)+ϕ(y − x)}, then there exist y ∈ X and z∗ ∈ ∂CRf(z) such that

〈z∗, x− z〉 > ϕ(x− z).

P r o o f. There is y1 ∈ X such that r > f(y1) +ϕ(y1 − x). We can choose
λ ∈ (0, 1) in such a way that for the convex function ψ(x) := λϕ(λ−1x) we still
have r > f(y1) + ψ(y1 − x). Then if

K = sup
y∈X, y 6=x

r − f(y) − ψ(y − x)

‖y − x‖

it is clear that 0 < K.
Our next aim is to show that K < ∞. To this end, let F = {y ∈ X :

f(y) + ψ(y − x) ≤ r}, so F is closed, non-empty and x 6∈ F . If y /∈ F , then
r − f(y) − ψ(y − x)

‖y − x‖
≤ 0. Let now y ∈ F . There exist z ∈ domf, p ∈ ∂CRf(z) =

∂ϕf(z), so

f(y) ≥ f(z) + 〈p, y − z〉 − ϕ(y − z)

≥ f(z) + 〈p, x− z〉 − ‖p‖ ‖y − x‖ − ϕ(y − z).

Hence

r − f(y) − ψ(y − x)

‖y − x‖
≤
r − f(z) − 〈p, x− z〉 + ϕ(y − z) − ψ(y − x)

dist(x, F )
+ ‖p‖

(note that dist(x, F ) > 0). From the other side the convexity of ϕ implies

ϕ(y − z) = ϕ(λ(λ−1(y − x)) + (1 − λ)(1 − λ)−1(x− z))

≤ λϕ(λ−1(y − x)) + (1 − λ)ϕ((1 − λ)−1(x− z))

= ψ(y − x) + C.

Consequently

r − f(y) − ψ(y − x)

‖y − x‖
≤
r − f(z) − 〈p, x− z〉 + C

dist(x, F )
+ ‖p‖,
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where the right hand side does not depend on y and is an upper bound of K.
Let now ε ∈ (0, 1). Then (1 − ε)K < K and by the definition of K there

exists x0 ∈ X such that x0 6= x and

r − f(x0) − ψ(x0 − x)

‖x0 − x‖
> (1 − ε)K.

For z ∈ X, let N(z) = K‖z−x‖. From the above inequality and the the definition
of K it follows that

r ≤ inf{N(y) + f(y) + ψ(y − x) : y ∈ X}

and also (N+f+ψ(·−x))(x0) < r+εN(x0). Then from the Ekeland’s Variational
Principle it follows that there exists z ∈ dom(N + f + ψ(· − x)) = domf such
that ‖z − x0‖ < ‖x − x0‖ and z is the minimal point of the function N + f +
ψ(·−x)+ εK‖ ·−z‖. It follows that ‖z−x‖ > 0. Since N and ψ(·−x) are convex
continuous and ∂CR is an absubdifferential, we have

0 ∈ ∂CRf(z) + ∂cN(z) + ∂cψ(z − x) + εK∂c‖ · ‖(0),

so there exist y∗ ∈ ∂cN(z), z∗ ∈ ∂CRf(z) and p∗ ∈ ∂cψ(z − x) such that if
we put w∗ = y∗ + z∗ + p∗ then ‖w∗‖ ≤ εK. Since y∗ ∈ ∂cN(z), we must have
〈y∗, z − x〉 ≥ N(z) −N(x) = K‖z − x‖. The same trick for ψ (ψ(0) = 0) yields

〈z∗, x− z〉 = 〈y∗, z − x〉 + 〈p∗, z − x〉 + 〈w∗, x− z〉

≥ K‖z − x‖ − ‖w∗‖.‖z − x‖ + ψ(z − x)

≥ (1 − ε)K‖z − x‖ + ψ(z − x)

> ψ(z − x).

We are left only to notice that ϕ(x) = ϕ(λ(λ−1x) + (1 − λ).0) ≤ ψ(x). �

Theorem 4.3. Let f ∈ Cϕ. Then ∂CRf = ∂ϕf is a maximal ϕ-
monotone operator.

P r o o f. Suppose that x ∈ X, x∗ ∈ X∗ and x∗ 6∈ ∂ϕf(x) and consider
g(u) = f(u) − 〈x∗, u〉. The function g + ϕ(· − x) does not attain its minimum at
the point x (otherwise x∗ ∈ ∂ϕf(x)), so we can find r < g(x) such that

r > inf
y∈X

{g(y) + ϕ(y − x)}.

