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Abstract. In the area of stress-strength models there has been a large
amount of work as regards estimation of the reliability R = Pr(X2 < X1)
when X1 and X2 are independent random variables belonging to the same
univariate family of distributions. The algebraic form for R = Pr(X2 < X1)
has been worked out for the majority of the well-known distributions in-
cluding Normal, uniform, exponential, gamma, weibull and pareto. How-
ever, there are still many other distributions for which the form of R is not
known. We have identified at least some 30 distributions with no known
form for R. In this paper we consider some of these distributions and derive
the corresponding forms for the reliability R. The calculations involve the
use of various special functions.

1. Introduction. In the context of reliability the stress–strength model
describes the life of a component which has a random strength X1 and is subjected
to random stress X2. The component fails at the instant that the stress applied to
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it exceeds the strength and the component will function satisfactorily whenever
X1 > X2. Thus R = Pr(X2 < X1) is a measure of component reliability. It
has applications in many areas. For example, if X2 represents the maximum
chamber pressure generated by ignition of a solid propellant and X1 represents
the strength of the rocket chamber then R is the probability of successful firing
of the engine. Another example is when X2 represents the diameter of a shaft
and X1 represents the diameter of a bearing that is to be mounted on the shaft
– here R is the probability that the bearing fits without interference. Because
of these applications, the calculation and the estimation of R = Pr(X2 < X1) is
important. This has been investigated extensively in the literature when X1 and
X2 are independent random variables belonging to the same univariate family of
distributions. The algebraic form for R has been worked out for the majority
of the well-known distributions in their standard forms. These include Normal,
uniform, exponential, gamma, weibull and the pareto distributions. However,
we have identified many other distributions including extensions of the above
distributions for which the form of R is not known. In this paper we consider the
class of beta distributions and derive the corresponding forms for R.

We shall assume throughout this paper that X1 and X2 are continuous and
independent random variables. Let fi and Fi denote, respectively, the probability
density function (pdf) and the cumulative distribution function (cdf) of Xi. With
this notation, we can write

R = Pr (X2 < X1)

=

∞
∫

−∞

F2(x)f1(x)dx.(1)

The calculations of (1) will make use of the following special functions: the gamma
function defined by

Γ(a) =

∞
∫

0

za−1 exp(−z)dz;

the beta function defined by

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
;

the incomplete beta function ratio defined by

Ix(a, b) =
1

B(a, b)

x
∫

0

wa−1(1 − w)b−1dw;(2)
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and, the generalized hypergeometric function defined by

pFq (α1, α2, . . . , αp;β1, β2, . . . , βq;x) =
∞
∑

k=0

(α1)k (α2)k · · · (αp)k
(β1)k (β2)k · · · (βq)k

xk

k!
.(3)

When p = 1 and q = 1, (3) is known as the confluent hypergeometric function.
When p = 2 and q = 1, (3) is known as the Gauss hypergeometric function. Some
properties of the incomplete beta function ratio that we shall need are:

Ix(a, b) =
xa

aB(a, b)
2F1(a, 1 − b; 1 + a;x),(4)

Ix(a, n − a + 1) =
n

∑

k=a

(

n

k

)

xk(1 − x)n−k,

if a is an integer,(5)

Ix(a, b) = 1 −
a

∑

k=1

Γ(b + k − 1)

Γ(b)Γ(k)
xk−1(1 − x)b,

if a is an integer,(6)

Ix(a, b) =

b
∑

k=1

Γ(a + k − 1)

Γ(a)Γ(k)
xa(1 − x)k−1,

if b is an integer,(7)

and

Ix

(

k − 1

2
, j − 1

2

)

=
2

π
arctan

√

x

1 − x
+

j−1
∑

l=1

cl −
√

x(1 − x)
k−1
∑

l=1

dl,(8)

where

cl =
Γ(k + l − 1)

Γ(k − 1/2)Γ(l + 1/2)
xk−1/2(1 − x)l−1/2,

dl =
Γ(l)

Γ(l + 1/2)Γ(1/2)
xl−1.
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Some properties of the generalized hypergeometric function that we shall need
are:

2F1(a, b; c; 1) =
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
,

c > a + b,(9)

3F2(a, b, c; a+1, b+1; 1) =
ab

a−b
Γ(1−c)

