Provided for non-commercial research and educational use.

 Not for reproduction, distribution or commercial use.
Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

ON A CLASS OF VERTEX FOLKMAN NUMBERS

Nedyalko Dimov Nenov

Communicated by R. Hill

Abstract

Let a_{1}, \ldots, a_{r} be positive integers, $m=\sum_{i=1}^{r}\left(a_{i}-1\right)+1$ and $p=\max \left\{a_{1}, \ldots, a_{r}\right\}$. For a graph G the symbol $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ means that in every r-coloring of the vertices of G there exists a monochromatic a_{i}-clique of color i for some $i \in\{1, \ldots, r\}$. In this paper we consider the vertex Folkman numbers $$
F\left(a_{1}, \ldots, a_{r} ; m-1\right)=\min \left\{|V(G)|: G \rightarrow\left(a_{1}, \ldots, a_{r}\right) \text { and } K_{m-1} \not \subset G\right\}
$$

We prove that $F\left(a_{1}, \ldots, a_{r} ; m-1\right)=m+6$, if $p=3$ and $m \geqq 6$ (Theorem 3) and $F\left(a_{1}, \ldots, a_{r} ; m-1\right)=m+7$, if $p=4$ and $m \geqq 6$ (Theorem 4).

1. Notations. We consider only finite, non-oriented graphs, without loops and multiple edges. The vertex set and the edge set of a graph G will be denoted by $V(G)$ and $E(G)$, respectively. We call p-clique of G any set of p vertices, each two of which are adjacent. The largest natural number p, such that the graph G contains a p-clique is denoted by $\operatorname{cl}(G)$ (the clique number of G).
[^0]If $W \subseteq V(G)$ then $G[W]$ is the subgraph of G induced by W and $G-W$ is the subgraph induced by $V(G) \backslash W$. We shall use also the following notations:
\bar{G} - the complement of graph G;
$\alpha(G)$ - the vertex independence number of G;
$N(v), v \in V(G)$ - the set of all vertices of G adjacent to v;
$\chi(G)$ - the chromatic number of G;
K_{n} - complete graph of n vertices;
C_{n} - simple cycle of n vertices.
$K_{n}-C_{m}, m \leqq n$ - the graph obtained from K_{n} by deleting all edges of some cycle C_{m}.

The equality $C_{n}=v_{1}, v_{2}, \ldots, v_{n}$ means that

$$
V\left(C_{n}\right)=\left\{v_{1}, \ldots, v_{n}\right\} \quad \text { and } \quad E\left(C_{n}\right)=\left\{\left[v_{i}, v_{i+1}\right], i=1, \ldots, n-1,\left[v_{1}, v_{n}\right]\right\} .
$$

Let G_{1} and G_{2} be two graphs without common vertices. We denote by $G_{1}+G_{2}$ the graph G for which $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup$ $E\left(G_{2}\right) \cup E^{\prime}$, where $E^{\prime}=\left\{[x, y]: x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$.

The Ramsey number $R(p, q)$ is the smallest natural number n, such that for arbitrary n-vertex graph G, either $\operatorname{cl}(G) \geqq p$ or $\alpha(G) \geqq q$. We need the identities $R(3,4)=R(4,3)=9,[3]$.

2. The vertex Folkman graphs and vertex Folkman numbers.

Definition. Let a_{1}, \ldots, a_{r} be positive integers. An r-coloring

$$
V(G)=V_{1} \cup \ldots \cup V_{r}, \quad V_{i} \cap V_{j}=\emptyset, \quad i \neq j
$$

of the vertices of a graph G is said to be $\left(a_{1}, \ldots, a_{r}\right)$-free if for all $i \in\{1, \ldots, r\}$ the graph G does not contain a monochromatic a_{i}-clique of color i. The symbol $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ means that every r-coloring of $V(G)$ is not $\left(a_{1}, \ldots, a_{r}\right)$-free.

