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ABSTRACT. We consider functions of the type F(z) = 2% [T [f;(z)/2"] I
j=1

where f; are p-valent functions starlike of order «; and a; are complex
numbers. The problem we solve is to find conditions for the centre and the
radius of the disc {z : |z — w| < r}, contained in the unit disc {z : |z] < 1}
and containing the origin, so that its transformation by the function F' be a
domain starlike with respect to the origin.

For an integer p > 1 the functions of the form
F&) = ez

that are analytic in the unit disc D = {2 : |z| < 1} and for which

Re{szég)} >a, (0<a<p), z€D,
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are called p-valent functions starlike of order a. The usual notation for the set
of these functions is Sy ().

Let now n > 1 be an integer and f; € S;(«a;), j =1,2,...,n. Denote by

F=F({p;a1,...,an;a1,...,a,) the set of functions given by the formula
n a;
fi(z) "
_ P j
0 o =T 22
Jj=1

where a; are complex numbers and we chose the branch for which 1% = 1.

In [1] Alexandrov stated and solved the following problem. Let M be the
set of functions of the form
f(2) =co+crz+eaz?+ -+

that are analytic and univalent in D. Let B C D be a domain starlike with
respect to an inner point w with smooth boundary given by the function z(p) =
w + 7(p)e'. To find conditions for the function r(¢) such that for each f € M
the image domain f(B) is starlike with respect to f(w).

Here we state a similar problem.

Consider discs K = K(w,r) ={2: |z —w| <r}. Let CCDand 0 € K. It
is clear a prior: that

1
(2) 0§|w\<§ and |w| <7r<1—|w|
The aim of our studies is to find (if necessary) additional conditions for

w and r under which the disc I will be transformed by all functions in F onto a
domain starlike with respect to the origin.

The shape of the image domain F(K) doesn’t depend on rotations of D.
Hence without loss of generality we may suppose that w > 0.

Since the set F is too large it is convenient to introduce the following
exhaustion. Let M > 0.

F(M) = {F EF: ) (p—aj)lay| < M}.

j=1
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Theorem. Let the natural number p > 1 and M > 0 be fized. If

1 p
- if M< =
4,1 0< <3

p
3) 0<w< and w<r<
g P_y 2M +p
202M +p)’ = 2

the disc K is transformed by each function of the class F(M) onto a domain

starlike with respect to the origin.

Proof. It is well known that for a function F' € F(M) the image domain
F(K) will be starlike with respect to the origin if
2F'(z)
4 in R >0
@ in Re { (o) } S

From (1) we have

i w5} = o i Yo (T35 )

1

> p+zn: min Re{aj(;?(z)—p)}.

= |z—w|=r

Since f; € S;(a;),
o (zf]’(z) —p) ~ 2(p — aj)ajz
fi(2) 1—=2
By the subordination principle this yields

(AR N 20— ag)aj(w — @ 7| 2(p — ay)laglr
a]<fa'<z) > (1-w)? -7 S —w)E o

, 2l < 1.

0<|lz—w|l<1l—-w.

Hence
. 2fj(2) 2w —w? +7r%)(p— aj)Rea; 2(p — a;)laj|r
zniif“:rRe{“j < 7O )} = T—wR—r2 (Q—wi—r

Further we shall deal with a fibering of F(M). For m € (0, M]

Fm = {F e F(M): Y (p—ay)la;| = m}

j=1
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So F(M) = U Fm- Now for a function F' € F,,, we can write
me(0,M]

{ZF/(Z) } S (2 —p)r? —2mr + (1 — w)[2wp + (1 — w)p)
F(z) ) — (1 —-w)?—1r2

=U(r; p),

min Re
|z—w|=r

where p = 30, (p — aj)Reay. It is clear that —m < pu < m.

In view of (4) and (2) we shall look for a solution of the equation
U(r;p) = 0 lying in the interval (w,1 — w]. For the discriminant A(u) =
m? — (1 — w)(2u — p)[2wp + (1 — w)p] of the numerator we have

_min A(w) = A(m) = (1= 2)m = (1 =)l 2 0.

On the other hand
mr? —2u(1 — w)r + m(1 — w)?
(A —wp - P

and for the discriminant Aj(u) of its numerator we have

Ul(r;p) = —2

Ai(p) = (u* =m?)(1 —w)® <0, when |p| <m.

It follows that U/ (r;u) < 0, r # +(1 — w). Hence for r # £(1 — w) the function
U(r; ) is strictly decreasing and possesses two zeros

_mE VAR (1 -w)Rep+ (1 —w)p)
2u—p mF A

1—
It is easily seen that r~(u) € (—(1 —w), 1 —w). Denoting u; = ——wg and
w

r ()

o = g and using the Viete formulae we obtain

S 2u—p

_ 2m <0, i p<pg
r () () = _
>0, if u>pe

>0, if p<m
(1 —w)[2wp + (1 —w)p]

n—p

r(w).r

p) = <0, if < p<po

>0, if p> pe.

We have to avoid the case 7~ (1) < 0. Let m < pg. Since |u1| > pg it follows that
w > pp and we have r~(u) > 0. For m > uo we state the condition p; < —m
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which yields w < b . So for the purpose of our investigation we obtain
(2m +p)
1 p
- if 0<m<=
0<w< 2 p p 2
, if =<m
2m+p 2

To study the behavior of ~(u) we consider its derivative

2(1 —w)

[m+ VAW VAW

d
Because of the above restriction on w we have i r(p) >0, e r~(p) is an

{%mmn+wAmn+u_wmpwH41—@M}

increasing function of p. Hence for the radius of the disc K, transformed by each
function F' € F,, onto a domain starlike with respect to the origin we have the
limitation
— p —w

2m+p

r<r (—m)

In view of the a priori condition (2) we obtain

1
- if 0<m<?
0<w< 4 2
p . p
—if = <m.
202m + p) 2

The quantity r~(—m) is a decreasing function of the parameter m, hence
we obtain (3).

If we put p =1 and n = 1 we obtain a result which contains the result of
Switoniak [3].

If we put p =1, w = 0 we obtain some of the results of Dimkov [2].
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