{

Γ(b)

Γ(1+b−c)
− Γ(a)

Γ(1+a−c)

}

,

a 6= b, c 6= 1, c < 2,(10)

1
∫

0

za−1(1 − z)b−1
2F1(c, d; e; z)dz = B(a, b) 3F2(c, d, a; e, a + b; 1),

a > 0, b > 0, e + b > c + d(11)

and

x
∫

0

za−1(x − z)b−1
2F1(c, d; e; z)dz = B(a, b)xa+b−1

3F2(c, d, a; e, a + b;x),

x > 0, a > 0, b > 0.(12)

We shall also need the following properties:

∞
∫

0

arctan z

z

(

zp

1 + z2p

)2q

dz =
π3/2

22q+2p

Γ(q)

Γ (q + 1/2)
,

q > 0,(13)

x
∫

0

zd−1(z + a)cdz =
acxd

d
2F1

(

−c, d; 1 + d;−x

a

)

,

d > 0(14)

and

x
∫

0

zb−1(x − z)a−1 exp(cz)dz = B(a, b)xa+b−1
1F1 (b; a + b; cx) ,

a > 0, b > 0.(15)
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Further properties of the special functions being used can be found in Prudnikov
et al. [9] and Gradshteyn and Ryzhik [3].

2. Standard Beta Distribution

For the standard form of the beta distribution, the pdf and the cdf of Xi

are

fi(x) =
1

B (ai, bi)
xai−1(1 − x)bi−1(16)

and

Fi(x) = Ix (ai, bi) ,(17)

(where 0 ≤ x ≤ 1), respectively. These distributions are very versatile and a
variety of uncertainties can be usefully modeled by them. In recent years beta
distributions have attracted applications in activity in PERT analysis, breakage
models, communication theory, gas absorption, hydrology, particle size distri-
butions, photovoltaic system analysis, sea-state reflectivity, solar radiation and
other areas. For (16) and (17), the reliability given by (1) takes the form:

R =

1
∫

0

Ix (a2, b2)

B (a1, b1)
xa1−1(1 − x)b1−1dx.(18)

This can be evaluated by applying (4) to re-express Ix(a2, b2) and then using (11)
to calculate the integral:

R =
1

a2B (a1, b1) B (a2, b2)

1
∫

0

xa1+a2−1(1−x)b1−1
2 F1 (a2, 1−b2; 1+a2;x) dx

=
B (a1 + a2, b1) 3F2 (a2, 1 − b2, a1 + a2; 1 + a2, a1 + a2 + b1; 1)

a2B (a1, b1)B (a2, b2)
.(19)

This expression for R can be reduced to elementary forms for the particular
choices of the parameters ai and bi considered below.

Case 1: If a1 + a2 + b1 + b2 = 1 then, using (9), we have

3F2 (a2, 1 − b2, a1 + a2; 1 + a2, a1 + a2 + b1; 1)

= 2F1 (a2, a1 + a2; 1 + a2; 1)

=
Γ (1 + a2) Γ (1 − a1 − a2)

Γ (1 − a1)

=
1 − a1

B (1 + a2, 1 − a1 − a2)
;
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so, (19) reduces to:

R =
(1 − a1) B (a1 + a2, b1)

a2B (a1, b1) B (a2, b2) B (1 + a2, 1 − a1 − a2)
.

Case 2: If a1 = 1 then, again using (9), we have

3F2 (a2, 1 − b2, a1 + a2; 1 + a2, a1 + a2 + b1; 1)

= 2F1 (a2, 1 − b2; 1 + a2 + b1; 1)

=
Γ (1 + a2 + b1) Γ (b1 + b2)

Γ (1 + b1) Γ (a2 + b1 + b2)

=
B (1 + a2 + b1, b1 + b2)

B (1 + b1, a2 + b1 + b2)
;

so, (19) reduces to:

R =
B (a1 + a2, b1)B (1 + a2 + b1, b1 + b2)

a2B (a1, b1)B (a2, b2)B (1 + b1, a2 + b1 + b2)
.

