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ABSTRACT. We present the original proof, based on the Doitchinov com-
pletion, that a totally bounded quiet quasi-uniformity is a uniformity. The
proof was obtained about ten years ago, but never published. In the mean-
time several stronger results have been obtained by more direct arguments
[8, 9, 10]. In particular it follows from Kiinzi’s [8] proofs that each totally
bounded locally quiet quasi-uniform space is uniform, and recently Déak
[10] observed that even each totally bounded Cauchy quasi-uniformity is a
uniformity.

1. Introduction. The purpose of this note is to continue the study of D-
complete and quiet quasi-uniformities, which were introduced by D. Doitchinov in
[2], [3] and [4]. We consider these quasi-uniformities in the class of totally bounded
spaces, and our principal results are that every totally bounded D-complete space
is compact, and that every totally bounded quiet quasi-uniformity is a uniformity.
The first of these results might easily be anticipated because of an analogous
result for totally bounded complete quasi-uniform spaces, but the second result
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shows the surprising strength of quiet quasi-uniformities. Throughout this note,
all topological spaces are presumed to be T} spaces.

2. Preliminaries. We make use of the following definitions and notation,
which are due to D. Doitchinov [2]. Let (X,U) be a quasi-uniform space. A filter
G on X is a D-Cauchy filter provided that there is a filter F on X, called a
co-filter of G, such that for each U in U there exists an F' in F and a G in G
with FF x G C U. When F is a co-filter of G, we write (F,G) — 0; we say that
(X,U) is D-complete provided every D-Cauchy filter converges. The space (X,U)
is quiet provided that for each U in U there is an entourage V in U such that if
F and G are filters on X and z and y are points of X such that V(z) € G and
V-l(y) € F and (F,G) — 0, then (x,y) € U. If V satisfies the above conditions,
we say that V' is quiet for U. A space (X,U) is uniformly regular provided that
for each U € U there is a V' € U such that for each z € X, V(z) C U(z) [1].

3. Totally bounded spaces.

Proposition 1. Let (X,U) be a totally bounded D-complete quasi-
uniform space. Then (X,T (U)) is compact.

Proof. Let F be an ultrafilter on X and let U € . Since U is totally
bounded, there is a finite cover {4; : i =1,2,...,n} of X such that A; x A; CU
for s = 1,2,...,n. There exists k with 1 < k < n such that A, € F. Conse-
quently, (F,F) — 0 and so F converges. [

An alternative proof of Proposition 1 may be obtained by observing that
every totally bounded quasi-uniformity is Cauchy bounded in the sense of R.
Kopperman [7]. The result then follows since every Cauchy-bounded D-complete
quasi-uniform space is compact [7, Theorem 6].

Our next proposition obtains an extension of Proposition 1 for the class
of regular spaces; although the gap between Propositions 1 and 2 is small, it is
significant.

Proposition 2. Let (X,U) be a D-complete reqular quasi-uniform space
and suppose that Y is a dense subset of X such that Uy «xy is totally bounded.
Then (X,U) is compact.

Proof. It suffices to show that every open ultrafilter on X converges.
Let F be such a filter. Let F|y be the restriction of F to Y, let G be an ultrafilter
on Y containing Fly and let H ={H C X : G C H for some G € G}. Then H is
a filter on X, and we show that (H,F) — 0.
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Let V €U and let W € U such that W2 C V and W (x) € T (U) for each
x € X. Then WnN (Y xY) € Ulyxy and so there is a finite cover {4; : i =
1,2,...,n} of Y such that for i = 1,2,...,n, 4; x 4, CWnN(Y xY). There
exists k with 1 < k < n such that Ay € G C H. Since F is an open ultrafilter,
either W (Ag) € F or X — W(Ag) € F, and since A, € G, X — W(Ax) ¢ F.
Thus W(Ag) € F and Ay € H. Moreover, since Ay x A, CWnN((Y xY)C W,
Ay x W(Ag) € W2 C V. Therefore, (H,F) — 0 and so F converges. [

Cgrgllary. Let (X,U) be a totally bounded quiet quasi-uniform space
and let (X,U) be its D-completion. Then U and U are point symmetric.

Proof. Since ()A( ,Z:l\) is compact, the corollary follows from [6, Proposi-
tions 2.24 and 2.26]. O

Proposition 3. FEvery totally bounded quiet quasi-uniformity is a uni-
formity.

Proof. Let (X,U) be a totally bounded quiet quasi-uniform space and
let ()? ,Z:l\) be its D-completion. Clearly (X,U~!) is totally bounded and by [2,
Theorem 5] (X,U~!) is quiet. Thus, by the previous corollary both U and U!
are point symmetric. By arguments given by D. Doitchinov in [2], we may assume
that i and /! are quasi-uniformities on the same set X and so by [6, Proposition
2.21 (d)] T(U) =T U ) = TUVU). Since (X, T (U)) is a compact Hausdorff
space, it follows from [6, Theorem 1.20] that u , and hence U, is a uniformity. 0O

Corollary. FEvery totally bounded uniformly reqular D-complete Haus-
dorff quasi-uniformity is a uniformity.

Proof. Let (X,U) be a totally bounded uniformly regular D-complete
quasi-uniform space. In light of Proposition 3, it suffices to show that U/ is quiet.
By Proposition 1, 7(U) is compact and so U is point symmetric [6, Proposi-
tions 2.24 and 2.26]. But it is known that every point-symmetric, D-complete,
uniformly regular quasi-uniform space is quiet [5, Theorem 2.1].

REFERENCES

[1]  A. CsAszARr. Extensions of quasi-uniformities. Acta. Math. Hungar. 37
(1981), 121-145.

[2] D. DorrcHiNOV. On completeness of quasi-uniform spaces. C. R. Acad.
Bulgare Sci. 41, 7 (1988), 5-8.



98 P. Fletcher, W. Hunsaker

[3] D. DorrcHINOV. On completeness of quasi-metric spaces. Topology Appl.
30 (1988), 127-148.

[4]  D. DorrcHINOV. A concept of completeness of quasi-uniform spaces. Topo-
logy Appl. 38 (1991), 205-217.

[5]  P. FLETCHER, W. HUNSAKER. Uniformly regular quasi-uniformities.
Topology Appl. 37 (1990), 285-291.

[6) P. FLETCHER, W. F. LINDGREN. Quasi-Uniform Spaces. Lecture Notes
Pure Appl. Math. vol. 77, Dekker, New York and Basel, 1982.

[7 R. KorPERMAN. Total boundedness and compactness for filter pairs. Ann.
Univ. Sci. Budapest. Eétvos Sect. Math. 33 (1990), 25-30.

[8] H.P. A. KUNzI Totally bounded quiet quasi-uniformities. Topology Proc.
15 (1990), 113-115.

9] H. P. A. Kinzi, M. MRSEvIC., I. L. REmLLY, M. K. VAMANA-
MURTHY. Convergence, precompactness and symmetry in quasi-uniform
spaces. Math. Japonica 38 (1993), 239-253.

[10] J. DEAK. Short notes on quasi-uniform spaces. IV: Cauchy type properties.
Acta Math. Hungar. 70 (4) (1996), 317-327.

P. Fletcher W. Hunsaker

Mathematics Department Mathematics Department
Virginia Tech Southern Illinois University
Blacksburg, VA 24061-0123 Carbondale, IL 62901-4408
USA USA

Received February 10, 1997



