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Abstract. In this paper the notion of SR-proximity is introduced and in
virtue of it some new proximity-type descriptions of the ordered sets of all
(up to equivalence) regular, resp. completely regular, resp. locally compact
extensions of a topological space are obtained. New proofs of the Smirnov
Compactification Theorem [31] and of the Harris Theorem on regular-closed
extensions [17, Thm. H] are given. It is shown that the notion of SR-
proximity is a generalization of the notions of RC-proximity [17] and Efre-
movič proximity [15]. Moreover, there is a natural way for coming to both
these notions starting from the SR-proximities. A characterization (in the
spirit of M. Lodato [23, 24]) of the proximity relations induced by the re-
gular extensions is given. It is proved that the injectively ordered set of all
(up to equivalence) regular extensions of X in which X is 2-combinatorially
embedded has a largest element (κX, κ). A construction of κX is proposed.
A new class of regular spaces, called CE-regular spaces, is introduced; the
class of all OCE-regular spaces of J. Porter and C. Votaw [29] (and, hence,
the class of all regular-closed spaces) is its proper subclass. The CE-regular
extensions of the regular spaces are studied. It is shown that SR-proximities
can be interpreted as bases (or generators) of the subtopological regular
nearness spaces of H. Bentley and H. Herrlich [4].
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1. Introduction. In this paper by a “space” we will always mean a
“topological T1-space” and by a “proximity” – some kind of generalized proximity.
The Efremovič proximity appears here as EF-proximity.

Our purpose in this note is to obtain proximity-type descriptions of the
regular and some other kinds of extensions of a (completely) regular space. The
theory of the regular extensions is well developed in the papers of K. Morita [26]
and A. K. Steiner & E. F. Steiner [32] (on the language of generalized uniformi-
ties), H. Bentley & H. Herrlich [4] (on the basis of the notion of nearness), D.
Doitchinov [14] and G. Dimov & D. Doitchinov [13] (by means of special families
of open filters, called T3-systems), but, to the author’s knowledge, there exists
no such theory based on proximities. Moreover, it seems that the celebrated
Smirnov Compactification Theorem [31] is the unique result where the ordered
set of all equivalence classes of certain kinds of extensions is described on a purely
proximity language. Indeed, a proximity-type description of the locally compact
extensions was given by S. Leader in [22], but there, together with the proxim-
ity, the boundedness was used as a primitive term; the well-known D. Harris’
description of the regular-closed extensions by means of the RC-proximities [17]
has the lack that comparable RC-proximities need not give rise to comparable
regular-closed extensions (the latter was shown by P. Sharma and S. Naimpally
[30]), i.e. the Harris Theorem gives a bijection, but not an isomorphism; the
same is true for the J. Porter and C. Votaw’s description of the OCE-regular ex-
tensions of a regular space by means of the OCER-proximities [29]. Actually, at
the present time the nearness structures are much more prefered to proximities
as a tool for the study of various kinds of extensions (see, e.g., [21, 20, 4, 5]).
The reason is that the proximity structure is less informative than the nearness
structure. On the other hand, the utilization of proximities has the advantage
that a proximity on a set X is a special kind of binary relation on the power
set Exp(X), while the nearness is a special kind of ∞-ary relation on Exp(X).
In this paper we will try to unite the advantages of the proximity and nearness
structures by describing, using only a proximity-type language, some bases (or
generators) of those nearness structures which are induced by regular extensions
(i.e. of the subtopological regular nearness structures (see [4])). These bases (or
generators) are called SR-proximities and are choosen in such a way that they con-
tain the whole information, useful for the extensions, which could be extracted
from the generated by them nearness structures. Our SR-proximities describe
the filter traces of the regular extensions. A description of the filter traces of the
regular extensions, but on the language of T3-systems, was given earlier by D.
Doitchinov in [14]. In reality, the notion of SR-proximity arose just as a possible
solution of such a problem: find a reasonable method for producing T3-systems.
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In this sense, the present note was inspired by Doitchinov’s paper [14], but the
influence of the ideas from D. Harris’ paper [17] has to be emphasized as well.
Our solution relies on the Harris’ notion of R-proximity [17] (and the term “SR-
proximity” comes from “strong R-proximity”). It seemed hopeless to make use of
the R-proximities for describing the regular extensions, because it was well-known
(see D. Harris [17, 18]) that two non-equivalent regular extensions of a regular
space could induce equal R-proximities on it and that, on the other hand, there
exist R-proximities which cannot be induced by any regular extension. However,
as it is proved here, every T3-system in a regular space X can be obtained as
such a family of (maximal) δ-round filters in X (where δ is some R-proximity
on X) which, in turn, determines completely the R-proximity δ. In such a way,
a technique for producing T3-systems, which is habitual for those working with
proximities, is developed. We hope that the present paper will demonstrate the
usefulness of this technique.

The Section 2 contains the preliminaries. In Section 3 the ordered set of
all (up to equivalence) regular extensions of a regular space is described on the
basis of our notion of SR-proximity (see Theorem 3.8). This result is applied for
obtaining a description of the ordered set of all (up to equivalence) regular-closed
extensions of a regular space (see Theorem 3.11) (as it is well-known (see H.
Herrlich [19]), this set could be also empty). Then it becomes obvious that there
is a bijection between the set of the SR-proximities on a space X corresponding
to the regular-closed extensions of X and the set of the Harris’ RC-proximities
on X (see Proposition 3.12). In such a natural way we come to the notion
of RC-proximity and obtain a new proof of the Harris Theorem [17, Theorem
H]. We even improve it, because our theorem gives an isomorphism, while the
Harris Theorem gives a bijection. The fact that the “right” order in the set of
all RC-proximities on a space X (i.e. that order which reflects the order in the
family of all corresponding extensions of X) is not the usual one (see [30] for
an example), but that which comes through the interpretation of RC-proximities
as special kinds of SR-proximities, witnesses the rightness and naturality of our
approach. In the same Section 3 we characterize those binary relations δ on the
power set of a regular space X which are induced by a regular extension (Y, e)
of X (i.e., for A,B ⊆ X, AδB iff clY (e(A)) ∩ clY (e(B)) 6= Ø) (see Theorem
3.16). Such relations, induced, however, by Hausdorff or T1-extensions, were
characterized by M. Lodato in [23, 24]. In Section 3 we show also that the notion
of SR-proximally continuous function works well in the problems concerning the
extensions of continuous functions (see Theorem 3.18 and Corollaries 3.19, 3.20).
With Corollary 3.19 we rediscover, in fact, the solution to Problem II of D. Harris
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[17], given by W. Hunsaker and P. Sharma (see [27]). In Section 4 we show that if
X is a regular space then the set of all (up to equivalence) regular extensions of X

in which X is 2-combinatorially embedded (in the sense of E. Čech and J. Novák
[9]) has an injectively largest element, which we denote by κX (see Theorem
4.2). We give a construction of the extension κX and study its properties and
its relationships with the Alexandroff extension αX (see [1]) and the Stone-Čech
compactification (see Propositions 4.9, 4.10 and Example 4.11). In the same
section we introduce also the class of CE-regular spaces as a generalization of the
J. Porter and C. Votaw’s class of OCE-regular spaces [29] and, hence, of the class
of regular-closed spaces. We show that the CE-regular spaces are precisely those
regular spaces X for which κX = X. We study the CE-regular extensions of
regular spaces and we prove that if an R-proximity δ on a space X is induced by
a regular extension of X then the set of all (up to equivalence) regular extensions
of X inducing δ has an injectively largest element (κδX,κδ) which is a CE-regular
extension of X (see Theorem 4.7). We show that there are normal spaces ha-
ving CE-regular non-OCE-regular extensions (see Example 4.12). In Section 5
we describe, using the language of SR-proximities, the ordered set of all (up
to equivalence) completely regular extensions of a completely regular space (see
Theorem 5.2). Some non-proximity-type descriptions of these extensions were
given by G. Dimov [10] (by means of special families of open filters, called CR-
systems (i.e. in the spirit of Doitchinov’s description of the regular extensions))
and by H. Bentley, H. Herrlich and R. Ori [5] (on the basis of nearness structures).
Further, we obtain a new proof of the Smirnov Compactification Theorem (see
Theorem 5.6) and show that the notion of Efremovič proximity arises naturally
from the notion of SR-proximity (see Proposition 5.5). So, both the Efremovič
proximity and RC-proximity of D. Harris are special kinds of SR-proximities. We
end this section with a description (on the language of our SR-proximities) of the
ordered set of all (up to equivalence) locally compact extensions of a completely
regular space (see Theorem 5.9). Some other descriptions of the locally compact
extensions were given by S. Leader [22] (by using the notion of local proximity in
which the boundedness and proximity are both primitive terms), by V. Zaharov
[36] (by means of some special vector lattices of functions) and by G. Dimov & D.
Doitchinov [12] (on the basis of the notion of supertopological space). In the last
Section 6 we show that SR-proximities can be interpreted as bases (or generators)
of the subtopological regular nearness spaces of H. Bentley and H. Herrlich [4].

A great part of the results presented in this paper were announced without
proofs in [11].

