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SOME THEORETICAL RESULTS ON THE PROGENY OF A

BISEXUAL GALTON-WATSON BRANCHING PROCESS

M. González, M. Molina

Communicated by N. M. Yanev

Abstract. A Superadditive Bisexual Galton-Watson Branching Process
is considered and the total number of mating units, females and males,
until the n-th generation, are studied. In particular some results about
the stochastic monotony, probability generating functions and moments are
obtained. Finally, the limit behaviour of those variables suitably normed is
investigated.

1. Introduction. Introduced by Daley [3], the Bisexual Galton-Watson
Branching Process (BGWBP), is a two-type branching model with fn females
and mn males in the n-th generation, n = 1, 2, . . ., which form Zn = L(fn,mn)
mating units. These mating units reproduce independently according to the same
offspring distribution for each generation. The mating function L : R

+ × R
+ →

R
+ is monotonic non-decreasing in each argument, integer-valued for integer-

valued arguments and such that L(0, 0) = 0. Then, considering Z0 = N ≥ 1,

(fn+1,mn+1) =
Zn
∑

i=1

(fni,mni) n = 0, 1, . . .
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with the empty sum defined to be (0, 0) and where fni and mni are, respectively,
the number of females and males produced by the i-th mating unit in the n-
th generation, being (fni,mni), n = 0, 1, . . ., i = 1, 2, . . ., independent and
identically distributed non-negative integer-valued bivariate random variables.
It is easy to verify that the sequence {Zn : n = 0, 1, . . .} is a Markov chain,
stochastically monotone in the sense of Daley [4], with the non-negative integers
as state space and with stationary one-step transition probabilities given by

Pr (Zn+1 = k|Zn = j) = Pr



L





j
∑

i=1

(fni,mni)



 = k



 .

A BGWBP is said to be superadditive if for all positive integer n, the
mating function verifies

L

(

n
∑

i=1

(xi, yi)

)

≥
n
∑

i=1

L (xi, yi) for all xi, yi in R
+, i = 1, . . . , n, n ≥ 2(1.1)

The problem of the extinction has been studied by Daley [3], Hull [7], [8],
Bruss [2] and Daley et al. [5]. The main result is based on the concept of mean
growth rate defined for all j = 1, 2, . . ., in the form

rj = j−1E [Zn |Zn−1 = j ] .

Theorem (Daley et al. [5]). For a superadditive BGWBP the mean
growth rates satisfy

r = lim
j→∞

rj = sup
j>0

rj

and
qj = 1 for all j if and only if r ≤ 1(1.2)

where qj is the probability of extinction when the process starts with j mating
units.

On the other hand, the limit behaviour of the process has been investigated
by Bagley [1] and recently, by González and Molina [6].

In this paper, we shall consider a superadditive BGWBP and shall assume
the classical condition Pr (Zn → 0) + Pr (Zn → ∞) = 1 holds. We define the

random variables Yn =
n
∑

i=0
Zi, n = 0, 1, . . .; Fn =

n
∑

i=1
fi and Mn =

n
∑

i=1
mi,

n = 1, 2, . . ., which represent the total number of mating units, females and
males until the n-th generation, respectively.
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In section 2, some results about the stochastic monotony of the bisexual
process are obtained. In section 3, relations between the probability generating
functions of these variables are deduced and bounds for their expected values are
obtained. Section 4 is devoted to research the asymptotic behaviour of Yn, Fn

and Mn suitably normed.

2. Stochastic monotony.

Lemma 2.1. Let be (x1, . . . , xn), (y1, . . . , yn) in R
n such that

k
∑

i=1
xi ≤

k
∑

i=1
yi, k = 1, . . . , n. Let be (u1, . . . , un) in R

n such that u1 ≥ u2 ≥ . . . ≥ un ≥ 0.

