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Abstract. A theorem proved by Fort in 1951 says that an upper or lower
semi-continuous set-valued mapping from a Baire space A into non-empty
compact subsets of a metric space is both lower and upper semi-continuous
at the points of a dense Gδ-subset of A.

In this paper we show that the conclusion of Fort’s theorem holds un-
der the weaker hypothesis of either upper or lower quasi-continuity. The
existence of densely defined continuous selections for lower quasi-continuous
mappings is also proved.

1. Introduction and preliminaries. This paper is devoted to the study

of some generalizations of the following two well-known notions of continuity for

set-valued mappings.
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A set-valued mapping Φ from a topological space A, into subsets of a

topological space X is said to be upper semi-continuous at t0 ∈ A if, for each

open subset W of X containing Φ(t0), there exists an open neighbourhood U of t0
such that Φ(U) ⊂ W , and lower semi-continuous at t0 ∈ A if for each open subset

W of X with W ∩ Φ(t0) 6= Ø, there exists an open neighbourhood U of t0 such

that Φ(t)∩W 6= Ø for each t ∈ U . If Φ is both upper and lower semi-continuous

at a point t0 ∈ A, then we simply say that Φ is continuous at t0 ∈ A.

Given a set-valued mapping Φ : A → X defined in the Baire space A the

following two questions are of some interest:

1) When does there exist a dense Gδ-subset A1 of A such that Φ is upper (lower)

semi-continuous at the points of A1?

2) When do there exist a dense Gδ-subset A1 of A and a continuous (single-

valued) mapping φ : A1 → X such that φ is a selection of Φ on A1, i.e.

φ(t) ∈ Φ(t) for every t ∈ A1?

Starting with the papers of Hill [17] and Kuratowski [25], the first question

has been given a lot of attention in many papers-see e.g. [2, 3, 4, 9, 10, 11, 12, 15,

31, 18, 19, 20, 21, 26, 27, 30] just to mention a few. We focus here our attention

on the original results of Fort [12] which assert that a lower (resp. upper) semi-

continuous set-valued mapping Φ from the Baire space A to the metric space X

which is compact-valued must be upper (resp. lower) semi-continuous outside

some subset of the first Baire category in A.

Our aim here is to investigate what kind of weaker notions of continuity-

like properties of set-valued mappings could lead to the same conclusions as in

Fort’s theorems. More precisely, we focus our attention on the following relax-

ation of semi-continuity: A set-valued mapping Φ from a topological space A into

subsets of a topological space X is upper quasi-continuous at t0 ∈ A if for each

open subset W of X, containing Φ(t0), and each open neighbourhood U of t0,

there exists a non-empty open subset V of U such that Φ(V ) ⊂ W , and Φ is lower

quasi-continuous at t0 ∈ A if for each open subset W of X with Φ(t0) ∩ W 6= Ø

and each open neighbourhood U of t0 there exists a non-empty open subset V

of U such that Φ(t) ∩ W 6= Ø for every t ∈ V . The origins of this notion (for

real-valued functions) go back to Voleterra (see [1]). The corresponding notion

for set-valued mappings (sometimes under different name) has been studied in

many papers, see e.g. [32, 33, 10, 26, 27, 28, 13] and reference therein.
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These notions can equivalently be defined as follows: Φ : A → X is upper

(resp. lower) quasi-continuous at t0 ∈ A if for every open W ⊂ X with Φ(t0) ⊂ W

(resp. Φ(t0)∩W 6= Ø) there exists an open U in A such that t0 ∈ U and Φ(t) ⊂ W

(resp. Φ(t) ∩ W 6= Ø) whenever t ∈ U . Here U is the closure of U in A.

For a set-valued mapping which is single-valued everywhere on its do-

main, we see that the notions of upper and lower quasi-continuity coincide. In

this case, we simply say that the set-valued mapping is quasi-continuous at t0.

Simple examples show that a quasi-continuous single-valued mapping need not

be continuous.

Of course, every upper (resp. lower) semi-continuous mapping is upper

(resp. lower) quasi-continuous. We mention also that another class of mappings

which share these properties and which have prominent role in the study of dif-

ferentiability of convex functions in Banach spaces is the class of the so called

minimal mappings (see Section 3 for the definitions).

As it was mentioned above our goal is to see whether the conclusions of

Fort’s theorem remain valid under these weaker continuity-like properties of the

set-valued mapping Φ. The following theorem can be derived from [26], Theorem

2.1, Theorem 2.2 (see also [13]).

Theorem 1.1. An upper (resp. lower) quasi-continuous set-valued map-

ping Φ from a Baire space A into non-empty (resp. non-empty compact) subsets

of a separable metric space X is lower (resp. upper) semi-continuous at the points

of some dense Gδ-subset of A.

For the case when Φ is compact-valued the same conclusions as above can

be derived without assuming the separability of X. Namely, the following result

holds which is a consequence from [27], Theorem 1 and 2.

Theorem 1.2. An upper (resp. lower) quasi-continuous set-valued map-

ping Φ from a Baire space A into non-empty compact subsets of a metric space

X is lower (resp. upper) semi-continuous at the points of some dense Gδ-subset

of A.

The “non-brackets” part of Theorem 1.1 is no longer valid without the

separability of X as it is seen from Example 4.1. The same example shows that,

in general, Theorem 1.2 is not true if the values of Φ are assumed only closed.

However, as it will be seen later the above theorems remain true even for non-

separable metric spaces under some additional (but weaker than those in Theorem

1.2) assumptions on the images. Moreover, sometimes upper quasi-continuity (or
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lower quasi-continuity) implies both upper and lower semi-continuity generically,

i.e. at the points of a dense Gδ-subset of the domain (see Corollary 2.3 and 2.9

below).

Now, we turn to the second question posed at the beginning of this Sec-

tion, namely to the question of existence of densely defined selections of a given

set-valued mapping. This question was paid much attention in a series of papers

[5, 6, 7, 8, 24, 29]. Giles and Bartlett used in [13] the notion of lower quasi-

continuity to prove the following theorem.

Theorem 1.3. Let Φ be a lower quasi-continuous non-empty closed-

valued mapping between the Baire space A and the complete metric space X. Then

a dense Gδ-subset A1 of A and a continuous single-valued mapping φ : A1 → X

exist such that φ is a selection of Φ on A1.

We show here that this result is true also in many cases (some of them

rather important) when X is not completely metrizable (Theorem 3.3).

The remainder of the paper is organized as follows: Section 2 is devoted

to the extension of the results from Theorem 1.1 and Theorem 1.2 to the case

when the range space is an arbitrary metric space and the set-valued mapping

is not necessarily everywhere compact-valued. In Section 3 we discuss the exis-

tence of densely defined selections for lower quasi-continuous mappings and their

possible applications. Finally, in Section 4 we give several counter examples and

applications.

Notations

In a topological space (X, τ) we shall denote by int(A) the interior of a

set A and by A the closure of A in X.

