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Abstract. Bounds on the error of certain penalized least squares data
fitting methods are derived. In addition to general results in a fairly abstract
setting, more detailed results are included for several particularly interesting
special cases, including splines in both one and several variables.

1. Introduction. We begin with an abstract definition of what we

mean by a penalized least squares fit. Suppose X, Y and S are linear spaces over

IR, where S ⊆ Y ⊆ X. Let ‖ · ‖X : X → IR and ‖ · ‖Y : Y → IR be semi-norms

induced by semi-definite inner products 〈·, ·〉 on X and [·, ·] on Y , respectively.

Given f ∈ X and λ > 0, suppose there exists sλ(f, S) in S such that

Φ(sλ(f, S)) = min
u∈S

Φ(u),
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where

Φ(u) := ‖f − u‖2
X + λ‖u‖2

Y .

Then we call sλ(f, S) a penalized least squares fit of f corresponding to λ. If there

exists a unique minimizer of Φ in S for each f ∈ X, then Qλ : X → S defined

by Qλf := sλ(f, S) defines a linear operator which is not in general a linear

projection. Our aim in this paper is to investigate the behavior of ‖f − Qλf‖X

as a function of both λ and the approximation properties of S.

The paper is organized as follows. In Section 2 we give a detailed treat-

ment of the penalized least squares problem for approximation by trigonomet-

ric polynomials. The next section is devoted to Tikhonov regularization (with

weights) for univariate functions defined on an interval. The results include error

bounds for certain classes of functions. In Section 4 we derive an explicit formula

for the Tikhonov regularization of arbitrary functions in C[−π, π]. Our main L2

error bounds for penalized least squares fits of univariate functions are contained

in Section 5. General penalized least squares is treated in Section 6. We conclude

the paper by outlining two typical applications: univariate splines and bivariate

splines on triangulations.

2. Penalized Fourier series. Throughout this section, we take X =

L2[−π, π] with the inner product 〈f, g〉 =
π
∫

−π
fg, and set Y = W 2

2 [T] with the

semi-definite inner product [f, g] =
π
∫

−π
f ′′g′′, where T denotes the circle. We let

S = Tn be the set of all real-valued trigonometric polynomials of degree at most

n, with n ∈ IN fixed. Clearly, for each f ∈ L2[−π, π] and λ > 0, there exists a

unique minimal solution sλ,n := sλ,n(f) of the penalized least squares problem

min
T∈Tn

{

∫ π

−π
(f − T )2 dx+ λ

∫ π

−π
(T ′′)2dx

}

.

Our first theorem compares sλ,n with the n-th partial sum sn(f) := s0,n(f) of

the Fourier series of f .

Theorem 2.1. Suppose f ∈ L2[−π, π], and that

f(x) = a0 +

∞
∑

k=1

(

ak cos (kx) + bk sin (kx)
)
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is its Fourier series. Then for each λ > 0 and n ∈ IN, sλ,n = sλ(f,Tn) is given

by

sλ,n(x) = a0 +

n
∑

k=1

1

1 + λk4

(

ak cos (kx) + bk sin (kx)
)

,(2.1)

or equivalently,

sn(f) = sλ,n + λs
(4)
λ,n.(2.2)

P r o o f. The minimal solution sλ,n is characterized by the orthogonality

relations
∫ π

−π
(f − sλ,n)T = λ

∫ π

−π
s′′λ,nT

′′, for all T ∈ Tn.(2.3)

A simple computation shows that the function sλ,n given by (2.1) is the only

function in Tn which satisfies (2.3). This implies that sλ,n is the unique minimal

solution. The proof of (2.2) is equally simple. �

Taking the limit as n→ ∞ in Theorem 2.1, we get

Corollary 2.2. Let f be as in Theorem 2.1. Then for each λ > 0, the

function

sλ,∞(x) = a0 +

∞
∑

k=1

1

1 + λk4

(

ak cos (kx) + bk sin (kx)
)

, x ∈ IR,

lies in W 4
2 (T), and

f = sλ,∞ + λs
(4)
λ,∞.

Moreover, sλ,∞ is the unique solution of the minimum problem

min
{

∫ π

−π
(f − g)2dx+ λ

∫ π

−π
(g′′)2dx, g ∈W 2

2 (T)
}

.

