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ABSTRACT. Dubrovin type equations for the N-gap solution of a completely
integrable system associated with a polynomial pencil is constructed and
then integrated to a system of functional equations. The approach used to
derive those results is a generalization of the familiar process of finding the
1-soliton (1-gap) solution by integrating the ODE obtained from the soliton
equation via the substitution v = u(x + At).

1. Introduction. Back in 1967 Gardner, Green, Kruskal and Miura [1]
solved the Cauchy problem for the Korteweg-de Vries (KdV) equation
(1.1) U = 6UUL — Ugpy

with an initial condition u(z,t = 0) = ug(z) decreasing sufficiently fast at infinity
thus starting a new branch in mathematics, Soliton Theory (or Inverse Scattering
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Method, ISM) [2]-[4]. What they did was establishing a connection between Eq.
(1.1) and the time-independent Schrodinger equation

(1.2) —foa +uf = Af, A = const

in the sense that a time evolution of the potential u according to (1.1) leads to a
simple linear time evolution for the respective scattering data S of (1.2) resulting
in an exponential dependence of S on time. In that way, the Cauchy problem for
(1.1) is reduced to solving the inverse problem for Eq. (1.2), i.e., finding u(zx,t)
from a given set of scattering data S(t,\) for any fixed time ¢.

Later on, many other nonlinear evolution equations (NEEs) like (1.1) were
discovered for which ISM can be applied due to the existence of respective linear
spectral problems associated with them.

The inverse problem for the latter is standardly solved by using a Gelfand-
Levitan-Marchenko (GLM) equation. For reflectionless potentials u correspond-
ing to a finite number of eigenvalues A, Ao, ..., Ay in the spectrum, the GLM
equation is reduced to a linear algebraic N x N system of equations which can
be solved explicitly yielding the so called N-soliton solution. In the case of KdV,
that solution has the form

13) @1 ) 2 In(det V(2 £) 5 8p3t e(Pitpj)T
. u(x,t) = —2——= In(det V(z, 1)), Vi; = 05 —mjie i | ————

dz? T ’ pi +pj
with arbitrary constants m; > 0, p; > 0, p; # p; for i # j.

The N-gap solution is a generalization of the N-soliton solution and
corresponds to periodic boundary conditions. It is generated by N functions
Q1,...,QnN which satisfy two (compatible) systems of first-order ODEs, one in
space (z) and one in time (¢), called Dubrovin equations [5]. The link between
Q1,...,Qn and the potential u is provided by the trace formula which, for the
KdV equation, has the form

N
u(w,t) = po+ Y [uok—1 + pior — 2Qk(x,1)]
k=1
(see [6]). By using techniques from algebraic geometry, Its and Matveev [7]
expressed the N-gap solution u(x,t) of KdV explicitly in terms of #-functions,

2

d
(1.4) u(z,t) = _2ﬁ In 0(x +4 Mt +ay,...,xc+4 Nt +an) + ¢ &= const.
x
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At the present time, there are several direct methods (i.e., not using
ISM) for deriving the N-soliton solution of completely integrable NEEs such as
the Hirota method, the dressing method, use of Bécklund transformations, etc.,
an overview of which can be found, for instance, in [2]—[4].

The present article introduces yet another approach for finding the N-
soliton solution of KAV in its explicit form (1.3). In addition, the new approach
yields the Dubrovin equations for the N-gap solution and integrates them to a
system of N coupled functional equations for Q1,...,Qn. The trace formula is
also obtained.

As an application of the scheme developed in the paper, all results con-
cerning the N-gap solution are extended to the case of the polynomial KdV
equation (PKdV). The latter is a system of NEEs associated with the spectral
problem

M-1
(1.5) —fza + <Z )\Tur> f=MMy, A\ = const
r=0

known as Polynomial Pencil or Polynomial Schrédinger Equation [8]-[13], [15].
Eq. (1.5) is a generalization of (1.2) and has the peculiar property that its re-
spective NEEs which are of the form [§]

(1.6) up = Q(A)ug, 2 — polynomial
where
ug 0 0 - 0| (100w +4(u0))d;!
uy 1 0 -0 3 (up)d; !
A7) wu=| w |, A=|o0 1 : J(u2)8; !
: . 0 :
U1 0 - 0 1l jlun-1)d;!

(here we have j(u,) = 4,0y + 3u,;; and 9,1 = 3 (ffoo —ff) in the case of

up € L'(—00,00), r = 0,1,...,M — 1) possess some features characteristic of
completely integrable systems but lack (for M > 2 only!) others. For instance,
Eq. (1.6) has Lax representations [9, 12, 15] and a bi-Hamiltonian structure [§]
while at the same time there are serious difficulties finding a GLM equation [10],
asymptotics of the Jost solutions for A — oo [11], Bécklund transformations [13],
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etc. Even 1-soliton solution does not exist in an explicit form for M > 2 (see
Appendix A).

In light of all that, obtaining Dubrovin equations for the N-gap solution
and integrating them is a step forward in the solution of that problem. The
success of the new approach is due to its non-spectral nature which allows it
to avoid the problems associated with the asymptotics for A — oo, the GLM
equation, etc. Rather, the proposed scheme is based on the hereditary symmetry
property [16] of the recursion operator A in (1.7) [15] and the existing as a result
of that Lax pair (A, B) [13]-]15].

The new approach also reveals a certain duality between the pairs (KdV,
PKdV) and (KdV, GKdV) (GKdV being Generalized KdV, or the KdV hierar-
chy), namely, the fact that the time evolution of Q1,...,Qn (as well as F, ..., Fy
— see the scheme below) for KAV and PKdV is the same but the space evolution
is different while for KdV and GKdV it is the other way around.

Here, by PKdV we denote the first nonlinear system of equations in the
hierarchy (1.6) corresponding to Q(u) = 4u, ie., uy = 4Au, or

(1.8) Uprt = 4Ur—1,;r + 4j(ur)UM—1 —dr0 UM—-1,zxzy, T = 0,1,....M —1,

(u—1 = 0) so that for M =1 it is reduced to the KdV equation (1.1). If M = 2
then the Jaulent-Miodek system of equations is obtained [17].

Let us briefly recall the procedure for finding the 1-soliton (1-gap) solution
of KAV which serves as a foundation of our approach.

