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THE AUTOMORPHISM GROUP OF THE FREE ALGEBRA

OF RANK TWO

P. M. Cohn

Communicated by V. Drensky

Abstract. The theorem of Czerniakiewicz and Makar-Limanov, that all
the automorphisms of a free algebra of rank two are tame is proved here by
showing that the group of these automorphisms is the free product of two
groups (amalgamating their intersection), the group of all affine automor-
phisms and the group of all triangular automorphisms. The method consists
in finding a bipolar structure. As a consequence every finite subgroup of au-
tomorphisms (in characteristic zero) is shown to be conjugate to a group of
linear automorphisms.

1. Introduction. Let k〈X〉 be the free associative algebra on a set X =

{x1, . . . , xd} over a field k. Any invertible d× d matrix (αij) over k determines a

unique k-algebra automorphism α of k〈X〉 whose action on the free generators is

given by α : xi 7→
∑

αijxj . Such an automorphism will be called linear (relative
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to the given free generating set X). Kharchenko [6] has developed a Galois theory

for free algebras, based on the theorem (proved in [6], and also by Lane [9]) that

the fixed algebra of any finite group of linear automorphisms of k〈X〉 is free.

Our object here is to show that for the algebra k〈x, y〉 Kharchenko’s

results extend to any finite group of automorphisms whose order is invertible in

k, by showing that such a group is actually conjugate (in the full automorphism

group) to group of linear automorphisms (Theorem 5.1).

The proof depends on the observation (Theorem 3.2) that the full auto-

morphism group of k〈x, y〉 can be expressed as a free product (with amalgama-

tion). This observation in turn is an easy consequence of the theorem of Czer-

niakiewicz [4] and Makar-Limanov [11, 12] that every automorphism of k〈x, y〉
is tame (see §3 for definitions). However, the proofs of this latter theorem in

[4, 11, 12] are not very perspicuous; we shall therefore give a direct proof of The-

orem 3.2 which thus provides a new (and, it is hoped, more transparent) proof

of the Czerniakiewicz-Makar-Limanov theorem.

The proof of Theorem 3.2 is in two steps. We firstly note (in §2) that it

is enough to prove the result for the group of centred (augmentation-preserving)

automorphisms, – the general case then follows by forming pullbacks. Now for

centred automorphisms we can use the representation in GL2(k〈x, y〉) described

in [3], and invoke Nagao’s theorem which expresses the latter group as a free

product (cf. [10, 14]). Some care is needed here, since the representation is not

a homomorphism; in fact the fastest route is to find a bipolar structure and then

use Stallings’ characterization of free products [15, 10]. Stallings’ theorem and

other results needed are recalled in §2, the proof is carried out in §4 and §5 brings

the conjugacy theorem which was our original objective.

I am grateful to Warren Dicks for reading an earlier draft of a weaker

result and whose suggestions helped to simplify its proof to a point where the

present form became apparent.

2. Bipolar structures and the normal form for GE2. Stallings

[15] has given an axiomatic description of the free product of two groups with

an amalgamated subgroup, in terms of bipolar structures. We briefly recall his

result (in the form given by Lyndon and Schupp [10], p.207).

A bipolar structure on a group G is a partition of G into five disjoint sets

F , EE, EE∗, E∗E, E∗E∗, satisfying the following axioms, where X,Y, . . . stand

for E or E∗ and X∗∗ = X.
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B.1. F is a subgroup of G.

B.2. If f ∈ F , g ∈ XY , then fg ∈ XY .

B.3. If g ∈ XY , then g−1 ∈ Y X.

B.4. If g ∈ XY , h ∈ Y ∗Z, then gh ∈ XZ.

B.5. If g ∈ G, then there is an integer N(g) such that for any representa-

tion g = g1 . . . gn (g ∈ X∗

i−1
Xi) we have n ≤ N(g).

B.6. EE∗ 6= ∅.
An element g of G is said to be irreducible if g ∈ XY ∪F and g is not of the form

g = hk, where h ∈ XZ, k ∈ Z∗Y . From B.5 it follows that G is generated by its

irreducible elements. Now we have

Theorem A (Stallings). Every non-trivial free product P ∗F Q with

amalgamated subgroup has a bipolar structure, and conversely, if G has a bipolar

structure such that EE∗ has no irreducible elements, then G is a free product

with amalgamation: G = P ∗F Q, where P , Q consist of the irreducible elements

of EE, E∗E∗ respectively.

We remark that the proof is quite straightforward (see [10], pp. 210–212).

