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ABSTRACT. Some oscillation criteria for solutions of a general perturbed
second order ordinary differential equation with damping

(r(t)z'(t))" + h(t) f(2)2'(t) + ¢(t, ) = H(t, z(t), /(1))

with alternating coefficients are given. The results obtained improve and
extend some existing results in the literature.

1. Introduction. In this paper we are concerned with the problem of

oscillation of nonlinear perturbed second order ordinary differential equation with
damping

(1) (r()2' () + h(t) f(z(t)2'(t) + (¢t 2(t) = H(t, z(t), 2 (t))
where ("= d/dt).
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Throughout this paper, we restrict our attention only to the solutions
of equation (1) which exist on some ray [tp,00). Such a solution is said to be
oscillatory if it has an infinite number of zeros, and otherwise it is said to be
nonoscillatory. Equation (1) is called oscillatory if all its solutions are oscillatory.

In the last two decades the problem of finding sufficient conditions for the
oscillation of all solutions of ordinary differential equations has begun to receive
more and more attention. An interesting case is that of establishing oscillation
criteria for the perturbed equation (1) with damping and/or related equations
which involve the average behavior of the integral of the alternating coefficient
q(t). As a contribution to this study we refer to the papers of Butler [1], Elabbasy
[2], Grace et al. [3], [4] and [5], Graef et al [6], Nagabuchi et al [7], Philos [§],
Wong [9], Yan [10] and Yeh [11] and the references cited in.

In the sequel we assume that f : R — R, h : [tg,00) — Rand r : [tg, 00) —
(0,00), to > 0 are continuous functions. 1 : [tg,00)xR — R, H : [tg,00) X RXR —

/
wit,x) > q(t) and At z,7) < p(t) for

g9(x) 9(x)
x # 0 and t € [ty,00), where p,q : [tg,00) — R are continuous functions and

g : R — R is differentiable function such that

R are continuous functions such that

d
(c1) zg(x) >0 and ¢'(z) = @g(:v) >k >0 forz#0.

We say that (1) is sublinear if g(z) satisfies

€ d < d
(c2) 0</—u<oo, 0</ —u<oo, e > 0;
0o g(u) o g(u)

(1) is superlinear if g(x) satisfies

> du % du
c3 0</ — < 00, 0</ — <00, €>0;
(c3) oy . W)

(1) is a mixed type if g(x) satisfies

o d % d
(ca) 0</ <o, 0</ S
o g(u) o g(u)
We see easily that, if g(z) = g1(x) + g2(z) where g1 is sublinear and go is

superlinear, then (c4) is satisfied.
Yeh [11] considered equation (1) with r(t) = 1, f(x) = 1, p(t) = 0, that is

(2) () + h(t)2'(t) + q(t)g(x) =0
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where h, q € c[tp,00) and zg(z) > 0, ¢'(x) > k > 0 for x # 0. He proved that

(i) hm sup /t(t — 5)"Lsq(s)ds = oo,

t—oo to

t— n

()  Jim tni_l /t:S [(t _ ) (h(s) - 1) tn— 1}2 (t — 5)"3ds < 0o

for some integer n > 3 are sufficient conditions for the oscillation of (2).
In [7] Nagabuchi et al. has extended and improved Yeh’s result to the
equation

3) (r()2'())" + h(t)2'(t) + q(t)g(z) = 0

where ¢'(z) > k > 0 for z # 0 and proved that (3) is oscillatory if there exists
a continuously differentiable function p(t) on [tg,c0) and a constant a € (1, 00)
such that

2
g [ 92 s ants) — (- 0] (e 92 E s = o

If g(z) = x and k = 1 then the result of Nagabuchi implies Yan’s result in [10].

The purpose of this paper is to contribute further in this direction and to
establish sufficient conditions for the oscillation of a broad class of second order
nonlinear equations of the type (1). As a consequence, we are able to extend and
improve a number of previously known oscillation results.

2. Main results.

Theorem 1. Suppose (c1) and (c3) hold. Furthermore, assume that

(c5) xf(x) >0 forx#0 and/ioof
(cg) 7(t) is bounded for t € [ty, 00) ..,O<r(t)§a, a>0,

(c7) there exists a continuously differentiable function p(t) on [to,o0)
such that p(t) >0, p/(t) > 0 and p"(t) <0 on [tg,o0), and

du < oo, >0,

(r®F M) <0 and pO(E) <0, (P(ORE)Y <0 for ¢ > 1,
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() Jim inf [ p(s)(a(s) - pls))ds > o0,

—00 to

o) Jimsup ([ L) [ [ o) playuds = o

Then equation (1) is oscillatory.