By looking for solutions of Eq. (1.1) in the form u = u(x + At) we make
the substitution

(1.9) Ut = Ay

into (1.1) reducing it to a third-order ODE,

(1.10) —Ugpr + OUUL = Ay,

which, after a multiplication by 2u, can be integrated to

(1.11) — Qg + u2 4 4ud = Mu? + ¢, ¢ = const .

Now we get rid of the first derivative u, by using the transformation v = f2, and
then we integrate once again:

C

A
3 _
(112 ~frot 1= 31+
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2 4 A 2
(1.13) =t 2pay

C

— d = const .
42’

Finally, we take a square root on both sides and then integrate one
more time to obtain f(x) and the corresponding solution u(z,t) = f2(x + \t)
of Eq. (1.1).

For ¢ = d =0 we find

A

(1.14) fa) =
2 ch? [@(m - xo)]

which yields the 1-soliton solution for negative values of A. In the general case
the solution of Eq. (1.13) can be expressed as (see, i.e. [3])

[A+4v —6 / 2
f2($):H_VC”2< #(@“—io); m>

where p and v are defined via the equalities
2 —Ap? —4dp+¢=0

and

V2+)\—6/,L

v+ (3p® — Ap—2d) =0,

in agreement with the familiar form of the 1-gap solution as a cnoidal wave. (Eq.
(1.14) is obtained when p =0, v = —\/2.)

The contents of the article are as follows.

In Sec. 2, the analogs of Egs. (1.10) — (1.13) corresponding to the V-
gap solution are obtained and the respective time evolution, compatible with
those equations, is presented. It is shown that the constants of integration are
time-independent. The analog of Eq. (1.13) is found to be separable into a few
“independent” parts with a common structure.

Then, in Sec. 3, the N-soliton solution of KdV is obtained by viewing the
respective system of equations as a linear system with a cubic perturbation term.

In Sec. 4, the analog of Eq. (1.13), being a system of equations with
respect to N functions Fi(x,t),..., Fy(z,t), is diagonalized in order to allow for
an extraction of a square root as in (1.13). That naturally leads to a change of
variables {F,...,Fx} — {Q1,...,@Qn} where Qq,...,Qn satisfy the Dubrovin
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equations for KdV. Then those equations are integrated to a system of functional
equations by extending the NV first integrals available with the IN-soliton solution.

Finally, in Sec. 5, the entire procedure is applied to the case of PKdV
leading to analogous results for the N-gap solution of PKdV.

2. First-order ODE system for the N—gap KdV solution. In order
to find the right way of generalizing Eq. (1.9) we have to realize that its purpose is
reducing Eq. (1.1) to an ODE in a meaningful way, i.e., Egs. (1.1) and (1.9) have
to be compatible. Indeed, they are, due to the apparent compatibility between
(1.9) and (1.10).

All that naturally leads us to one of the Lax pairs associated with the
KdV equation and, for reasons which will become clear in a moment, we choose
the Lax pair (A, B) associated with the recursion operator A,

(2.1) Ay = BA — AB,

A= ——8m +u+ uxﬁ_ B = —0pps + 6ud, + 6uy

which expresses the compatlblhty of the equations

(2.2) G; = BG
and
(2.3) AG = )\G.

Here 0, ! is a suitably defined operator, inverse to d,. For our purpose, however,
its specific form is not important because Eqgs. (2.2) and (2.3) are transformed
below into differential equations not containing 9; .

Since A is an (integro-differential) operator of = only, Egs. (2.2) and (2.3)
should be analogs of Egs. (1.1) and (1.10), respectively. Such analogy exists due
to the fact that Eq. (2.2) is actually the linearized (perturbed) KdV equation and,
therefore, u, satisfies it. In other words, the substitution G = u, transforms Eqs.
(2.2) and (2.3) into Egs. (1.1) (differentiated in x) and (1.10) (with a different
M), respectively.

To find a wider variety of solutions to the KdV equation, we use the
linearity of Eq. (2.2) and look for u, as a linear combination of other solutions
of that equation:

(2.4) Uy =G1+Go+ ...+ Gn
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where Gy, is a solution to both Egs. (2.2) and (2.3) (for A = A\;). We can do that
because the two equations are compatible as already noted.

The conclusion is that for N > 1 Eq. (1.10) can be generalized to a system
of (integro-)differential equations in x,

(2.5) AGy = MGy, k=1,...,N,

together with Eq. (2.4). We assume that A\; # \; for i # j, otherwise the functions
G; and G; can be combined into one function.

The substitution Gy = F}, , makes the equations in (2.5) purely differen-
tial and provides us with the final version for a generalization of Eq. (1.10):

1 1
(2.6) _ZFk"B‘B‘B+UFk’$+§UIFk :/\ka,x, k=1,..., N,
where
(2.7) u=—-b+F +...+ Fy, b=b(t).

The system (2.6), (2.7) is already known to have a solution for b = 0
due to the fact that the N-soliton solution u of the KdV equation is a sum of
N squares of eigenfunctions Fj, = f2 of the Schrédinger equation (1.2) (see, e.g.,
1)).

Now, let us begin integrating (2.6) and (2.7), and track the respective
changes in the time evolution equation (2.2).

Eq. (2.2) (with the notation G = F,) is integrated to

(28) Fkﬂg = _Fk,xxx+GUFk,x+ek> ek :ek(t), k=1,...,N.

Here we find that V/(t) = e1(t) + ... + en(t) due to Egs. (1.1), (2.7) and (2.8).
Also, Eq. (2.8) yields

1

(2.9) (0 + Opgw — 6uy — 6udy) 1

1 Uu
Fk,www + UFk,g; + §uka — )\ka7$:| — fek

leading to

(2.10) er(t) =0 and B(t)=> eilt)=0.
=1
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Note that, in addition to providing the constants of integration ey (t), Eq. (2.9)
actually represents the compatibility of (2.6) and (2.8) (in the form (9; — B)(AG —
AG) =0, cf. Eq. (2.1)).

The constant b in Eq. (2.7) may be dropped as well since otherwise we
would apply the transformation @(x,t) = u(x+6bt,t)+b, Fy(z,t) = Fj(x+6bt,t),
M = A; + b and make that constant disappear.

In accordance with the case N = 1, we multiply Eq. (2.6) by 2F} and
integrate:

1 1
(2.11) — 5 FiFhaa + ZF,C%I +uF? = MF2 + cr = c(t).