In a metric space (X, d) we denote by B[x, r] the closed ball {y ∈ X :

d(x, y) ≤ r} and by B(x, r) the open ball {y ∈ X : d(x, y) < r}.

For a non-empty subset C of a metric space (X, d), B(C, ε) designates

the set ∪{B(y, ε) : y ∈ C} and diam(C) = sup{d(x, y) : x, y ∈ C} stands for the

diameter of the set C .

2. Metric versions of upper and lower quasi-continuity of set-

valued mappings. In this section we extend the results contained in [12, 26, 27]

(see also [13]) by showing (as a consequence from more general results) that an

upper (lower) quasi-continuous set-valued mapping from a Baire space into non-

empty subsets of a metric space which is generically compact-valued is continuous

on a dense Gδ-subset of its domain.
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Before stating the first result we recall two notions of semi-continuity

already considered in [18, 19] and then we give their quasi-versions. A set-valued

mapping Φ from a topological space A into non-empty subsets of a metric space

(X, d) is metric upper semi-continuous at t0 ∈ A if for each ε > 0 there exists an

open neighbourhood U of t0 such that Φ(U) ⊂ B(Φ(t0), ε). It is easily verified

that if Φ(t0) is compact, then Φ is metric upper semi-continuous at t0 if and

only if Φ is upper semi-continuous at t0. However, we see from Example 4.3

that in general metric upper semi-continuity is a weaker notion than upper semi-

continuity. Generalizing the definition above we say that Φ is metric upper quasi-

continuous at t0 ∈ A, if for each ε > 0 and each open neighbourhood U of t0,

there exists a non-empty open subset V of U such that Φ(V ) ⊂ B(Φ(t0), ε).

On the other hand, the set-valued mapping Φ is said to be metric lower semi-

continuous at t0 ∈ A if for each ε > 0 there exists an open neighbourhood U

of t0 such that Φ(t0) ⊂ B(Φ(t), ε) for every t ∈ U . We note that, if Φ(t0) is

totally bounded, then Φ is lower semi-continuous at t0 if and only if Φ is metric

lower semi-continuous at t0. However, Example 4.2 shows that in general lower

semi-continuity is a weaker notion than metric lower semi-continuity. If Φ is both

metric upper semi-continuous and metric lower semi-continuous at some t0 ∈ A

then we say that Φ is metric continuous at t0. We mention also the quasi version

of metric lower semi-continuity: the set-valued mapping Φ is said to be metric

lower quasi-continuous at t0 ∈ A if for each ε > 0 and each open neighbourhood

U of t0 there exists a non-empty open V ⊂ U such that Φ(t0) ⊂ B(Φ(t), ε) for

every t ∈ V .

Below are two diagrams showing the relations between the introduced

notions. Let us point out (as mentioned above; see also the examples in Section

4) that neither of the implications in the diagrams is reversible without additional

assumptions.

upper ⇒ metric upper

semi-continuous semi-continuous

⇓ ⇓
upper ⇒ metric upper

quasi-continuous quasi-continuous

metric lower ⇒ lower

semi-continuous semi-continuous

⇓ ⇓
metric lower ⇒ lower

quasi-continuous quasi-continuous

We give here equivalent definitions of the above metric notions. For a

subset C of the metric space (X, d) we shall denote as usual by d(x,C) :=

inf{d(x, y) : y ∈ C}, x ∈ X, the distance function generated by C. Given
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non-empty subsets C,D of X the excess of C to D is denoted by e(C,D) :=

sup{d(x,D) : x ∈ C}. Observe that e is not symmetric and that the following

triangle inequality holds: for each non-empty subsets C,D,H of X it is true that

e(C,D) ≤ e(C,H) + e(H,D). The following is obvious: the mapping Φ : A → X

is metric upper semi-continuous at t0 ∈ A if, and only if, for every ε > 0 there

exists an open U such that t0 ∈ U and e(Φ(t),Φ(t0)) < ε for every t ∈ U ; Φ is

metric upper quasi-continuous at t0 ∈ A if, and only if, for every open U con-

taining t0 and ε > 0 there exists an open V ⊂ U such that e(Φ(t),Φ(t0)) < ε for

every t ∈ V ; the mapping Φ : A → X is metric lower semi-continuous at t0 ∈ A

if, and only if, for every ε > 0 there exists an open U such that t0 ∈ U and

e(Φ(t0),Φ(t)) < ε for every t ∈ U ; Φ : A → X is metric lower quasi-continuous

at t0 ∈ A if, and only if, for every ε > 0 and every open set U containing t0 there

exists a non-empty open V ⊂ U such that e(Φ(t0),Φ(t)) < ε for every t ∈ V . We

mention that another notion of upper semi-continuity of a set-valued mapping

when the range space is metric is considered in [14].

Now, we are ready to formulate one of our main results. Its proof is

close in spirit to the proof of Theorem 1 from [19] (see also Theorem 3 from

[18]) where it is proved that every metric upper semi-continuous (resp. metric

lower semi-continuous) set-valued mapping from a complete metric space A into

X must be metric lower semi-continuous (resp. metric upper semi-continuous)

at the points of a dense Gδ-subset of A. The “quasi” versions of these results are

not so symmetric.

Theorem 2.1. A metric upper quasi-continuous set-valued mapping Φ

from a Baire space A into non-empty subsets of a metric space X, whose im-

ages on a dense subset D of A are totally bounded, is both metric upper semi-

continuous and metric lower semi-continuous (i.e. metric continuous) at the

points of a dense Gδ-subset of A.

P r o o f. For each ε > 0 consider the set

Oε := ∪{U : U is an open subset of A and e(Φ(t′),Φ(t′′)) < ε

for every couple t′, t′′ ∈ U}.

Clearly Oε is open. We shall show that it is also dense in A. To this end,

suppose the contrary and let V0 be a non-empty open subset of A such that

Oε ∩ V0 = Ø. Let δ > 0 be such that δ < ε/4 and choose t0 ∈ D ∩ V0. Since

Φ is metric upper quasi-continuous at t0 there is some non-empty open V1 ⊂ V0
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such that e(Φ(t),Φ(t0)) < δ for every t ∈ V1. It is not difficult to see that for

some t1 ∈ V1 we have e(Φ(t0),Φ(t1)) > ε − δ. Indeed, if for all t′ ∈ V1 we have

e(Φ(t0),Φ(t′)) ≤ ε − δ then for all t′, t′′ ∈ V1 ⊂ V0

e(Φ(t′),Φ(t′′)) < e(Φ(t′),Φ(t0)) + e(Φ(t0),Φ(t′′)) < δ + ε − δ = ε

and we would get that V1 ⊂ Oε. This contradiction shows that there exists t1 ∈ V1

with e(Φ(t0),Φ(t1)) > ε− δ. Since Φ is metric upper quasi-continuous at t1 there

is a non-empty open V2 ⊂ V1 so that e(Φ(t),Φ(t1)) < δ for every t ∈ V2. As above

one sees that there exists t2 ∈ V2 with e(Φ(t1),Φ(t2)) > ε − δ. Proceeding by

induction we construct sequences of open sets (Vi)i≥0 and of points (ti)i≥0 such

that for all i ≥ 0 one has:

(i) Vi+1 ⊂ Vi;

(ii) ti ∈ Vi;

(iii) e(Φ(t),Φ(ti)) < δ for every t ∈ Vi+1;

(iv) e(Φ(ti),Φ(ti+1)) > ε − δ.