Stallings also shows that the bipolar structures for which EE∗ has irreducible

elements characterize HNN-extensions, but this fact will not be needed here.

To apply Theorem A we shall need a normal form for the elements of

GL2(k〈x, y〉). At first let R be any ring, denote its group of units by U = U(R)

and write U0 = U ∪ {0}. Further, for any α, β ∈ U , a ∈ R, set

(1) [α, β] =

(

α 0
0 β

)

, D(α) = [α,α−1], E(a) =

(

a 1
−1 0

)

.

Clearly all these matrices are invertible; we denote by GE2(R) the group gener-

ated by them. We have

Theorem B ([2], Theorem 2.2, p. 9). In any ring R, the generators

E(a), [α, β] of GE2(R) satisfy the relations

E(x)E(0)E(y) = −E(x + y),(2)

E(x)[α, β] = [β, α]E(β−1xα),(3)

E(x)E(a)E(y) = E(x − α−1)D(α)E(y − α−1),(4)

E(x)−1 = E(0)E(−x)E(0).(5)

Moreover, every A ∈ GE2(R) can be expressed in the form

(6) A = [α, β]E(a1) . . . E(ar), α, β ∈ U(R), ai ∈ R,
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where ai /∈ U0(R) for 1 < i < r, and a1, ar are not both 0 when r = 2.

We shall mainly be interested in the application of this result to free

algebras:

Theorem C ([2], Theorem 7.2, p. 25). Over the free algebra k〈X〉 every

invertible 2 × 2 matrix A can be written in the form (6) in just one way.

This property is expressed by saying the k〈X〉 is a GE2-ring with a unique

standard form for GE2. For the case of one indeterminate this is of course well

known and one has the result of Nagao [13]:

(7) GL2(k[x]) = B2(k[x]) ∗B GL2(k),

where B2(k[x]) is the subgroup of upper triangular matrices over k[x] and B =

B2(k[x]) ∩ GL2(k).

It is possible to prove (7) by defining a bipolar structure on GL(k[x]) (see

[10], p. 213f.), but of course a direct proof is quicker. In the same way one has

Theorem 2.1. For any free algebra k〈X〉,

GL2(k〈X〉) = B2(k〈X〉) ∗B GL2(k).

Again this is very easily proved directly, because one knows that the left-

hand side is generated by B2(k〈X〉) and GL2(k), by using the weak algorithm in

k〈X〉. A proof via bipolar structures is again possible, though more tedious, but

in §4 we shall come to a situation where this is the only route open to us.

3. Reduction to the centred case. Let R = k〈x, y〉 be the free

k-algebra on x and y. Any automorphism f of R can be written

(x, y) 7→ (xf , yf ) = (p + λ, q + µ),

where λ, µ ∈ k and p, q are polynomials in x, y with zero constant term. It

follows that f = f ′f ′′, where

f ′ : (x, y) 7→ (x + λ, y + µ), f ′′ : (x, y) 7→ (p, q).

An automorphism of the form f ′ is called a translation and one of the form f ′′

centred or augmentation preserving. Let us write Aut(R) for the group of all

automorphisms of R, as k-algebra, and denote by T the group of all translations
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and by C the group of all centred automorphisms. It is easy to see (and of course

well known) that T is normal in Aut(R) with quotient C, so that we have the

split exact sequence (i.e. a representation of Aut(R) as a semidirect product)

(8) 1 → T → Aut(R) → C → 1.

In what follows we shall also need the following subgroups of Aut(R):

1. The group A of all affine automorphisms of R:

(x, y) 7→ (αx + βy + λ, γx + δy + µ), (α, . . . , µ ∈ k, αδ − βγ 6= 0).

2. The group ∆ of all triangular automorphisms of R (also known as de

Jonquières transformations in the commutative case):

(x, y) 7→ (αx + p(y), δy + µ), (α, δ 6= 0, p ∈ k[y]).

An automorphism is called tame if it can be written as a product of affine

and triangular automorphisms, wild otherwise.

We recall the following key result:

Theorem 3.1 (Czerniakiewicz [4], Makar-Limanov [11, 12]). Every au-

tomorphism of k〈x, y〉 is tame.

Here k can be any field; the proof in [11] is for the complex number field,

but those in [4, 12] are quite general. We shall obtain a proof of Theorem 3.1 as

a corollary of

Theorem 3.2. The group Aut(k〈x, y〉) is the free product of the groups

A and ∆, amalgamating their intersection.

Again k can be any field, even skew, but of course all the elements of k

commute with x and y.