Then
n
∑

i=1

uixi ≤
n
∑

i=1

uiyi.(2.1)

P r o o f. Let ti =
i
∑

j=1
xj, si =

i
∑

j=1
yj, i = 1, . . . , n. Then ti ≤ si,

i = 1, . . . , n. It is easy to obtain that (2.1) is equivalent to the inequality

n−1
∑

i=1

(ui − ui+1) ti + untn ≤
n−1
∑

i=1

(ui − ui+1) si + unsn

and this inequality holds because ui − ui+1 ≥ 0 , i = 1, . . . , n− 1 and un ≥ 0. �

Lemma 2.2. Let {Xn}n and {Yn}n be two independent sequences of
non-negative random variables independent and identically distributed, both with
the same common distribution. Let be X and Y integer-valued and non-negative
random variables independent of {Xn}n and {Yn}n, respectively. Then, if X ≺
Y (1) , it is verified that

X
∑

i=1

Xi ≺
Y
∑

i=1

Yi.

P r o o f. It is clear for all y that Pr

(

x
∑

i=1
Xi ≤ y

)

is non-increasing on x.

Then, by Lemma 2.1,

Pr

(

X
∑

i=1

Xi ≤ y

)

=
∑

x

Pr

(

X
∑

i=1

Xi ≤ y

∣

∣

∣

∣

∣

X = x

)

Pr (X = x)

(1)A random variable X is said stochastically smaller than other random variable Y , (written
X ≺ Y ), if for all u ∈ R, Pr (Y ≤ u) ≤ Pr (X ≤ u).
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=
∑

x

Pr

(

x
∑

i=1

Xi ≤ y

)

Pr (X = x)

≥
∑

x

Pr

(

x
∑

i=1

Xi ≤ y

)

Pr (Y = x)

=
∑

x

Pr

(

x
∑

i=1

Yi ≤ y

)

Pr (Y = x) = Pr

(

Y
∑

i=1

Yi ≤ y

)

Theorem 2.3. In a superadditive BGWBP, for all positive integer k,
we have

Zk
∑

i=1

Z(i)
n ≺ Zk+n , n = 0, 1, . . .

where {Z
(i)
n :n = 0, 1, . . .} , i = 1, . . . , Zk, are independent versions of {Zn:n =

0, 1, . . .} with the same parameters (i.e. the same mating function, offspring

distribution and Z
(i)
0 = 1).

P r o o f. Let k be a fixed positive integer. Let Xn = Zk+n and Yn =
∑Zk

i=1 Z
(i)
n , n = 0, 1, . . . We have to prove that

Pr (Xn ≤ y) ≤ Pr (Yn ≤ y) for all y , n = 0, 1, . . .

This inequality will be obtained by induction on n, but previously we need to
establish:

i) Pr (Xn+1 ≤ y|Xn = x) is non-increasing on x (for all y).

ii) Pr (Xn+1 ≤ y|Xn = x) ≤ Pr (Yn+1 ≤ y|Yn = x) for all x and y.

The first is clear because {Xn}n is stochastically monotone in the sense
of Daley [4]. To prove the second, suppose that Zk = zk. Then

Pr (Yn+1 ≤ y|Yn = x) = Pr

(

zk
∑

i=1

Z
(i)
n+1 ≤ y

∣

∣

∣

∣

∣

zk
∑

i=1

Z(i)
n = x

)

≥ inf
x1+...+xzk

=x
Pr





zk
∑

j=1

L

( xj
∑

i=1

(

f
(j)
ni ,m

(j)
ni

)

)

≤ y





≥ inf
x1+...+xzk

=x
Pr



L





zk
∑

j=1

xj
∑

i=1

(

f
(j)
ni ,m

(j)
ni

)



 ≤ y




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= Pr

(

L

(

x
∑

i=1

(fk+n,i,mk+n,i)

)

≤ y

)

= Pr (Zk+n+1 ≤ y|Zk+n = x) = Pr (Xn+1 ≤ y|Xn = x) .