The last inequality implies that for every i = 1, 2, . . . there exists some

yi ∈ Φ(ti) such that d(yi,Φ(ti+1)) > ε − δ. Moreover, by (i)-(iii), for every

j ≥ i + 1 we have Φ(t) ⊂ B(Φ(ti), δ) for every t ∈ Vj. Hence, for every j ≥ i + 1

we get d(yi, yj) ≥ d(yi,Φ(tj)) ≥ ε − 2δ. On the other hand, ti ∈ Vi ⊂ V1

and therefore yi ∈ Φ(ti) ⊂ B(Φ(t0), δ). For each yi, i = 1, 2, . . ., select some

xi ∈ Φ(t0) so that d(xi, yi) < δ. Then, for every j ≥ i + 1 we have

d(xi, xj) ≥ d(yi, yj) − d(xi, yi) − d(xj , yj) > ε − 4δ > 0

This contradicts total boundedness of Φ(t0). Hence, Oε is dense in A.

Put now G := ∩n≥1O1/n. The set G is dense Gδ in A. By the remarks

before the theorem, Φ is both metric upper semi-continuous and metric lower

semi-continuous at the points of G. The proof is completed. �

Remark 2.2. We note that, in general, metric upper quasi-continuity

does not by itself necessarily imply metric upper semi-continuity anywhere (see

Example 4.1). We note also that the conclusion of Theorem 2.1 cannot be

strengthened to “ Φ is continuous at the points of a dense Gδ-subset of A” (see

Example 4.3).
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The next corollary generalizes several results (see [12], [15]) previously

known for upper semi-continuous mappings. The partial case when Φ is upper

semi-continuous and compact-valued generalizes one of the well-known theorems

of Fort (see [12]). In the special situation when X is a separable metric space and

Φ is everywhere compact-valued the same conclusion as below is a consequence

from results in [10], Theorems 15, 16, and Theorem 1.1 above from [26].

Corollary 2.3. A metric upper quasi-continuous set-valued mapping Φ

from a Baire space A into non-empty subsets of a metric space X, whose images

on a dense Gδ-subset of A are compact, is continuous at the points of some dense

Gδ-subset of A. In particular, if Φ is upper quasi-continuous and compact-valued

at every point of A, then Φ is continuous at the points of some dense Gδ-subset

of A.

P r o o f. The result follows from the observation mentioned above that, if

Φ(t0) is compact and Φ is metric upper semi-continuous at t0, then Φ is upper

semi-continuous at t0. �

Remark 2.4. We see from Example 4.3 that a set-valued mapping

Φ from a Baire space A into non-empty (not necessarily compact) subsets of a

separable metric space X, which is upper quasi-continuous on A may be nowhere

upper semi-continuous on A.

We would like to present here one way in which the result of Theorem 2.1

may be partially improved. In the next result we relax the requirement on the

images of the set-valued mapping and deduce only generic lower semi-continuity

(not metric lower semi-continuity).

Theorem 2.5. A metric upper quasi-continuous set-valued mapping Φ

from a Baire space A into non-empty subsets of a metric space X, whose images

on a dense subset D of A are separable, is lower semi-continuous at the points of

a dense Gδ-subset of A.

P r o o f. For each n ∈ N let γn := {(O,B)} be a maximal family of couples

(O,B) with the following properties:

(a) for every (O,B) ∈ γn, O is a non-empty open subset of A and B is a countable

family of closed balls in X of radius 1/n;

(b) for every (O,B) ∈ γn one has Φ(O) ⊂ ∪{B : B ∈ B};

(c) the family {O : (O,B) ∈ γn for some B} is pair-wise disjoint.
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We claim that the open set On := ∪{O : (O,B) ∈ γn for some B} is dense

in A. Indeed, suppose the contrary. Then for some non-empty open U ⊂ A we

have On ∩ U = Ø. Take some t0 ∈ D ∩ U and let {xk : k ∈ N}, be a countable

dense subset of Φ(t0). By metric upper quasi-continuity of Φ we get some open

O ⊂ U with Φ(O) ⊂ ∪k≥1B[xk, 1/n]. Now, the family γ′
n := γn ∪ {(O,B)} where

B := {B[xk, 1/n] : k ∈ N} is strictly larger than γn and satisfies (a)-(c) above.

This contradicts the maximality of γn and shows that the set On is dense in A.

Now fix some n ∈ N and (O,B) ∈ γn. Let B = {Bk : k ∈ N}, Bk-closed

balls with radius 1/n. For each k ∈ N let Hk := {t ∈ O : Φ(t)∩Bk 6= Ø} and put

Fk := Hk \ intHk. Obviously, for every k ∈ N the set Fk is nowhere dense in O

and hence the set ∪k≥1Fk is of the first Baire category in O. Now we designate

G(O,B) := O \ ∪k≥1Fk and let Gn := ∪{G(O,B) : (O,B) ∈ γn}. Because of (c)

above and the fact that On is dense in A we get that the set Gn is residual in A

and hence G := ∩n≥1Gn is residual in A as well.

We claim that Φ is lower semi-continuous at the points of G. To prove

this, consider t0 ∈ G and let W be an open subset of X such that Φ(t0)∩W 6= Ø.

Take some y ∈ Φ(t0) and n ∈ N such that B[y, 3/n] ⊂ W . Since t0 ∈ G

we have some uniquely determined (O,B) ∈ γn with t0 ∈ G(O,B). Hence for

some Bk ∈ B we have y ∈ Bk ⊂ B[y, 2/n]. On the other hand, t0 ∈ intHk.

We will show that for every t ∈ intHk we have Φ(t) ∩ B[y, 3/n] 6= Ø. Indeed,

suppose that for some t′ ∈ intHk we have Φ(t′)∩B[y, 3/n] = Ø. This means that

B(Φ(t′), 1/n) ∩ B[y, 2/n] = Ø. In particular B(Φ(t′), 1/n) ∩ Bk = Ø. By metric

upper quasi-continuity of Φ there exists a non-empty open U ⊂ intHk such that

Φ(U) ⊂ B(Φ(t′), 1/n). This entails Φ(U)∩Bk = Ø. This is a contradiction since

U ∩Hk 6= Ø. Hence Φ is lower semi-continuous at t0. The proof is completed. �

Remark 2.6. In example 4.2, an upper quasi-continuous set-valued

mapping Φ is given from a Baire space into a metric space whose images are

everywhere separable, but which is nowhere metric upper semi-continuous. The

same example shows that the conclusion of Theorem 2.5 cannot be strengthened

to get generic metric lower semi-continuity. Therefore, we see that Theorem 2.5

cannot be extended to give a true improvement of Theorem 2.1.