Proof. Let z be a nonoscillatory solution of the differential equation
(1). Without loss of generality, we may assume that x(¢) > 0 on [T, 00) for some
T > to (the case z(t) < 0 can be treated similarly). Define

e
w(t) = 5 my forall 12T,
This and (1) imply
O — o000 — gt + TIOLE _ pORO (O _ pOr (B 0)g' @)
g(x) g(x) 9*(x)
Hence, for all t > T', we have
(42 "™
[ oot -plsis <~y [ LD g [,

The first two integrals in R.H.S of the above 1nequahty are bounded from above.
This can be seen by applying the Bonnet theorem, for each ¢ > T there exist
n,& € [T,t] such that

tr(s)p'(s)x'(s)ds 2(€)  du
RIS

v g(z(s)) (1) 9(u)
Since
/x(g) au _ 0, d if x(&) <z(T)
z (u) = = du if z T
o /gcm g9(u)’ £ o) 2=

and r(T)p (T) > 0, it follows that

Fr(s)p'(s)2'(s)ds — (T > du
/T T < where k= r(T)/(T) /x o

and

MO gy ) [ I <

— _p(T)W(T) /x Z) %du.
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Hence, we have from (4)

w2(s)q (z(s
6 [ oe)ale) plods < —ult) ke - [T,
where ko = k1 + k) + w(T), or, by virtue of condition (c1),
t tow(s
© [ p(s)ats) = plsids < (o) + ko~ e [

Now, we consider the behavior of z':
Case 1. 2’ is oscillatory. Then, there exists an infinite sequence {t,}
such that ¢, — co as n — oo and 2/(t,) = 0. Thus, (6) gives

. e w(s)
L PENa(s) —p())ds <ha =k | e s

w(t)

By virtue of condition (cg), we get Do) € LY(T,00). Thus, there exists a
r(t)p

positive constant N such that

t 2
/ w(s) ds < N for every t>1T.
T 7(8)p(s)

For t > T, we may use the Schwarz inequality to obtain

/Tt <%)1/2 [w(s)(r(S)p(S))_l/Q]ds 2

2
ds

’ fw(s)

1 p(s)

Cr(s) |t wl(s) Crls) o [t ds
< Lo o <N f s < Na o

Hence, for every ¢t > T we have

w(s s\ /2
= ()

Furthermore, (6) gives

[ o)als) — plss < ~w(t) + by

T
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hence,

L1 s tw(s) t ds
o e | ptwiatw) — ptw)duds < ~ [ s+ ks /. s

Condition (c7) implies that p(t) < ut for all large ¢, where u is positive constant.

. oo dt
This ensures that / —— =00
to p(t)

Hence, we get from (7) for t > T

[ =5 [ otwptatu) — plupuds < m(/ﬁﬁ)mm/tﬁ

T p(s) JT T p(s) T p(s)

IN

(\/m-i-kg)/;%.

td
Dividing by / %% and then taking the upper limit gives a contradiction to (cg).
T

p(s)

Case 2. 2/(t) > 0 for t > T} > to. Then, it follows from (6) that
t
| pe)a() = p(s)ds < ks
1

and consequently

( /T %) /T %) || plw)(atw) ~ pw)duds < k.

contradicts (cg).

2
t
Case 3. 2/(t) < 0 for t > Tp > to. If Z)(()t) € L'(Ty,0), then we can
r{t)p
follow the procedure of Case 1 to arrive at a contraction to (cg). Suppose now
w?(t)

¢ L'(Ty,00). By virtue of (cg), we get from (5) for some constant (3

r(t)p(t)

(8) —w(t) > [+ Ti %ds for every t > Tb.
. w(t) 1 .

Since RORD ¢ L (T, 00), there exists T3 > T such that

T w?(s)g' (x(s))

M=t o))

ds > 0.
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Thus (8) ensures w(t) is negative on [T3,00). By using (8), we have from (5) for
every t > Tj

. 1(s)p(s)

—w(t) {B +
" w(t)g' (x) Cu(s)g (2(s) T L 2 (s)d (@)
() {ﬂ T T (00) ds} z |

An integration from T3 to t yields

tw?(s)g (x(s))
{ﬂ+ N g—)ds} /M

tos r(s)o(s

2]
Then,

t
B+ ds > M'g(z) for every t > Tj

where M" = Mg(x(T3)) > 0.
Hence, from (8) we get

1. €. / M/
70 = w0
So,
o[t ds M’ [t ds
z(t) <x(Ts) — M /T3m§x(T3)_7/T3@

it follows, that z(t) — —oo as t — o0, a contradiction. This completes the
proof. O

The function p satisfying (c7) may be taken to be p(t) = t¢, a € [0,1].
Thus we have the following corollary of Theorem 1.