It’s easy to see that ∂CRg(y) = ∂CRf(y) − x∗ for all y ∈ X and in particular
g ∈ Cϕ. Therefore we are able to apply Lemma 4.2 to the function g at the point
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x with r as above. We find z ∈ X, z∗1 ∈ ∂CRg(z), such that 〈z∗1 , x−z〉 > ϕ(x−z).
But z∗1 = z∗ − x∗, where z∗ ∈ ∂CRf(z). Then 〈z∗ − x∗, z − x〉 < −ϕ(z − x) and
then Gr∂CRf ∪(x, x∗) is not ϕ-monotone, hence ∂ϕf is maximal ϕ-monotone. �

5. Integrability. In this section we show how the techniques previously
developed can be applied to question of integrability of certain lower semicontinuous
functions.

Definition 5.1. The proper lower semicontinuous function f : X →
R ∪ {+∞}, where X is a Banach space, is called integrable if for each proper
lower semicontinuous g : X → R ∪ {+∞} such that ∂CRg ⊂ ∂CRf there exists a
constant c ∈ R such that

f(x) = g(x) + c, ∀x ∈ X.

Various topics connected with the integrability of locally Lipschitz functions
are presented in the paper of Borwein and Moors [2].

Theorem 5.2. Let X be a Banach space and f : X → R ∪ {+∞}
be a proper lower semicontinuous function. Assume that there exists a locally
Lipschitz regular function g : X → R such that f + g ∈ Cϕ. Then f is integrable.

Before proceeding with the proof we list some straight corollaries.
Letting g ≡ 0 we see that each function in Cϕ is integrable. For ϕ ≡ 0,

i. e. f convex, this is a well known result of Rockafellar, see [12]. For ϕ = ‖ · ‖2

this was established by Poliquin when X is finitedimensional and by Thibault
and Zagrodny when X is an Hilbert space, see [11], [14].

As we showed (Theorem 3.9) each g ∈ Cϕ with domg = X is locally
Lipschitz and regular, so each function in Cϕ − Ccont

ϕ1
, where Ccont

ϕ1
= {g ∈ Cϕ1

:
domg = X}, is integrable. The case ϕ = ϕ1 = 0, i. e. f is the difference of
convex lower semicontinuous and convex continuous functions, was proved in [14]
under the additional requirement X to be weak Asplund.

P r o o f o f T h e o r e m 5.2. We are going to derive the result from the
simple case X = R.

Lemma 5.3. Let f = v − g, where g : R → R is locally Lipschitz and
regular and v : R → R ∪ {+∞} belongs to Cϕ. Assume that the proper lower
semicontinuous function u : R → R ∪ {+∞} satisfies

(5.1) δu ⊂ ∂CRv + ∂CR(−g).
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Then there is c ∈ R such that f = u+ c.

Assume for a while that the Lemma 5.3 is proved and suppose that the
statement of Theorem 5.2 is false. Then we can find a proper lower semicontinuous
function u : X → R ∪ {+∞} such that ∂CRu ⊂ ∂CRf and f − u is not constant.
Fix x0 ∈ dom∂CRu ⊂ dom∂CRf ⊂ domf and put c = f(x0)− u(x0). There is by
our assumption y0 6= x0 such that f(y0) 6= u(y0)+c. Let h = ‖y0−x0‖

−1(y0−x0)
and for t ∈ R

f0 , u0 , g0, v0 (t) = f, u, g, v(x0 + th)

respectively, where v = f + g ∈ Cϕ. Due to Theorem 3.9 v0 ∈ Cϕh
. There are

t0 ∈ R, p ∈ δu0(t0) such that

(5.2) p /∈ ∂CRv0(t0) + ∂CR(−g0)(t0)

(if not Lemma 5.3 would imply f0(‖y0 − x0‖) = u(‖y0 − x0‖) + c, i. e. f(y0) =
u(y0) + c).

Since ∂CRu ∈ Υ(u), there are xn −→u
n→∞

z = x0 + t0y0 and pn ∈ ∂CRu(xn)

such that 〈pn, h〉 −→
n→∞

p and ‖pn‖d(xn) −→
n→∞

0, where d = dx0

h . For each n

∂CRu(xn) ⊂ ∂CRf(xn) ⊂ ∂CRv(xn) + ∂CR(−g)(xn)

(the right hand inclusion comes from Theorem 2.9.8 in [4]). So, there are qn ∈
∂CRv(xn) and rn ∈ ∂CR(−g)(xn) such that pn = qn+rn. The sequence {〈rn, h〉}

∞
n=1

is bounded (recall that g is locally Lipschitz) and extracting if necessary a subse-
quence of {rn} we can assume that 〈rn, h〉 −→

n→∞
r ∈ R. Since 〈rn, h〉 ≤ (−g)◦(xn, h)

and the function (−g)◦(·, h) is upper semicontinuous, r ≤ (−g)◦(z, h). But
Proposition 2.1.1 from [4] claims that (−g)◦(z, h) = g◦(z,−h). Since g is regular,
g◦(z,−h) = g′(z,−h). Similarly, g′(z,−h) = (−g0)

◦(t0, 1). So, (−g)◦(z, h) =
(−g0)

◦(t0, 1) and we have

(5.3) r ≤ (−g0)
◦(t0, 1).