A graph G such that $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ is called a vertex Folkman graph. Obviously, it is true that:

Proposition 1. Let a_{1}, \ldots, a_{r} be positive integers, $r \geqq 2$ and $a_{i}=1$ for some $i \in\{1, \ldots, r\}$. Then

$$
G \rightarrow\left(a_{1}, \ldots, a_{r}\right) \quad \Leftrightarrow \quad G \rightarrow\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{r}\right)
$$

Proposition 2. For each permutation φ of the symmetric group S_{r}

$$
G \rightarrow\left(a_{1}, \ldots, a_{r}\right) \quad \Leftrightarrow \quad G \rightarrow\left(a_{\varphi(1)}, \ldots, a_{\varphi(r)}\right) .
$$

Define:
$F\left(a_{1}, \ldots, a_{r} ; q\right)=\min \left\{|V(G)|: G \rightarrow\left(a_{1}, \ldots, a_{r}\right)\right.$ and $\left.\operatorname{cl}(G)<q\right\}$.
Clearly, $G \rightarrow\left(a_{1}, \ldots, a_{r}\right) \Rightarrow \operatorname{cl}(G) \geqq \max \left\{a_{1}, \ldots, a_{r}\right\}$.
Folkman [2] proved that there exists a graph G, such that $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ and $\operatorname{cl}(G)=\max \left\{a_{1}, \ldots, a_{r}\right\}$. Therefore,

$$
\begin{equation*}
F\left(a_{1}, \ldots, a_{r} ; q\right) \text { exist } \Leftrightarrow q>\max \left\{a_{1}, \ldots, a_{r}\right\} \tag{1}
\end{equation*}
$$

and they are called vertex Folkman numbers. For every positive integers a_{1}, \ldots, a_{r} we define

$$
\begin{equation*}
m=\sum_{i=1}^{r}\left(a_{i}-1\right)+1, \quad p=\max \left\{a_{1}, \ldots, a_{r}\right\} \tag{2}
\end{equation*}
$$

Obviously, $K_{m} \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ and $K_{m-1} \nrightarrow\left(a_{1}, \ldots, a_{r}\right)$. Therefore, if $q \geqq m+1$, then $F\left(a_{1}, \ldots, a_{r} ; q\right)=m$. It is true that:

Proposition 3 ([13] and [14]). Let G be a graph, such that $G \rightarrow$ $\left(a_{1}, \ldots, a_{r}\right)$. Then $\chi(G) \geqq m$.

By (1), the numbers $F\left(a_{1}, \ldots, a_{r} ; m\right)$ exist only if $m \geqq p+1$. For these numbers the following theorem is known:

Theorem A ([4]). Let a_{1}, \ldots, a_{r} be positive integers and let m and p satisfy (2), where $m \geqq p+1$. Then $F\left(a_{1}, \ldots, a_{r} ; m\right)=m+p$. If $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$, $\operatorname{cl}(G)<m$ and $|V(G)|=m+p$, then $G=K_{m+p}-C_{2 p+1}=K_{m-p-1}+\bar{C}_{2 p+1}$.

The proof of this Theorem given in [4] is based on Lemma 1, [4, p. 251]. But the proof of this Lemma is not correct because the sentence "If we delete both endpoints of any of its edges not adjacent to $\{x, y\}$, then $\alpha(G)$ decreases again." is not true (see p. 252). Correct proofs of theorem A are given in [13] and [14].

According to (1), the numbers $F\left(a_{1}, \ldots, a_{r} ; m-1\right)$ exist only if $m \geqq p+2$. Very little is known about these numbers. It is true that:

Theorem B ([13]). Let a_{1}, \ldots, a_{r} be positive integers. Let m and p satisfy (2), where $m \geqq p+2$. Then $F\left(a_{1}, \ldots, a_{r} ; m-1\right) \geqq m+p+2$.

Theorem C ([15]). Let a_{1}, \ldots, a_{r} be positive integers. Let m and p satisfy (2), where $m \geqq p+2$. If G is a graph such that $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ and $\operatorname{cl}(G)<m-1$, then:
(a) $|V(G)| \geqq m+p+\alpha(G)-1$;
(b) if $|V(G)|=m+p+\alpha(G)-1$, then $|V(G)| \geqq m+3 p$.

According to Proposition 2, $F\left(a_{1}, \ldots, a_{r} ; q\right)$ is a symmetric function and thus we may assume that $a_{1} \leqq a_{2} \leqq \cdots \leqq a_{r}$. By Proposition 1 , we may assume also that $a_{i} \geqq 2, i=1, \ldots, r$. Next theorem implies that in special situation $a_{1}=a_{2}=\cdots=a_{r}=2, r \geqq 5$, the inequality from Theorem B is exact.