Then the transformation Fj = f,? yields

(2.12) _fk,xx+ufk:)\kfk+;—]]%, k=1,...,N,
and Eq. (2.8) becomes
(2.13) Jret = —4fkzae + 6U iz + Sug fr + 12%%
with the use of (2.12). Now Eq. (2.13) implies
<at 4 4Dy — 6y — Sty — 120—2693) <fk7m —ufi + M fi + c—’§> = C—%
P i i

which leads to ¢} (t) = 0 in view of Eq. (2.12), and expresses the compatibility of
Eqs. (2.12) and (2.13).

In the case ¢, = 0, Eq. (2.12) becomes the standard Schrédinger equation
and, together with (2.13), provides the usual Lax pair L = —0y +u, A =
—40402 + 6u0, + 3u, for the KAV equation.

Eq. (2.13) can be replaced by a simpler evolution equation as a result of
(2.12):

(2.14) Jrt = e froe +2ufrp — U

with a corresponding equation for Fy,

N
(2.15) Frp=4MFpo +2) (FioFi — FiFig).
=1
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After a multiplication by 2f, ,, Eq. (2.12) is integrated once again:

L \2

pypy
(2.16) ) A )
cp 1 Ckfk_ 24 af 2 f?

. i i dh. —

72 2; on =0

with dy = di(t), k = 1,..., N (cf. [18, Ch. IIIa]). The respective compatibility

condition is

(2.17) (&, — RO,) (M YN -C+ f)) ~ D,
where R is the matrix multiplication operator
M 0 /i
R=4 +2(ff 4.+ fR) -2 ¢ (L - 1)
0 AN f]2\/”

and M, N, C, D are vector functions representing the different parts in Eq. (2.16):

N
12 : f,xfi_f fi, 2 1
i#k ! i=1

—2 £2 —2 £2
—c—k—l-lz%fk fz +Cifi fk

Dy, = dy.
)\k_)\z ) k k

itk

(Here we have M = (My,..., Mny)T, etc.) Just as before, Eq. (2.17) is a result
of the respective time evolution (2.13) for fi and implies that d(t) = 0, k =
1,...,N.

For the N-soliton solution we must have ¢; =d; =0 (i = 1,...,N) in
Egs. (2.11) and (2.16) due to the vanishing of the functions Fj, = f? at x — =+oo.
Later on we will derive that solution in the form (1.3) by using Eqgs. (2.12), (2.13)
and (2.16) subjected to the above restrictions (i.e., ¢; = d; = 0).

It turns out that the compatibility condition (2.17) holds for the different
parts of (2.16) as well, namely, the relation

(2.18) (Or — RO)Q =



234 Russi G. Yordanov

takes place for Q = M, N , C and D. The reason for that can be found in the
following lemma.

Lemma 2.1. The vector-functions M, J\7, C and D are generated by

two matrix multiplication operators V. and W acting on F = (Fy,...,FN)" and
such that
(2.19) [0y — RO,, V| = [0y — ROy, W] =0,
namely,
M =W?F, N =VF,
(2.20) N di N o
- di N 5 Ck 2
D_ZZ(/\k V)TLE, c Z4(Ak V)72F,
k=1 k=1
where
A 0 . 2
(2.21) V= —3 (1 - 1)
0 An 2

and W = (wki)kj\{i:l is defined by

1 Zfz kafz fkfz;t)

Wik = 7 Jra+ py- ;
(2.22)

P [fk(fkwfz fk'fz,x)
TR L 20— M)

| ize

Proof. It is easy to see that 13}5 =2WFEF and M = %Wﬁ}g The expression
for D in (2.20) follows from the equality

(2.23) F =20\ — V)ép, k=1,....,N

where ¢, is a unit vector in RY, é, = (8g1,...,0kn)". As for C, we use the
relation ¢é, = 2(\; — V)C®) where C'®) is defined by C*) = é|ci=0,i#k7 so that
C=CW 4 ... +CW). Now we apply again Eq. (2.23) to find the result for C.
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What concerns Eq. (2.19), we note that [0; — RO, V] = 0 is equivalent to
the pair of equations [R, V] = 0 and V;— RV, = 0. Those, in turn, follow from the
relations R = 4V +2(Fy +...+ Fy) and F, = RF, (cf. (2.15)), respectively. (The
latter also means that (2.18) holds for Q = F as well. F would have appeared in
Eq. (2.16) if we had kept b in (2.7).)

The commutation relation [0; — R0, W| = 0 is proved in a similar way.

Now Egs. (2.15) and (2.19) lead to (8; — R9,)V™F = (8;— RO,)W™EF =0
for m = 0,£1,+£2,... and, therefore, (2.18) indeed takes place for Q=M,N,C
and D (as well as for F and F,). O

So far we have proved the following

Theorem 2.1. The system of N third-order equations (2.6), (2.7)
(for b = 0) is integrated to the first-order system (2.16). The constants of that
integration are time-independent as a result of (2.15). The system (2.16) has the
matriz form

Mz

N
k 71 A~ Ck? —9 A~ .
(2.24) W2E + 7 M=V JLE=D E N - V) PE =0

4
k=1 k=1
and its structure is determined entirely by the time evolution equation (2.15) via

the commutation relations (2.19) (in the sense that (2.24) is just one of a whole
hierarchy of ODE systems compatible with (2.15) and generated by V and W ).

In Sec. 4 we will continue with the integration of Eq. (2.24) to a system
of functional equations. For the moment, however, we turn our attention to the
N-soliton solution of the KdV equation.