The next part of this section is devoted to showing that a lower quasi-

continuous set-valued mapping Φ from a Baire space A into non-empty compact

subsets of a metric space X is continuous on a dense Gδ-subset of A. We begin

by considering a function defined on the subsets of a metric space (X, d) (see e.g.

[12]).
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For each ε > 0 consider the function mε defined on the subsets C of X

by:

mε(C) := min{n ∈ N : C ⊂ ∪n
k=1B(xk, ε) and {x1, x2, . . . , xn} ⊂ C}

when C can be covered by a finite family of balls of radius ε, otherwise mε(C) :=

∞.

Observe that if C is totally bounded then mε(C) is finite for every ε > 0.

Theorem 2.7. A lower quasi-continuous set-valued mapping Φ from a

Baire space A into non-empty subsets of a metric space X, whose images on

an everywhere second category subset D of A are totally bounded, is both metric

upper semi-continuous and metric lower semi-continuous (i.e. metric continuous)

at the points of a dense Gδ-subset of A.

P r o o f. Given ε > 0 consider the set

Oε := ∪{U : U is an open subsets of A and e(Φ(t′),Φ(t′′)) < ε

for every t′, t′′ ∈ U}.

Clearly Oε is open; we will show that it is also dense in A. This will complete the

proof of the theorem since, as it was already mentioned, Φ is metric continuous

at the points of ∩n≥1O1/n.

For the purposes of obtaining a contradiction, suppose Oε is not dense

in A, that is, suppose that there exists a non-empty open subset W of A such

that Oε ∩ W = Ø. Consider the following decomposition of the set of points in

A where Φ has totally bounded images: D := ∪k≥1Dk where

Dk := {t ∈ D : mε/12(Φ(t)) = k}, k := 1, 2, . . .

I.e., Dk consists of those points t of D whose images under Φ can be covered by k

balls with centers at Φ(t) and radii ε/12 and this k is minimal with this property.

By assumption D is of the second category in W . Hence there exists

k0 ∈ N such that U1 := W ∩ intDk0
6= Ø. Take t1 ∈ U1 and x1 ∈ Φ(t1). Now,

since Φ is lower quasi-continuous at t1 there exists a non-empty open subset V1

of U1 such that x1 ∈ B(Φ(t), ε/12) (equivalently Φ(t)∩B(x1, ε/12) 6= Ø) for each

t ∈ V1. On the other hand, Φ(V1) 6⊂ B[x1, ε/3] since otherwise we would have

e(Φ(t′),Φ(t′′)) < ε for every pair t′, t′′ ∈ V1 which contradicts W ∩Oε = Ø. Hence

for some t′ ∈ V1 we have

Φ(t′) ∩ (X \ B[x1, ε/3]) 6= Ø.
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Again by lower quasi-continuity of Φ there exists some non-empty open subset

U2 ⊂ V1 such that

Φ(t) ∩ (X \ B[x1, ε/3]) 6= Ø

for every t ∈ U2. Fix some t2 ∈ U2 and some x2 ∈ Φ(t2) such that x2 6∈ B[x1, ε/3].

The mapping Φ is lower quasi-continuous at t2, so there exists a non-

empty open subset V2 of U2 such that x2 ∈ B(Φ(t), ε/12) for each t ∈ V2. Observe

that, in fact, we have that {x1, x2} ⊂ B(Φ(t), ε/12) for each t ∈ V2. Now,

we claim that Φ(V2) 6⊂ ∪2
k=1B[xk, ε/3]. Indeed, suppose the contrary and let

t′, t′′ ∈ V2. Let x ∈ Φ(t′). Then x ∈ B[xi, ε/3] for some i = 1, 2. On the

other hand, Φ(t′′) ∩ B(xi, ε/12) 6= Ø. This entails d(x,Φ(t′′)) < (2/3)ε. Hence,

e(Φ(t′),Φ(t′′)) < ε which contradicts the assumption W ∩Oε = Ø. Consequently,

Φ(t′) \ ∪2
i=1B[xi, ε/3] 6= Ø. The set ∪2

i=1B[xi, ε/3] is closed, therefore by lower

quasi-continuity of Φ there exists a non-empty open U3 ⊂ V2 such that

Φ(t) \ ∪2
i=1B[xi, ε/3] 6= Ø

for every t ∈ U3. Let t3 ∈ U3 and x3 ∈ Φ(t3) be such that x3 /∈ ∪2
i=1B[xi, ε/3].

Proceeding inductively, on the k0 +1 step we get a finite sequence of open

sets of A, Uk0+1 ⊂ Vk0
⊂ Uk0

⊂ · · · ⊂ V1 ⊂ U1 = W ∩ intDk0
and a finite sequence

of points in X x1, x2, . . . , xk0
so that

(i) d(xn, xm) > ε/3 provided m 6= n, m,n = 1, 2, . . . , k0;

(ii) {x1, x2, . . . , xk0
} ⊂ B(Φ(t), ε/12) for each t ∈ Vk0

;

(iii) Φ(t) \ ∪k0

i=1B[xi, ε/3] 6= Ø for every t ∈ Uk0+1.

Since Uk0+1 ⊂ intDk0
there exists t0 ∈ Uk0+1 ∩ Dk0

. Let Φ(t0) ⊂

∪k0

i=1B(yi, ε/12) for some y1, y2, . . . , yk0
∈ Φ(t0).

By (ii) above, for every n = 1, 2, . . . , k0 there is zn ∈ Φ(t0) such that

d(zn, xn) < ε/12. On the other hand, for every such n there exists yi(n) with

d(zn, yi(n)) < ε/12. Hence, d(xn, yi(n)) ≤ d(xn, zn) + d(zn, yi(n)) ≤ ε/6. This

automatically implies that if n 6= m, n,m = 1, 2, . . . , k0, then yi(n) 6= yi(m)

because otherwise d(xn, xm) ≤ ε/3 contradicting (i). Hence, without loss of

generality we may assume that yi(n) = yn, n = 1, 2, . . . , k0. Therefore, for every

such n we have B(yn, ε/12) ⊂ B[xn, ε/3]. This implies Φ(t0) ⊂ ∪k0

n=1B[xn, ε/3]

and the last inclusion contradicts (iii) above. This contradiction completes the

proof. �
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Remark 2.8. We remark here that (as Example 4.5 shows) only the

density of the set D of points where the mapping Φ is totally bounded is not

enough to deduce the conclusion of Theorem 2.7.