Let ‖ · ‖2 and ‖ · ‖∞ denote the L2 and uniform norms on [−π, π], respec-

tively. Since ‖f − sn(f)‖2 ≤ ‖f − T‖2 for all T ∈ Tn, we have ‖f − sλ,n‖2 ≥
‖f − sn(f)‖2. In the next theorem we will see that the L2-norm ‖f − sλ,n(f)‖2

changes very little for increasing n > λ−1/4. Hence, for numerical purposes, it is

not worthwhile to compute sλ,n(f) for n larger than λ−1/4.
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Theorem 2.3. Let f ∈ L2[−π, π] and 0 < λ ≤ 1. Let Nλ = ⌊λ−1/4⌋ be

the largest integer smaller than or equal to λ−1/4. Then

1

2

√
ελ,n ≤ ‖f − sλ,n(f)‖2 ≤ √

ελ,n,(2.4)

where ελ,n := ελ,n(f) is defined by

ελ,n :=

{

‖f − sn(f)‖2
2 + λ2‖s(4)n (f)‖2

2, if n ≤ Nλ,

ελ,Nλ
, if n > Nλ .

P r o o f. We apply the orthogonality relation
∫ π

−π
(f − sn(f))T = 0, T ∈ Tn,

for T = s
(4)
λ,n = s

(4)
λ,n(f). This gives

π
∫

−π
(f − sn(f))s

(4)
λ,n = 0, and (2.2) implies

‖f − sλ,n‖2
2 = ‖f − sn(f) + λs

(4)
λ,n‖2

2 = ‖f − sn(f)‖2
2 + λ2‖s(4)λ,n‖2

2.(2.5)

It follows from (2.1) that

‖s(4)λ,n‖2
2 =

∥

∥

∥

n
∑

k=1

k4

1 + λk4

(

ak cos (kx) + bk sin (kx)
)
∥

∥

∥

2

2
= π

n
∑

k=1

k8(a2
k + b2k)

(1 + λk4)2
.

If n ≤ Nλ, this implies

‖s(4)λ,n‖2
2 ≤ π

n
∑

k=1

k8(a2
k + b2k) = ‖s(4)n ‖2

2

‖s(4)λ,n‖2
2 ≥ π

4

n
∑

k=1

k8(a2
k + b2k) =

1

4
‖s(4)n ‖2

2.

If n > Nλ, then

‖s(4)λ,n‖2
2 = ‖s(4)λ,Nλ

‖2
2 + π

n
∑

k=Nλ+1

k8(a2
k + b2k)

(1 + λk4)2

≤ ‖s(4)λ,Nλ
‖2
2 + π

n
∑

k=Nλ+1

a2
k + b2k
λ2

= ‖s(4)λ,Nλ
‖2
2 + λ−2

(

‖f − sNλ
‖2
2 − ‖f − sn‖2

2

)

.
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Moreover, if n > Nλ, then

‖s(4)λ,n‖2
2 = ‖s(4)λ,Nλ

‖2
2 + π

n
∑

k=Nλ+1

k8(a2
k + b2k)

(1 + λk4)2

≥ ‖s(4)λ,Nλ
‖2
2 + π

n
∑

k=Nλ+1

a2
k + b2k
4λ2

= ‖s(4)λ,Nλ
‖2
2 +

1

4λ2

(

‖f − sNλ
‖2
2 − ‖f − sn‖2

2

)

.

Inserting these estimates into (2.5) yields (2.4). �

3. Tikhonov regularization on [a, b] with weights. Suppose w :

[a, b] → IR is a piecewise continuous nonnegative function on [a, b] with
b
∫

a
w > 0.

In this section we take X = L2(a, b) with the inner product 〈f, g〉 =
b
∫

a
wfg, and

set Y = S = W 2
2 [a, b] with the semi-definite inner product [f, g] =

b
∫

a
f ′′g′′.

Definition 3.1. Let f ∈ L2(a, b) and λ > 0. We call φλ,w = φλ(f,w) ∈
W 2

2 [a, b] the (nonperiodic) Tikhonov regularization of f corresponding to λ and w

provided it minimizes

∫ b

a
w(x)

(

f − u
)2
dx+ λ

∫ b

a
(u′′)2 dx(3.1)

with respect to all u ∈W 2
2 [a, b].

For the weight w = 1, Ragozin [5] proved that the Tikhonov regularization φλ

satisfies

‖f (q) − φ
(q)
λ ‖2 ≤ Cqλ

(2−q)/4‖f ′′‖2, q = 0, 1, 2,

for some absolute constants Cq > 0. The next theorem states, among other

things, that C0 ≤ 1 and C2 ≤ 2 for the weight w = 1.