Theorem D.

$$
F(\underbrace{2, \ldots, 2}_{r} ; r)= \begin{cases}11, & r=3 \text { or } r=4 \\ r+5, & r \geqq 5\end{cases}
$$

Obviously, $G \rightarrow(\underbrace{2, \ldots, 2}_{r}) \Longleftrightarrow \chi(G) \geqq r+1$.
Mycielski in [5] presented an 11-vertex graph G, such that $G \rightarrow(2,2,2)$ and $\operatorname{cl}(G)=2$, proving that $F(2,2,2 ; 3) \leqq 11$. Chvátal [1], proved that the Mycielski's graph is the smallest such graph and hence $F(2,2,2 ; 3)=11$. The inequality $F(2,2,2,2 ; 4) \geqq 11$ was proved in $[8]$ and inequality $F(2,2,2,2 ; 4) \leqq 11$ was proved in [7] and [12] (see also [9]). The equality

$$
F(\underbrace{2, \ldots, 2}_{r} ; r)=r+5, \quad r \geqq 5
$$

was proved in [7, 12] and later in [4].
It is true also that:

Theorem E. $F(3,3 ; 4)=14$.
The inequality $F(3,3 ; 4) \leqq 14$ was proved in [6] and the opposite inequality was verified by means of computer in [20].

Theorem F $([17]) . F(2,2,2,3 ; 5)=F(2,3,3 ; 5)=12$.

Only a few more numbers of the type $F\left(a_{1}, \ldots, a_{r} ; m-1\right)$ are known, namely: $F(3,4 ; 5)=13,[10] ; F(2,2,4 ; 5)=13,[11] ; F(4,4 ; 6)=14, \quad[19] ;$ $F(2,2,2,4 ; 6)=F(2,3,4 ; 6)=14$, [18].

3. Main results.

Theorem 1. Let $p \geqq 3$ be integer, such that $F(2,2, p ; p+1) \geqq 2 p+5$. Then for each $t \geqq 2$ we have $F(\underbrace{2, \ldots, 2}_{t}, p ; t+p-1) \geqq t+2 p+3$.

Theorem 2. Let a_{1}, \ldots, a_{r} be positive integers. Let m and p satisfy (2), where $p \geqq 3$ and $m \geqq p+2$. If $F(2,2, p ; p+1) \geqq 2 p+5$, then $F\left(a_{1}, \ldots, a_{r} ; m-1\right) \geqq$ $m+p+3$.

Theorem 3. Let a_{1}, \ldots, a_{r} be positive integers. Let m and p satisfy (2), where $p=3$ and $m \geqq 6$. Then $F\left(a_{1}, \ldots, a_{r} ; m-1\right)=m+6$.

Remark 1. If $m=5, p=3$ and $2 \leqq a_{1} \leqq \cdots \leqq a_{r}$ then $r=2$, $a_{1}=a_{2}=3$ or $r=3, a_{1}=a_{2}=2, a_{3}=3$. According to Theorem E, $F(3,3 ; 4)=$ $14>11$. The equality $F(3,3 ; 4)=14$ implies $F(2,2,3 ; 4) \leqq 14$ (see Lemma 4), but the exact value of $F(2,2,3 ; 4)$ is unknown.

Remark 2. The special situation $a_{1}=\cdots=a_{r}=3, r \geqq 3$ of Theorem 3 was proved in [16].

Theorem 4. Let a_{1}, \ldots, a_{r} be positive integers. Let m and p satisfy (2), where $p=4$ and $m \geqq 6$. Then $F\left(a_{1}, \ldots, a_{r} ; m-1\right)=m+7$.

4. Lemmas.

Lemma 1. Let a_{1}, \ldots, a_{r} be positive integers and m and p satisfy (2). Let G be a graph, such that $\operatorname{cl}(G)<m-1, G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ and $N(u) \subseteq N(v)$ for some $u, v \in V(G)$. Then $|V(G)| \geqq m+p+3$.

Proof. Obviously, $[u, v] \notin E(G)$. It is clear from $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ and $N(u) \subseteq N(v)$ that $G-u \rightarrow\left(a_{1}, \ldots, a_{r}\right)$. By Theorem B, $|V(G-u)| \geqq m+p+2$. Therefore $|V(G)| \geqq m+p+3$.

Lemma 2. Let a_{1}, \ldots, a_{r} be positive integers and m and p satisfy (2). Let G be a graph, such that $\operatorname{cl}(G)<m-1, G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ and $\alpha(G) \neq 2$. Then $|V(G)| \geqq m+p+3$.