3. Derivation of the N—soliton solution for KdV. It was noted in
Sec. 2 that the N-soliton solution corresponds to ¢; =d; =0,7=1,...,N. Then
Eq. (2.12) becomes

N
(3.1) —fizz + (Z f12> fe = M i

and for (2.16) we find

1 1 (fewfi — frfiz)?
(32) f£,$+(Ak—§;f3> R DD i v vl

itk
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Eq. (3.1) leads to fi z0fi — fifize = (N — Ak) frfi, so that (3.2) can be written
as

N N
(33)  fiat (Ak - % Zf?) fi - %Z (Frafi = fufia) (07 fufi) =0
1=1 1=1

Now we multiply Eq. (3.1) by fr and add it to (3.3):

1 N A
Jrz fk,z_§;fi (O frfi) | = [ fk,z_ggfi (07 ' fufi)| =0.

x

The conclusion is that
(3.4) -3 Zfz U fefi) = it e = pr(t), k=1,...,N,

which, in a matrix notation, has the form

(3.5) fo=Pfrg (0 FF7) f
with
f1 p1 0
f=1 ], P= g
In 0 PN

Eq. (3.5) can be viewed as a linear system (f, = Pf) with a cubic perturbation
term and one can solve it order by order.
The (2n + 1)-order correction to Eq. (3.5) will have the form

(3.6) (T"f) T”f+2ZT’ P i 2§T’ Tl f T_——< 1ffT)
=1 =1

and can be proved by differentiating T f in x and replacing everywhere ﬁv with
the expression (3.5). Thus, by adding the corrections for all odd orders, we obtain

(3.7) (Z T”f) =Py 1"f
n=0 T n=0
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leading to
38) YT =e = (@M w0 an (e )
n=0

Now we invert the series (3.8), i.e., express f as a function of ©, by applying
similar arguments concerning order as above. Equivalently, we have, due to

(3.8),
o0 R . [e.e] R R
(3.9) @zZT”f:f+T<ZT”f>:f+T¢
n=0 n=0
resulting in f = (1 — 7). Then, in order to express f entirely in terms of ¢, we

use the relation @7 = S f7 [—%P‘l (8;1ff—r>}n (see (3.8)) to calculate ¢!,
n=0

or

(3.10) —i (a;%&) pl= i [—i (a;lffT) P‘l} " iT”.
n=1 n=1

Now Egs. (3.9) and (3.10) imply that

. _ 1 -1
(311) f=(1-T)¢g=1+T+T%+..)) 1@:[1—1(8961@&)131} o.

Eq. (3.11) represents the N-soliton solution since it is equivalent to the
N x N linear system of equations

3 " pilst)
(311,) fk(xat) = @k(l‘,t) + Zz;fl(xﬂt) /:;:oo %@k(‘%t)(i% k=1,...,N,

that one obtains when solving the GLM equation.
Now we need to find the dependence on time as well. The first step in
that direction is proving the relation

(3.12) = —\p.

which implies that the constants (in ) pi are constants in time as well. Eq.
(3.12) is a result of the next two lemmas.
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Lemma 3.1. Iff = (f1,...,fn)" is a solution of the matriz equation
S1 0
(3.13) Tf=p, T=I- (6;1¢¢TS> . 5=
0 SN

where I is the N x N identity matriz and s1,...,sy are constants (cf. Eq. (3.11)
for S = (4P)~1) then fi(z) satisfies the Schrodinger equation (1.2) with A\, = —p;
and

d N
(3.14) w=2- (Z} srfrsor>

(see, e.g., [3, Ch. 3]).
Proof. We differentiate Eq. (3.13) twice and use ¢, = P2:

Gor=T fra=2 (207S) o (0075) f=Tfar—20 (275F) + (001 —0u0T) SF=
=T |foe —2f (¢7SF) |+ |0 ($0e — pud” )| SF =
=T |foe —2f (¢7SF) |+ |0 (007 P? - PPgpT)| Sf =
=T |fra=2f (¢7SF) |+ (-TP+PT) f=T |fur —2f (¢7SF) —P*f|+P%.
Thus we find T [fm —2f( TSf) —PQf] — 0 and then apply T-1. O

Lemma 3.2. The potential u from Lemma 3.1 can be presented also as

N
u=4 Zprsrfz'
r=1

Proof. Again, we use Eq. (3.13) and ¢, = P¢ to obtain
w=2 (@Tsf) — 257 Sf +2 (Tf) S, =
— 257 Sf +2f7 [I S (a lg T)} Sf, =207 Sf +2fTSTf, =

—2p18f +2/78 (¢~ Tuf) = 2(PR)T Sf +2/75(Pg) +2/T5¢¢" S =
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:2[<PTf> Sf+fTSPTf] 1278007 Sf =
=9 [2fTPsf—fT (58_1““T>P5f—fTSP (a;l ) }+2f SepTSf =
z4fTPSf+2fTs[ (a 1“T)P P(8 5P )+¢¢ }sf:szTPsf. 0
Now, by comparing that result (for s, = (4py)~') with Eq. (3.1), we come

o (3.12).
In addition to ¢, = P (see (3.7)), the following relation takes place:

(3.15) Gr = —4P3.
Its proof is based on the time analog of Eq. (3.5), namely,
(3.16) fi=—4P3f —2 (a;lffT) P2y,
Eq. (3.16), in turn, follows from (2.14) and (3.5),
Jo==aPfo+ 2 (fufT = 1) = 4P f = 2P (971 FFT) f+
w2 (PIFT = FITP) f4 [0 FFT) FIT = FFT (022 F17)] = —ap? -
—2P (9 FFT) F2 [P (0 (L T+ FID)) = (02 (uf T+ FFD) P f+
(071 FFT) (0 Fuf T+ FED) = (02 T+ FED) (1 F7T) | 1.

(Here f, is replaced by the expression (3.5) to yield (3.16).) Eq. (3.16) leads to

Z T1P3Tn 7

which is analogous to (3.6) and results in Eq. (3.15). The conclusion is that

n+1 A
f+38 ZTZP?’T”“ "

(3.17) (T” f)t = _4p? (T” f)

(3.18) O = qk(t)epkif — Tkepka:—zlpit'

Finally, from Egs. (3.11') and (3.14) it follows (see, e.g., [19]) that the
potential u can be presented in the form (1.3) where

i (H)g; (1)e 7727

1
V(x,t :1——(8_1“T> Pt ie., Vi = 8y —
( ) 4 \Y= PP ij ij 4pj(pi+pj)
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The standard form for the entries of V' (z,t) (see (1.3)) is obtained after dividing
the i-th row of V' (z,t) by ¢;(t) and then multiplying the j-th column by ¢;(t) for
all i, =1,..., N. Obviously, that does not change the determinant of V' (z,t).

4. Dubrovin equations for KdV. In this section we diagonalize the
term M = W?2F (the one containing the derivatives) in Eq. (2.24) which involves
a change of variables {Fk}i\;l — {Qk}ivzl, and then derive the Dubrovin equa-
tions for the N-gap solution of KdV. Those equations are afterwards integrated
to a system of functional equations.