Theorem 3.2. Let f ∈ C[a, b] and λ > 0. Let φλ := φλ(f,w) be the

Tikhonov regularization of f corresponding to λ,w. Then φλ ∈ C3[a, b], φ
(4)
λ is

piecewise continuous on [a, b], and
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1) w(x)[f(x)−φλ(x)] = λφ
(4)
λ (x), for all x ∈ [a, b] where w is continuous,

2) (φλ)′′(a) = (φλ)′′(b) = φ
(3)
λ (a) = φ

(3)
λ (b) = 0.

If f ∈W 2
2 [a, b], then ‖(φλ)′′‖2 ≤ ‖f ′′‖2 and

(

∫ b

a
w(f − φλ)2

)1/2
≤ λ1/2‖f ′′‖2.

P r o o f. Let f ∈ C[a, b]. The orthogonality relations for (3.1) are

∫ b

a
w(f − φλ)u− λ

∫ b

a
(φλ)′′u′′ = 0, for all u ∈W 2

2 [a, b].(3.2)

We define the function F by

F (x) :=

∫ x

a

∫ t

a
w(s)

(

f(s) − φλ(s)
)

ds dt, a ≤ x ≤ b.

Then, F (a) = F ′(a) = 0. Applying (3.2) for u = 1 and u(x) = x yields

∫ b

a
w(f − φλ) dx =

∫ b

a
(f(x) − φλ(x))x dx = 0,

and thus F ′(b) = 0 and F (b) = 0. Therefore, integrating by parts gives

∫ b

a
w(f − φλ)u =

∫ b

a
Fu′′.

Hence (3.2) is equivalent to

∫ b

a
(F − λ(φλ)′′)u′′ = 0, for all u ∈W 2

2 [a, b],

and thus
∫ b

a
(F − λ(φλ)′′)g = 0, for all g ∈ L2[a, b].

This implies that

F (x) = λ(φλ)′′(x), a ≤ x ≤ b.

Differentiating twice yields

w(x)(f(x) − φλ(x)) = λφ
(4)
λ (x)
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at all points x ∈ [a, b] where w is continuous. Then F = λ(φλ)′′ and F (a) =

F (b) = 0 imply (φλ)′′(a) = (φλ)′′(b) = 0, while F ′ = λφ
(3)
λ and F ′(a) = F ′(b) = 0

imply φ
(3)
λ (a) = φ

(3)
λ (b) = 0.

Let f ∈W 2
2 [a, b]. We denote the minimal value in (3.1) by M . Then (3.1)

and (3.2) imply that

M =

∫ b

a
w(f − φλ)(f − u) + λ

∫ b

a
(φλ)′′u′′, for all u ∈W 2

2 [a, b].

Taking u = f , it follows that

M = λ

∫ b

a
(φλ)′′f ′′ ≤ λ ‖(φλ)′′‖2 ‖f ′′‖2.

Therefore,
∫ b

a
w(f − φλ)2 + λ ‖(φλ)′′‖2

2 ≤ λ ‖(φλ)′′‖2 ‖f ′′‖2,

and thus

‖(φλ)′′‖2 ≤ ‖f ′′‖2, ‖
√
w(f − φλ)‖2 ≤ λ1/2‖f ′′‖2.

This concludes the proof. �

Theorem 3.3. Let w = 1. Let f ∈ W 4
2 [a, b] and f ′′(a) = f ′′(b) =

f (3)(a) = f (3)(b) = 0. Then the Tikhonov regularization φλ of f corresponding to

λ > 0 satisfies

‖f − φλ‖2 ≤ λ‖f (4)‖2,

‖f ′′ − (φλ)′′‖2 ≤ λ1/2‖f (4)‖2,

‖φ(4)
λ ‖2 ≤ ‖f (4)‖2.

P r o o f. We write U := {u ∈ W 4
2 [a, b] : u′′(a) = u′′(b) = u(3)(a) =

u(3)(b) = 0}. Clearly, f ∈ U by assumption and φλ ∈ U by Theorem 3.2. For

each u ∈ U we obtain by integration by parts that

∫ b

a
(f − φλ)u(4) =

∫ b

a
(f ′′ − (φλ)′′)u′′.
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Inserting the identity f − φλ = λφ
(4)
λ , it follows that

∫ b

a
(f ′′ − (φλ)′′)u′′ − λ

∫ b

a
φ

(4)
λ u(4) = 0, for all u ∈ U.(3.3)

But (3.3) are the orthogonality relations for the minimum problem

M∗ := min
u∈U

‖f ′′ − u′′‖2
2 + λ‖u(4)‖2

2,(3.4)

and so φλ is the minimal solution of (3.4). Since f ∈ U , it follows that M∗ ≤
λ‖f (4)‖2

2, and thus

‖φ(4)
λ ‖2 ≤ ‖f (4)‖2, ‖f ′′ − (φλ)′′‖2 ≤ λ1/2‖f (4)‖2.