Proof. Since G cannot be complete we know that $\alpha(G) \geqq 3$. If $\alpha(G) \geqq 4$, the inequality $|V(G)| \geqq m+p+3$ it follows from Theorem $\mathrm{C}(\mathrm{a})$. Let $\alpha(G)=3$. Suppose that $|V(G)| \leqq m+p+2$. Then, according to Theorem B, $|V(G)|=$ $m+p+2=m+p+\alpha(G)-1$. From Theorem C (b), $|V(G)| \geqq m+3 p>m+p+2$, a contradiction.

Lemma 3. Let n and p be fixed positive integers and $p \geqq 2$. Let G be a graph, such that

$$
\left.\begin{array}{l}
b_{1}, \ldots, b_{s} \in \mathbb{Z} \tag{3}\\
1 \leqq b_{1} \leqq \cdots \leqq b_{s} \leqq p \\
\sum_{i=1}^{s}\left(b_{i}-1\right)+1=n
\end{array}\right\} \quad \Longrightarrow \quad G \rightarrow\left(b_{1}, \ldots, b_{s}\right)
$$

Then for every positive integer a_{1}, \ldots, a_{r}, such that $\max \left\{a_{1}, \ldots, a_{r}\right\} \leqq p$ and $\sum_{i=1}^{r}\left(a_{i}-1\right)+1=m \geqq n$, we have $K_{m-n}+G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$.

Proof. We prove Lemma 3 by induction on $t=m-n$. Let $t=0$, i.e. $m=n$. According to Proposition 2, we may assume that $1 \leqq a_{1} \leqq \cdots \leqq a_{r}$. By (3), $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$.

Let $t \geqq 1$ and $\widetilde{G}=K_{t}+G=K_{m-n}+G$. Let $w \in V\left(K_{t}\right)$ and $G^{\prime}=\widetilde{G}-w=$ $K_{t-1}+G$. Consider an arbitrary r-coloring $V_{1} \cup \ldots \cup V_{r}$ of $V(\widetilde{G})$. Suppose that $w \in V_{i}$ and let $V_{j}, j \neq i$ contains no an a_{j}-clique. We prove that V_{i} contains an a_{i}-clique. Since $w \in V_{i}$, if $a_{i}=1$ this is clear. Let $a_{i} \geqq 2$. By the inductive hypothesis,

$$
\begin{equation*}
G^{\prime}=K_{t-1}+G \rightarrow\left(a_{1}, \ldots, a_{i-1}, a_{i}-1, a_{i+1}, \ldots, a_{r}\right) \tag{4}
\end{equation*}
$$

Consider the r-coloring

$$
V\left(G^{\prime}\right)=V_{1} \cup \ldots \cup\left(V_{i} \backslash\{w\}\right) \cup \ldots \cup V_{r}
$$

From (4) it follows that $V_{i} \backslash\{w\}$ contains an $\left(a_{i}-1\right)$-clique. Hence, V_{i} contains an a_{i}-clique. So, every r-coloring of $V(\widetilde{G})$ is not $\left(a_{1}, \ldots, a_{r}\right)$-free. Therefore, $\widetilde{G}=K_{m-n}+G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$.

Lemma 4. Let $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ and let for some $i, a_{i} \geqq 2$. Then

$$
G \rightarrow\left(a_{1}, \ldots, a_{i-1}, 2, a_{i}-1, a_{i+1}, \ldots, a_{r}\right)
$$

Proof. Consider an $\left(a_{1}, \ldots, a_{i-1}, a_{i}-1, a_{i+1}, \ldots, a_{r}\right)$-free $(r+1)$-coloring $V(G)=V_{1} \cup \ldots \cup V_{r+1}$. If we color the vertices of V_{i} with the same color as the vertices of V_{r+1}, we obtain an $\left(a_{1}, \ldots, a_{r}\right)$-free coloring of $V(G)$, a contradiction.
5. Proof of Theorem 1. We prove Theorem 1 by induction on t.
I. $t=3$. If $p=3$, the inequality follows from Theorem F . Therefore, we may assume that $p \geqq 4$. Let $G \rightarrow(2,2,2, p)$ and $\operatorname{cl}(G)<p+2$. We need to prove that $|V(G)| \geqq 2 p+6$. Suppose that $|N(v)|=|V(G)|-1$ for some $v \in V(G)$. Then $G-v \rightarrow(2,2, p)$ and $\operatorname{cl}(G-v)<p+1$. By $F(2,2, p ; p+1) \geqq 2 p+5$, $|V(G-v)| \geqq 2 p+5$. Hence, $|V(G)| \geqq 2 p+6$. Therefore, we will assume that

$$
\begin{equation*}
|N(v)| \neq|V(G)|-1, \quad \forall v \in V(G) \tag{5}
\end{equation*}
$$