2. Preliminaries. We first fix some notations. If (X, τ) is a topological
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space and A ⊆ X then by clX(A) (or simply by cl(A)) we denote the closure of
A in X. If x is a point of X then by NX(x) (or simply by N (x)) we denote the
neighbourhood filter of x in (X, τ). Further, by N (or ω) we denote the set of
all natural numbers, by R – the real line with its natural topology and by I –
its subspace [0, 1]. If X is a set then by Exp(X) we denote the power set of X.
For G ⊆ Exp(X) and A ⊆ X, we write

⋂
G instead of

⋂
{G : G ∈ G} and G ∩ A

instead of {G ∩ A : G ∈ G}.

2.1. An extension of a space X is a pair (Y, e), where Y is a space and
e : X −→ Y is a dense embedding of X into Y . Two extensions (Yi, ei), i =
1, 2, of X are called isomorphic (or equivalent) if there exists a homeomorphism
ϕ : Y1 −→ Y2 such that ϕ ◦ e1 = e2. Clearly, the relation of isomorphism is an
equivalence in the class of all extensions of X. We write (Y1, e1) ≥0 (Y2, e2) (resp.,
(Y1, e1) ≥ (Y2, e2)) if there exists a continuous mapping (resp., a continuous
surjection) ϕ : Y1 −→ Y2 such that ϕ ◦ e1 = e2. These relations are orders (i.e.
they are reflexive and transitive). We refer to them as to the projective orders. We
write (Y1, e1) ≥i (Y2, e2) and say that the extension (Y1, e1) is injectively larger
than the extension (Y2, e2) if there exists a continuous mapping ϕ : Y2 −→ Y1

such that ϕ ◦ e2 = e1 and ϕ is a homeomorphism from Y2 to the subspace ϕ(Y2)
of Y1. This relation is also an order. The equivalence relations associated with
these three orders (i.e. (Y1, e1) projectively (injectively) larger than (Y2, e2) and
conversely) coincide with the relation of isomorphism (defined above) on the class
of all Hausdorff extensions of X (see [2]).

Notation 2.2. (a) The set of all (up to equivalence) regular (resp.,
completely regular; Hausdorff locally compact; compact Hausdorff) extensions of
a space X will be denoted by R(X) (resp., CR(X); LC(X); C(X)).

(b) Let X be a space and (Y, e) be an extension of X. If A ⊆ X then by
Ex(A) (or ExY (A)) we denote the set Y \ clY (e(X \ A)).

2.3. Let (Y, e) be an extension of a space (X, τ). If M ⊆ Y then the set
e−1(M) is called the trace of M on X. Analogously, if G is a subset of Exp(Y )
then the family T (G) = e−1(G)(= {e−1(U) : U ∈ G}) is called the trace of G
on X. For every point y of Y , let T (y) = T (NY (y)), i.e. T (y) is the trace of
NY (y) on X. Then the family {T (y) : y ∈ Y } is called the filter trace of (Y, e)
on X. (Y, e) is called strict extension of X if {clY (e(A)) : A ⊆ X} is a base for
the closed sets in Y . Every regular (and even every semi-regular) extension of a
space is strict (see [33, 2]).

A filter F in a space (X, τ) is called open (resp. regular) if it has a filter
base of open sets (resp., if it is an open filter and has a filter base of closed sets).

Let Σ be a family of open filters in a space (X, τ) which extends the family
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of neighbourhood filters of the space X. Defining a topology on the set Σ by
taking as an open base the family {U∗ : U ∈ τ}, where U∗ = {F ∈ Σ : U ∈ F},
and setting σ(x) = NX(x) for every x ∈ X, we obtain that (Σ, σ) is a strict
extension of X. Its filter trace on X is just the given family Σ. (Σ, σ) is called
the strict extension of X with filter trace Σ (see [2]). Note that U∗ = ExΣ(U),
for every U ∈ τ .

Let X be a regular space. Then the strict extension of X with filter trace
the family of all maximal regular filters in X will be denoted by αX. We will
refer to it as to the Alexandroff extension of X. It was constructed by P. S.
Alexandroff in his fundamental paper [1].

2.4. Let X be a set. A basic proximity on X (see [8]) is a symmetric
binary relation δ on Exp(X) satisfying the following four conditions:

(P1) ØδA for every A ⊆ X (δ means “not-δ”);

(P2) AδA for every A 6= Ø;

(P3) Aδ(B ∪ C) iff AδB or AδC;

(P4) If x and y are distinct points of X then {x}δ{y}.

The pair (X, δ) is called basic proximity space. If M is a subset of X then the
restriction δM of δ to M is defined as follows: for A,B ⊆ M , AδMB iff AδB. It
is easy to see that (M, δM ) is a basic proximity space.

We write A < B if Aδ(X \B). When x is a point of X, we write xδA and
x < A respectively in place of {x}δA and {x} < A. A basic proximity δ on a set
X is called an R-proximity (D. Harris [17]) if it satisfies the following axiom:

(P5) If x ∈ X and x < A, then there is B ⊆ X with x < B < A.

Let (X, δ) be a basic proximity space. Then the operator clδ on Exp(X)
defined by clδ(A) = {x ∈ X : xδA} is a Čech closure operator (see [8]). Hence
τδ = {X \A : A = clδ(A)} is a topology on X. If δ is an R-proximity then clδ is a
topological (i.e. Kuratowski) closure operator and the topology τδ on X defined
via clδ is regular (see [17]). If (X, τ) is a space, δ is a basic proximity on the set
X and τ = τδ then we say that δ is a basic proximity on the space (X, τ).

A function f : (X1, δ1) −→ (X2, δ2) between two basic proximity spaces
(Xi, δi), i = 1, 2, is called proximally continuous if Aδ1B implies f(A)δ2f(B)
(A,B ⊆ X1). If δi, i = 1, 2, are two basic proximities on a set X then we write
δ1 ≥ δ2 if the identity function id : (X, δ1) −→ (X, δ2) is proximally continuous
(i.e. if, for A,B ⊆ X, Aδ1B implies Aδ2B).

A basic proximity δ on a set X is called LO-proximity (or Lodato prox-
imity) if clδ(A) δ clδ(B) implies AδB. If δ is a LO-proximity on X then clδ is a
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Kuratowski closure operator [24]. A LO-proximity which is also an R-proximity
is called LR-proximity [18].

A basic proximity δ on a set X is called EF-proximity (or Efremovič prox-
imity) [15] if it satisfies the following axiom:

(EF) If A,B ⊆ X and A < B then there exists C ⊆ X such that A < C < B.

Let (X, δ) be a basic proximity space. A filter F in X is called round (or
δ-round) if ∀ V ∈ F ∃ W ∈ F such that W < V . The set of all maximal round
filters in (X, δ) will be denoted by Σ(X, δ) or simply by Σ(δ). A round filter F
is called end in (X, δ) (or δ-end) if it satisfies the following condition:

(E) A < B implies that (X \ A) ∈ F or B ∈ F .

The set of all ends in (X, δ) will be denoted by Σend(X, δ) or simply by Σend(δ).
It is well known (see, e.g., [28, Theorem 6.9]) that Σend(δ) = Σ(δ) if δ is an
EF-proximity on X. If δ is a basic proximity on X then

(∗) Σend(δ) ⊆ Σ(δ)

(see, e.g, the proof of Theorem 6.7 in [28]), but, in general, the converse doesn’t
hold even for the R-proximities (see Corollary 3.17 below).

If X is a set, A ⊆ X and F is a filter in X, then we say that F meets A

if A ∩ F 6= Ø for every F ∈ F .
Let (X, δ) be a basic proximity space and A,B ⊆ X. We say that B

surrounds (or δ-surrounds) A if every F ∈ Σ(δ) which meets A contains B [17].
An R-proximity δ on a set X which satisfies the following axiom:

(RC) A < B iff the subset B surronds the subset A,

is called an RC-proximity [17].
If (Y, e) is an extension of a space X then the binary relation on Exp(X)

defined by “AδB iff clY (e(A))∩ clY (e(B)) 6= Ø” is a basic proximity on the space
X; we refer to it as to the proximity induced by the extension (Y, e). It is proved
in [17] that the proximity induced by a regular extension is an R-proximity.

Definition 2.5 (D. Doitchinov [14]). Let X be a space and Σ be a
family of open filters in X. If U and V are two subsets of X then we say that
U Σ-surrounds V (or that V is Σ-surrounded by U) if every filter F ∈ Σ which
meets V contains U . The family Σ is called a T3-system if the following two
conditions are fulfilled:
(i) {N (x) : x ∈ X} ⊆ Σ, and
(ii) ∀ F ∈ Σ and ∀ U ∈ F there exists a V ∈ F which is Σ-surrounded by U .

The set of all T3-systems in X will be denoted by T 3(X).
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Note that if F ∈ Σ and Σ ∈ T 3(X) then
⋂

F 6= Ø iff F = N (x) for some
x ∈ X (see [13, 1.6(a)]).