We are essentially looking for functions ay(f1, fo,...,fn), k=1,..., N,
such that a; M1 + aoMs + ... + ay My is a complete square.

Lemma 4.1. A necessary and sufficient condition for cy M+ -+ +ayMy
to be a complete square is the set of equations

N s — A
(4.1) Zaiffz—zakaj( k J}> (k#37; k,j=1,...,N)
=1

A —
to hold for the functions ai,...,an.
N N
Proof. Let ) apMj be a complete square, ie., > apM; =
k=1 k=1

2
N
(Z O fk@) . Then the matrices corresponding to those quadratic forms co-

incide too:

B ( az)fkfz o . L. o
(4.2) ak+z /\k— Bka —2()%—_)\2) BrBi (i # ks i,k =1,...,N).

N

Eq. (4.2) leads to B Y. Bifi = apfr which means that the vector (f1,...,0n)
i=1

must be proportional to (aj fi,...,anfn). From here one easily obtains (4.1).

The opposite follows from the relation

ZakMk 4_1 alflflz ~+aNfoN,x)2‘

(4.3) a1f1 ...—I—aNfJQV
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Lemma 4.1 can be used, at least in principle, to calculate the ratios be-
tween aq,as,...,an. In order to do that, however, N-th degree algebraic equa-
tions have to be solved. A way out of that problem is by looking for a solution
in terms of series. We assume that, for a fixed k,

ozkzl—l—oz,(:)—l—oz,(f)—i-..., ai:ozl(-l)—l—ozl(?)—i-... (i#k; 1=1,...,N),
(m)

where ag'”, s = 1,...,N, is a term of order 2m with respect to fi,..., fn,
and then solve Eq. (4.1) with the additional requirement that 2(aq fifi» +... +

anfynfnz) (see (4.3)) be an z-derivative of a function Hy(f1,..., fn), ie., the

INaifi)  0(ayfj)

equality = has to hold for 7,5 = 1,...,N. Thus, at N = 2, for
of; dfi
example, we obtain
f7 2 2R+ 2 fif? 4
-1 _ ( L Lo ! e
wr [ 20w — ) T T A T 20w - T

R [RrRe e ]
2(A — A\i) 4(Ap — N)? 2(A — Ni) o

(w1,2 = const ), and

o =

fif? +w1fﬂ +[—f§ff+f§f{l_ wifif?

wa fS
- N2 20w -A) 3 ]*

It turns out that inverting Eq. (4.4) (i.e., expressing f7 and f3 as series in Hj
and Hy which can be done order by order) for wy = wy = 0 results in finite series!

We find that f7 = Hj, <1 — m) kyi=1,2; k+#i.
For an arbitrary N, the series are also finite and the corresponding change

- H;
of variables that diagonalizes W2F' is f,f = H; | | (1 - m), k=1,...,N.
; i Nk
i#k

The proof of that can be found in Theorem 4.1 below. At first, however, we intro-

H
duce a more convenient set of variables {Qk}ivzl by the formula Qn = A\, — 7k

Then the above change of variables becomes (see, e.g., [4, Ch. 2])

N
o ow-e
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Theorem 4.1. Let the matriz A = {aij}%zl be defined by oy =

1
—— . Then the following relations hold:
200 — Q) following
1
(4) AF =+ |;
1
Q1 0
(17) AVATL =V, V= - ;
0 QN
Q1,2 [1(Q1—-Qy)
i#1 0
N
2 Hl(Qlfki)
(ii3) AWAL=W, W=

Qne [l (@N—Q1)
iEN

N
2 Al:ll(QN_)\i)

()

Before proving the above theorem we need to find the inverse matrix A~!.
We will show that A~! has elements

As a result, in the variables Qr Fq. (2.24) takes the form

N N
s 3 d 5 c 5
2 Koy _ty-1_ Koy -2
(4.6) W<+V 4 kg_l 5 A —V) 2 1 A —=V)

N
IO - Q) 10w - Q)
— _ o9s#] 5= C
Qi 21_[.()\1‘—)\3) H'(Qs_Qj)’ i,j=1,...,N.
s#1 s#£j
Indeed, we have
N N
N Hl(/\z - Qs) N Hl()‘s - Qr)
4. Qi Otypj = = — = (51
1) ;"‘ AV [EYE=PY Zl M=) —Q) TT@—@) ™

S#L s#r
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as a result of the next lemma.

emma 4.2. a e linear in Ag 1,7) polynomia hi) =
L The | e (k # I 1 507
N I (As=Qr)
Z%ﬁ where ¢ # j and N > 2 is identically equal to zero.
r=1 s#r
N IT(As—Qr)

b) The linear in N\ (k # i) polynomial SO — Z(/\i_g:) To—a9 where
r=1 s#T
IT (Ai=As)
N > 1 coincides with the expression ?&7
H (Ai—Qs)
Proof. a) If N = 2 then S — 1 + 1 = 0. Suppose
' 2 Q2—0Q1 Q11— Q2 '

S%’z)l = 0 for some N > 3 and every pair ¢ # j. Then, for each k (k # i, j) and
w, we have

[[ (As—@r)

N Z s#i,5,k
M=Qu sﬂw(Qs Qr)

S](VJ )

However, this is zero according to the assumption for S](\Z,i )1. In other words, S](\if’j )
is a linear polynomial in Ay which has N different zeros, A\, = @, (1 < w < N).
Now N > 2 implies S(”) =0.

b) The statement follows directly from a) since the expression

N [TOs — @) [T (A = As)

s;éz _ s#£i
— )‘ - H (Qs - Qr) N
T_l sF#T 1:[1()\1 - QS)
(4, N+1)

is nothing but Sy’ ;" where @n+1 has been replaced by A;. O

Now we are in a position to prove the above theorem.

Proof of Theorem 2.1. (ii) Let us calculate the (i, 7)-th element of
ATV A:

000 (@ =2+ - @)

S#] _
ITN = As) Zl (AZ-—QT)I;I(QS—QT) B

Z aerrar]

s;é
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(Ai — Q) v T —Qr)

—=

s=1 s;éz 1
) §j Y I S
I A TI@ @) | T =03

s7#£1 s;ér

Here we used Eq. (4.7) and Lemma 4.3 (below).

) N TI(As—Qr)
Lemma 4.3. The expression Sy = % where N > 1 1is
r=1s#r

1dentically equal to 1.