Corollary 1. Equation (1) is oscillatory if (c1), (c3) hold and ~(t) =
at®Lr(t) + ct*h(t) > 0, v < 0 for some a € [0, 1],

(cg)’ hm inf t s%(q(s) — p(s))ds > —o0,

t1
lim —/ / u))duds = oo, if a=1

t—00 logt

(09)/
— ) <
t—>oo tl o ~/t /to ))dUdS 00, Zf 0 a < 1.
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In order to discuss the next two theorems, we need the following lemma,
which is an extension of Wong’s lemma [8].

Lemma. Let .
(c10) tlim mf/ q(s)ds >0 for all large T,
—00 T

(c11) H(t,z,0) =0 for allt € [tg,00), = # 0.

Then every nonoscillatory solution of (1) which is not eventually a constant
must satisfy x(t)z'(t) > 0 for all large t.

The proof of this lemma is similar to that of Wong, and hence will be
omitted.

The following is an extension of results of Nagabuchi [7], Yan [10] and
Yeh [11].

Theorem 2. Suppose that (c1), (c19) and (c11) hold. Moreover, assume
that

(c12) h(t) >0 fort >ty and f(x) > —c; ¢ >0 for x € R,

(c13) there exists a differentiable function ¢ : [tp,00) — (0,00) and
continuous functions

h,H:D={(t,s):t>s>ty} = R

where H has a continuous and nonpositive partial derivative on D with respect
to the second variable such that

H(t,t)=0 for t>ty, H(t,s) >0 for t>s>t

and

(c14) _aﬂgz, %) _ h(t.$)\/H(t.s) for all (t.5) € D.

Then equation (1) is oscillatory if
1 t
(c15) tlgglo SUPm/t {¢(3)H(t73)(Q(3) —p(s))

1

0 [r(s)cb(s) (h(t,s) - (CZS)) + Z/((j))> H(t,s))r }ds = 00.

Proof. Let z(t) be a nonoscillatory solution of (1) and assume that
x(t) > 0 for t > to. It follows from the above lemma that 2/(t) > 0 on [t1,00) for

% for t > ¢1. This and equation (1) imply

w(6) £ 6060~ a(t) +

some t1 > tg. Define w(t) =

ch(t) SN . k()
O ¢<t>>“’“) r00(0)
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Hence, for all ¢ > t1, we have

tlt ¢(s)H(t, s)(q(s) — p(s))ds < — tH(ty s)w'(s)ds +

t1

t H(t, s)w?(s)

t1 r 3)¢(8 s =

t
+ [ H(t,s)
t1

> w(s)ds — k

= H(t,t)w(ty) — /t <_aH

t1

) w(s)ds +

t H(t, s)w?(s)

W o)) C

t
+ [ H(t,s)
t1

(Ch(S) ¢'(s)
r(s)  o(s)

= H(t, tl)w(tl) -

~ /tt [(h(t,s) Ht,s)—H(t, s) (Cﬁii)+i((§;>)w(s)+wqw1ds:

> w(s)ds — k

= H(t, tl)w(tl) -

/8 2
_ /tt[ ’:g)(;’é;w(s)— T;%(S) <h(t,s)— H(t,s) (Ch(8)+¢())) s

t

s [ rs)0(6) (h(t, §) = JH(t, ) (cﬁf’)) + i{j;))st <

t

(s 2
< Htwun) + 5 [ o) () - s (55 + S8 ) as

Hence,

i . [H(u 9o(s)(a(s) - p(s)) - "X

- T (35 53)

ds < w(ty),

a contradiction to (c15). This completes the proof. O
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Corollary 2. Suppose that condition (c15) in Theorem 2 is replaced by

Jin sup s [ SR 9as) — p(e))ds = o,
and
, 1 ¢ ch(s)  ¢'(s)\\°
tllglo sup i) /to r(s)d(s) <h(t, s)—/H(t,s) ( (s) + () >) < 0.

Then the conclusion of Theorem 2 holds.

Remark. The functions H(t,s) = (t — s)" !, t > s > tg, where n is an
integer with n > 2, and h(t,s) = (n — 1)(t — s)("=3)/2 t > s >ty are continuous
and satisfy (ci4). Therefore, the results in [7], [10] and [11] can be obtained from
Theorem 2 as special cases.

Theorem 3. Suppose that (c1), (cq), (c10), (c11) and (c12) hold.
Furthermore, assume that

(Clﬁ) ’I”/(t) < 0 fOT’ t> to,

(c17)  there exists a continuously differentiable function p : [tg,00) —
(0,00), p/'(t) >0 and p"(t) <0; and

(c18) o(t) =20 (t)r(t) + ch(t)p(t) > 0 and o'(t) <0 fort > tp.