We conclude this section by the following obvious corollary of the previous

theorem. The partial case when Φ is lower semi-continuous and compact-valued

is again (as in Corollary 2.3) one of Fort’s theorems [12]. As before Corollary

2.3, we mention also that in the special situation when X is a separable metric

space and Φ is everywhere compact-valued the same conclusion as below is a

consequence from Theorems 15, 16 in [10] and Theorem 1.1 above (from [26]).

Corollary 2.9. A lower quasi-continuous set-valued mapping Φ from a

Baire space A into non-empty subsets of a metric space X, whose images on a

dense Gδ-subset of A are compact, is continuous at the points of a dense Gδ-

subset of A. In particular, if Φ is lower quasi-continuous and compact-valued at

every point of A, then it is continuous at the points of some dense Gδ-subset of

A.

3. Densely defined selections. In [8, 24] a general approach was de-

veloped to assure the existence of densely defined (set-valued or single-valued)

continuous selections for a given set-valued mapping Φ : A → X where A was

a Baire space and X a topological space (not necessarily metrizable). Implicit

results of similar type had been previously obtained in [5, 6, 7] and the special

case when Φ is the inverse of a usual single-valued mapping had been considered

by E. Michael [29].

We briefly sketch the general setting in [8] and give one sample result.

The mapping Φ : A → X between the topological spaces A and X is allowed to

have empty values and its domain is Dom(Φ) := {t ∈ A : Φ(t) 6= Ø}. The graph

of Φ is the set Gr(Φ) := {(t, x) ∈ A × X : x ∈ Φ(t)}. The mapping Φ is said

to be lower demi-continuous in A (see [8]) if for every open set V ⊂ X the set

intΦ−1(V ) is dense in Φ−1(V ). Here Φ−1(V ) := {t ∈ A : Φ(t) ∩ V 6= Ø}. An

equivalent “local definition” is the following: Φ is lower demi-continuous in A if,

and only if, it is lower demi-continuous at any t0 ∈ A by which we mean that for

every open W ⊂ X with Φ(t0) ∩ W 6= Ø there exists an open U of A such that

t0 ∈ U and the set {t ∈ U : Φ(t)∩W 6= Ø} is dense in U . Obviously, every lower

quasi-continuous mapping is lower demi-continuous. The converse is not true.

Finally, a relation between the mapping Φ and a subspace X1 ⊂ X was

also introduced in [8]. Namely, Φ was said to embrace X1 if for every open set
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W ⊂ X which contains X1 the set {(t, x) ∈ Gr(Φ) : x ∈ W} is dense in Gr(Φ).

The following is a result from [8] (Proposition 3.3):

Proposition 3.1. Let Φ : A → X be a set-valued mapping and X be

regular. Then Φ embraces X1 ⊂ X if, and only if, for all open sets V ⊂ X and

Vλ ⊂ X,λ ∈ Λ, for which V ∩X1 = ∪{Vλ ∩X1 : λ ∈ Λ}, the set ∪{Φ−1(Vλ) : λ ∈

Λ} is dense in Φ−1(V ).

Two sufficient conditions for the mapping Φ to embrace X1 are the fol-

lowing (see [8], Proposition 3.5):

i) Φ(A) ⊂ X1; and

ii) X1 is dense in X and the mapping Φ is demi-open.

The mapping Φ is demi-open in A (see [16]) if for every open set U ⊂ A

the set intΦ(U) is dense in Φ(U). Φ is demi-open if, and only if, the mapping

Φ−1 : Φ(A)
X

→ A is lower demi-continuous ([8], Proposition 3.2).

The following is a sample result from [8]. For similar result when X is a

separable metric space and Φ is compact-valued see [28].

Theorem 3.2 ([8], Theorem 4.7). Let Φ : A → X be a lower demi-

continuous mapping with closed graph and dense domain from the Baire space

A into the regular space X. Suppose in addition that X contains a completely

metrizable subspace X1 which is embraced by Φ. Then there exist a dense Gδ-

subset A1 of A and a continuous single-valued mapping φ : A1 → X1 such that

A1 ⊂ Dom(Φ) and φ is a selection of Φ on A1.

The formulated Theorem 1.3 of Giles and Bartlett [13] and Theorem 3.2

have identical conclusions but different assumptions. In Theorem 1.3 no require-

ments are imposed on the graph of Φ. On the other hand, lower quasi-continuity

of Φ is a stronger assumption than the lower demi-continuity of Φ in Theorem

3.2. Therefore, neither of the two results can be derived from the other. Our

next result shows that Theorem 1.3 remains valid for a class of spaces X larger

than the class of complete metric spaces.

Theorem 3.3. Let Φ be a lower quasi-continuous non-empty closed-

valued mapping between the Baire space A and the regular space X. Suppose

X contains a completely metrizable subspace X1 which is embraced by Φ. Then

there exist a dense Gδ-subset A1 of A and a continuous single-valued mapping

φ : A1 → X1 such that φ is a selection of Φ on A1.
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As we mentioned above, two important cases when Φ embraces X1 are

when Φ(A) ⊂ X1 or when X1 is dense in X and Φ is demi-open.

P r o o f. Let d be a complete metric in X1 which is compatible with

the inherited topology from X. Since Φ embraces X1 then Φ(A) ⊂ X1 (see

Proposition 3.4 in [8]). Hence, it is no loss of generality to assume that X1 is

dense in X.

The pair (U, V ) will be called admissible if:

1) U ⊂ A and V ⊂ X are non-empty open subsets of A and X respectively;

2) Φ(t) ∩ V 6= Ø for every t ∈ U .

Let {γn}n≥0, where γ0 = {(A,X)}, be a sequence of families of admissible

pairs which is maximal with respect to the following properties:

a) for every n the family {U : (U, V ) ∈ γn for some V } is pair-wise disjoint;

b) if (U, V ) ∈ γn then diam(V ∩ X1) < 1/n;

c) for every (U, V ) ∈ γn+1 there exists (U ′, V ′) ∈ γn such that U ⊂ U ′

and V
X

⊂ V ′.

We claim that for every n the set Hn := ∪{U : (U, V ) ∈ γn for some V } is

dense (and open) in A. To prove this we proceed by induction. For n = 0 this is

obviously true. Suppose this is true for some k ≥ 0 but Hk+1 is not dense in A.

Hence, there is an open set U0 ⊂ A such that U0∩Hk+1 = Ø. On the other hand,

U0 ∩ Hk 6= Ø. Therefore, there exists some (Uk, Vk) ∈ γk such that U0 ∩ Uk 6= Ø.

Consider the family ∆ := {V ⊂ X : V is open, diam(V ∩X1) < 1/(k + 1)

and V
X

⊂ Vk}. It is easily seen that Vk ∩ X1 = ∪{V ∩ X1 : V ∈ ∆}. Hence,

by Proposition 3.1, we have that ∪{Φ−1(V ) : V ∈ ∆} is dense in Φ−1(Vk).