According to Theorem $\mathrm{B},|V(G)| \geqq 2 p+5$. Hence, it is sufficient to prove that $|V(G)| \neq 2 p+5$. Assume the contrary. Then, by Lemma 1, $N(u) \nsubseteq N(v)$, $\forall u, v \in V(G)$. Therefore, $|N(v)| \neq|V(G)|-2$. This, thogether with (5), implies that

$$
\begin{equation*}
|N(v)| \leqq|V(G)|-3, \quad \forall v \in V(G) \tag{6}
\end{equation*}
$$

It follows from Lemma 2 that

$$
\begin{equation*}
\alpha(G)=2 \tag{7}
\end{equation*}
$$

According to Theorem B, $F(2,2, p+1 ; p+2) \geqq 2 p+6$. Hence, $G \nrightarrow(2,2, p+1)$. Let $V(G)=X \cup Y \cup Z$ be a (2, 2, p+1)-free 3-coloring. According to (7), $|X| \leqq 2$, $|Y| \leqq 2$. From (6) and (7) it follows that we may assume that $|X|=2,|Y|=2$. Let $X=\{a, b\}, Y=\{c, d\}, G_{1}=G[a, b, c, d]$ and $G_{2}=G[Z]$. Obviously,

$$
G \rightarrow(2,2,2, p) \Rightarrow G_{2} \rightarrow(2, p)
$$

Since Z contains no $(p+1)$-cliques, $\operatorname{cl}\left(G_{2}\right)<p+1$. From Theorem A it follows that $G_{2}=\bar{C}_{2 p+1}$. Let $C_{2 p+1}=v_{1}, \ldots, v_{2 p+1}$. We define

$$
\begin{aligned}
& Q=\left\{v_{2 i-1}: i=1, \ldots, p-2\right\} \cup\left\{v_{2 p}\right\} \\
& Q_{1}=Q \cup\left\{v_{2 p-3}\right\} \quad \text { and } \quad Q_{2}=Q \cup\left\{v_{2 p-2}\right\} .
\end{aligned}
$$

Obviously, Q_{1} and Q_{2} are p-cliques of $\bar{C}_{2 p+1}$. From (7) it follows that $E\left(G_{1}\right)$ contains two independent edges. Without loss of generality we can assume that $[a, c],[b, d] \in E\left(G_{1}\right)$. From $\operatorname{cl}(G)<p+2$ it follows that one of the vertices a, c is not adjacent to at least one of the vertices $v_{1}, \ldots, v_{2 p+1}$, say $\left[a, v_{1}\right] \notin E(G)$. Consider the 4-coloring $V(G)=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where $V_{1}=\left\{v_{2 p}, v_{2 p+1}\right\}$, $V_{2}=\left\{v_{2 p-1}, v_{2 p-2}\right\}, V_{3}=\{c, d\}$. Since V_{1}, V_{2}, V_{3} are independent sets, it follows from $G \rightarrow(2,2,2, p)$ that V_{4} contains a p-clique. Since $Q^{\prime}=Q_{1} \backslash\left\{v_{2 p}\right\}$ is the unique $(p-1)$-clique in $V_{4} \backslash\{a, b\}$ then this p-clique is either $Q^{\prime} \cup\{a\}$ or $Q^{\prime} \cup\{b\}$. Since $v_{1} \in Q^{\prime}$ and $\left[a, v_{1}\right] \notin E(G), Q^{\prime} \cup\{a\}$ is not a clique. Hence, $Q^{\prime} \cup\{b\}$ is a p-clique and thus

$$
\begin{equation*}
Q^{\prime}=Q_{1} \backslash\left\{v_{2 p}\right\} \subseteq N(b) \tag{8}
\end{equation*}
$$

Let $Q^{\prime \prime}=Q_{2} \backslash\left\{v_{2 p-5}\right\}$. Similarly from the 4-coloring $V(G)=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where $V_{1}=\left\{v_{2 p-3}, v_{2 p-4}\right\}, V_{2}=\left\{v_{2 p-5}, v_{2 p-6}\right\}, V_{3}=\{c, d\}$ it follows that either $Q^{\prime \prime} \cup\{a\}$ or $Q^{\prime \prime} \cup\{b\}$ is a p-clique. Since $p \geqq 4$, we have $2 p-6 \geqq 2$ and thus $v_{1} \in Q^{\prime \prime}$. From $\left[a, v_{1}\right] \notin E(G)$ it follows that $Q^{\prime \prime} \cup\{b\}$ is a p-clique. Therefore,

$$
\begin{equation*}
Q^{\prime \prime}=Q_{2} \backslash\left\{v_{2 p-5}\right\} \subseteq N(b) \tag{9}
\end{equation*}
$$