Definition 2.6 ([13]). Let X be a space and Σi, i = 1, 2, be two T3-
systems in X. We put Σ1 ≤0 Σ2 if every element of Σ2 contains some element
of Σ1. We put Σ1 ≤ Σ2 if Σ1 ≤0 Σ2 and, in addition, every element of Σ1 is
contained in some element of Σ2. It is easy to see that the relations ≤0 and ≤
are orders in the set T 3(X).

Theorem 2.7 ([13]). Let (X, τ) be a regular space. Then the ordered
sets (R(X),≤0) (resp. (R(X),≤)) and (T 3(X),≤0) (resp. (T 3(X),≤)) are iso-
morphic. The isomorphism between these ordered sets is constructed as follows:
to every T3-system Σ in X corresponds the strict extension of X with filter trace
Σ. (This extension will be denoted by (rΣX, rΣ).)

In the following theorem the fundamental result of N. Bourbaki [7], con-
cerning the extension of a continuous function from a dense subspace of a space
into a regular space to a continuous mapping of the whole space, is presented in
an equivalent form, appropriate for the problems regarded in this paper.

Theorem 2.8. Let X be a topological space, (eX, e) be an extension of
X, Y be a regular space and (rY, r) be a regular extension of Y . Let, further, Σe

and Σr be the filter traces of (eX, e) on X and of (rX, r) on Y respectively. Let,
finally, f : X −→ Y be a continuous function. Then the following conditions are
equivalent:
(i) There exists a continuous function F : eX −→ rY such that F ◦ e = r ◦ f ;
(ii) For every F ∈ Σe there exists a G ∈ Σr such that G is contained in the filter
in Y generated by the filter-base f(F).

For all undefined here notions and notations see [16, 28].

3. Regular extensions.

Definition 3.1. Let (X, δ) be an R-proximity space and Σ be a set of
round filters in (X, δ) such that:

(SR1) All neighbourhood filters of the points of (X, τδ) are in Σ, and

(SR2) For A,B ⊆ X, AδB is equivalent to the existence of an element F of Σ
which does not contain the sets X \ A and X \ B.

Then the pair α = (δ,Σ) is called an SR-proximity and the pair (X,α) – an SR-
proximity space. If (X, τ) is a topological space and (X,α), where α = (δ,Σ), is
an SR-proximity space such that τ = τδ, then we say that α is an SR-proximity
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on the space X. The set of all SR-proximities on a space X will be denoted by
SRP rox(X).

A function f : (X,α1) −→ (Y, α2), where αi = (δi,Σi), i = 1, 2, are SR-
proximities, is called SR-proximally continuous if for every F ∈ Σ1 there exists
a G ∈ Σ2 such that G is contained in the filter in Y generated by the filter-base
f(F).

Example 3.2. Let X be a regular space. Then, as it is shown in [17],
defining a binary relation δw on Exp(X) by setting AδwB iff clX(A)∩clX (B) 6= Ø,
one obtains an R-proximity on the space X (it is called Wallman-proximity on
X and, when it is necessary, the complete notation δw(X) will be used). Put
ΣX = {N (x) : x ∈ X}. Then, obviously, αw = (δw,ΣX) is an SR-proximity on
the space X. It will be called Wallman SR-proximity on X.

Since every R-proximity induces a regular topology (see [17]), we obtain
the following fact: if Y is a topological space then the set SRP rox(Y ) is not
empty if and only if the space Y is regular.

Proposition 3.3. (a) The composition of two SR-proximally continuous
functions is an SR-proximally continuous function.

(b) Condition (SR2) in 3.1 is equivalent to the following one:

(SR2′) For A,B ⊆ X, AδB is equivalent to the existence of an element F of Σ
which meets both A and B.

(c) If f : (X,α1) −→ (Y, α2), where αi = (δi,Σi), i = 1, 2, are SR-
proximities, is an SR-proximally continuous function then f : (X, δ1) −→ (Y, δ2)
is a proximally continuous mapping.

(d) If α = (δ,Σ) is an SR-proximity on a set X then Σ ⊆ Σend(X, δ).
Hence Σ ⊆ Σ(X, δ).

P r o o f. (a) and (b). The proofs are straightforward.
(c). Let A,B ⊆ X and Aδ1B. Then, by (b), there exists an F of Σ1

which meets both A and B. Thus the filter-base f(F) meets both f(A) and
f(B). There exists a G ∈ Σ2 such that G is contained in the filter in Y generated
by the filter-base f(F). Then G meets both f(A) and f(B). Hence f(A)δ2f(B).

(d). Let F ∈ Σ. Then F is a round filter in (X, δ). Let’s check the
condition (E) from 2.4. If A,B ⊆ X and A < B then Aδ(X \ B). Hence, by
(SR2) (see Definition 3.1), we have that F contains at least one of the sets X \A

and B. So, F is an end in (X, δ). Therefore, Σ ⊆ Σend(X, δ). Hence, by (∗) (see
2.4.), Σ ⊆ Σ(X, δ). �

Definition 3.4. Let X be a regular space and αi = (δi,Σi), i = 1, 2,
be two SR-proximities on the space X. We put (δ1,Σ1) ≤0 (δ2,Σ2) if every
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element of Σ2 contains some element of Σ1. We put (δ1,Σ1) ≤ (δ2,Σ2) if
(δ1,Σ1) ≤0 (δ2,Σ2) and, in addition, every element of Σ1 is contained in some
element of Σ2. It is easy to see that the relations ≤0 and ≤ are orders in the set
SRP rox(X).

Proposition 3.5. Let X be a regular space and αi = (δi,Σi), i = 1, 2,
be two SR-proximities on the space X. Then:
(i) α1 ≤0 α2 iff the identity id : (X,α2) −→ (X,α1) is an SR-proximally contin-
uous mapping, and
(ii) α1 ≤0 α2 implies δ1 ≤ δ2.

P r o o f. The assertion (i) is obvious and (ii) follows from (i) and Propo-
sition 3.3(c). �

Lemma 3.6. Let (X,α), where α = (δ,Σ), be an SR-proximity space.
Then Σ is a T3-system.

P r o o f. Let F ∈ Σ and F ∈ F . Since F is a round filter, there exists
a G ∈ F such that G < F , i.e. Gδ(X \ F ). Then (SR2′) implies that every
filter P ∈ Σ which meets G contains F . Hence F Σ-surrounds G. Thus, Σ is a
T3-system. �

Lemma 3.7. Let Σ be a T3-system in a space (X, τ). Define a binary
relation δ in Exp(X) by letting AδB iff there exists an element F of Σ which
meets both A and B. Then the pair (δ,Σ) is an SR-proximity on the space X.

P r o o f. We first show that δ is an R-proximity. It is clear that the
conditions (P1), (P2) and (P4) from 2.4 are fulfilled. Since from AδB or AδC

follows immediately that Aδ(B ∪ C), for checking (P3) it remains to show that
the converse implication holds as well. We have that if Aδ(B ∪ C) then there
exists a filter F ∈ Σ which meets both A and B∪C. Suppose that AδB and AδC.
Then the filter F doesn’t meet both B and C. Hence X \B ∈ F and X \C ∈ F .
Then (X \B)∩ (X \C) ∈ F , i.e. X \ (B ∪C) ∈ F . This is a contradiction, since
F meets B ∪ C. Hence the condition (P3) is fulfilled as well. So, δ is a basic
proximity. For showing that it is an R-proximity, let x ∈ X, A ⊆ X and x < A,
i.e. xδ(X \ A). This implies that N (x) doesn’t meet X \ A. Hence A ∈ N (x).
Since Σ is a T3-system, there exists a B ∈ N (x) which is Σ-surrounded by A.
Consequently, if F ∈ Σ and F meets B then A ∈ F , and hence F doesn’t meet
X \ A. This shows that Bδ(X \ A), i.e. that B < A. Since X is a T1-space and
N (x) doesn’t meet X \ B, we obtain that xδ(X \ B), i.e. that x < B. Thus the
condition (P5) is fulfilled as well. Hence, δ is an R-proximity.

Further, the condition 2.5(ii) can be read now as follows: every element
F of Σ is a rond filter in (X, δ). Therefore, α = (δ,Σ) is an SR-proximity.



Regular and other kinds of extensions of topological spaces 109

It remains to show that τδ = τ , i.e. to prove that cl(X,τ)(A) = {x ∈ X :
xδA} for every A ⊆ X. Let x ∈ clX(A). Then N (x) meets A. Hence xδA.
Conversely, if xδA then some element F of Σ meets both {x} and A. Since X is
a T1-space, the note in 2.5 shows that F = N (x). Hence N (x) meets A. Thus
x ∈ clX(A). So, we have shown that α is an SR-proximity on the space X. �

Theorem 3.8. Let X be a regular space. Then the ordered sets
(R(X),≤0) (resp. (R(X),≤)) and (SRP rox(X),≤0) (resp. (SRP rox(X),≤))
are isomorphic. The isomorphism between these ordered sets is constructed as
follows: to every SR-proximity α = (δ,Σ) on the space X corresponds the strict
extension of X with filter trace Σ. (This extension will be denoted by (rαX, rα).)