We shall prove this result in §4. For the moment we note that in the

proof we can replace Aut(R) by the subgroup of all centred automorphisms.

This follows from

Proposition 3.3. Let G = P ∗F Q, be a free product with amalgamated

subgroup and consider an extension E of G by a group T . Then E = P ′ ∗F ′ Q′,

where P ′, Q′, F ′ are extensions of P , Q, F respectively by T .

P r o o f. In the following diagram the bottom line is the given extension

and the last vertical arrow is an isomorphism:
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1 → T −→ P ′ ∗F ′ Q′ −→ P ∗F Q → 1

↓ ↓ ↓

1 → T −→ E −→ G → 1

The pullback of E → G and P ∗F Q → G is of the form P ′ ∗F ′ Q′, as we see by

forming the pullback with P ∗F Q replaced by P , Q, F in turn. Moreover, just

as in an additive category we find that the map P ′ ∗F ′ Q′ → P ∗F Q has kernel

T , and we can complete the diagram as shown. Now a diagram chase shows that

the pullback homomorphism P ′ ∗F ′ Q′ → E is an isomorphism and the result

follows. �

Suppose that we have a free product representation of the group C of all

centred automorphisms; then by applying Proposition 3.3 to the exact sequence

(8) we obtain a free product representation of Aut(R), so to prove Theorem 3.2

it only remains to show that

(9) C = ∆0 ∗S L,

where ∆0 = ∆ ∩L is the group of centred triangular automorphisms, L = A∩C

is the group of linear automorphisms and S = ∆0 ∩ L is the group of linear

triangular automorphisms (generalized shears). If we use Theorem 3.1 and the

standard form of Theorem C (or the standard form for automorphisms, described

by Lane [8]), the representation (8) is immediate, but we shall proceed differently:

with only a little more trouble we can find a bipolar structure on C to which

Theorem A can be applied, so that we do not need to use Theorem 3.1.

4. The bipolar structure on the group of centred automor-

phisms. Any element p ∈ R = k〈x, y〉 can be written uniquely in the form

p = p1x + p2y + λ, where p1, p2 ∈ R and λ ∈ k. Hence every centred automor-

phism g of R has the form

(10)
xg = ax + by,

(a, b, c, d ∈ R).
yg = cx + dy,

Writing u =

(

x
y

)

, Tg =

(

a b
c d

)

, we can express this in matrix form as

ug = Tgu.
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It follows that

Tghu = ugh = (Tgu)h = T h
g Thu,

where T h
g is the matrix obtained by letting h act on Tg. Hence

(11) Tgh = T h
g Th.

Clearly T1 = I, and it follows that each Tg is invertible, with inverse

(12) T−1

g = T g

g−1 .

It follows that Tg ∈ GL2(R), so that we have a mapping C → GL2(R), which

however is not a homomorphism, in view of (11) (it is essentially a crossed ho-

momorphism).

We now come to the result needed to complete the proof of Theorem 3.2.

Theorem 4.1. The group C of all centred automorphisms of R = k〈x, y〉
is the free product of the group ∆0 of centred triangular automorphisms and the

group L of all linear automorphisms, amalgamating S = ∆0 ∩ L:

(13) C = ∆0 ∗S L.

P r o o f. Given g ∈ C, we have Tg ∈ GL2(R) and by Theorem C of §2 we

have a unique standard form for Tg:

(14) Tg = [α, β]E(a1) . . . E(ar),

where α, β ∈ k, αβ 6= 0, ai ∈ R; moreover, ai /∈ k for 1 < i < r and when r = 2,

a1, a2 are not both 0. In particular, the matrices of ∆0 have the form

(15) Tg = [α, β]E(a)E(0),

where g ∈ S if and only if a ∈ k, while the matrices of L have the form

(16) Tg = [α, β]E(λ) or [α, β]E(λ)E(µ), α, β, λ, µ ∈ k, αβ 6= 0,

and here g ∈ S if and only if the second form applies and µ = 0.

We construct a bipolar form on C as follows. Put F = S; next suppose

that g /∈ S and that Tg has the standard form (14). Then

(i) g ∈ EE if a1 ∈ k, ar 6= 0,

(ii) g ∈ EE∗ if a1 ∈ k, ar = 0,
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(iii) g ∈ E∗E if a1 /∈ k, ar 6= 0,

(iv) g ∈ E∗E∗ if a1 /∈ k, ar = 0.