The proof is similar to that of Lemma 4.2. Note that Lemma 4.3 ensures
compliance with (4.1) for each row ag1, a2, ..., asy of the matrix A due to Eq.
(4.5).

The statement (i) is also a direct result of (4.5) and Lemma 4.3 (with the
interchange \; < Q; for alli=1,...,N).

As for proving (iii), we start with calculating the (i,7)-th element of

AW A:

N Ai—Qs) N
Z Qrm H Qs r ) sHI( S) Z _er
- 2(0—Qr) = 2 JTNi=As) = (Mi=@r) (A —Qr)
For i # j that is e uatltoL 5 = w;; due to Egs. (4.5) and (2.22)
g Ty - \F ), T e -

As for i = j, by using Lemma 4.3 with the ixnterchange A <> @; we find that the
expression (4.8) is equal to

L& o kl;[( -Qr) n k];[()\ - Q)
P D5 vl R PR Wi Bl | fswe vy
k#i k#r

E,.
which, in turn, coincides w1th —1—24 X, _)\ < ) = W;.

Finally, Eq. (4.6) is an 1mmed1ate corollary of (i), (ii), (iii) and Eq.
(2.24). O

Eq. (4.6) is nothing but the spatial part of the Dubrovin equations for
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the N-gap solution of KdV (cf. [5]). Indeed, it can be written as

N
H()\ - Q)

(4.9) Qraz=2VT Qk; NIEEn) k=1,...,N
z;ék

where

(4.10) Q- -0-3 -ty e
i=1 2(h — Q) i—1 4\ — Q)?

In order to get the standard form for that equation, one just needs to bring the
product H (Ai — Q) in (4.9) under the square root sign.

For the N-soliton solution we have ¢;=d;=0 and, therefore, T'(Q)= — Q.
We also need to know how the time evolution equation (2.15) transforms
under the change of variables (4.5). For that purpose we calculate the sum

& iﬁ( - )i o 1@~
airFr,x ) L AN Qz xszi
= A s (Y

s=1

(here we used Eq. (4.7) after interchanging A, and @, for all m in it). Then
N

we obtain a similar expression for ) «;,F,; and, by comparing the two and
r=1

. N - N N
using the relation AF; = (ARA_I) AF, = <4V +2>° E) AF,, we come to
i=1

N
Qrt = <4er€ +2>° E) Qk - The final form of the time evolution equation,
i=1

N
(4.11) Qre =4 Z)\i_ZQi Qk.a» k=1,...,N,

i=1 i#k
is a result of yet another lemma.
Lemma 4.4. The sums of the old and the new variables in Eq. (4.5)

N N
are connected via the relation Y F; =2 (A — @), i.e., the following identity
i=1 i=1
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takes place:

—=

N _1(/\_Qs) N
;HA_M ;MZ-—QQEO-
= 1 =

The proof is similar to that of Lemmas 4.2 and 4.3.
Note that Eq. (4.11) is the temporal part of the Dubrovin equations as
one can see after substituting for Qj, , from (4.9). The trace formula

N
w=y 20\ — Q)

k=1

results from Eq. (2.7) after using Lemma 4.4.
The matrix form of Eq. (4.11) is

(412)  Q: = RQ, where R=ARA ' =4

Also, one can show that (4.11) leads to the commutation relations [@ — RO,, f/] =

[@ — RO, W] = 0 for the generating operators V and W of Eq. (4.6) thus en-
suring the compatibility of the Dubrovin equations (4.9) and (4.11). This time,
however, V and W are only two of a much wider set of operators commuting with
9, — ROy. Such are, for example, all polynomials of U, and Uy, where

[1(Q1— Qi) 0
Y1(Q1) 0 i£1
ﬁl = . ’ 62 = R
0 Yn(@n) 0 [[ (@~ — Qi)
i#AN
with Y7, ..., Yy being arbitrary functions.

Now we turn our attention to integrating the Dubrovin equations (4.9)
and (4.11). A way of doing that is suggested by the N-soliton solution. Indeed,
according to Eq. (3.18), each function (log¢x) — prx, k= 1,..., N, contains an
additive constant representing a new parameter not present in Eq. (4.9). So we
can think of it as an integration constant and the respective function as a first
integral of (4.9). However, the problem is to express them in terms of Q1,...,Qn.
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For instance, at N = 1 and T(Q) = —Q Eq. (4.9) becomes Qi, =
2(A1 — Q1)V/—Q1 which, after integration, yields
1 V—Q1+p >
4.13 —log <7 — o = const.
(4.13) 2p1 V—Q1—p

That can be obtained from Eq. (3.11') as well. For N = 1 we get fi = ¢1 +
(071 t)

2
fi = @1 + =L f1 which leads to
4py 8p1

fi 2 (—p? — Q1) V—0Q1—p1

—4p} — /16pt + 8p7ff  —4 +v- —Q1 +
oy = 201 pi+80E /T 41 (Pt V 621)__2\@)1 V=01 +pm

and then we take a logarithm on both sides to come to (4.13).
For N = 2 Eq. (3.11') yields
on [1 _ ;Pé(pk —pi) }
D; (pk: + pi)
1— 90_% _ 90_3 0103 (p1 — pa)?
8pt  8p3  64pipi(p1 + p2)?

From here we express ¢1 and o9 via fi and f2 by using auxiliary variables 91 o:

k= (i#k; kyi=12).

(pi — pr)bi . 1 op(pi—pr) . .
foe=————— with Yp=— |1-——% i£k; ki=1,2
Vi 2 Vi =i 2k Pk 8p; (pi+pk) ( )
resulting in ¥ = M and, therefore,

 feafi — finh
_ \/2<pi+pk>\/<¢——czl+pk> (\/——QQ-i-pk
Pk = —<Pk

) (i#k; kyi=1,2).

(pi — pr) V=01 —pr/) \V—0Q2 — px
N
_ 1 /—0.
Obviously, the functions [ = Z —log <M) -z, k=1,...,N,
= 2pk V—=Qs — Pk

are candidates for being first integrals of (4.9). The next theorem states that
result in the general case when T'(Q) has the form in (4.10).