Obviously Pr (X0 ≤ y) ≤ Pr (Y0 ≤ y) for all y and suppose that
Pr (Xn ≤ y) ≤ Pr (Yn ≤ y). Then

Pr (Xn+1 ≤ y) =
∞
∑

x=0

Pr (Xn+1 ≤ y|Xn = x) Pr (Xn = x)

≤
∞
∑

x=0

Pr (Xn+1 ≤ y|Xn = x) Pr (Yn = x)

≤
∞
∑

x=0

Pr (Yn+1 ≤ y|Yn = x) Pr (Yn = x) = Pr (Yn+1 ≤ y) .

The first inequality is obtained considering i), the inductive assumption
and Lemma 2.1. The second inequality is deduced from ii). �

Corollary 2.4. In a superadditive BGWBP, for all positive integer k,
it is verified that

Zk
∑

i=1

f (i)
n ≺ fk+n and

Zk
∑

i=1

m(i)
n ≺ mk+n , n = 1, 2, . . .

where {(f
(i)
n ,m

(i)
n ):n = 1, 2, . . .}, {Z

(i)
n :n = 0, 1, . . .}, i = 1, . . . , Zk, are independent

versions of {(fn,mn):n = 1, 2, . . .}, {Zn:n = 0, 1, . . .} with the same parameters.

The proof of this result is based on the Theorem 2.3 and Lemma 2.2.

3. Probability generating functions and moments. For simplicity
we shall assume that Z0 = 1. Obviously, this implies that Y0 = 1.

Proposition 3.1. For a superadditive BGWBP it is verified

i) E [Yn] ≤ An where An = n + 1 if r = 1 or (1− rn+1)/(1− r) if r 6= 1 , n =
0, 1, . . .

ii) E [Fn] ≤ B1
n and E [Mn] ≤ B2

n, where Bi
n = nµi if r = 1 or µi(1−rn)/(1−r)

if r 6= 1 , i = 1, 2 , n = 0, 1, . . .
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being µ1 = E [f1] and µ2 = E [m1].

P r o o f. i) is proved taking into account that r = supj>0 rj. In fact:

E [Zi] = E [E [Zi|Zi−1]] =
∑

j

E [Zi|Zi−1 = j] Pr (Zi−1 = j) =

=
∑

j

jrjPr (Zi−1=j)≤r
∑

j

jPr (Zi−1=j) = rE [Zi−1] i=1, 2, . . .

Consequently, by finite induction we deduce E [Zi] ≤ ri , i = 1, 2, . . . So,

E [Yn] = 1 +
n
∑

i=1

E [Zi] ≤ 1 +
n
∑

i=1

ri.

ii) E [Fn] =
n
∑

i=1
E [fi] =

n
∑

i=1
E [E [fi|Zi−1]] = µ1

n
∑

i=1
E [Zi−1] ≤ µ1

n−1
∑

i=0
ri.

In a similar way we can obtain the corresponding inequality for Mn. �

Theorem 3.2. Let Hn be the two-dimensional probability generating
function (p.g.f.) of (Yn, Zn) , n = 0, 1, . . . Then, for 0 ≤ s, t ≤ 1,

Hn(s, t) ≤ Hn−1 (s, f(st)) , n = 1, 2, . . .(3.1)

where f is the p.g.f. of Z1 and H0(s, t) = st.

P r o o f.

Hn(s, t) = E
[

sYntZn

]

= E
[

sYn−1(st)Zn

]

= E
[

E
[

sYn−1(st)Zn

∣

∣

∣Z0, . . . , Zn−1

]]

= E
[

sYn−1E
[

(st)Zn

∣

∣

∣Z0, . . . , Zn−1

]]

.

Now, from (1.1) it is derived that E
[

uZn

∣

∣

∣Zn−1

]

≤ f(u)Zn−1 , 0 ≤ u ≤ 1. Thus

Hn(s, t) ≤ E
[

sYn−1f(st)Zn−1

]

= Hn−1(s, f(st)). �

Corollary 3.3.