Case 3: If b1 = 1 then, using (10), we have

3F2 (a2, 1 − b2, a1 + a2; 1 + a2, a1 + a2 + b1; 1)

=
a2 (a1 + a2)

(−a1)
Γ (b2)

{

Γ (a1 + a2)

Γ (a1 + a2 + b2)
− Γ (a2)

Γ (a2 + b2)

}

=
a2 (a1 + a2)

a1
{B (a2, b2) − B (a1 + a2, b2)} ;

so, (19) reduces to:

R =
(a1 + a2)B (a1 + a2, b1) {B (a2, b2) − B (a1 + a2, b2)}

a1B (a1, b1)B (a2, b2)
.

Case 4: If a2 = a and b2 = n−a+1 (where a is an integer) then, substituting
(5) into (18), we have

R =
n

∑

k=a

1

B (a1, b1)

(

n

k

)

1
∫

0

xa1+k−1(1 − x)b1+n−k−1dx

=
n

∑

k=a

(

n

k

)

B (a1 + k, b1 + n − k)

B (a1, b1)
.
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Case 5: If a2 is an integer then, substituting (6) into (18), we have

R = 1 −
a2
∑

k=1

1

B (a1, b1)

Γ (b2 + k − 1)

Γ (b2) Γ(k)

1
∫

0

xa1+k−2(1 − x)b1+b2−1dx

= 1 −
a2
∑

k=1

B (a1 + k − 1, b1 + b2)

(b2 + k − 1) B (a1, b1) B (b2, k)
.

In the particular case a2 = 1,

R = 1 − B (a1, b1 + b2)

B (a1, b1)
.

Case 6: Similarly, if b2 is an integer, substituting (7) into (18), we have

R =

b2
∑

k=1

B (a1 + a2, b1 + k − 1)

(a2 + k − 1) B (a1, b1) B (a2, k)
.

In the particular case b2 = 1,

R =
B (a1 + a2, b1)

B (a1, b1)
.

Case 7: Finally, if a2 = k−1/2 and b2 = j−1/2, substituting (8) into (18),
we have

R =
2

πB (a1, b1)

1
∫

0

arctan

√

x

1 − x
xa1−1(1 − x)b1−1dx

+

j−1
∑

l=1

B (a1 + k − 1/2, b1 + l − 1/2)

(k + l − 1)B (k − 1/2, l + 1/2) B (a1, b1)

−
k−1
∑

l=1

B (a1 + l − 1/2, b1 + 1/2)

lB (l + 1/2, 1/2) B (a1, b1)
.(20)

On substituting y =
√

x/(1 − x), the integral term reduces to

2

∞
∫

0

y2a1−1 arctan y

(1 + y2)a1+b1
dy.(21)
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This integral cannot be simplified further for general a1 and b1. However,
in the particular case a1 = b1 = c (say), using (13) with p = 1 and q = c,
(21) can be reduced to

π3/2

22c+1

Γ(c)

Γ (c + 1/2)
.

Substituting this into (20), we get

R =

√
πΓ(2c)

4cΓ(c)Γ (c + 1/2)
+

j−1
∑

l=1

B (c + k − 1/2, c + l − 1/2)

(k + l − 1)B (k − 1/2, l + 1/2) B (c, c)

−
k−1
∑

l=1

B (c + l − 1/2, c + 1/2)

lB (l + 1/2, 1/2) B (c, c)

for the particular case a1 = b1 = c.

3. Uniform distribution. If Xi have the uniform distribution then
the pdf and the cdf are

fi(x) =
1

di − ci
(22)

and

Fi(x) =
x − ci

di − ci
,(23)

(where ci ≤ x ≤ di), respectively. These distributions have found extensive
applications in life testing and traffic flow modeling. The standard forms of (22)–
(23) when ci = 0 and di = 1 are particular cases of the beta distribution in
(16)–(17). The form of the reliability for (22)–(23) is easy to calculate as shown
below:

R =

min(d1,d2)
∫

max(c1,c2)

x − c2

d2 − c2

1

d1 − c1
dx +

d1
∫

min(d1,d2)

1

d1 − c1
dx

=
{min (d1, d2)}2 − {max (c1, c2)}2 + 2c2 {max (c1, c2) − min (d1, d2)}

2 (d1 − c1) (d2 − c2)

+
d1 − min (d1, d2)

d1 − c1
.
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In the standard case c1 = c2 = 0 and d1 = d2 = 1, we have R = 1/2 as expected
(this is also true if c1 = c2 and d1 = d2).