- N
Theorem 4.2.  The functions I, = —(x + 4 \it) + > mx(Qs), k =
s=1

1,..., N where nig(Q) are determined by

(4.14) Q) = 5 Ql) ey
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constitute N first integrals for the Dubrovin equations (4.9) and (4.11). (Here the
sign of \/T(Qg) for any fired k =1,..., N is the same as in Eq. (4.9).)
Proof. By differentiating I in = and using (4.9) we obtain

N v [T =Qs)

dIk Qs z;ék <(k) _
= : =—-1+ -1+ Sy
Z; )\k - Q )\/ T(Qs Z )

dl’“ = 0 due to Lemmas 4.3

(see Lemma 4.3). In a similar way we find that
and 4.4. O

The implicit function theorem guarantees the existence of at least a local
solution for the system of functional equations I, = aj; = const (k=1,...,N)

since we have

N N
o, 1 det A
det = det T
’ {0Qi }k,z‘l ) {Q(Ak — Qi) T(Q:) }k;,il ﬁ 7(Qi) ’
=1

A global solution exists [7] as well, in terms of #-functions (see also [20]).

For N =1 we obtain the equation

dQ
V-AQ - Q)2 —2d(A - Q) +c

which yields the 1-gap solution of KdV,

T+ 4\t +a =

A d?
u=F=2A-Q)=2 <§ +77(a:+4)\t—|—a)> = —QFH(JS—I—ZL)\t—I—a)—i-const
x
(cf. (1.4)). The connection between the constants ¢, d and the coefficients in the
ODE P2 = 4P3 — goP — g3 satisfied by the Weierstrass elliptic function P(2) is

4 8 2
=N +2d g3=—\+=)\d—c.
g2 3 + 2d, g3 57 + 3 c

5. Dubrovin equations for PKdV. In this section we will repeat the
entire procedure of deriving the Dubrovin equations and solving them for the
case of the polynomial KdV equation (1.8).

According to [15], both u, and the eigenfunctions of the recursion operator
A in (1.7) satisfy the linearized (perturbed) PKdV as a result of the hereditary
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symmetry property [16] possessed by A. On the other hand, it is easy to see that
the eigenfunctions of A have the form JF where

—jluy) - : —jlupr—1) Oy F
—i(u e Oy 0 \F
g | i) R P i VY
9 0 0 A1

with o(A) = (1, A, ..., A =1)T "and F is a solution of the linear spectral problem

(5.1) inm(x,)\)—i—j(U(x,)\))F(:c,)\) =0, Uz, A=\ Z A"y (2

1
(see also [8]). We remind that j(u) = ud; + —uy.
Therefore, the analogs of Eq. (2.6) and (the derivative of) (2.7) are, re-
spectively, Eq. (5.1) for A= X;, k=1,...,N, and

(5.2) uy=JF+JF+...+JFnN, Fi = 0(Ae)EFr = o( M) F(x, \g).

The time evolution of Fy, is provided by the linearized PKdV and has the form

(5.3) Fip = 4\ Fi o + 2 (upr—1Fi o — unr—1,0F%)
(see also [12]). Eq. (5.2) can be integrated in x to yield expressions for ug, ..., up—1
in terms of Fy,..., Fy,
N N 3 2
(5.4) upr—1 = —bri-z Fi, up_o= —by+b; ZFk+Z )\ka_Z <Z Fk)
k=1 k=1 k=1 =
where by,bs,...,bys are the integration “constants”, i.e., by = by(t).

A simple way of producing the formulas in (5.4) is provided by

Lemma 5.1. The equations in (5.4) are coefficients in the series equa-

(5.5) LZ? = 4B+ O (M*1)

L:1—EuM,1—€2uM72—€3uM,3—... (u,1 ZU,QZ...:O)
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Z=2+c¢ (i )—i—s <ZAka>+e (iAiFk)

k=1
B =1+ ¢b 4+ £%by + 3bg + . ..

Proof. Eq. (5.2) yields the following relation between L and Z:
(5.6) 2j(L)Z = 2LZ, + L, Z = O (M)

which is then multiplied by Z and integrated to Eq. (5.5). O
Just as in the case of the KAV equation, the constants by (k=1,...,N)
are constants in time as well. Indeed, Eqs. (1.8), (5.3), (5.5) and (5.6) imply that

ABy = L;Z* +2LZZ; + O (M) =

4
= [E(Lx + EUM—l,x) +45(L — Dupr—1 + EMUM,LMCI + 0 (€M+1):| Z%+

+2L7

N

4

- (Zx = FM) + 2upr—1Zy — 2upr—1,2(Z — 2) + O (€M)
k=1

4
= EMUM,LIIIZZ—I— (g + 2’LLM1> Z(LIZ+2LZI)+8LZ <uMl,x — Z Fk@) +
k=1

N
+0 (M) =M <Z Fkg;xx) 7% + §Z(sz +2LZ,) + O (Y1),
k=1
Now Egs. (5.1) and (5.6) lead to 4B, = O (M +1), ie, b|(t) = ... =}, (t) = 0.
The analogs of Eqs. (2.11) and (2.12) for the case of PKdV are obtained
by replacing A\ —u with Uy in them where Uy = U(z, A;) (see (5.1)). Here again
¢ is a constant in both x and t.
As for the analog of (2.16), it is

fk efi — fk'fz x)2 Ck Ck'fk 2f2 +sz ka
ka+z 2 —N) 2 2k — ) it

ik
(5.7)

+fE

1Mfl M—2—s
Uk+§z <AQ4—1—S— Z )\kur+1+s)2)\s ]— k=1,...,N

s=0
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where dj, = di(t).
Lemma 5.2. FEgq. (5.7) has the matriz representation (cf. (2.24))

M N
(5.8) W2F+VM P4y " b VM- SF+Z K—V) -
s=1 k

~nu-V)?E =0,
=1

Proof. Obviously, we just need to show that the last term in (5.7) is

. M .
the k-th element of the vector VMF + Y~ b, VM=5F since that term is the only
s=1
difference between Eqs. (2.16) and (5.7). We start with the fact that V"F has

the form

n
(5.9) VIE =) Co b Vi'F
k=0
where Vy = diag{\1,...,An} is the constant part of the operator V and the
functions C, k = 0,1,... are defined by the recursion formula
= N
(5.10) Co=1, Cr=—3 Zock_l_SZ;Afff (k=1,2,...).

Just like in Lemma 5.1, we can write down (5.10) by using series,
(5.11) CZ =2, C=Co+eCy+e2Cy+...