Then equation (1) is oscillatory if

t
(e10)  Jim sup s [ (6= 9" p(s)als) ~ p(s))ds = oo, forn > 2,

Proof. Let z(t) be a nonoscillatory solution of (1) and assume that
x(t) > 0 for t > 0. It follows from the lemma that 2/(t) > 0 for t > T > to.

tr(s)z'(s) .
Define w(t) = p(t)/ ————*ds, t < T. Therefore w(t) is well defined for ¢t > T
T g(x(s))

From this and equation (1) we have

S.

W (t) < p)p(0) — ) + T 4 ey [T,

g(x(s))

But, by the Bonnet theorem, for a fixed t > T" and some ¢ € [T, ]

Lr(s)z'(s) < — £ 2/(s)ds _, z(8) du
J; g ™, ) ) /W) 200
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and hence, since r(T') > 0 and

(&) Jdu 0 du z(€) du 0 du
[ s L [ > oy =
o) g(w)  Jay g(u)  Jo g(u) T ) gu)

z(T) d t / d
where ]{51 = / —u, we have / M 2 _le(T) — —]{32.
0

P " 9(@l(s)
Therefore,
W (1) < p(t)(p(t) — a(t)) + % ko (0).

Hence, for all t > T', we have

t

[ 57 p(s)als) ~ plpids < = [[ (¢ = o~ (s)ds

T

T
t(t—s)"to(s)a'(s)ds t o -
+/]“ g(gj(S) _k:Q/ (t—S) 1p (S)ds =1+ 1+ Is.

) T
The integrals I;, i = 1,2,3 can be estimated as follows.
If n=2, then
t
n o= — / (t — $)w"(s)ds = (t — T)u! (T) — w(t) <
T

< (t=Tw'(T) + lw(®)| <

< (=T )+ [ %

Condition (c17) implies that p(t) < ut, p > 0. Thus

L <(t—-T) (T)+ <m~(T) /OOO d—“) t.

g(u)
If n > 2, then
t
L = —/ (t— )" " (s)ds =
T

= (t-T7)"(T)—(n—-1)(n—-2) /Tt(t — 5)"Bw(s)ds <

t
< (t—T)" W/(T) + (n— D)(n —2) /T (t — )" 3|w(s)|ds.
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Hence

I < (t—T)""W/(T)+ (n - 1)(n - 2)ur(T) /Ooo % /Tt s(t — s)"3ds <

< (L= T)"\W/(T)+ pr /Ooo % St — Ty =

= (w’(T) + pr(T) /OO d_u) (t—T)""1, for n>2
o g(u) ’ '
For I3, by using the Bonnet theorem, we obtain for a fixed t > T and

some n € [T, 1]

! b 2l) o
Ig—/TJ(s)(t—s) oyt = e / o
du
< U / (—
Finally,
Is = —k:g/Tt(t—s)"lp”(s)dSZ

t

= kot =T (D)~ kel —1) [ (0= (s)ds <

< haolt—T)" (D).

Therefore, taking into account the above estimates for I;; i = 1,2,3 we
conclude

o [ 9 o) ats) — pls)is <

T

(w’(T)—I—ur(T)/OOd—u—I—a(t)/OOOd—u—i—kgp( )) (1_ %)"1

0 g(u) 9(u)
Taking the upper limit as ¢ — oo, we get a contradiction to (c19). This
completes the proof. O

Theorem 3 can be used to some cases where some other known oscillation
criteria cannot be used. For example, consider the differential equation

tcostsinz’(t)(x°(t) + x7/3(t))
(@*(t) + 1) ’

(2 (1)) + (tsint 4 ¢ + t2) (2> (t) + 2'/3(t)) =
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where A <0, t >ty =7/2.
Y(t, )

Taking g(x) = 23(t) + 2'/3(t), we see that o)
g(z

H(t,z,2')
9(x)

> tsint +t = ¢(t), and

<t =p(t). Indeed, we have from

t
lim inf/ (s.sins + s)ds) > 0,

t—o00 /2

1t t 1/t
lim sup — / (t — s).s.s.sinsds = lim sup / s%sin sds — — / $3sin sds
t—00 tJr)2 t—00 /2 t Jr/2

6 6sint 3w
‘ TR

= lim sup{—tsint—4cost——+ T+ —
t—00 t

and Theorem 3 implies that the above equation is oscillatory. That this equation
is oscillatory does not appear to be deducible from other known oscillation criteria.
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