It remains to verify B.1–6. B.1 is clear; to prove B.2, let h ∈ F , g ∈ XY ,

say Tg is given by (14) and Th = [α1, β1]E(λ)E(0); then T g
h = Th because α1, β1,

λ are fixed under the automorphism, so by (3), (2),

Thg = ThTg = [α1, β1][α, β]E(α−1λβ)E(0)E(a1) . . . E(ar)

= [−α1α,−β1β]E(a1 + α−1λβ)E(a2) . . . E(ar).

Since a1 + α−1λβ ∈ k if and only if a1 ∈ k, it follows that hg ∈ XY .

B.3. If Tg is given by (14), then

T−1

g = [α′, β′]E(0)E(a′r) . . . E(a′
1
)E(0),

where α′, β′ are α, β in some order and a′i is associated to ai. Moreover, Tg−1 =

(T−1
g )g

−1

and a′′i = (a′i)
g−1

lies in k if and only if ai does. Thus we have

(17) Tg−1 = [α′, β′]E(0)E(a′′r ) . . . E(a′′1)E(0).

Clearly g ∈ XE∗ ⇐⇒ ar = 0 ⇐⇒ a′′r = 0, and this is so if and only if the

coefficient of the first factor E(.) in the reduced form of (17) is not in k. Thus

g ∈ XE∗ ⇐⇒ g−1 ∈ E∗Y ; taking complements we find that g ∈ XE ⇐⇒
g−1 ∈ EY , and combining these cases with those obtained by interchanging g

and g−1 we find that g ∈ XY if and only if g−1 ∈ Y X.

B.4. We take Tg in the standard form (14) and

Th = [γ, δ]E(b1) . . . E(bs).

Then

(18) Tgh = T h
g Th = [λ, µ]E(a′′

1
) . . . E(a′′r )E(b1) . . . E(bs),

where λ, µ ∈ k, λµ 6= 0, a′′i = (a′i)
h and a′i is an associate of ai. Here (18)

may not be in standard form, but we reach a standard form after finitely many

applications of (2), (4) and (3). Any terms bj that remain are unaffected by these

changes, while the a′′i that remain, only change by at most a unit factor. Thus if

a′′
1

and bs are still present after the reduction to standard form, then for g ∈ XU ,

h ∈ V Z we have gh ∈ XZ. In particular, this will be the case if in the expression

(18) for Tgh not all the factors E(.) stemming from g, nor all those stemming

from h, cancel.
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We shall now show that if g ∈ XY , h ∈ Y ∗Z, then there is no cancellation

at all. For suppose that some cancellation takes place in (18) and write gh = k;

then k 6= 1, because g, h cannot be mutually inverse, by B.3. Hence not all of g

and h is cancelled, say not all of g. Write g = kh−1; then in the expression for

Tkh−1 not all the factors E(.) from k nor all those from h−1 are cancelled. Now

by B.3, h−1 ∈ ZY ∗, so if k ∈ UV , then by what has been shown, g ∈ UY ∗, which

contradicts the fact that g ∈ XY ; so the assertion is proved.

Now B.4 is clear, and B.5 also follows, for if Tg has the form (14), and

g = g1 . . . gn, where gi ∈ X∗

i−1
Xi, then in the expression for Tg1...gn

there can be

no cancellation. Hence n ≤ r, and so B.5 holds with N(g) = r.

Finally B.6 is clear, since E(λ)E(a)E(0) ∈ EE∗, for λ ∈ k, a /∈ k. Thus

B.1–6 all hold; further any element of EE∗ has the form g, where

Tg = [α, β]E(λ)E(a1) . . . E(ar)E(0),

and r ≥ 1 because g /∈ S. Now g = hk, where

Th = [α, β]E(λ), Tk = E(a1) . . . E(ar)E(0).

Here h ∈ EE, k ∈ E∗E∗; thus EE∗ contains no irreducible elements, and so the

conclusion follows by applying Theorem A. It is easily seen that the irreducible

elements in EE constitute L while those in E∗E∗ constitute ∆0. �

Remarks 1. We have nowhere used the commutativity of k; the result

therefore holds even when k is a skew field. However, it is of course necessary for

the variables to centralize k; this fact was used in deriving (10).

2. Any automorphism of k〈x, y〉 defines an automorphism of the polyno-

mial ring k[x, y], by allowing the variables to commute. Thus there is a natural

homomorphism

ϕ : Aut(k〈x, y〉) → Aut(k[x, y]).

Since every automorphism of k[x, y] is aiso tame (Jung’s theorem, proved in [5] for

characteristic 0 and by van der Kulk [7] generally), it follows that ϕ is surjective.

In fact Czerniakiewicz [4] and Makar-Limanov [12] show that ϕ is an isomorphism.