By (8) and (9),

$$
\begin{equation*}
Q_{1} \subseteq N(b) \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
Q_{2} \subseteq N(b) \tag{11}
\end{equation*}
$$

Case 1. $[b, c] \in E(G)$. Consider the 4-coloring $V(G)=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where $V_{1}=\left\{v_{2 p-1}, v_{2 p-2}\right\}, V_{2}=\left\{v_{2 p-3}, v_{2 p-4}\right\}, V_{3}=\{a, b\}$. Since V_{1}, V_{2}, V_{3} are independent sets, then it follows from $G \rightarrow(2,2,2, p)$ that V_{4} contains a p-clique L. Since Q is the unique $(p-1)$-clique in $V_{4} \backslash\{a, b\}$, either $Q \cup\{c\}=L$ or $Q \cup\{d\}=L$. If $Q \cup\{c\}=L$, then from $\operatorname{cl}(G)<p+2$, (10) and (11) it follows that $\left\{c, v_{2 p-2}, v_{2 p-3}\right\}$ is an independent set, contradicting equality (7). The case $L=Q \cup\{d\}$ similarly leads to a contradiction.

Case 2. $[b, c] \notin E(G)$. Consider the 4-coloring $V(G)=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where $V_{1}=\left\{v_{2 p}, v_{2 p+1}\right\}, V_{2}=\left\{v_{2 p-1}, v_{2 p-2}\right\}, V_{3}=\left\{v_{2 p-3}, v_{2 p-4}\right\}$. Since V_{1}, V_{2}, V_{3} are independent sets, then it follows from $G \rightarrow(2,2,2, p)$ that V_{4} contains a p-clique L. Since $\operatorname{cl}\left(G_{1}\right)=2,\left|L \cap V\left(\bar{C}_{2 p+1}\right)\right| \geqq p-2$. Observe that $\widetilde{Q}=Q \backslash\left\{v_{2 p}\right\}$ is the unique $(p-2)$-clique in $V_{4} \backslash\{a, b, c, d\}$. Therefore, $L \cap V\left(\bar{C}_{2 p+1}\right)=\widetilde{Q}$. From
$v_{1} \in \widetilde{Q}$ and $\left[a, v_{1}\right] \notin E(G)$ it follows that $b \in L$. By $[b, c] \notin E(G), L=\widetilde{Q} \cup\{b, d\}$. Thus,

$$
\begin{equation*}
\widetilde{Q}=Q \backslash\left\{v_{2 p}\right\} \subseteq N(d) \tag{12}
\end{equation*}
$$

Similarly, from the 4-coloring $V(G)=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where $V_{1}=$ $\left\{v_{2 p-1}, v_{2 p-2}\right\}, V_{2}=\left\{v_{2 p-3}, v_{2 p-4}\right\}, V_{4}=\left\{v_{2 p-5}, v_{2 p-6}\right\}$, it follows that

$$
\begin{equation*}
Q \backslash\left\{v_{2 p-5}\right\} \subseteq N(d) \tag{13}
\end{equation*}
$$

By (12) and (13),

$$
\begin{equation*}
Q \subseteq N(d) \tag{14}
\end{equation*}
$$

From $\operatorname{cl}(G)<p+2,(10)$ and (14) it follows that $\left[d, v_{2 p-3}\right] \notin E(G) . \operatorname{By} \operatorname{cl}(G)<$ $p+2,(11)$ and (14), $\left[d, v_{2 p-2}\right] \notin E(G)$. So, $\left\{d, v_{2 p-3}, v_{2 p-2}\right\}$ is an independent set, contradicting equality (7).
II. $t=4$. Let $G \rightarrow(2,2,2,2, p)$ and $\operatorname{cl}(G)<p+3$. We need to prove that $|V(G)| \geqq 2 p+7$. According to Theorem $\mathrm{B},|V(G)| \geqq 2 p+6$. Hence, it is sufficien to prove that $|V(G)| \neq 2 p+6$. Assume the contrary. As in the previous situation $t=3$, we may assume that the graph G satisfies the conditions (6) and (7). According to Theorem B, $F(2,2, p+2 ; p+3) \geqq 2 p+8$. Hence, $G \nrightarrow(2,2, p+2)$. Let $V(G)=X \cup Y \cup Z$ be a $(2,2, p+2)$-free 3 -coloring. From (6) and (7) it follows that we may assume that $|X|=2,|Y|=2$. Let $X=\{a, b\}, Y=\{c, d\}$ and $G_{1}=G[Z]$. Observe that