We use ∂CRv = ∂ϕv to write for t > 0:

v(z + th) ≥ v(xn) + 〈qn, z + th− xn〉 − ϕ(z + th− xn)

≥ v(xn) + 〈qn, z + th− x′n〉 − ‖qn‖d(xn) − ϕ(z + th− xn),

where x′n ∈ x0 + Rh is such that ‖xn −x′n‖ = d(xn). Note that ‖qn‖d(xn) −→
n→∞

0

because {‖rn‖}
∞
n=1 is a bounded sequence. Also, lim inf

n→∞
v(xn) ≥ v(z) since v is

lower semicontinuous, ϕ(z + th− xn) −→
n→∞

ϕ(th) and for n large enough

〈qn, z + th− x′n〉 = ‖z + th− x′n‖〈qn, h〉 −→
n→∞

qt,
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where q = p − r. So, passing to the limit, v0(t0 + t) ≥ v0(t0) + qt − ϕh(t) and
(v0)

◦(t0, 1) ≥ q. Compare with (5.3) to get

p = q + r ≤ (v0)
◦(t0, 1) + (−g0)

◦(t0, 1).

Replacing h with −h in the above computations one obtains

−p ≤ (v0)
◦(t0,−1) + (−g0)

◦(t0,−1)

but both these mean that p ∈ ∂CRv0(t0)+∂
CR(−g0)(t0), which is in contradiction

with (5.2). �

P r o o f o f L e m ma 5.3. Let a = inf domf and b = sup domf . Then
by (5.1) domδu ⊂ dom∂CRf ⊂ [a, b] and domu ⊂ [a, b], since domδu is dense in
domu. If a = b then domf = domu = {a} (recall that both these are proper)
and the conclusion is trivial.

Let now a < b. Since domf = domv, by Lemma 3.5 it follows that
(a, b) ⊂ domv and v is locally Lipschitz and regular on (a, b). Then the right
hand side of (5.1) is locally bounded, so by Lemma 2.1 u is locally Lipschitz on
(a, b).

Let U be a subset of full measure of (a, b) on which both v and g are
differentiable. From the regularity of these functions it follows that ∀x ∈ U ⇒
∂CRv(x) = v′(x) and ∂CR(−g)(x) = −g′(x). Also, the functions v◦(·, 1) and
(−g)◦(·, 1) are continuous at each point of U , see [4].

One can see from Lemma 2.1 that for each x ∈ (a, b)

u◦(x, 1) = lim
ε→0

sup{p : p ∈ δu(y), |y − x| < ε}.

If now x ∈ U then

u◦(x, 1) ≤ lim sup
y→x

(v◦(y, 1) + (−g)◦(y, 1))

= v′(x) − g′(x),

where the condition (5.1) was used at the first step and the continuity of the
generalized derivatives at the second. In a similar way we prove that u◦(x,−1) ≤
−v′(x) + g′(x), and then for each x ∈ U we have ∂CRu(x) = v′(x) − g′(x).
Finally, we see that u′(x) = f ′(x) almost everywhere on (a, b), which means that
f(x) − u(x) = c ∈ R on (a, b).

The proof is finished if (a, b) = R, so assume that a, b ∈ R. Suppose that

u(b) < lim inf
x↑b

u(x).
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Then, as it is easy to check, δu(b) = R and using (5.1) and the boundedness
of ∂CR(−g)(b) we can find pn ∈ ∂CRv(b), such that pn −→

n→∞
− ∞. But pn ∈

∂ϕv(b), since v ∈ Cϕ, and then u(2−1(a+ b)) ≥ u(b)− pnr−ϕ(r) −→
n→∞

∞, where

r = 2−1(b − a). This contradiction and the semicontinuity of u implies that
u(b) = lim inf

x↑b
u(x). Now it is clear how to prove that f(b) = lim inf

x↑b
f(x). Finally,

u(b) = lim inf
x↑b

u(x)

= lim inf
x↑b

(f(x) − c)

= f(b) − c.

In the same way we show that f(a) = u(a)+c and the proof is completed. �

We note that the above proof works if we only assume that g is locally
Lipschitz and for any x ∈ X,h ∈ SX the map 〈∂CRg(x+ th), h〉 is minimal cusco
from R to 2R, see for the definitions [2].
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