Finally, we have

‖f − φλ‖2 = λ‖φ(4)
λ ‖2 ≤ λ‖f (4)‖2,

which concludes the proof of the theorem. �

4. An explicit formula for the Tikhonov regularization In

this section we consider the inner product spaces X = L2(a, b) and Y = S =

W 2
2 [a, b] of Section 3 with the weight function w = 1 on [a, b], that is, 〈f, g〉 =

b
∫

a
fg, [f, g] =

∫ b
a f

′′g′′. In Theorem 2.1 we have given an explicit formula for the

periodic Tikhonov regularization. In this section we want to apply the methods

of Section 2 to the nonperiodic case. We may assume for convenience that the

interval is [a, b] = [−π, π]. Otherwise, under the linear transformation

x(t) = a+
(b− a)(t+ π)

2π
, −π ≤ t ≤ π,

of the interval [−π, π] onto [a, b], the Tikhonov regularizations φλ(x) on [a, b] of

f and ψµ(t) on [−π, π] of g(t) := f(x(t)) are related by

ψµ(t) = φλ(x(t)), λ =
(b− a

2π

)4
µ.(4.1)

To prove (4.1), we simply compare the orthogonality relations

∫ b

a
(f(x) − φλ(x))u(x) dx = λ

∫ b

a
(φλ)′′(x)u′′(x) dx, u ∈W 2

2 [a, b],(4.2)
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and

∫ π

−π
(g(t) − ψµ(t))v(t) dt = µ

∫ π

−π
ψ′′

µ(t)v′′(t) dt, v ∈W 2
2 [−π, π],(4.3)

where the equivalence of (4.2) and (4.3) follows from the bijection v(t) = u(x(t))

of W 2
2 [a, b] onto W 2

2 [−π, π].

The main idea of this section is contained in the next lemma.

Lemma 4.1 Each function v ∈ C1[−π, π] has a unique representation of

the form

v(t) = c1t+ c2t
2 + w(t), c1 ∈ IR, c2 ∈ IR, w ∈ C1(T).(4.4)

In other words, (4.4) defines a bijection from IR2 × C1(T) onto C1[−π, π].

P r o o f. Given c1, c2 ∈ IR and w ∈ C1(T), the function v in (4.4) lies in

C1[−π, π]. Conversely, for a function v ∈ C1[−π, π], the condition w(−π) = w(π)

is equivalent to

v(−π) + c1π − c2π
2 = v(π) − c1π − c2π

2,

and thus to

c1 =
v(π) − v(−π)

2π
.

The condition w′(−π) = w′(π) is equivalent to v′(−π)+2c2π = v′(π)−2c2π, and

thus to

c2 =
v′(π) − v′(−π)

4π
.

This concludes the proof of the lemma. �

As a corollary, each function f ∈ C1[−π, π] has a unique representation

f(t) = c1t+ c2t
2 + a0 +

∞
∑

k=1

(ak cos (kt) + bk sin (kt)),(4.5)

where

c1 =
f(π) − f(−π)

2π
, c2 =

f ′(π) − f ′(−π)

4π
.
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Theorem 4.2. Let f ∈ C[−π, π] be given by (4.5). If f 6∈ C1[−π, π],

then we take c2 = 0. Then the nonperiodic Tikhonov regularization φλ of f

corresponding to λ is given by

φλ(t) = γ1t+ γ2t
2 + α0 +

∞
∑

k=1

(αk cos (kt) + βk sin (kt))

with

γ1 = c1 −
1

2B(λ)

∞
∑

k=1

(−1)kk3bk

1 + λk4
,(4.6)

γ2 =
1

2 + 4A(λ)

(

4A(λ)c2 +

∞
∑

k=1

(−1)kk2ak

1 + λk4

)

,(4.7)

α0 = a0 +
(c2 − γ2)π

2

3
,(4.8)

αk =
1

1 + λk4

(

ak +
4(−1)k(c2 − γ2)

k2

)

, k ≥ 1,(4.9)

βk =
1

1 + λk4

(

bk +
2(−1)k−1(c1 − γ1)

k

)

, k ≥ 1,(4.10)

where

A(λ) :=
∞
∑

k=1

1

1 + λk4
, B(λ) :=

∞
∑

k=1

k2

1 + λk4
.