E [Yn] ≥ an , where an = n+1 if m = 1 or (1−mn+1)/(1−m) if m 6= 1 ,(3.2)

n = 0, 1, . . ., being m = E [Z1].

P r o o f. From (3.1) it deduced that E
[

sYn

]

= Hn(s, 1) ≤ Hn−1(s, f(s)).

Then, by differentiation and evaluating on s = 1, we obtain

E [Yn] = E [Yn−1] + E [Zn−1]E [Z1] ≥ E [Yn−1] + mn.
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Therefore E [Yn] ≥
n
∑

i=0
mi, n = 0, 1, . . . and consequently (3.2) is true. �

Theorem 3.4. Let φn be the two-dimensional p.g.f. of (Fn,Mn),
n = 1, 2, . . . Then for 0 ≤ s, t ≤ 1

φn+1(s, t) ≤ g(s, t, φn(s, t)) , n = 1, 2, . . .(3.3)

where g is the p.g.f. of (f1,m1, Z1).

P r o o f. According to the corollary 2.4 we have that
Z1
∑

j=1
f

(j)
i−1 ≺ fi and

Z1
∑

j=1
m

(j)
i−1 ≺ mi , i = 2, 3, . . . Then

φn(s, t) = E
[

s
∑n

i=1
fit
∑n

i=1
mi

]

≤ E

[

s
f1+
∑n

i=2

∑Z1
j=1

f
(j)
i−1t

m1+
∑n

i=2

∑Z1
j=1

m
(j)
i−1

]

= E

[

E

[

sf1tm1s
∑Z1

j=1
F

(j)
n−1t

∑Z1
j=1

M
(j)
n−1

∣

∣

∣

∣

f1,m1, Z1

]]

= E
[

sf1tm1φn−1(s, t)
Z1

]

= g(s, t, φn−1(s, t)). �

Corollary 3.5. E [Fn] ≥ b1
n and E [Mn] ≥ b2

n, where bi
n = nµi if m = 1

or µi(1 − mn)/(1 − m) if m 6= 1 , i = 1, 2 , n = 0, 1, . . .

P r o o f. From (3.3) and in a similar way to the proof of corollary 3.3, we
obtain that

E [Fn] ≥ µ1 + mE [Fn−1] , n ≥ 2

E [Mn] ≥ µ2 + mE [Mn−1] , n ≥ 2

From which the proof follows immediately. �

If ρn denotes the correlation coefficient between Fn and Mn, we can obtain
the following result

Corollary 3.6. For an additive BGWBP, i.e. such that the mating
function verifies

L

(

n
∑

i=1

(xi, yi)

)

=
n
∑

i=1

L(xi, yi) ,(3.4)

it is verified that

lim
n→∞

ρn=















1 if m≥1

τ(1−m)2+µ1µ2σ2+(τ1µ2+τ2µ1)(1−m)

[(σ2
1(1−m)2+µ2

1σ2+2τ1µ1(1−m))(σ2
2(1−m)2+µ2

2σ2+2τ2µ2(1−m))]
−1/2 if m<1
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being σ2 = V ar [Z1], τ1 = Cov [f1, Z1], τ2 = Cov [m1, Z1], σ2
1 = V ar [F1], σ2

2 =
V ar [M1] and τ = Cov [F1,M1].

P r o o f. For the additive case, the mean growth rate, rj, coincides with
m. In fact, for all j

rj=j−1E [Zn+1|Zn=j] =j−1E



L





j
∑

i=1

(fni,mni)







=j−1E





j
∑

i=1

L (fni,mni)



=m.

Consequently from (1.2) we have r = supj>0 rj = m.
Taking into account (3.4) can be proved that Zn, fn and mn have the

same distribution that
Z1
∑

i=1
Z

(i)
n−1,

Z1
∑

i=1
f

(i)
n−1 and

Z1
∑

i=1
m

(i)
n−1, respectively, n = 2, 3, . . .