Consequently, U0 ∩ Uk ∩ Φ−1(Vk+1) 6= Ø for some Vk+1 ∈ ∆. By the fact that

Φ is lower quasi-continuous it follows that for some Uk+1 ⊂ U0 ∩ Uk the pair

(Uk+1, Vk+1) is admissible. Now, the family γk+1 ∪ {(Uk+1, Vk+1)} is strictly

larger than γk+1 and still satisfies a)-c). This is a contradiction showing that the

sets Hn are open and dense subsets of A.

Put now A1 := ∩∞
n=0Hn. Since A is a Baire space then A1 is a dense

Gδ-subset of A. By a) above, each t ∈ A1 uniquely determines a sequence of

admissible pairs {(Un(t), Vn(t))}∞n=0 such that (Un(t), Vn(t)) ∈ γn for every n

and t ∈ ∩∞
n=0Un(t). Hence, the following mapping (which will turn out to be

single-valued) φ : A1 → X:

φ(t) := ∩∞
n=0Vn(t), t ∈ A1,
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is well-defined.

Fix t ∈ A1. By b) and c) above and the fact that (X1, d) is a complete

metric space, it follows that ∩∞
n=0Vn(t) ∩ X1 is a one-point set in X1, say x, and

that the family {Vn(t) ∩ X1}
∞
n=0 is a local base for x in X1. Since X1 is dense

in X and X is regular, routine considerations show that ∩∞
n=0Vn(t) = {x} and

that again {Vn(t)}∞n=0 is a local base, this time in X, for x. Hence the mapping

φ is single-valued and takes its values in X1. Moreover, φ is continuous. To

this end, let t0 ∈ A1 and V be an open subset of X with φ(t0) ∈ V . Since

{Vn(t0)}
∞
n=0 is a local base for φ(t0) in X we have Vn(t0) ⊂ V for some n. Let

now t ∈ Un(t0). Then by a) above, Un(t) = Un(t0), and hence Vn(t) = Vn(t0).

Therefore, φ(t) ∈ Vn(t) = Vn(t0) ⊂ V . Consequently, φ is continuous in A1.

We show finally that φ(t) ∈ Φ(t) for every t ∈ A1. Suppose the contrary

and let t0 ∈ A1 be such that φ(t0) /∈ Φ(t0). Since Φ is closed-valued there are

some open sets V and W of X such that Φ(t0) ⊂ W , φ(t0) ∈ V and V ∩W = Ø.

As above, we have Vn(t0) ⊂ V for some n. But the couple (Un(t0), Vn(t0))

is admissible, hence, in particular Φ(t0) ∩ Vn(t0) 6= Ø. This is a contradiction.

Therefore, φ(t) ∈ Φ(t) for every t ∈ A1. The proof of the theorem is completed. �

The above result could be sharpened if we consider a smaller class of

mappings. A set-valued mapping Φ : A → X is usco if it is upper semi-continuous

and non-empty compact-valued. An usco Φ : A → X is minimal if its graph

Gr(Φ) does not contain properly the graph of any other usco from A into X.

Zorn’s lemma implies that every usco mapping contains a minimal usco one. The

following is a well-known characterization of the minimal usco maps (see e.g.

[4]): Φ is minimal if, and only if, for every open W ⊂ X and every open U ⊂ A

with Φ(U) ∩ W 6= Ø there is a non-empty open V ⊂ U such that Φ(V ) ⊂ W .

Sometimes mappings that have this property are called minimal (even in the

case when they are not usco (see [23])). It is a routine matter to see that every

mapping Φ′ : A → X which is contained in some minimal mapping Φ : A → X is

both upper and lower quasi-continuous. Observe that, an equivalent way to say

that Φ : A → X is a minimal mapping is the following: if Φ(t0)∩V 6= Ø for some

t0 ∈ A and some open V ⊂ X, it follows that there exists a non-empty open U

in A such that t0 ∈ U and Φ(U) ⊂ V . We have now the following result:

Theorem 3.4. Let Φ be a minimal closed-valued mapping between the

Baire space A and the regular space X. Suppose X contains a completely metriz-

able space X1 which is embraced by Φ. Then there exist a dense Gδ-subset A1 of

A at the points of which Φ is single-valued and upper semi-continuous. Moreover,
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Φ(t) ∈ X1 whenever t ∈ A1.

P r o o f. By Theorem 3.3 there are a dense Gδ-subset A1 of A and a

continuous single-valued mapping φ : A1 → X1 such that φ is a selection of Φ

on A1. Using the minimality of Φ we will show next that Φ(t) = φ(t) for every

t ∈ A1.

Indeed, suppose for some t0 ∈ A1 there exists x0 ∈ Φ(t0) with x0 6= φ(t0).

Take non-empty open subsets V1, V2 of X such that x0 ∈ V1, φ(t0) ∈ V2 but

V1 ∩ V2 = Ø. By the minimality of Φ there exists an open U1 ⊂ A such that

t0 ∈ U1 and Φ(U1) ⊂ V1. On the other hand, the continuity of φ gives the

existence of a non-empty open U2 such that t0 ∈ U2 and φ(U2 ∩ A1) ⊂ V2.

Obviously, for t∗ ∈ U1 ∩ U2 ∩ A1 6= Ø we have φ(t∗) ∈ Φ(t∗) ∩ V2 ⊂ V1 ∩ V2 = Ø.

This is a contradiction.

To prove that Φ is upper semi-continuous at the points of A1 take some

arbitrary t0 ∈ A1 and let V be an open subset of X such that Φ(t0) = φ(t0) ∈ V .

Since X is regular there is an open W ⊂ X with φ(t0) ∈ W ∈ W ⊂ V . By the

continuity of φ there exists an open U which contains t0 and φ(U ∩ A1) ⊂ W .

We claim that Φ(U) ⊂ W (i.e. Φ is upper semi-continuous at t0). To see this

we assume that there exists x0 ∈ Φ(U) \ W and proceed as above to get a

contradiction. The proof is completed. �

We will show now that Theorem 3.3 (and Theorem 3.4) can be applied

to a larger class of situations than Theorem 1.3.

Let X be a compact Hausdorff space and C(X) be the space of all con-

tinuous real-valued functions in X equipped with the usual sup-norm ‖f‖ :=

max{|f(x)| : x ∈ X}, f ∈ C(X). Consider further the map M : C(X) → X

assigning to each f ∈ C(X) the set of its maximizers M(f) := {x ∈ X : f(x) =

max{f(x) : x ∈ X}}. It is known (see [5, 6]) that M is upper semi-continuous,

open and minimal. This implies that M is lower quasi-continuous (and hence

lower demi-continuous). The inverse mapping M−1 : X → C(X) is defined by

M−1(x) := {f ∈ C(X) : x ∈ M(f)}. The map M−1 is lower semi-continuous

(since M is open) and demi-open (since M is lower demi-continuous). In partic-

ular M and M−1 embrace every dense subset of X and C(X) correspondingly,

and we can apply Theorem 3.4 to M and Theorem 3.3 to M−1.