P r o o f. Define a function ϕ : SRP rox(X) −→ T 3(X) by letting
ϕ(δ,Σ) = Σ (see 2.5 and Definition 3.1 for the notations). Then the correct-
ness of the definition of ϕ follows from Lemma 3.6, and Lemma 3.7 implies that
ϕ is a bijection. Now Definitions 3.4 and 2.6 imply that ϕ is an isomorphism
between the corresponding ordered sets. Applying Theorem 2.7, we complete the
proof. �

Remark 3.9. Let’s note that Theorem 3.8 could be proved without
the help of Theorem 2.7 and the notion of T3-system, but the proof then is much
longer than the given one here.

We are now going to show that Theorem 3.8 implies Harris Theorem on
regular-closed extensions [17, Theorem H]. For doing this we need (the first part
of) the following lemma (note that Lemma 3.10(a) is only a slight generalization
of Lemma 3 of [17]; let’s note also that if X is a regular space then a regular
filter F in X is a δw(X)-end iff, for A,B ⊆ X, clX(A) ⊆ IntX(B) implies that
(X \ A) ∈ F or B ∈ F):

Lemma 3.10. Let (rX, r) be a regular extension of a regular space X

and let δ be the R-proximity on X induced by (rX, r). Then:

(a) a filter in X is a maximal round filter in (X, δ) iff it is the trace of a
maximal regular filter in rX;

(b) the trace of every δw(rX)-end in rX is a δ-end in X, but it is not
true, in general, that any δ-end in X is a trace of a δw(rX)-end in rX.

P r o o f. (a). In [17] D. Harris proved that a filter in X is a round filter
in (X, δ) iff it is the trace of a regular filter in rX.

Let F be a maximal round filter in (X, δ). Then there exists a regular
filter F ′ in rX whose trace is the filter F . We will show that F ′ is a maximal
regular filter in rX. Let G′ be a regular filter in rX containing F ′. Then the
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trace G of G′ on X is a round filter in (X, δ) containing F . Hence F = G. Let
U ′ ∈ G′. Then there exists an open in rX set V ′ ∈ G′ such that clrX(V ′) ⊆ U ′.
If V is the trace of V ′ on X then there exists an open in rX set W ′ ∈ F ′ whose
trace on X is V . Since clrX(W ′) = clrX(r(V )) = clrX(V ′) ⊆ U ′, we obtain that
U ′ ∈ F ′. Thus G′ = F ′, i.e. F ′ is a maximal regular filter in rX.

Conversely, let F ′ be a maximal regular filter in rX and F be its trace
on X. Then F is a round filter in (X, δ). We will prove that F is a maximal
round filter. Let G be a round filter in (X, δ) containing F . Then there exists
a regular filter G′ in rX whose trace on X is G. For proving that G = F it is
enough to show that G′ ⊇ F ′. So, let U ′ ∈ F ′. Then there exists an open in rX

set V ′ ∈ F ′ such that clrX(V ′) ⊆ U ′. Since the trace V of V ′ on X belongs to
F and hence to G, there exists an open in rX set W ′ ∈ G′ whose trace on X is
V . Then clrX(W ′) = clrX(r(V )) = clrX(V ′) ⊆ U ′. Thus U ′ ∈ G′ and the proof
of (a) is complete.

(b). Put Y = rX, for short. We may suppose without loss of generality
that X is a subset of Y . Let F ′ be a δw(Y )-end in Y and F be its trace on X.
Then, by (a), F is a (maximal) round filter in (X, δ). Let A,B ⊆ X and A < B.
Then Aδ(X \ B) and hence clY (A) ∩ clY (X \ B) = Ø. Thus clY (A) ⊆ Ex(B).
Hence clY (A) δw(Y ) (Y \ Ex(B)). Since F ′ is a δw(Y )-end in Y , we obtain
that (Y \ clY (A)) ∈ F ′ or Ex(B) ∈ F ′. This implies that (X \ clX(A)) ∈ F or
IntX(B) ∈ F . Hence, (X \ A) ∈ F or B ∈ F . Therefore, F is an end in (X, δ).

For the second part of (b) see the last paragraph of the proof of Example
4.2 below. �

Theorem 3.11. Let X be a regular space, RC(X) be the set of all (up
to equivalence) regular-closed extensions of X and RCP rox(X) be the set of all
SR-proximities α on the space X which have the form α = (δ,Σ(δ)). Then the
ordered sets (RC(X),≤) and (RCP rox(X),≤) are isomorphic.

P r o o f. It is well-known (see [3]) that a regular space X is regular-closed
iff every maximal regular filter in X converges. Let’s note also that the orders
≤0 and ≤ coincide for the regular-closed extensions.

Let (rX, r) be a regular-closed extension of X, δ be the R-proximity on
X induced by rX and Σ be the filter trace of (rX, r) on X. Then, by Theorem
3.8, α = (δ,Σ) is the SR-proximity on X corresponding to the extension (rX, r).
We know that Σ ⊆ Σ(δ) (see Proposition 3.3(d)). If F ∈ Σ(δ) then, by Lemma
3.10(a), F is the trace of a maximal regular filter F ′ in rX. Since F ′ converges,
we obtain that there exists an y ∈ rX such that F ′ = N (y). Thus F ∈ Σ. So,
Σ = Σ(δ).

Conversely, let α = (δ,Σ(δ)) be an SR-proximity and let (rX, r) be the
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regular extension of X corresponding, by Theorem 3.8, to α. If F ′ is a maximal
regular filter in rX then, by Lemma 3.10(a), its trace F on X is a maximal
round filter in (X, δ), i.e. F ∈ Σ(δ). Since, by its construction, (rX, r) is the
strict extension of X with filter trace Σ(δ), there exists an y ∈ rX such that F
is the trace on X of the neighbourhood filter N (y) of y in rX. This implies that
F ′ = N (y), because every two distinct maximal regular filters in rX contain
disjoint open members and, hence, they cannot have equal traces on X. Thus
F ′ converges. This implies that rX is a regular-closed space.

Applying Theorem 3.8, we complete the proof. �

Proposition 3.12. Let (X, δ) be an R-proximity space. Then α =
(δ,Σ(δ)) is an SR-proximity iff δ is an RC-proximity.

P r o o f. It is easy to see that the axiom (SR2) is equivalent to the following
one:
(SR2′′) A < B iff every element F of Σ which meets A contains B.
Since the neighbourhood filters of the points of (X, τδ) are maximal round filters
(see [17]), we have that α = (δ,Σ(δ)) is an SR-proximity iff (SR2′′) holds with
Σ = Σ(δ). Thus α = (δ,Σ(δ)) is an SR-proximity iff δ is an RC-proximity. �

Remark 3.13. Theorem 3.11 and Proposition 3.12 imply Harris’ result
that there exists a bijection between the set of all RC-proximities on a regular
space X and the set RC(X) [17, Theorem H]. In [17] D. Harris posed the question
if comparable RC-proximities give rise to comparable regular-closed extensions.
P. Sharma and S. Naimpally [30] settled this problem in negative. Ours Theorem
3.11 and Proposition 3.12 show that the “right” order on the set of all RC-
proximities on a regular space X can be obtained through the interpretation
of RC-proximities as special SR-proximities. Then an isomorphism (not only
a bijection) between the corresponding ordered sets can be established. The
example given in [30] demonstrates also that, in general, the converse implication
in our Proposition 3.5(ii) doesn’t hold, i.e. if αi = (δi,Σi), i = 1, 2, are two SR-
proximities on a space X then δ1 ≤ δ2 does not imply, in general, that α1 ≤0 α2.
Hence, by Proposition 3.5(i), in general, the converse implication in Proposition
3.3(c) doesn’t hold as well. However, if δi, i = 1, 2, are Efremovič proximities,
then δ1 ≤ δ2 iff α1 ≤0 α2 (see Proposition 5.5 below).

3.14. M. Lodato [23, 24] characterized those proximities δ on a space X

which are induced on X by such spaces (resp. Hausdorff spaces) Y in which X is
embedded as a regularly dense (resp. dense) subset, i.e., for A,B ⊆ X, AδB iff
clY (A)∩ clY (B) 6= Ø. (A subset Z of a space Y is regularly dense in Y if given U

open in Y and p a point in U there exists a subset E of Z with p ∈ clY (E) ⊆ U .
“Regularly dense” implies “dense”, and if Y is regular then the converse is also
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true.) We are now going to characterize those proximities δ on a regular space
X which are induced by the regular extensions of X. It follows from the results
of Harris [17] and Lodato [23] that any such proximity has to be simultaneously
an R-proximity and a LO-proximity (i.e., a LR-proximity). However, this is not
a characterization because, as it follows from the results of D. Harris (see [18,
Theorem A]), there exist spaces X and LR-proximities on them which cannot be
induced by any regular extension of X.

Definition 3.15. Let X be a set and δ be a LR-proximity on X. δ is
called a LOR-proximity if for every two subsets A and B of X, such that AδB,
there exists an end in (X, δ) which does not contain the sets X \ A and X \ B.