From Eq. (5.11) we obtain (2BC)Z = 4B which, after a comparison with (5.5),
shows that 2BC — LZ = O (EMH) and, therefore,

J 7—1 N N
1 _ i .
(5.12) ) b:Cj-s=3 (—2uM_j—§ un—jrs D XTI N 1f3>,j:1,...,M
s=0 s=1 i=1 i=1

(here we have by = 1). Now we can calculate the last term in Eq. (5.7):

M 2M—-2—s
72|+ L ZAM - szvﬂ——z 5 Akumzu]
s=0 r=0
M-1 1 N M 2—r
:flg )‘l]cw—i_;)\}; <_ur+§;)\f\4_l_rf12 Z ur—l—l—i—sz)\f)]
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(5.12) Moo= =
SN Y | =303 o i
r=0 s=0 s=0 r=0

That is, however, the k-th component of the vector

M M—s M
D b > Crymps Vg F =) b VMOF
s=0 r=0 s=0

(see (5.9)). With that, the proof of Lemma 5.2 is completed. O
The time evolution of Fi,..., Fiy for PKdV is essentially the same as that
for KdV. From Egs. (5.3) and (5.4) we obtain

(5.13) (8, — Rpd,) F =0, Rp =R —2b

(cf. (2.18) for Q = F). In fact, the matrix R corresponding to KAV would also

contain a constant if b was not excluded from Eq. (2.7).

b
The substitution A, — A — 51 in (2.19) shows that 9y — Rpd, also

commutes with V' and W so that Egs. (5.8) and (5.13) are compatible when
d(t)=0,k=1,..N.

Now apparent becomes the duality between the pairs (KdV, PKdV) and
(KdV, GKdV) mentioned in the introduction. Namely, KdV and PKdV exhibit
the same time evolution for the functions Fj, but the space evolution is different.
For the pair (KdV, GKdV), the role of space and time is reversed.

It is also interesting to know that Eq. (3.4) has an analog for PKdV as

well,
1 N M—-1 M-1 r—1
—1 M—1—sys r—1l—sys _
o= 300 ot (- X ) [ <

However, that equation cannot be easily solved order by order (as in the KdV
case) even for M = 2 when an N-soliton solution is known to exist.
The results obtained for PKdV are summarized in the next theorem.

Theorem 5.1.  The system of ODFEs (5.1) (with A = A\q,...,\n) and
(5.2) for the N-gap solution of PKdV is integrated to the first-order system (5.7)
which has the matriz representation (5.8). The time behavior (5.13) of the func-
tions Fy is essentially the same as that for KdV. The constants of integration
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bk, ck, di are constants in time as well. Under the change of variables (4.5), the
Dubrovin equations (4.9) with

N

M d. N C;
(514) T(Q) _ _QM - bSQMfs o 7 + ? 5
; ; 2\ — Q) ; Ah - Q)?

and

o
(5.15) Qe =4 —51 +Y A= Qi | Qra

i=1 i#k
are obtained. Then they are integrated to the system of functional equations
Iy =ay, k=1,...,N (a; = const ) where I;, = — [z + (4\; — 2b1) ]+ % M (Qs)
with ng, defined by Eqs. (4.14) and (5.14). Trace formulas are provided bgs/zlli’q. (5.4)
(or (5.5)) after replacing F,...,Fy with Q1,...,QnN from Eq. (4.5).
Proof. The change of variables (4.5) transforms Eq. (5.8) into (4.6) with

-~ -~ Mo
a second term V replaced by VM 4+ 3" b, VM=% which results in the expression

(5.14) for T(Q) in (4.9). -

As for Eq. (5.15), we use the fact that (2.15) is transformed into (4.11)

under the change (4.5). Then the substitution \; — X; — %, Qi — Q; — %1

(j =1,...,N) leaves (4.5) unchanged and shows that Eq. (5.13) (in its scalar
form) is transformed into (5.15).

That same substitution yields the above expression for the functions Iy,
k=1,...,N. O

The 1-soliton case corresponds to N =1, by =... =by =c; =dy = 0.
Then we have T(Q) = —QM and Eq. (4.9) becomes Q, = 2(A—Q)/—QM which
is equivalent to Eq. (A3) from the Appendix for Q = ¢°.
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Appendix. 1-soliton solution for PKdV. The substitution u; = 4\u,
in Eq. (1.8) leads to

(Al) 4)\Ur,cc = 4ur71,x + 4urqul,x + 2ur,acqul - 5r0qul,xxx
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for r =0,1,...,M — 1 (we have u_; = 0). From here we obtain another linear
recursion relation for the finite sequence wup;_1,upr—2,...,u1, Ug:

(A2)  [dup_y + 4up (upr—1 — 2X0) + gy (upr—1 — 23)%] =0, r=1,...,M -1

(upy = —1) which, after an integration in z, allows one to express the general
term up—s (s =2,3,..., M) through the first one w = up;_1,

i =~ (A= 2) s (A ) (r- %yfl +:§%(8 o %ny

(vx = const ). By substituting that result for s = M into Eq. (A1) for r = 0 we
find an equation for w,

Wogr = 2Wy [—Q(M—i—l) (/\_ %)M—l—(M—kl)M (A+%) (/\_ E>M71 .

2
M—1
w\ M—k—-1
+ Y M —k+ )M = k) (A - ) ]
k=1
Now we integrate in x and, after multiplying by 2w,, integrate one more time:
M—1
2 . w w\ M+1 w\ M—Ek+1
w, + 261w + P2 = 16 (A+§) (A— 5) + z_: 167y, ()\— 5)
(B1,2 = const ). If we now make the substitution ¢ = /\—% and choose v, = —\2,
Yo =73=...=7y_1 =1 = B2 =0 then the equation
(A3) @2 =—(\—¢*) M2

is obtained. It, too, can be integrated yielding, for odd M,
M-—1

! VAtq) © 1 .
Gae = 2)\M/210g (\/X_ q> _; Ne(M — 2k)gM—2F — +iz+0s, B3 = const

and, for even M,

1 q2 2 1 .
G = Smatos <)\ 2> > N = )iz — Tt fn fa= const.



Dubrovin type equations. . . 255

Obviously, for M > 2 these equations cannot be solved explicitly with respect

to the unknown function q. However, a local solution does exist by the implicit

Gum 1

function theorem since we have = 7 7 0

1]

dq A—=a¢*)q
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