Theorem 3.5 ([5, 6]). For the compact Hausdorff space X the following

statements are equivalent:

a) X contains a dense completely metrizable subset X1;

b) C(X) contains a dense Gδ-subset A1 such that every function f ∈ A1
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attains its maximum in X at just one point.

P r o o f. Suppose that a) is fulfilled, i.e. there exists a dense completely

metrizable subspace X1 of X. By Theorem 3.4 (applied to A := C(X) and

Φ := M) we find some dense Gδ-subset A1 of C(X) at the points of which M is

single-valued. Hence b) takes place.

Conversely, suppose now that b) is fulfilled. The set A1 being Gδ in a

complete metric space is completely metrizable. So apply Theorem 3.3 to the map

Φ := M−1 : X → C(X). This yields the existence of a dense Gδ-subset X1 of X

and a continuous single-valued mapping φ : X1 → A1 such that φ(x) ∈ M−1(x)

for every x ∈ X1. Since, by assumption, the restriction of M on A1 is single-

valued, φ is a one-to-one mapping. Moreover, taking into account that M is

upper semi-continuous we see that the inverse map φ−1 is also continuous. Thus,

φ homeomorphically embeds X1 into a complete metric space. In particular, X1

is metrizable. As a Gδ-subset of the compact space X the space X1 is a Čech

complete metrizable space. Thus, X1 is completely metrizable. �

For the similar result when X is not necessarily compact see [7].

4. Counter examples and some more applications.

Some counter examples. In this section we present some examples

which illustrate the erratic behaviour which may be possessed by upper or lower

quasi-continuous mappings. In what follows, for a normed linear space (X, ‖ · ‖),

X∗ will mean its dual space, B(X) the unit ball {x ∈ X : ‖x‖ ≤ 1} and S(X) its

unit sphere {x ∈ X : ‖x‖ = 1}.

Example 4.1. Consider the Hilbert space ℓ2(R) and the set-valued map-

ping Φ from R \ {0} into non-empty closed subsets of ℓ2(R), defined by

Φ(t) = ∪{δy : y ∈ [−t, t]}, t ∈ R \ {0},

where the function δy : R → R is defined as follows:

δy(s) =

{

0 for s 6= y
1 for s = y.

Clearly, Φ is both upper and lower quasi-continuous on R, but nowhere

metric upper semi-continuous or lower semi-continuous.

Example 4.2. Consider the Hilbert space ℓ2(Q) and the set-valued map-

ping Φ from R \{0} into non-empty closed separable subsets of ℓ2(Q) defined by:

Φ(t) = ∪{δy : y ∈ [−t, t] ∩ Q}, t ∈ R.
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As in Example 4.1 we see that Φ is both upper and lower quasi-continuous,

and nowhere metric upper semi-continuous. However, in contrast to Example

4.1, for each t ∈ R \ Q Φ is lower semi-continuous (but not metric lower semi-

continuous).

Example 4.3. Let X be a non-reflexive Banach space such that X∗ is

separable. We note that since X∗ is separable, there exists a metric on B(X)

which generates the relative weak topology on B(X), and for which (B(X), weak)

is totally bounded. Consider the set-valued mapping Φ from the open interval

(0, 1) into non-empty closed, totally bounded, subsets of (B(X), weak) defined

by Φ(t) = tB(X) for each t ∈ (0, 1).

It is readily seen that Φ is upper quasi-continuous and lower semi-conti-

nuous on (0, 1). We will now show that Φ is nowhere upper semi-continuous on

(0, 1).

By James’ characterization of reflexivity there exists an f ∈ S(X∗) such

that |f(x)| < 1 for each x ∈ B(X). For t ∈ (0, 1) consider the weak open

subset Wt := {x ∈ B(X) : |f(x)| < t}. Then Φ(t) ⊂ Wt, however, for each

ε > 0 Φ((t − ε, t + ε)) 6⊂ Wt, and so Φ is not upper semi-continuous at t.

In our next example we describe single-valued mapping from a complete

metric space into a separable compact Hausdorff topological space, which is every-

where quasi-continuous but nowhere continuous. Before that we recall another

class of minimal mappings. A set-valued mapping Φ : A → X from the topo-

logical space A into the non-empty subsets of a Hausdorff locally convex linear

topological space X is called cusco if it is usco and convex-valued. Φ is minimal

cusco if it is cusco and its graph does not contain properly the graph of any other

cusco. By Zorn’s lemma every cusco contains a minimal cusco. Moreover, the

minimal cuscos have a similar characterization as minimal uscos: Φ is minimal

cusco if, and only if, for every open U ⊂ A and every open half space W ⊂ X such

that Φ(U)∩W 6= Ø there exists a non-empty open U ′ ⊂ U such that Φ(U ′) ⊂ W

(see e.g. [9]).

Example 4.4. Consider the Banach space X := ℓ∞(N) and the continu-

ous gauge functional p : X → R defined by p(x) := lim sup{|λn| : x = {λn}
∞
n=1}.

The subdifferential mapping of p, x → ∂p(x) is a minimal weak∗ cusco from X

into subsets of B(X∗). It is known that x → ∂p(x) is nowhere single-valued,

[34], p.13. The graph of the mapping x → ∂p(x) contains the graph of a mini-

mal weak∗ usco, Φ say. Let φ : X → B(X∗) be a selection of Φ, i.e. for each

t ∈ X φ(t) ∈ Φ(t). Then, as it was mentioned, φ is weak∗ quasi-continuous on
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X. But it is nowhere continuous, because if it were continuous at a point t0 ∈ X

then ∂p(t0) would be a singleton, [34], p.19.

Finally, we give an example showing that even lower semi-continuity (not

only lower quasi-continuity) does not imply upper semi-continuity almost every-

where, provided that the set D where the given set-valued mapping is totally

bounded is only dense in its domain.

Example 4.5. Let D0 := Z, Dn := {x ∈ R : x = p/2n, p an odd integer},

n ≥ 1. Let further D := ∪∞
n=0Dn. Observe that D is dense in R. Consider now a

set-valued mapping Φ : R \ {0} → R from the usual topology in R \ {0} into the

discrete topology in R defined as follows:

Φ(t) :=

{

∪n
j=0Dj ∩ (−|t|, |t|) if t ∈ Dn for some n

D ∩ (−|t|, |t|) if t ∈ R \ D

Now Φ has compact values on D and is lower semi-continuous on R. However, Φ

is nowhere upper semi-continuous, not even metric upper semi-continuous. (Note

that the images are everywhere countable and closed).

Some more applications and results. Let A be a topological space

and let A = {Aγ : γ ∈ Γ} be a family of subsets of A such that A = ∪{Aγ : γ ∈ Γ}.

We say that A is point-finite, if for each t ∈ A {γ ∈ Γ : t ∈ Aγ} is finite,

and we say that A is densely locally finite if there exists a dense subset D of A

such that for each t ∈ D there exists an open neighbourhood U of t such that

{γ ∈ Γ : Aγ ∩ U 6= Ø} is finite. It is well-known that if A is a Baire space and

{Aγ : γ ∈ Γ} is a point-finite open cover of A, then it is densely locally finite.