P r o o f. The Fourier series of t and t2 on (−π, π) are

t =

∞
∑

k=1

2(−1)k−1 sin (kt)

k
, −π < t < π,

t2 =
π2

3
+

∞
∑

k=1

4(−1)k cos (kt)

k2
, −π ≤ t ≤ π,

with pointwise convergence. From Theorem 3.2, we know that f = φλ + λφ
(4)
λ .

Comparing the Fourier coefficients of f and φλ + λφ
(4)
λ in the expansions

f(t) = c1

∞
∑

k=1

2(−1)k−1 sin (kt)

k
+ c2

(π2

3
+

∞
∑

k=1

4(−1)k cos (kt)

k2

)

+a0 +

∞
∑

k=1

(ak cos (kt) + bk sin (kt))
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and

φλ(t) + λφ
(4)
λ (t) = γ1

∞
∑

k=1

2(−1)k−1 sin (kt)

k
+ γ2

(π2

3
+

∞
∑

k=1

4(−1)k cos (kt)

k2

)

+α0 +

∞
∑

k=1

(1 + λk4)(αk cos (kt) + βk sin (kt)),

we obtain the equalities

c2π
2

3
+ a0 =

γ2π
2

3
+ α0

4c2(−1)k

k2
+ ak =

4γ2(−1)k

k2
+ (1 + λk4)αk, k ≥ 1,

2c1(−1)k−1

k
+ bk =

2γ1(−1)k−1

k
+ (1 + λk4)βk, k ≥ 1,

which are equivalent to (4.8)–(4.10). From Theorem 3.2 we know that (φλ)′′(π) =

0 and φ
(3)
λ (π) = 0, and thus,

(φλ)′′(π) = 2γ2 −
∞
∑

k=1

(−1)kk2αk = 0,

φ
(3)
λ (π) = −

∞
∑

k=1

(−1)kk3βk = 0.

(4.11)

Inserting (4.8)–(4.10) into (4.11) yields

2γ2 =

∞
∑

k=1

(−1)kk2ak

1 + λk4
+ 4(c2 − γ2)

∞
∑

k=1

1

1 + λk4

and

0 =
∞
∑

k=1

(−1)kk3βk =
∞
∑

k=1

(−1)kk3bk

1 + λk4
− 2(c1 − γ1)

∞
∑

k=1

k2

1 + λk4
.

These two conditions are equivalent to

2γ2 =
∞
∑

k=1

(−1)kk2ak

1 + λk4
+ 4(c2 − γ2)A(λ)(4.12)

and

2(c1 − γ1)B(λ) =

∞
∑

k=1

(−1)kk3bk

1 + λk4
.(4.13)
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Now (4.6) follows from (4.12), and (4.7) follows from (4.13). �

5. L2-error bounds for penalized least squares fitting. In this

section we consider the inner product spaces X = L2(a, b) and Y = W 2
2 [a, b] of

Section 4 with the same inner products 〈f, g〉 =
b
∫

a
fg and [f, g] =

b
∫

a
f ′′g′′, but we

now take S to be a proper subspace of Y . For f ∈ L2[a, b] and λ > 0, we compare

the penalized least squares fit φλ ∈ Y of Section 3 (with weight function w = 1)

satisfying

∫ b

a
(f − φλ)2 + λ

∫ b

a
(φ′′λ)2 = min

u∈Y

{
∫ b

a
(f − u)2 + λ

∫ b

a
(u′′)2

}

with the penalized least squares fit sλ = Qλ(f) from S satisfying

∫ b

a
(f − sλ)2 + λ

∫ b

a
(s′′λ)2 = min

u∈S

{
∫ b

a
(f − u)2 + λ

∫ b

a
(u′′)2

}

.

Theorem 5.1. Let f ∈ W 2
2 [a, b] and λ > 0. Then sλ minimizes the

expression

‖φλ − u‖2
2 + λ‖(φλ)′′ − u′′‖2

2(5.1)

with respect to all u ∈ S.