Hence the inequality (3.3) becomes and equality:

φn(s, t) = g(s, t, φn−1(s, t))(3.5)

From (3.5) it is matter of straightforward computations to prove that for n ≥ 2

V ar [Fn] = σ2
1

n−1
∑

i=0

mi + σ2
n−1
∑

i=1

mi−1E [Fn−i]
2 + 2τ1

n−1
∑

i=1

mi−1E [Fn−i]

V ar [Mn] = σ2
2

n−1
∑

i=0

mi + σ2
n−1
∑

i=1

mi−1E [Mn−i]
2 + 2τ2

n−1
∑

i=1

mi−1E [Mn−i]

Cov [Fn,Mn] = τ
n−1
∑

i=0

mi + σ2
n−1
∑

i=1

mi−1E [Fn−i] E [Mn−i] + τ2

n−1
∑

i=1

mi−1E [Fn−i]

+ τ1

n−1
∑

i=1

mi−1E [Mn−i]

from where the result is obtained. �

Remark. The class of additive BGWBP includes many interesting
models. For example, includes the sibling-mating-only process, that allows the
mating of a male and female only when they have been generated by the same
mating unit. This model has been used by Hull (1982) in the problem of the
extinction.

4. Limit behaviour. In a recent paper, González and Molina [6], has
been proved that {r−nZn}n is a non-negative and L1-bounded supermartingale
and consequently converges almost surely to a non-negative and finite random
variable W , and moreover, for the superadditive case with r > 1, has been
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provided sufficient conditions which guarantee the convergence to a non-degenerate
variable W . Obviously, according to (1.2), when r ≤ 1, W will be 0 a.s. In
this section, using the results obtained in the former paper, we study the limit
behaviour of the processes {Yn}n, {Fn}n and {Mn}n suitable normed.

Theorem 4.1. In a superadditve BGWBP, for r > 1 and as n → ∞,
we have

i) r−nYn → r(r − 1)−1W a.s.

ii) r−nFn → µ1(r − 1)−1W a.s. and r−nMn → µ2(r − 1)−1W a.s.

where W is the a.s. limit of r−nZn as n → ∞, where µ1 = E [f1] and µ2 = E [m1].

P r o o f. i)

r−n
n
∑

k=1

(

rk − rk−1
)

r−kZk =

(

1 −
1

r

)

r−n
n
∑

k=1

Zk =
r − 1

r
r−n (Yn − 1) .(4.1)

Then, taking into account that rn → ∞ as n → ∞ and r−nZn → W < ∞
a.s. as n → ∞, from (4.1), applying the Cesaro’s lemma (see Williams (1992) [9,
p. 117]), we obtain

((r − 1)/r)r−n(Yn − 1) → W a.s. as n → ∞

whence it follows immediately that r−nYn → (r/(r− 1))W a.s. as n → ∞, which
concludes the proof.

ii)

r−n
n
∑

k=1

(

rk − rk−1
)

r−kfk =

(

1 −
1

r

)

r−n
n
∑

k=1

fk =
r − 1

r
r−n (Fn − 1)(4.2)

and similarly

r−n
n
∑

k=1

(

rk − rk−1
)

r−kmk =
r − 1

r
r−n (Mn − 1) .(4.3)

Therefore, taking into account that

r−nfn → (µ1/r)W a.s. as n → ∞

and
r−nmn → (µ2/r)W a.s. as n → ∞
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(see González and Molina [6]), from (4.2) and (4.3), applying the Cesaro’s lemma
we obtain

((r − 1)/r)r−n(Fn − 1) → (µ1/r)W a.s. as n → ∞

and
((r − 1)/r)r−n(Mn − 1) → (µ2/r)W a.s. as n → ∞

whence it follows the result. �
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