Theorem 3.16. Let (X, δ) be a basic proximity space. Then the follow-
ing conditions are equivalent:
(i) δ is a LOR-proximity;
(ii) (δ,Σend(δ)) is an SR-proximity;
(iii) There exists Σ ⊆ Σ(δ) such that (δ,Σ) is an SR-proximity;
(iv) The proximity δ is induced by a regular extension (rX, r) of (X, τδ).

P r o o f. (i) ⇒ (ii). Let δ be a LOR-proximity, A,B ⊆ X, F ∈ Σend(δ)
and F does not contain the sets X \ A and X \ B. Suppose that AδB. Then
A < (X \ B). Since F is an end in (X, δ) and X \ A 6∈ F , we obtain that
(X \B) ∈ F . This contradicts our assumption. Hence AδB. Thus, for A,B ⊆ X,
the following holds: AδB iff there exists an F ∈ Σend(δ) which does not contain
the sets X\A and X\B. So, in order to show that (δ,Σend(δ)) is an SR-proximity,
it remains to prove that every neighbourhood filter N (x) in (X, τδ) is an end in
(X, δ). Since δ is an R-proximity, we obtain immediately from (P5) (see 2.4) that
all N (x) are round filters. Further, let x ∈ X, A,B ⊆ X and A < B. Then
Aδ(X \B). Since δ is a LO-proximity, we obtain that clδ(A) δ clδ(X \B). Hence
clδ(A) < Int(B). Thus clδ(A) ⊆ Int(B). It is now easy to see that (X \A) ∈ N (x)
or B ∈ N (x). So, (δ,Σend(δ)) is an SR-proximity.

(ii) ⇒ (iii). This is obvious.

(iii) ⇒ (iv). Let α = (δ,Σ) be an SR-proximity. Then, by Theorem 3.8,
the strict extension (rαX, rα) of (X, τδ) with filter trace Σ is a regular extension.
Put, for short, rX = rαX and r = rα. It is clear that if A,B ⊆ X then
F ∈ clrX(r(A)) ∩ clrX(r(B)) (where F ∈ Σ = rX) if and only if F meets both
A and B. Hence the condition (SR2′) (see Proposition 3.3) implies that AδB iff
clrX(r(A)) ∩ clrX(r(B)) 6= Ø.

(iv) ⇒ (i). Let (rX, r) be a regular extension of (X, τδ) such that, for
A,B ⊆ X, AδB iff clrX(r(A)) ∩ clrX(r(B)) 6= Ø. Then δ is a LO-proximity (see
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[23]) and an R-proximity (see [17]). Let, for every y ∈ rX, Fy be the trace on X of
the neighbourhood filter of y in the space rX. Obviously, N (x) = Fr(x) for every
x ∈ X. By [17], every Fy, y ∈ rX, is a δ-round filter. Put Σ = {Fy : y ∈ rX}.
Then for A,B ⊆ X, we have: (AδB) iff (there exists a point y of rX such that
y ∈ clrX(r(A)) ∩ clrX(r(B))) iff (there exists a filter F ∈ Σ which meets both
A and B). Hence (SR2′) (see Proposition 3.3) is fulfilled. Thus α = (δ,Σ) is
an SR-proximity. Then, by Proposition 3.3(d), every element of Σ is an end in
(X, δ). All this shows that δ is a LOR-proximity. �

Corollary 3.17. Let X be a regular space and δ be a LOR-proximity
on the space X. Then the following are equivalent:
(a) δ is an RC-proximity;
(b) Σend(δ) = Σ(δ).

P r o o f. (a) ⇒ (b). This follows from Propositions 3.12, 3.3(d) and 2.4(∗).
(b) ⇒ (a). Since δ is a LOR-proximity, Theorem 3.16 implies that

(δ,Σend(δ)) is an SR-proximity on the space X. Hence (δ,Σ(δ)) is an SR-
proximity on the space X. Thus, by Proposition 3.12, δ is an RC-proximity. �

The last theorem in this section is an immediate corollary of Theorems
3.8 and 2.8. For more general nearness-type theorems of this kind see [20, 4, 27].

Theorem 3.18. Let (r1X1, r1) and (r2X2, r2), be regular extensions of
the regular spaces X1 and X2 respectively, αi be the SR-proximities on Xi, i =
1, 2, corresponding to these extensions (see Theorem 3.8) and f : X1 −→ X2 be
a continuous function. Then the following conditions are equivalent:
(i) There exists a continuous function F : r1X1 −→ r2X2 such that F ◦r1 = r2◦f ;
(ii) f : (X1, α1) −→ (X2, α2) is an SR-proximally continuous function.

Corollary 3.19. Let (X, δ) be an RC-proximity space, Y be a regular-
closed space and f : (X, τδ) −→ Y be a continuous function. Let (rX, r) be the
regular-closed extension of (X, τδ) corresponding to the RC-proximity δ (see [17,
Theorem H] or Theorem 3.11 and Proposition 3.12 here). Then the following
conditions are equivalent:
(i) There exists a continuous function F : rX −→ Y such that F ◦ r = f ;
(ii) If F is a maximal round filter in (X, δ) then the filter-base f(F) converges.

Note that with Corollary 3.19 we obtain, in fact, the solution to Problem
II of D. Harris [17], given by W. Hunsaker and P. Sharma (see [27]).

Corollary 3.20. Let (X,α), where α = (δ,Σ), be an SR-proximity
space, Y be a compact Hausdorff space and f : (X, τδ) −→ Y be a continuous
function. Let (rX, r) be the regular extension of (X, τδ) corresponding to the SR-
proximity α (see Theorem 3.8). Then the following conditions are equivalent:
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(i) There exists a continuous function F : rX −→ Y such that F ◦ r = f ;
(ii) f : (X, δ) −→ (Y, δw) is a proximally continuous function.

P r o o f. Using the compactness of the space Y , we infer easily our asser-
tion from Theorem 3.18. �

Note that our Corollary 3.20 is, actually, a special case of the well-known
Tăımanov Theorem (see [16, Theorem 3.2.1]).

4. CE-regular extensions.

Definition 4.1 (E. Čech, J. Novák [9]). Let (rX, r) be an extension of
a space X. Then X is said to be c-embedded in rX if, for A,B ⊆ X, clX(A) ∩
clX(B) = Ø implies clrX(r(A)) ∩ clrX(r(B)) = Ø. (We have to note that our
“c-embedding” is introduced in [9] as “2-combinatorial embedding”.)

Theorem 4.2. Let X be a regular space. Then there exists a regular
extension (κX, κ) of X such that:
(a) X is c-embedded in (κX, κ);
(b) (κX, κ) is the largest element of the injectively ordered set of all (up to equiv-
alence) regular extensions of X in which X is c-embedded;
(c) κκX is isomorphic to κX.

P r o o f. Theorem 3.16 implies that the Wallman R-proximity δw (see
Example 3.2) is a LOR-proximity, because it is induced by the trivial extension
(X, idX ) of X. Hence, by Theorem 3.16, ακ = (δw,Σend(δw)) is an SR-proximity.
Let (κX, κ) be the regular extension of X corresponding to ακ (see Theorem 3.8),
i.e. (κX, κ) is the strict extension of X with filter trace Σend(δw). We will show
that (κX, κ) is the desired extension.

(a). This follows from the fact that the induced by (κX, κ) R-proximity
on X is precisely the Wallman R-proximity δw (see Theorem 3.8).

(b). Let (rX, r) be a regular extension of X in which X is c-embedded.
Then, obviously, the induced by (rX, r) R-proximity δ on X coincides with the
Wallman R-proximity δw. Let Σ be the filter trace of the extension (rX, r). Then,
by Theorem 3.8, (δw,Σ) is an SR-proximity. Thus Proposition 3.3(d) implies that
Σ ⊆ Σend(δw). Since, by Theorem 3.8, the extension (rX, r) is isomorphic to the
strict extension of X with filter trace Σ, we obtain easily that (κX, κ) is injectively
larger than (rX, r).

(c). We have, by (a), that κκX is an extension of X in which X is
c-embedded. Now, using (b), we complete the proof. �

Definition 4.3. (a) A regular space is called CE-regular if it has no
proper regular extension in which it is c-embedded. An extension (rX, r) of a
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space X is called CE-regular extension if rX is a CE-regular space.
(b) Let δw be the Wallman proximity on a regular space X. Then the

elements of the set Σend(δw) will be called regular ends on X.

Proposition 4.4. Let X be a regular space. Then the following are
equivalent:
(a) X is a CE-regular space;
(b) κX = X;
(c) Every regular end on X converges.

P r o o f. Obvious. �

4.5. We have to recall now some definitions from [29]. Let (Y, e) be
an extension of a space X. We say that the space X is open combinatorially
embedded in (Y, e) if, for open subsets U and V of X, clX(U) ∩ clX(V ) = Ø
implies clY (e(U))∩ clY (e(V )) = Ø. A regular space X is called OCE-regular if X

has no proper regular extension in which X is open combinatorially embedded.
An extension (Y, e) of a space X is called OCE-regular extension of X if Y is an
OCE-regular space.