4. Power Function Distribution. For a power function distribution
the pdf and the cdf of Xi are

fi(x) = ai

(

x − ci

di − ci

)ai−1

(24)

and

Fi(x) = (di − ci)

(

x − ci

di − ci

)ai

,(25)

(where ci ≤ x ≤ di), respectively. These distributions have found recent appli-
cations in electrical component reliability (Meniconi and Barry, [6]) and mineral
resource prediction (Shen and Zhao, [11]). The standard forms of (24)–(25) when
ci = 0 and di = 1 are particular cases of the beta distribution in (16)–(17). The
reliability for (24)–(25) takes the form:

R = a1

min(d1,d2)
∫

max(c1,c2)

(d2 − c2)

(

x − c2

d2 − c2

)a2
(

x − c1

d1 − c1

)a1−1

dx

+a1

d1
∫

min(d1,d2)

(

x − c1

d1 − c1

)a1−1

dx.(26)

The second term on the right of (26) is:

1 − F1 (min (d1, d2)) = 1 − (d1 − c1)

(

min (d1, d2) − c1

d1 − c1

)a1

.

The first term on the right of (26), say J , can be evaluated using (14). If c1 > c2

then, substituting y = x − c1, we see

J =
a1

(d1 − c1)
a1−1 (d2 − c2)

a2−1

min(d1,d2)−c1
∫

0

(y + c1 − c2)
a2 ya1−1dy

which reduces to

J =
(c1 − c2)

a2 {min (d1, d2) − c1}a1

(d1 − c1)
a1−1 (d2 − c2)

a2−1 2F1

(

−a2, a1; 1 + a1;
min (d1, d2) − c1

c2 − c1

)
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on applying (14). Similarly, if c2 > c1 then

J =
a1(c2−c1)

a1−1{min(d1, d2)−c2}1+a2

(1+a2)(d1−c1)a1−1(d2−c2)a2−1 2F1

(

1−a1, 1+a2; 2+a2;
min(d1, d2)−c2

c1−c2

)

.

If c1 = c2 = c (say) then it is easy to see

J =
a1 {min (d1, d2) − c}a1+a2

(a1 + a2) (d1 − c)a1−1 (d2 − c)a2−1 .

5. Arc-sine distribution. For an arc-sine distribution the pdf and
the cdf of Xi are

fi(x) =
1

π
√

(

4/c2
i

)

− x2
(27)

and

Fi(x) =
1

2
+

1

π
arcsin

( | ci | x

2

)

,(28)

(where −2/ | ci |≤ x ≤ 2/ | ci |), respectively. The arc-sine distribution arises
naturally in statistical communication theory; see Lee [5, Chapter 6] and Mid-
dleton [7, Chapter 14], where (27) is used as a model for the amplitude of a
periodic signal in thermal noise and the limiting spectral density function of a
high-index-angle modulated carrier, respectively. The arc-sine distribution arises
also in the study of the simple random walk. The standard forms of (27) and
(28) when ci = 2 are particular cases of the beta distribution in (16)–(17). The
reliability, (1), for (27)–(28) can be written as:

R =
1

2π

δ
∫

−δ

(

4

c2
1

− x2

)−1/2

dx +
1

π2

δ
∫

−δ

arcsin

( | c2 | x

2

)(

4

c2
1

− x2

)−1/2

dx

+
1

π

2/|c1|
∫

δ

(

4

c2
1

− x2

)−1/2

dx,(29)

where δ = 2min(1/ | c1 |, 1/ | c2 |). The first and the third terms on the right of
(29) are equal to:

1

2
{F1 (δ) − F1 (−δ)} =

1

π
arcsin

[ | c1 |
max (| c1 |, | c2 |)

]



Reliability for Beta Models 277

and

1 − F1 (δ) =
1

2
− 1

π
arcsin

[ | c1 |
max (| c1 |, | c2 |)

]

,

respectively. The second term on the right of (29) is zero because its integrand is
an odd function. Thus for the arc-sine distribution R = 1/2 irrespective of what
c1 and c2 are.