P r o o f. sλ is characterized by the orthogonality relations

∫ b

a
(f − sλ)u− λ

∫ b

a
(sλ)′′u′′ = 0, for all u ∈ S.(5.2)

Since f = φλ + λφ
(4)
λ by Theorem 3.2, (5.2) is equivalent to

∫ b

a
(φλ − sλ)u+ λ

∫ b

a

(

φ
(4)
λ u− (sλ)′′u′′

)

= 0, for all u ∈ S,

and since φ′′λ(a) = φ′′λ(b) = φ
(3)
λ (a) = φ

(3)
λ (b) = 0 by Theorem 3.2, integration by

parts shows that (5.2) is equivalent to

∫ b

a
(φλ − sλ)u+ λ

∫ b

a
(φ′′λ − (sλ)′′)u′′ = 0, for all u ∈ S.(5.3)

But (5.3) are the orthogonality relations for the minimum problem (5.1). �
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Corollary 5.2. Let S ⊂W 2
2 [a, b] be a linear space. Suppose that for each

g ∈W 2
2 [a, b] there exists u ∈ S such that

‖g − u‖2 ≤ Ch2‖g′′‖2,

‖g′′ − u′′‖2 ≤ C‖g′′‖2,
(5.4)

for positive numbers C and h independent of g. Then the penalized least squares

fit sλ of f in S corresponding to λ satisfies

‖f − sλ‖2 ≤ λ1/2
(

1 + C
√

h4λ−1 + 1
)

‖f ′′‖2(5.5)

and

‖(sλ)′′‖2 ≤
(

1 + C
√

h4λ−1 + 1
)

‖f ′′‖2.(5.6)

P r o o f. By Theorem 3.2, the Tikhonov regularization φλ of f satisfies

‖f − φλ‖2 ≤ λ1/2‖f ′′‖2.

Let M0 be the minimum in (5.1). Applying (5.4) for g := φλ, it follows that

M0 ≤ C2
(

h4 + λ
)

‖(φλ)′′‖2
2.

Then, since ‖(φλ)′′‖2 ≤ ‖f ′′‖2 by Theorem 3.2,

‖f − sλ‖2 ≤ ‖f − φλ‖2 + ‖φλ − sλ‖2

≤ λ1/2‖f ′′‖2 +M
1/2
0

≤
(

λ1/2 + C
√

h4 + λ
)

‖f ′′‖2,

which yields (5.5). Since ‖(φλ)′′‖2 ≤ ‖f ′′‖2 by Theorem 3.2, while

λ‖(φλ)′′ − (sλ)′′‖2
2 ≤M0,(5.7)

it follows that

‖(sλ)′′‖2 ≤ ‖(φλ)′′‖2 + λ−1/2M
1/2
0

≤
(

1 + C
[

h4λ−1 + 1
]1/2)

‖f ′′‖2,

which proves (5.6). �
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Corollary 5.3. Let S ⊂W 2
2 [a, b] be a linear space. Suppose that for each

g ∈W 4
2 [a, b] there exists u ∈ S such that

‖g − u‖2 ≤ Ch4‖g(4)‖2,

‖g′′ − u′′‖2 ≤ Ch2‖g(4)‖2,
(5.8)

for positive numbers C and h independent of g. Let f ∈ W 4
2 [a, b] and f ′′(a) =

f ′′(b) = f (3)(a) = f (3)(b) = 0. Then the penalized least squares fit sλ of f in S
corresponding to λ satisfies

‖f − sλ‖2 ≤
(

λ+ C[λ+ h4]
)

‖f (4)‖2,(5.9)

‖f ′′ − (sλ)′′‖2 ≤
(

λ1/2 + Ch2[h4λ−1 + 1]1/2
)

‖f (4)‖2,(5.10)

P r o o f. By Theorem 3.3, the Tikhonov regularization φλ of f satisfies

‖f − φλ‖2 ≤ λ‖f (4)‖2.

Let M0 be the minimum in (5.1). Applying (5.8) for g := φλ, it follows that

M0 ≤ C2
(

h8 + λh4
)

‖φ(4)
λ ‖2

2.

Then, since ‖φ(4)
λ ‖2 ≤ ‖f (4)‖2 by Theorem 3.3,

‖f − sλ‖2 ≤ ‖f − φλ‖2 + ‖φλ − sλ‖2

≤ λ‖f (4)‖2 +M
1/2
0

≤
(

λ+ Ch2
√

h4 + λ
)

‖f (4)‖2,

which implies (5.9).