$$
G \rightarrow(2,2,2,2, p) \Rightarrow G_{1} \rightarrow(2,2, p)
$$

Since Z contains no $(p+2)$-cliques, $\operatorname{cl}\left(G_{1}\right)<p+2$. According to Theorem A, $G_{1}=K_{1}+\bar{C}_{2 p+1}$. Let $V\left(K_{1}\right)=\{w\}$ and $C_{2 p+1}=v_{1}, \ldots, v_{2 p+1}$. From (7) it follows that either $[a, w] \in E(G)$ or $[b, w] \in E(G)$, say $[a, w] \in E(G)$. Similarly, we may assume also that $[c, w] \in E(G)$. From (6) it follows that $[w, b] \notin E(G)$ and $[w, d] \notin E(G)$.

Case 1. $[a, c] \notin E(G)$. Obviously, $G[w, a, b, c, d]$ contains no 3 -cliques. Since $\bar{C}_{2 p+1}-\left\{v_{1}, \ldots, v_{7}\right\}$ contains no $(p-2)$-cliques, the set $M=V(G) \backslash$ $\left\{v_{1}, \ldots, v_{7}\right\}$ contains no p-cliques. Thus, the 5 -coloring

$$
V(G)=\left\{v_{1}, v_{2}\right\} \cup\left\{v_{3}, v_{4}\right\} \cup\left\{v_{5}, v_{6}\right\} \cup\left\{v_{7}\right\} \cup M
$$

is $(2,2,2,2, p)$-free, a contradiction.

Case 2. $[a, c] \in E(G)$. From $\operatorname{cl}(G)<p+3$ it follows that one of the vertices a, c is not adjacent to at least of the vertices $v_{1}, \ldots, v_{2 p+1}$, say $\left[a, v_{1}\right] \notin E(G)$. Since $G[w, b, c, d]$ contains no 3 -cliques, then $N=V(G) \backslash\left\{a, v_{1}, \ldots, v_{7}\right\}$ contains no p-cliques. Thus, the 5 -coloring

$$
V(G)=\left\{v_{1}, a\right\} \cup\left\{v_{2}, v_{3}\right\} \cup\left\{v_{4}, v_{5}\right\} \cup\left\{v_{6}, v_{7}\right\} \cup N
$$

is $(2,2,2,2, p)$-free, a contradiction.
III. $t \geqq 5$. Let

$$
G \rightarrow(\underbrace{2, \ldots, 2}_{t}, p) \text { and } \operatorname{cl}(G)<p+t-1
$$

Then, according to Proposition 3,

$$
\begin{equation*}
\chi(G) \geqq t+p \tag{15}
\end{equation*}
$$

We need to prove that $|V(G)| \geqq t+2 p+3$.
Case 1. $G \rightarrow(2, t+p-2)$. Obviously, $\chi\left(\bar{C}_{2 t+2 p-3}\right)=t+p-1$. Thus, from (15) it follows that $G \neq \bar{C}_{2 t+2 p-3}$. According to Theorem A, $|V(G)| \geqq 2 t+2 p-2$. Observe that if $t \geqq 5$, then $2 t+2 p-2 \geqq t+2 p+3$. Therefore, $|V(G)| \geqq t+2 p+3$.

Case 2. $G \nrightarrow(2, t+p-2)$. Let $V(G)=X \cup Y$ be $(2, t+p-2)$-free 2 -coloring and $G_{1}=G[Y]$. Clearly, we may assume that $X \neq \emptyset$. It is clear also that

$$
G \rightarrow(\underbrace{2, \ldots, 2}_{t}, p) \Rightarrow G_{1} \rightarrow(\underbrace{2, \ldots, 2}_{t-1}, p)
$$