Remark 4.6. Theorem 4.2(c) and Proposition 4.4 imply that if X is a
regular space then the extension (κX, κ) is a CE-regular extension. Hence, every
regular space has a CE-regular extension. The regular-closed extensions and the
OCE-regular extensions are, obviously, CE-regular extensions, but, as we will see
below, in general the converse doesn’t hold.

Theorem 4.7. Let X be a regular space. Then for every LOR-proximity
δ on the space X there exists a CE-regular extension (κδX,κδ) of X which is the
largest element of the injectively ordered set of all (up to equivalence) regular
extensions of X inducing the proximity δ on X.

P r o o f. Let δ be a LOR-proximity on the space X. Then, by Theorem
3.16, α = (δ,Σend(δ)) is an SR-proximity. Let (κδX,κδ) be the regular extension
of X corresponding to α (see Theorem 3.8), i.e. (κδX,κδ) is the strict extension of
X with filter trace Σend(δ). We will show that (κδX,κδ) is the desired extension.
Indeed, if a regular extension (rX, r) of X induces the proximity δ then, by
Theorem 3.8, its corresponding SR-proximity is of the form (δ,Σ) and (rX, r) is
isomorphic to the strict extension of X with filter trace Σ. Since, by Proposition
3.3(d), Σ ⊆ Σend(δ), we obtain that (κδX,κδ) is injectively larger than (rX, r).
Further, if (Y, e) is a regular extension of κδX in which κδX is c-embedded, then,
obviously, (Y, e ◦ κδ) will be a regular extension of X inducing the proximity δ

on X. Thus, as we have already proved, (κδX,κδ) will be injectively larger than
(Y, e ◦ κδ). Since, evidently, the converse also holds, we obtain that (Y, e ◦ κδ)
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and (κδX,κδ) are isomorphic extensions of X. Hence (Y, e) is the trivial regular
extension of κδX. Therefore, (κδX,κδ) is a CE-regular extension of X. �

4.8. Recall that a regular space is called: (a) RC-regular (D. Harris [17])
if it has a regular-closed extension, and (b) RC-normal (D. Harris [18]) if no
maximal regular filter meets both of two disjoint closed sets. It is proved in
[18] that: (i) a space X is RC-normal iff the Wallman proximity on X is an
RC-proximity, and (ii) the Tychonoff plank is an RC-regular but not RC-normal
space.

Proposition 4.9. Let X be a regular space. Then:
(a) κX is a subspace of αX and (αX,α) is injectively larger than (κX, κ).
(b) The following are equivalent:

(i) (κX, κ) is isomorphic to the Alexandroff extension (αX,α) (see 2.3. for αX);
(ii) αX is a regular space and X is c-embedded in αX;
(iii) κX is a regular-closed space;
(iv) The Wallman proximity δw on X is an RC-proximity;
(v) X is RC-normal.

P r o o f. (a). Obviously, a filter in X is a δw-round filter iff it is a regular
filter. Then the constructions of κX and αX together with (∗) (see 2.4) imply
our assertion.

(b). (i) ⇒ (ii). This follows from Theorem 4.2.
(ii) ⇒ (i). Since X is c-embedded in αX, Theorem 4.2(b) implies that

(κX, κ) is injectively larger than (αX,α). Now, using (a), we complete the proof.
(i) ⇒ (iii). This folows from the P. S. Alexandroff’s result (see [1]) that

αX is regular-closed if it is regular. A proof, based only on the facts presented
here, can be easily obtained as well. Indeed, since Σend(δw) = Σ(δw), Corollary
3.17 implies that δw is an RC-proximity. Hence, applying Harris Theorem [17,
Theorem H] or ours Proposition 3.12 and Theorem 3.11, we obtain that κX is
regular-closed.

(iii) ⇒ (i). Since κX is regular-closed, Theorem 3.11 implies that
(δw,Σ(δw)) is an SR-proximity. Hence, by Proposition 3.3(d), Σ(δw) = Σend(δw).
Therefore, the constructions of αX and κX show that (αX,α) and (κX, κ) are
equivalent extensions of X.

(iv) ⇒ (i). If δw is an RC-proximity then, by Proposition 3.12, (δw,Σ(δw))
is an SR-proximity. Hence, by Proposition 3.3(d), Σ(δw) = Σend(δw) and, as
above, we obtain that (αX,α) and (κX, κ) are equivalent extensions of X.

(iii) ⇒ (iv). Since (iii) implies that Σ(δw) = Σend(δw) (see the proof of
(iii) ⇒ (i)), we obtain, by Corollary 3.17, that δw is an RC-proximity.

(iv) ⇐⇒ (v). This was proved by D. Harris (see 4.8(i)). �
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Proposition 4.10. If X is a completely regular space then (κX, κ) is
equivalent to a compactification (cX, c) of X iff X is a normal space and (cX, c)
is equivalent to the Stone-Čech compactification (βX, β) of X.

P r o o f. If (κX, κ) is isomorphic to a compactification (cX, c) of X then
X is c-embedded in cX. This implies (see e.g. [16, Cor. 3.6.4]) that X is
normal and (cX, c) is equivalent to (βX, β). Conversely, if X is normal then X

is c-embedded in (βX, β). Hence (βX, β) induces the Wallman proximity δw on
X. Now the compactness of βX and Theorem 4.7 (or Theorem 4.2) imply that
(κX, κ) is equivalent to (βX, β). �

Example 4.11. (a). There exists a regular space X such that no one
of its CE-regular extensions is regular-closed.

(b). There exists a completely regular space X with (κX, κ) not regular-
closed.

P r o o f. (a). In [19, Beispiel 8], H. Herrlich constructed a regular space
R which has no regular-closed extensions. By Remark 4.6 or Theorem 4.7, every
regular space X has a CE-regular extension, e.g., (κX, κ) is such. Hence, the
space R has at least one CE-regular extension and any such extension is not
regular-closed.

(b). It follows from 4.8 and Proposition 4.9(b) that the Tychonoff plank
is such an example. Another one is the constructed by H. Tong [34] completely
regular space X such that the Alexandroff extension (αX,α) (see [1]) of X is not
regular. Indeed, then Proposition 4.9(b) implies that the Wallman proximity δw

on X is not an RC-proximity. Hence, by Proposition 4.9(b), we obtain that κX

is not regular-closed. Yet another example is the space Y from Example 4.12
below. �

Example 4.12. (a) There exists a normal space X with non-isomorphic
CE-regular extensions inducing equal R-proximities on X.

(b) There exists a normal space X which has a CE-regular non-OCE-
regular extension.

P r o o f. Let x be a point of βN \N such that the space (βN \N ) \ {x}
is not normal. (Such a point x exists (see [6]) and this is a theorem in ZFC.
Under CH or MA all points of βN \ N have this property (see, e.g., [35, 25])).
Put Y = βN \ {x}. Then Y is a nonnormal space and βY = βN . Thus κY is
not equivalent (as an extension of Y ) to βN (see Proposition 4.10). Put X = N .
We have, by Proposition 4.10, that κX = βX. Since, obviously, βX, Y and
κY are regular extensions of X which induce the Wallman proximity δw(X) on
X, Theorem 4.7 implies that βX is injectively larger than κY (both regarded as
extensions of X). Thus κY = Y . Hence Y is a CE-regular space. So, Y and
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βX are two non-equivalent CE-regular extensions of X which both induce the
Wallman proximity δw on X. Hence, (a) is proved. Since, obviously, βY is a
proper extension of Y in which Y is open combinatorially embedded (because X

is c-embedded in βY ), we obtain that Y is not an OCE-regular space. Hence, Y

is a non-OCE-regular CE-regular extension of X. Thus (b) is also proved.
We can now complete the proof of Lemma 3.10(b). Indeed, in the above-

used notations, let F be the trace on X of the neighbourhood filter NβX(x) of the
point x in βX. Then F is, obviously, a δw(X)-end in X and F doesn’t belong
to the filter trace of Y on X (because the traces on X of NY (y) and NβX(y)
coincide for every y ∈ Y ). Since κY = Y , every δw(Y )-end in Y is of the form
NY (y) for some y ∈ Y and, hence, its trace is different from F . This completes
the proof of Lemma 3.10(b). �

5. Completely regular, compact and locally compact extensions.

Definition 5.1. Let (X, δ) be an R-proximity space. A filter F in X is
called CR-filter in (X, δ) if for every F ∈ F there exist an element G of F and
a proximally continuous function f : (X, δ) −→ (I, δw) such that f(G) = 0 and
f(X \ F ) = 1. The set of all CR-filters in (X, δ) will be denoted by CRF (X, δ).

Theorem 5.2. Let X be a completely regular space and

CRP rox(X) = {(δ,Σ) ∈ SRP rox(X) : Σ ⊆ CRF (X, δ)}.

Then the ordered sets (CR(X),≤0) (resp. (CR(X),≤)) and (CRP rox(X),≤0)
(resp. (CRP rox(X),≤)) are isomorphic.