6. Generalized Beta distribution. A four-parameter generalization
of the standard beta distribution in (16) and (17) is given by

fi(x) =
1

(di − ci) B (ai, bi)

(

x − ci

di − ci

)ai−1 (

1 − x − ci

di − ci

)bi−1

(30)

and

Fi(x) = I x−ci
di−ci

(ai, bi) ,(31)

where ci ≤ x ≤ di. These contain the uniform and the power function distrib-
utions (discussed above) as special cases. Setting Yi = (Xi − ci)/(di − ci), one
can see (30) and (31) reduce to the standard forms. So, if c1 = c2 and d1 = d2

then R = Pr(X2 < X1) = Pr(Y2 < Y1) takes the expression given in (19). In the
general case, R can be written as

R =
1

(d1−c1)B(a1, b1)

min(d1,d2)
∫

max(c1,c2

I x−c2
d2−c2

(a2, b2)

(

x−c1

d1−c1

)a1−1 (

1− x−c1

d1−c1

)b1−1

dx

+
1

(d1 − c1)B(a1, b1)

d1
∫

min(d1,d2)

(

x − c1

d1 − c1

)a1−1 (

1 − x − c1

d1 − c1

)b1−1

dx.(32)

The second term on the right of (32) is

1 − F1 (min (d1, d2)) = 1 − Imin(d1,d2)−c1
d1−c1

(a1, b1) .

On using (4) and substituting y = (x − a2)/(b2 − a2), the first term on the right
of (32) can be re-written as

(c2 − c1)
a1−1 (d1 − c2)

b1−1 (d2 − c2)

a2 (d1 − c1)
a1+b1−1 B (a1, b1) B (a2, b2)

J,
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where

J =

δ2
∫

δ1

ya2

(

1+
d2−c2

c2−c1
y

)a1−1 (

1−d2−c2

d1−c2
y

)b1−1

2F1(a2, 1−b2; 1+a2; y)dy(33)

with δ1 = {max(c1, c2) − c2}/(d2 − c2) and δ2 = {min(d1, d2) − c2}/(d2 − c2).
This integral cannot be simplified further for general a1 and b1. However, if we
assume that a1 > 1 and b1 > 1 are both integers then using binomial expansion
we can re-write (33) as

J =

a1−1
∑

k=0

b1−1
∑

l=0

(−1)l
(

a1 − 1

k

)(

b1 − 1

l

)(

d2 − c2

c2 − c1

)k (

d2 − c2

d1 − c2

)l

J(k, l),

where J(k, l) is the simpler integral

J(k, l) =

δ2
∫

δ1

yk+l+a2
2F1 (a2, 1 − b2; 1 + a2; y) dy.(34)

On applying (12), (34) can be evaluated as

J(k, l) =
δ1+k+l+a2
2

1+k+l+a2
3F2(a2, 1−b2, 1+k+l+a2; 1+a2, 2+k+l+a2; δ2)

− δ1+k+l+a2
1

1+k+l+a2
3F2(a2, 1−b2, 1+k+l+a2; 1+a2, 2+k+l+a2; δ1).

7. Non-central Beta distribution. There are three types of non-
central-beta distributions. The one that is most commonly known and studied is
the Type I noncentral-beta distribution. For this, the pdf and the cdf of Xi are

fi(x) =

∞
∑

k=0

(λi/2)
k exp (−λi/2)

k!

xai+k−1(1 − x)bi−1

B (ai + k, bi)
(35)

and

Fi(x) =

∞
∑

k=0

(λi/2)
k exp (−λi/2)

k!
Ix (ai + k, bi) ,(36)
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(where 0 ≤ x ≤ 1), respectively. These distributions have been recently utilized as
models in geophysics (Kimball and Scheibner, [4]) and psychophysics (Rousseau
and Ennis, [10]). For (35) and (36), the reliability in (1) can be written as:

R =
∞
∑

k=0

∞
∑

l=0

λk
1λ

l
2

2k+lk!l!
exp

(

−λ1+λ2

2

)

1
∫

0

Ix(l+a2, b2)

B(k+a1, b1)
xk+a1−1(1−x)b1−1dx.(37)

The integral on the right has the form of the reliability expression (18) for the
standard beta distribution. Thus, using (19), (37) can be reduced to:

R =

∞
∑

k=0

∞
∑

l=0

λk
1λ

l
2B (k + l + a1 + a2, b1)

2k+lk!l! (l + a2) B (k + a1, b1)B (l + a2, b2)
exp

(

−λ1 + λ2

2

)

× 3F2 (l + a2, 1 − b2, k + l + a1 + a2; 1 + l + a2, k + l + a1 + a2 + b1; 1) .