The injectivity also follows from the fact that (6) is a unique standard form for

the elements of GE2(k[x, y]) (see [2], Theorem 7.1, p. 24). We therefore have the

Corollary 4.2. The group Aut(k[x, y]) is the free product of its affine

and triangular subgroups, amalgamating their intersection.

Here we need Jung’s theorem to ensure that ϕ is surjective; the method of

proof of Theorem 4.1 is not at our disposal because GL2(k[x, y]) is not generated
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by elementary matrices (i.e. k[x, y] is not a GE2-ring, see [2], p. 26). Nevertheless,

it might be possible to describe a bipolar structure on Aut(k[x, y]) (which we know

exists, by Corollary 4.2), and so obtain an independent proof of Jung’s theorem.

5. The conjugacy theorem. It is now an easy matter to prove the

conjugacy theorem stated in the introduction.

Theorem 5.1. Every finite subgroup of Aut(k〈x, y〉) of order invertible

in k has a conjugate in L, the subgroup of linear automorphisms.

P r o o f. Let G be a finite subgroup of Aut(R); the representation in

Theorem 4.1 shows that G has a conjugate in ∆ or in A (see e.g. Serre [14],

p. 54). By passing to a conjugate we may assume that G itself is a subgroup of

∆ or of A. We treat these cases in turn.

(i) G ⊆ ∆. Here the action of G leaves invariant the subspaces kx + k[y]

and k[y], so by Maschke’s theorem we may choose a G-invariant complement kx′

of k[y] in kx+ k[y]. This provides an automorphism α : (x, y) 7→ (x′, y) such that

α−1Gα ⊆ T .

Explicitly we write for each g ∈ G,

g : (x, y) 7→ (λgx + fg(y), µgy + νg).

Put |G| = n, f(y) = n−1
∑

g λ−1
g fg(y) and define α : (x, y) 7→ (x− f(y), y). Then

by comparing expressions for xgh we have λgh = λgλh, fgh = λgfh(y) + fg(µhy +

νh), so for any h ∈ G,

nf(y) =
∑

gλ
−1

gh fgh(y) = nλ−1

h fh(y) + nλ−1

h f(µhy + νh).

It follows that α−1hα : (x, y) 7→ (λhx, µhx + νh), so α−1Gα ⊆ T . We are thus

reduced to the case where G ⊆ A.

(ii) G ⊆ A. Now G acts on the space kx+ ky + k with invariant subspace

k. Again we can find a complement kx′+ky′ of k in kx+ky+k; now α : (x, y) 7→
(x′, y′) is an automorphism such that α−1Gα ⊆ L. Explicitly, write for g ∈ G,

g : (x, y) 7→ (λgx + µgy + νg, λ
′

gx + µ′

gy + ν ′

g),

and define α : (x, y) 7→ (x + ν, y + ν ′), where ν = n−1
∑

νg, ν ′ = n−1
∑

ν ′

g;

then nν =
∑

g νhg =
∑

(λhνg + µhν ′

g + νh) = n(λhν + µhν ′

g + νh) and similarly

for ν ′, therefore α−1hα : (x, y) 7→ (λhx + µhy, λ′

hx + µ′

hy), and this shows that

α−1Gα ⊆ L as required. �



The automorphism group of the free algebra of rank two 265

Clearly we cannot omit the hypothesis that |G| is prime to char k. E.g. if

k is finite, then A is a finite subgroup of Aut(R), but no conjugate of A lies in L,

a proper subgroup of A. More specifically it may be shown that any triangular

automorphism of the form α : (x, y) 7→ (x+y2f(y), y) is not conjugate to a linear

automorphism unless α = 1, although αp = 1 in characteristic p.

With the help of the Kharchenko-Lane theorem we have

Corollary 5.2. Let G be a finite group of automorphisms of k〈x, y〉 of

order invertible in k. Then the fixed algebra k〈x, y〉G of G is free.

G. M. Bergman [1] has shown that for any subgroup G of Aut(k〈X〉)
the fixed ring k〈X〉G is a 2-fir (i.e. all 2-generator left or right ideals are free,

of unique rank). Whether k〈X〉G is always free is not known, but if G is of

finite order invertibie in k, then k〈X〉G is hereditary, by a result of Bergman

([1], Proposition 1.4). Together with an unpublished result of Dicks, that a

homogeneous hereditary subalgebra of k〈X〉 is free, this leads to another proof

of the Kharchenko-Lane theorem. However, Corollary 5.2 depends for its proof

on methods where the condition |X| = 2 is used in an essential way.
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