P r o o f. Let (cX, c) be a completely regular extension of X and α = (δ,Σ)
be the SR-proximity on X corresponding to it (see Theorem 3.8). We have to
show that Σ ⊆ CRF (X, δ). Let F ∈ Σ and F ∈ F . Then there exists a point
y ∈ cX such that F is the trace on X of the neighbourhood filter NcX(y) of y

in cX. Hence there exists an F ′ ∈ NcX(y) whose trace on X is F . Since cX

is a completely regular space, there exist an open in cX set G ′ ∈ NcX(y) and a
continuous function f ′ : cX −→ I such that f ′(G ′) = 0 and f ′(cX \ F ′) = 1.
Let G be the trace of G ′ on X and f : X −→ I be the “restriction” of f ′ on X

(i.e. f = f ′ ◦ c). Then G ∈ F , f : (X, δ) −→ (I, δw) is a proximally continuous
function and f(G) = 0, f(X \ F ) = 1. Hence F is a CR-filter on (X, δ).

Conversely, let α = (δ,Σ) ∈ CRP rox(X) and (cX, c) be the regular
extension of X corresponding to α (see Theorem 3.8). We have to show that cX

is a completely regular space. Let y ∈ cX. Then, by Theorem 3.8, there exists an
Fy ∈ Σ which is the trace on X of the neighbourhood filter NcX(y) of y in cX.
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Let U ′ ∈ NcX(y). There exists a V ′ ∈ NcX(y) such that clcX(V ′) ⊆ U ′. We have
that the trace V on X of V ′ is an element of Fy. Since Fy ∈ Σ (and hence it is
a CR-filter in (X, δ)), there exist a G ∈ Fy and a proximally continuous function
f : (X, δ) −→ (I, δw) such that f(G) = 0 and f(X \ V ) = 1. Then, by Corollary
3.20, there exists a continuous function f ′ : cX −→ I such that f ′ ◦ c = f .
Obviously, the function f ′ separates y and U ′. Hence, cX is completely regular.

It is clear now that the two paragraphs above together with Theorem 3.8
imply our assertion. �

Remark 5.3. Some non-proximity-type descriptions of the completely
regular extensions of completely regular spaces were given by G. Dimov [10]
(by using special families of open filters, called CR-systems (i.e. in the spirit of
Doitchinov’s description of the regular extensions)) and by H. Bentley, H. Herrlich
and R. Ori [5] (by means of the nearness structures).

The next proposition is some variant of the Urysohn Lemma. We will use
it for obtaining a new proof of the celebrated Smirnov Compactification Theorem.
It will be based only on our results presented here.

Proposition 5.4. Let (X, δ) be an R-proximity space and D be the set
of all dyadic numbers in I. A filter F in X is a CR-filter in (X, δ) iff for every
F ∈ F there exists a family G(F ) = {Gd ∈ F : d ∈ D} such that G1 = F and
Gd < Ge if d, e ∈ D and d < e.

P r o o f. The necessity is clear. For the sufficiency, let F be a filter in
X, F ∈ F and G(F ) = {Gd ∈ F : d ∈ D} be such that G1 = F and Gd < Ge

if d, e ∈ D and d < e. We define a function f : X −→ I as follows: we put
f(x) = 1 for every x ∈ X \ F and, for x ∈ F , we set f(x) = inf{d ∈ D :
x ∈ Gd}. Then, letting G = G0, we obtain that f(G) = 0. So, for proving
that F is a CR-filter in (X, δ), it remains to show that f : (X, δ) −→ (I, δw)
is proximally continuous. Let us examine first the following case: A,B ⊆ F ,
AδB and A ∩ B = Ø. Suppose that cl(f(A)) ∩ cl(f(B) = Ø. Then there exist
open sets U =

⋃
{(ai, bi) : i = 1, . . . , n} and V =

⋃
{(cj , dj) : j = 1, . . . ,m}

(where by (a, b) we mean the open interval (a, b) in I with a < b) such that
cl(U) ∩ cl(V ) = Ø, bi < ai+1, dj < cj+1, cl(f(A)) ⊆ U , cl(f(B)) ⊆ V and
(ai, bi) ∩ f(A) 6= Ø, (cj , dj) ∩ f(B) 6= Ø for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
Put Ai = A ∩ f−1((ai, bi)) and Bj = B ∩ f−1((cj , dj)). Since AδB and A =⋃
{Ai : i = 1, . . . , n}, B =

⋃
{Bj : j = 1, . . . ,m}, there exist i and j such that

AiδBj . Since cl(U) ∩ cl(V ) = Ø, we have that either bi < cj or dj < ai. Let,
e.g., bi < cj. There exist p, q ∈ D such that bi < p < q < cj . Then Ai ⊆ Gp

and Bj ⊆ X \ Gq. Since Gp < Gq, we obtain that AiδBj . This contradicts our
assumption. So, f(A) δw f(B). In all other possible cases for A and B we come
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easily to the same conclusion. Hence, f is proximally continuous. �

Proposition 5.5. Let X be a completely regular space. Then:
(a) α = (δ,Σ(δ)) ∈ RCP rox(X)∩CRP rox(X) iff δ is an Efremovič proximity;
(b) If αi = (δi,Σ(δi)) ∈ RCP rox(X) ∩ CRP rox(X), i = 1, 2, then α1 ≤0 α2

iff δ1 ≤ δ2.

P r o o f. (a). Let α = (δ,Σ(δ)) ∈ RCP rox(X) ∩ CRP rox(X) and let
(cX, c) be the regular extension of X corresponding to α (see Theorem 3.8). Then,
by Theorems 3.11 and 5.2, cX is a completely regular regular-closed space. Hence
cX is a compact Hausdorff space. Since δ is induced by (cX, c) (see Theorem
3.8), the normality of cX implies that δ satisfies the axiom (EF) (see 2.4). Hence,
δ is an Efremovič proximity.

Conversely, let δ be an Efremovič proximity. Then, by Theorem 6.9 from
[28], Σ(δ) = Σend(δ). Further, Theorem 6.15 from [28] together with our Corollary
3.17 imply that δ is an RC-proximity (for another proof of this fact see [18, 5.1–
5.3]). Hence α = (δ,Σ(δ)) is an SR-proximity (see Proposition 3.12). Let F be
a round filter in (X, δ). Then the axiom (EF) and Proposition 5.4 imply that
F is a CR-filter in (X, δ). Hence Σ(δ) ⊆ CRF (X, δ). So, α ∈ RCP rox(X) ∩
CRP rox(X).

(b). By Proposition 3.5, we have that α1 ≤0 α2 implies δ1 ≤ δ2. So, it
remains to prove the converse implication. Let δ1 ≤ δ2 and let F ∈ Σ(δ2). Then
there exists an ultrafilter G in X containing F . Put G0 = {E ⊆ X : there exists
a G ∈ G such that G <1 E} (where G <1 E means that Gδ1(X \ E)). Then, by
Theorem 6.14 from [28], G0 is an end in (X, δ1). Hence G0 ∈ Σ(δ1). We will show
that G0 ⊆ F . Indeed, if E ∈ G0 then there exists a G ∈ G such that G <1 E.
Now, the axiom (EF) implies that there exists a sequence (Ei)i∈ω of subsets of
X such that E1 = E and Ei+1 <1 Ei, G <1 Ei, for i ∈ ω. Then Ei ∈ G and
Ei+1 <2 Ei, for i ∈ ω. Hence F meets any Ei, i ∈ ω, and F ∪ {Ei : i ∈ ω} is a
filter-base of a round filter F ′ in (X, δ2). Now the maximality of F implies that
F ′ = F . Hence E = E1 ∈ F . So, G0 ⊆ F . Thus α1 ≤0 α2. �

Theorem 5.6 (J. M. Smirnov [31]). Let X be a completely regular
space. Denote by EF P rox(X) the set of all EF-proximities on the space X.
Then the ordered sets (C(X),≤) and (EF P rox(X),≤) are isomorphic.

P r o o f. Since a Hausdorff space is compact iff it is regular-closed and
completely regular, the theorem follows from the Theorems 5.2, 3.11 and Propo-
sition 5.5. �

Remark 5.7. Let’s note that we give not only a new proof of the ce-
lebrated Smirnov Compactification Theorem, but, as Proposition 5.5 shows, our
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investigations lead automatically to the description of the class of those proxi-
mities which correspond to the compact extensions. Hence, we arrive in a natural
way even to the notion of Efremovič proximity and to the formulation of the
Smirnov Compactification Theorem.

Definition 5.8. An SR-proximity α = (δ,Σ) on a set X is called a
LC-proximity if for every F ∈ Σ there exists an U ∈ F with the following two
properties:
(i) the restriction δU of δ to U is an EF-proximity;
(ii) if G ∈ Σend(δ) and U ∈ G then G ∈ Σ.

Theorem 5.9. Let X be a completely regular space and LCP rox(X) be
the set of all LC-proximities on the space X. Then the ordered sets (LC(X),≤0)
(resp. (LC(X),≤)) and (LCP rox(X),≤0) (resp. (LCP rox(X),≤)) are iso-
morphic.