We extend this result as follows:

Proposition 4.6. Let A be a Baire space and A = {Aγ : γ ∈ Γ} be a

point-finite cover of A, with the property that for each γ ∈ Γ Aγ ⊂ int(Aγ). Then

A is densely locally finite.

P r o o f. Consider the metric space (Γ, d), where d is the discrete metric

on Γ, and the set-valued mapping Φ from A into non-empty compact subsets

of Γ, defined by Φ(t) = {γ ∈ Γ : t ∈ Aγ}. Clearly Φ is compact-valued on A,

however, it is not too difficult to see that Φ is also lower quasi-continuous on A.

Hence, by Corollary 2.9 Φ is continuous at the points of a dense Gδ-subset G of

A. It is now only a routine matter to check that A is locally finite at each point

of G. �
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Similar idea as above can be applied to the study of a class of Banach

spaces. Call a Banach space X generic continuity space (briefly GC space) (see

[22]) if for every minimal mapping Φ : A → (X,weak) with non-empty images

acting from a Baire space A into X equipped with the weak topology, there

exists a dense Gδ-subset A1 of A such that at the points of A1 the mapping Φ is

single-valued and norm-upper semi-continuous. Note that (as it was mentioned in

Section 3) every single-valued selection of a minimal mapping is quasi-continuous.

On the other hand, it is a known fact that if a minimal mapping Φ : A →

(X,weak) has a densely defined selection f which is norm-continuous at some

point t ∈ A then Φ is single-valued and norm-upper semi-continuous at t. Hence,

an equivalent definition is: X is a GC space if every quasi-continuous single-

valued mapping f : A → (X,weak) from a Baire space A into (X,weak) is

norm-continuous at the points of a dense Gδ-subset of A.

Under c0-product of a family of Banach spaces {(Xγ , ‖ · ‖γ) : γ ∈ Γ} we

mean the space

X := {x ∈
∏

γ∈Γ

Xγ : the set {γ ∈ Γ : ‖x(γ)‖γ > ε} is finite for every ε > 0}

equipped with the sup-norm ‖x‖∞ := max{‖x(γ)‖γ : γ ∈ Γ}, x ∈ X.

Theorem 4.7. Let {(Xγ , ‖ · ‖γ) : γ ∈ Γ} be a family of GC spaces.

Then its c0-product X is also a GC space.

P r o o f. Take a quasi-continuous single-valued mapping f :A→(X,weak)

defined in the Baire space A. We have to show that the mapping f is norm-

continuous at the points of a dense Gδ-subset of A.

Let ε > 0 and

Oε := ∪{U : U ⊂ A is open and ‖f(t′) − f(t′′)‖∞ < ε for every t′, t′′ ∈ U}.

Having in mind what was mentioned several times in Section 3, it is enough to

show that the open set Oε is dense in A. This will complete the proof. To see

this, take some r, 0 < r < ε/2, and consider the sets A′ := {t ∈ A : ‖f(t)‖∞ ≤ r}

and A′′ := {t ∈ A : ‖f(t)‖∞ > r}. Obviously, A = A′ ∪ A′′ and intA′ ⊂ Oε. If

A′′ = Ø we are done. Suppose A′′ 6= Ø. Using the fact that the sup-norm ‖ · ‖∞
is lower semi-continuous (as a real-valued function) from the weak topology of

X into R and that f : A → (X,weak) is quasi-continuous, we easily get that

intA′′ 6= Ø. So, in order to show that Oε is dense in A it is enough to show that

Oε is dense in A1 := intA′′. Observe that A1 is again a Baire space.
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Let further Φ be a set-valued mapping between A1 and Γ equipped with

the discrete topology, defined by

Φ(t) := {γ ∈ Γ : ‖f(t)(γ)‖γ > r}, t ∈ A1.

Obviously, Φ is non-empty and finite valued at any t ∈ A1. Also, observe that

the composition of the usual projection of X on any Xγ and the norm ‖ · ‖γ is

continuous (with respect to the norm in X) and convex and hence it is lower semi-

continuous (as a real-valued function) when X is considered with the weak topol-

ogy. This allows to be easily seen (using quasi-continuity of f : A → (X,weak))

that the mapping Φ is lower quasi-continuous. Hence, by Theorem 2.7 the map-

ping Φ is both upper and lower semi-continuous at the points of a dense Gδ-subset

A2 of A1. Since we consider Γ with the discrete topology, it easily then follows

that the set A2 can be considered to be also open in A1 (and hence, also in A)

and that the mapping Φ is locally constant at the points of A2. The latter means

that for every t ∈ A2 there exists an open subset W ⊂ A2 so that t ∈ W and for

every t′ ∈ W we have Φ(t) = Φ(t′).

Take now an open subset U of A such that U∩A1 6= Ø. Hence, U∩A2 6= Ø.

Let t0 ∈ U ∩ A2. Then for some open set W of A we have t0 ∈ W ⊂ U ∩ A2

and Φ(t0) = Φ(t) for every t ∈ W . Further, it can be seen that for each γ ∈ Γ

the usual projection of X on Xγ is continuous from the weak topology in X

into the weak topology in Xγ . Hence, for each γ ∈ Γ the composition f(·)(γ) is

quasi-continuous in the weak topology in Xγ . By the fact that each Xγ is a GC

space it follows that for every γ ∈ Φ(t0) there exists a dense Gδ-subset Gγ of W

so that f(·)(γ) : A1 → (Xγ , ‖ · ‖γ) is norm-continuous at the points of Gγ . Put

G := ∩{Gγ : γ ∈ Φ(t0)}. The latter is again a dense subset of W since Φ(t0) was

finite. Let t1 ∈ W ∩G. Because of the continuity at t1 of each f(·)(γ), γ ∈ Φ(t0),

with respect to the norm in Xγ , and because of the fact that Φ(t1) = Φ(t0) is

finite, we get an open subset W1 ⊂ W such that t1 ∈ W1 and

(∗) ‖f(t1)(γ) − f(t)(γ)‖γ < ε/2 for each t ∈ W1 and each γ ∈ Φ(t1) = Φ(t0).

Now, we claim that W1 ⊂ Oε. Indeed, take t′, t′′ ∈ W1. Then, if

γ /∈ Φ(t0) = Φ(t′) = Φ(t′′) we have, having in mind the definition of Φ, that

‖f(t′)(γ) − f(t′′)(γ)‖γ ≤ 2r < ε.

If γ ∈ Φ(t0) we get the same inequality by (∗) above. Hence, ‖f(t′)−f(t′′)‖∞ < ε.

The proof is completed. �
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[7] M. M. Čoban, P. S. Kenderov, J. P. Revalski. Generic well-posedness
of optimization problems in topological spaces. Mathematika 36 (1989),
301-324.
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