Since ‖f ′′ − (φλ)′′‖2 ≤ λ1/2‖f (4)‖2 by Theorem 3.3, using (5.7) gives

‖f ′′ − (sλ)′′‖2 ≤ λ1/2‖f (4)‖2 + λ−1/2M
1/2
0 ,

and (5.10) follows. �

6. A general penalized least squares problem. Keeping in mind

the problems and results of Sections 2–5, we now investigate the more general
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setting described in the introduction. Let X, Y and S be linear spaces on IR,

where S ⊆ Y ⊆ X; ‖·‖X : X → IR and ‖·‖Y : Y → IR are semi-norms induced by

semi-definite inner products 〈·, ·〉 on X and [·, ·] on Y , respectively. For simplicity,

we assume throughout the rest of this paper that S has dimension n and that

the restriction ‖ · ‖X onto S is a norm on S.

This implies that for any f ∈ X and λ > 0, there exists a unique sλ := sλ(f, S) :=

Qλf in S with the property

‖f − sλ‖2
X + λ‖sλ‖2

Y = inf
u∈S

{

‖f − u‖2
X + λ‖u‖2

Y

}

.

We denote the nonpenalized least squares fit in S by s0, i.e.,

‖f − s0‖2
X = min

u∈S
‖f − u‖2

X .

The penalized least squares approximation sλ of f is characterized by the orthog-

onality relations

〈f − sλ, u〉 = λ[sλ, u], for all u ∈ S,(6.1)

while s0 is characterized by

〈f − s0, u〉 = 0, for all u ∈ S.(6.2)

By (6.1)–(6.2), we have

〈s0 − sλ, u〉 = λ[sλ, u], for all u ∈ S,(6.3)

which proves that sλ = Qλs0, that is

‖s0 − sλ‖2
X + λ‖sλ‖2

Y = min
u∈S

{

‖s0 − u‖2
X + λ‖u‖2

Y

}

.

In what follows, we will discuss the error function s0 − sλ which indicates the

consequences of the penalty, and is easier to analyse than the error function f−sλ

itself. This suffices since

‖f − s0‖X ≤ ‖f − sλ‖X ≤ ‖f − s0‖X + ‖s0 − sλ‖X .

In analogy with Theorem 3.2, we have
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Theorem 6.1. For each f ∈ X and λ > 0, sλ := sλ(f, S) satisfies

‖sλ‖Y ≤ ‖s0‖Y(6.4)

and

‖s0 − sλ‖X ≤
√
λ‖s0‖Y .(6.5)

P r o o f. Because of (6.3),

M(s0, λ) := ‖s0 − sλ‖2
X + λ‖sλ‖2

Y

= 〈s0 − sλ, s0 − u〉 + λ[sλ, u], for all u ∈ S.

Inserting u = s0 yields

M(s0, λ) = λ[sλ, s0] ≤ λ‖sλ‖Y ‖s0‖Y ,

and inequalities (6.4) and (6.5) follow. �

Our next result provides an improvement of (6.5) for small λ which implies

that

‖s0 − sλ‖X = O(λ) as λ→ 0.

Theorem 6.2. For each f ∈ X and λ > 0, sλ := sλ(f, S) satisfies

‖s0 − sλ‖X ≤ KSλ‖s0‖Y .(6.6)

where

KS := sup

{‖u‖Y

‖u‖X
: u ∈ S, u 6= 0

}

.

P r o o f. Coupling the orthogonality relation (6.3) for u = s0 − sλ with

the Cauchy-Schwarz inequality and (6.4), we have

‖s0 − sλ‖2
X = 〈s0 − sλ, s0 − sλ〉 = λ[sλ, s0 − sλ]

≤ λ‖sλ‖Y ‖s0 − sλ‖Y ≤ λ‖s0‖YKS‖s0 − sλ‖X ,

which implies (6.6). �

We conclude this section by examining the special case where X,Y, S are

function spaces on some set Ω ⊂ IRd, d ∈ IN. Our next result gives a bound on

‖s0 − sλ‖L∞(Ω) which implies that

‖s0 − sλ‖L∞(Ω) = O(λ) as λ→ 0.
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Theorem 6.3. Suppose X ⊆ L∞(Ω), and let

κS := sup

{‖u‖L∞(Ω)

‖u‖X
: u ∈ S, u 6= 0

}

<∞.

Then

‖s0 − sλ‖L∞(Ω) ≤ κS

√
λ‖s0‖Y min

{

1,KS

√
λ
}

.