Clearly this is a very complicated expression. A simpler expression can be found
if we assume that the bi in (35) and (36) are integers. In this case, (35) and (36)
reduce to

fi(x) = exp {−λi(1 − x)}
bi−1
∑

k=0

bi−k
∑

l=1

λk
i

k!

(

ai + bi − l − 1

bi − k − l

)

xai+k−1(1 − x)bi−l−1

×
{

−λix
2 + (l − k + λi − ai − bi) x + k + ai

}

and

Fi(x) = exp {−λi(1 − x)}
bi−1
∑

k=0

bi−k
∑

l=1

λk
i

k!

(

ai + bi − l − 1

bi − k − l

)

xai+k(1 − x)bi−l,

respectively (see Nicholson [8]). Thus the corresponding form for the reliability
can be written as

R = exp{−(λ1 + λ2)}
b2−1
∑

k=0

b2−k
∑

l=1

b1−1
∑

m=0

b1−m
∑

n=1

λm
1 λk

2

m!k!

(

a2+b2−l−1

b2−k−l

)(

a1+b1−n−1

b1−m−n

)

×{−λ1I1 + (n − m + λ1 − a1 − b1) I2 + (m + a1) I3} ,(38)

where

I1 =

1
∫

0

x1+k+m+a1+a2(1 − x)b1+b2−l−n−1 exp {(λ1 + λ2) x} dx,
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I2 =

1
∫

0

xk+m+a1+a2(1 − x)b1+b2−l−n−1 exp {(λ1 + λ2) x} dx

and

I3 =

1
∫

0

xk+m+a1+a2−1(1 − x)b1+b2−l−n−1 exp {(λ1 + λ2) x} dx.

On applying (15), we can reduce these three integrals to:

I1 = B(b1+b2−n−l, 2+m+k+a1+a2)

× 1F1(2+m+k+a1+a2; 2+k−l+m−n+a1+b1+a2+b2;λ1+λ2),

I2 = B(b1+b2−n−l, 1+m+k+a1+a2)

× 1F1(1+m+k+a1+a2; 1+k−l+m−n+a1+b1+a2+b2;λ1+λ2)

and

I3 = B(b1+b2−n−l,m+k+a1+a2)

× 1F1(m+k+a1+a2; k−l+m−n+a1+b1+a2+b2;λ1+λ2),

respectively. Substituting these into (38), we obtain an expression for R that
is a finite sum of confluent hypergeometric functions. In the particular case
b1 = b2 = 1, (38) reduces to the simple expression:

R = exp {− (λ1 + λ2)}
[

λ1

1 + a1 + a2
1F1 (1 + a1 + a2; 2 + a1 + a2;λ1 + λ2)

+
a1

a1 + a2
1F1 (a1 + a2; 1 + a1 + a2;λ1 + λ2)

]

.

8. Log Beta distribution. As the name indicates, Xi are said to have
the log beta distribution if log Xi have the standard beta distribution. Clearly
the support of Xi must be a finite positive interval, say 0 < ei ≤ Xi ≤ fi. Then
Yi = (log Xi − log ei)/(log fi − log ei) will have the standard beta distribution for
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some parameters, say ai and bi. Using this relationship, the reliability in (1) can
be written as

R = Pr (X2 < X1)

= Pr

(

log X2 − log e2

log f2 − log e2
<

log X1 − log e2

log f2 − log e2

)

= Pr

(

log X2 − log e2

log f2 − log e2
<

log f1 − log e1

log f2 − log e2

log X1 − log e1

log f1 − log e1
+

log e1 − log e2

log f2 − log e2

)

= Pr

(

Y2 <
log f1 − log e1

log f2 − log e2
Y1 +

log e1 − log e2

log f2 − log e2

)

.

Hence, the reliability of the log beta distribution is the same as that of the
generalized beta distribution given in (32) for the particular choices c1 = (log e1−
log e2)/(log f2 − log e2), d1 = (log f1 − log e2)/(log f2 − log e2), c2 = 0 and d2 = 1.
The log beta distribution has applications to the evolution of aerosol growth
(Bunz et al., [1]; Chang et al., [2]).
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