P r o o f. Let (eX, e) be a Hausdorff locally compact extension of X and
α = (δ,Σ) be the SR-proximity on X corresponding to (eX, e) (see Theorem
3.8). We will show that α ∈ LCP rox(X). Let F ∈ Σ. Then there is an
y ∈ eX such that F is the trace on X of the neighbourhood filter NeX(y) of y

in eX. Since eX is locally compact, there exists an open U ′ ∈ NeX(y) having a
compact closure in eX. Let U be the trace of U ′ on X. Then U ∈ F . We will
show that U satisfies the conditions (i) and (ii) from Definition 5.8. Indeed, since
bU = cleX(e(U)) = cleX(U ′) is compact, Theorem 5.6 implies that the restriction
δU of δ to U is an EF-proximity. So, U has the property (i). For (ii), note that,
by Theorem 3.16, β = (δ,Σend(δ)) is an SR-proximity. Let (cX, c) be the regular
extension of X corresponding to β (see Theorem 3.8). Then, by Theorem 4.7 and
its proof, (cX, c) is injectively larger than (eX, e). Hence we can assume, without
loss of generality (= w.l.o.g.), that X ⊆ eX ⊆ cX = Σend(δ). We now have that
clcX(ExcX(U)) = clcX(U) = clcX(cleX(U)) = clcX(cleX(U ′)) = cleX(U ′) ⊆ eX.
Hence {G ∈ Σend(δ) : U ∈ G} = ExcX(U) ⊆ eX = Σ. Thus U satisfies (ii).
Therefore, α ∈ LCP rox(X).

Conversely, let α = (δ,Σ) ∈ LCP rox(X) and (eX, e) be the regular
extension of X corresponding to α (see Theorem 3.8). We will show that the
space eX is locally compact. Indeed, let y ∈ eX and F ∈ Σ be the trace on
X of the neighbourhood filter NeX(y) of y in eX. Then there exists an U ∈ F
satisfying the conditions (i) and (ii) from Definition 5.8. Since the filter F is
round, there exist V,W ∈ F such that W < V < U . Put C = cleX(e(W )). We
will show that C is a compact neighbourhood of y in eX. By (i), the proximity
δU induced by δ on the subset U of X is an EF-proximity. Let (cU, c) be the
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Smirnov compactification of U corresponding to δU (see Theorem 5.6). Put C ′ =
clcU (c(W )). We will construct a homeomorphism between C and C ′. Obviously,
we can assume, w.l.o.g., that eX = Σ, C = {F ∈ Σ : F meets W}, cU = Σ(δU ),
C ′ = {G ∈ Σ(δU ) : G meets W}. Recall also that eX and cU are the strict
extensions of X and U with filter traces Σ and Σ(δU ) respectively. It is easy
to see that if F ∈ C then F ∩ U is an end in (U, δU ). Indeed, it is obvious
that F ∩ U is a round filter in (U, δU ). Further, if A,B ⊆ U and A <U B (i.e.
A δU (U \ B)) then A δ (U \ B) and, hence, (U \ B) < (X \ A). Since F is a
δ-end, we obtain that ((X \U)∪B) ∈ F or (X \A) ∈ F . Thus, (U \A) ∈ F ∩U

or B ∈ F ∩ U . Therefore, F ∩ U ∈ Σ(δU ) = cU . So, letting ϕ(F) = F ∩ U ,
for F ∈ C, we define a function from C to cU . Since distinct elements of C

contain disjoint open members, we obtain immediately that ϕ is an injection.
Obviously, ϕ(C) ⊆ C ′. For showing that ϕ(C) = C ′, take a G ∈ C ′. Evidently,
C ′ = clcU (c(W )) = clcU (W ∗

c ) ⊆ V ∗

c (where A∗

c = {G′ ∈ cU : A ∈ G′}, for any
A ⊆ U). Hence V ∈ G. We now obtain easily that G is a round filter-base in
(X, δ). Indeed, let F ∈ G. Then F ′ = F ∩ V ∈ G. Hence there exists a G ∈ G
such that G <U F ′ (i.e. G δ (U \ F ′)). Obviously, G ⊆ V . Since V < U , we
obtain that G < U . So, G δ (X \U). This implies that G δ ((X \U)∪ (U \F ′)).
Hence G δ (X \ F ′), i.e. G < F ′. Therefore, G < F . So, G is a round filter-base
in (X, δ). Let G′ be the filter in X with filter-base G. Then G′ ∈ Σend(δ). Indeed,
let A,B ⊆ X and A < B. Suppose (X \ A) 6∈ G′, i.e. G′ meets A. We have to
show that B ∈ G′. Put A′ = A ∩ V and B′ = B ∩ U . Now, V < U and A < B

imply that A′ < B′ and, hence, A′ δU (U \ B′). Then (U \ A′) ∈ G or B′ ∈ G,
because G is an end in (U, δU ). If (U \ A′) ∈ G then (V ∩ (U \ A′)) ∈ G, i.e.
(V \ A) ∈ G, and we obtain that (X \ A) ∈ G′. This contradiction shows that
(U \A′) 6∈ G. Thus B′ ∈ G, which implies that B ∈ G′. So, G′ is an end in (X, δ).
Since G ⊆ G′ and U ∈ G, we get that U ∈ G′. Then, by (ii), G′ ∈ Σ. Hence
G′ ∈ C. Obviously, G′ ∩ U = G, i.e. ϕ(G′) = G. Consequently, ϕ(C) = C ′. This
implies easily that the restriction of ϕ to C is a homeomorphism between C and
C ′. Since C ′ is compact and C is, evidently, a neighbourhood of y in eX, we
obtain that eX is locally compact.

It is clear now that the two paragraphs above together with Theorem 3.8
imply our assertion. �

Remark 5.10. Some other descriptions of the ordered set of all (up
to equivalence) locally compact extensions of a completely regular space were
given by S. Leader [22] (on the basis of the notion of local proximity in which
both the boundedness and the proximity are primitive terms), by V. Zaharov [36]
(by means of some special vector lattices of functions) and by G. Dimov and D.
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Doitchinov [12] (by using the notion of supertopological space).

6. Nearness structures and SR-proximities. For the sake of brevity,
we assume the reader is familiar with Herrlich’s paper [21] on nearness spaces
and with Bentley and Herrlich’s paper [4] on extensions of spaces. For the same
reason, we omit all proofs in this section, since they are long but enough straight-
forward.

If X is a set and G ⊆ Exp(X) then we set, as in [28], G∗ = {E ⊆ X :
X \ E 6∈ G}.

In [4], H. Bentley and H. Herrlich proved that if (X, τ) is a regular space
then the ordered set (R(X),≤0) is isomorphic to the ordered set (NR(X),≤) of
all nearness spaces (X, ξ) on (X, τ) which are subtopological and regular. (The
order in NR(X) is defined as follows: (X, ξ1) ≤ (X, ξ2) iff ξ2 ⊆ ξ1.) The regular
extension (rξX, rξ) of (X, τ) corresponding to an element X = (X, ξ) of NR(X)
is constructed in [4] by means of the completion (X∗, ξ∗) of (X, ξ). It can be
shown that the extension (rξX, rξ) is equivalent to the strict extension of (X, τ)
with filter trace Σ = {G∗ : G is a X-cluster}. This observation is useful for finding
the relationships between the nearness structures and SR-proximities.

Let (X,α), where α = (δ,Σ), be an SR-proximity space. We will say that
a collection G of subsets of X is near iff there exists an F ∈ Σ which meets every
element of G. Then we affirm that:
(a) ξα = {G ⊆ Exp(X) : G is near} is a nearness structure on (X, τδ);
(b) Σ ⊆ ξα;
(c) the nearness space X α = (X, ξα) is subtopological and regular;
(d) {F∗ : F ∈ Σ} is the family of all X α-clusters;
(e) the extension (rξα

X, rξα
) of (X, τδ) is equivalent to the extension (rαX, rα)

defined in Theorem 3.8;
(f) if α′ and α′′ are two SR-proximities on the space (X, τδ) then (X,α′) ≤0

(X,α′′) iff X α′ ≤ X α′′ (i.e. iff ξα′′ ⊆ ξα′).
We will refer to the nearness ξα as to the nearness generated by α. The proofs
(which we omit here) of these assertions are direct, i.e. the theories of the regular
extensions developed in [4] and here are not used in them. Of course, on the
basis of these theories, some short proofs of the statements listed above could be
given.

Conversely, let X = (X, ξ) be a subtopological and regular nearness space.
For A,B ⊆ X, put AδξB iff {A,B} ∈ ξ and set Σξ = {G∗ : G is a X-cluster}.
Then we assert that:
(i) αξ = (δξ,Σξ) is an SR-proximity on the space (X, τξ);
(ii) Σξ ⊆ ξ;
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(iii) the extension (rαξ
X, rαξ) of (X, τξ) is equivalent to the extension (rξX, rξ);

(iv) the nearness generated by αξ coincides with ξ.
The proofs of these facts are again direct (in the above sense).

All this shows that our SR-proximities could be interpreted as bases (or
generators) of the subtopological and regular nearness spaces. In addition, they
contain the whole information, necessary for the construction of the extensions,
which could be extracted from the generated by them nearness structure, i.e. they
constitute that part of the nearness structures which is enough for obtaining a
theory of the regular extensions (and their subclasses).
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