P r o o f. The assertion follows directly from (6.5), Theorem 6.2, and the

definition of κS . �

7. Applications.
7.1. Cubic splines on an interval. Let X = C[a, b], Y = W 2

2 [a, b],

and suppose S := S4(△) ⊂ C2[a, b] is the linear space of cubic splines with simple

knots △ : a = x0 < x1 < · · · < xn = b. Suppose that D := {ti}m
i=1 are distinct

points in [a, b] so that the restriction of S4(△) onto D has full dimension n + 3.

We can now apply the results of Section 6 for the inner products

〈f, g〉 =
1

m

m
∑

i=1

f(ti)g(ti), f, g ∈ C[a, b]

and

[f, g] =

∫ b

a
f ′′g′′, f, g ∈W 2

2 [a, b].

In the notation of Sect. 6,

‖u‖X =

(

1

m

m
∑

i=1

u(ti)
2

)1/2

, u ∈ S.

We write ‖ · ‖2 for the L2-norm on [a, b] and suppose that D and △ are such that

δ := sup

{ ‖u‖2

‖u‖X
: u ∈ S, u 6= 0

}

is finite. Let h0 := h0(∆) := min{xj+1 − xj : j = 0, . . . , n − 1}. Since ‖u‖2 ≤
δ‖u‖X , u ∈ S, it follows that for some absolute constant C0,

‖u‖Y = ‖u′′‖2 ≤ C0 h
−2
0 ‖u‖2 ≤ C0 δ h

−2
0 ‖u‖X ,
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and thus

KS ≤ C0 δ h
−2
0 .

Moreover, for some other absolute constant C1,

κS ≤ C1 δ h
−1/2
0 .

For given real numbers {yi}m
i=1, let s0 ∈ S be such that

1

m

m
∑

i=1

(

yi − s0(ti)
)2

= min
u∈S

1

m

m
∑

i=1

(

yi − u(ti)
)2
.

Recall that the penalized least squares spline sλ minimizes the expression

1

m

m
∑

i=1

(yi − u(ti))
2 + λ

∫ b

a
(u′′(t))2dt.

The following result follows immediately from Theorems 6.1–6.3.

Theorem 7.1. For all λ > 0,

‖s0 − sλ‖2 ≤ δ
√
λmin{1,KS

√
λ} ‖s′′0‖2.

Moreover,

‖s0 − sλ‖L∞[a,b] ≤ C1 δ h
−1/2
0

√
λmin {1, C0 δ h

−2
0

√
λ} ‖s′′0‖2.

7.2. Bivariate spline spaces with stable local bases. Let Ω be

a bounded set in IR2 with polygonal boundary, and suppose that X ⊆ L∞(Ω),

Y = W 2
2 (Ω). Let S ⊂ X be a linear space of polynomial splines defined on

a regular triangulation △ of Ω. For results on the approximation properties of

these types of spaces, see [1, 2, 4].

Suppose that D = {ti}m
i=1 are distinct points in Ω so that the restriction

of S onto D has the same dimension as S. We apply the results of Section 6 for

the inner products

〈f, g〉 =
1

m

m
∑

i=1

f(ti)g(ti), f, g ∈ X,
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and

[f, g] :=

∫

Ω
(fxxgxx + 2fxygxy + fyygyy) dx dy, f, g ∈ Y.

For given real numbers (zi)
m
i=1, s0 ∈ S is the unique function in S which satisfies

1

m

m
∑

i=1

(

zi − s0(ti)
)2

= min
u∈S

1

m

m
∑

i=1

(

zi − u(ti)
)2
.

In the notation of Sect. 6,

‖u‖X =

(

1

m

m
∑

i=1

u(ti)
2

)1/2

, u ∈ S.

We have investigated properties of s0 ∈ S in [3].

Let ‖ · ‖2 denote the L2-norm on Ω, and suppose that D and △ are such

that

δ := sup

{ ‖u‖2

‖u‖X
: u ∈ S, u 6= 0

}

is finite. Let h0 := h0(△) be the minimum side length of the triangles in △.

Since ‖u‖2 ≤ δ‖u‖X , u ∈ S, it follows that for some absolute constant C0

‖u‖Y ≤ C0 h
−2
0 ‖u‖2 ≤ C0 δ h

−2
0 ‖u‖X

so that

KS ≤ C0 δ h
−2
0 .

Moreover, for some other absolute constant C1,

κS ≤ C1 δ h
−1
0 .

As for univariate splines, we can now apply Theorems 6.1–6.3 to get bounds on

s0 − sλ in both the L2 and uniform norms on Ω.
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