Since Y contains no $(t+p-2)$-cliques, $\operatorname{cl}\left(G_{1}\right)<t+p-2$. By the inductive hypothesis, $\left|V\left(G_{1}\right)\right| \geqq t+2 p+2$. Since $X \neq \emptyset,|V(G)| \geqq t+2 p+3$.
6. Proof of Theorem 2. Consider the set $M \subseteq\left\{a_{1}, \ldots, a_{r}\right\}$, where $a_{i} \in M \Longleftrightarrow a_{i}=2$. We prove Theorem 2 by induction on $n=m-|M|-1$. Obviously, $n=\sum_{a_{i} \geqq 3}\left(a_{i}-1\right) \geqq p-1$. The base of the induction is then $n=p-1$. According to Proposition 1 and Proposition 2 we may assume that $2 \leqq a_{1} \leqq \cdots \leqq$ $a_{r}=p$. From these inequalities and $n=p-1$ it follows that $a_{1}=\cdots=a_{r-1}=2$. Therefore, if $n=p-1$, Theorem 2 follows from Theorem 1 . Let $n \geqq p$. Then from some $i \in\{1, \ldots, r-1\}, a_{i} \geqq 3$. By Lemma 4 ,

$$
F\left(a_{1}, \ldots, a_{r} ; m-1\right) \geqq F\left(a_{1}, \ldots, a_{i-1}, 2, a_{i}-1, a_{i+1}, \ldots, a_{r} ; m-1\right)
$$

By the inductive hypothesis,

$$
F\left(a_{1}, \ldots, a_{i-1}, 2, a_{i}-1, \ldots, a_{r} ; m-1\right) \geqq m+p+3
$$

Hence, $F\left(a_{1}, \ldots, a_{r} ; m-1\right) \geqq m+p+3$.

7. Proof of Theorem 3.

I. Proof of the inequality $\boldsymbol{F}\left(a_{1}, \ldots, a_{r} ; \boldsymbol{m}-1\right) \geqq \boldsymbol{m}+\mathbf{6}$. Let G be a graph such that $G \rightarrow(2,2,3)$ and $\operatorname{cl}(G)<4$. By Theorem B, $|V(G)| \geqq 10$. From $R(4,3)=9$ and $\operatorname{cl}(G)<4$ it follows that $\alpha(G) \geqq 3$. According to Lemma $2,|V(G)| \geqq 11$. Hence, $F(2,2,3 ; 4) \geqq 11$. From Theorem 2 , it follows that $F\left(a_{1}, \ldots, a_{r} ; m-1\right) \geqq m+6$.
II. Proof of the inequality $\boldsymbol{F}\left(a_{1}, \ldots, a_{r} ; \boldsymbol{m}-\mathbf{1}\right) \leqq \boldsymbol{m}+\mathbf{6}$. Consider the graph P_{1}, whose complementary graph \bar{P}_{1} is given in Fig. 1. We prove that this graph satisfies the conditions of Lemma 3 with $p=3$ and $n=6$. Obviously, from

$$
\left\{\begin{array}{c}
b_{i} \in \mathbb{Z}, i=1, \ldots, s \\
2 \leqq b_{1} \leqq b_{2} \leqq \cdots \leqq b_{s} \leqq 3 \\
\sum_{i=1}^{s}\left(b_{i}-1\right)+1=6
\end{array}\right.
$$

it follows that:

1. $s=3, b_{1}=2, b_{2}=b_{3}=3$;
2. $s=4, b_{1}=b_{2}=b_{3}=2, b_{4}=3$;
3. $s=5, b_{1}=b_{2}=b_{3}=b_{4}=b_{5}=2$.

It is proved in [17] that $P_{1} \rightarrow(2,3,3)$. From Lemma 4 it follows that $P_{1} \rightarrow$ $(2,2,2,3)$ and $P_{1} \rightarrow(2,2,2,2,2)$. By Proposition 1 and Lemma 3, $K_{m-6}+P_{1} \rightarrow$ $\left(a_{1}, \ldots, a_{r}\right)$. Since $\operatorname{cl}\left(P_{1}\right)=4, \operatorname{cl}\left(K_{m-6}+P_{1}\right)=m-2$. Hence, $F\left(a_{1}, \ldots, a_{r} ; m-\right.$ $1) \leqq\left|V\left(K_{m-6}+P_{1}\right)\right|=m+6$.

8. Proof of Theorem 4.

I. Proof of the inequality $F\left(a_{1}, \ldots, a_{r} ; m-1\right) \geqq m+7$. Since $F(2,2,4 ; 5)=13$, [11], from Theorem 2 it follows that $F\left(a_{1}, \ldots, a_{r} ; m-1\right) \geqq$ $m+7$.

Fig. 1. Graph \bar{P}_{1}.

Fig. 2. Graph \bar{P}_{2}.
II. Proof of the inequality $\boldsymbol{F}\left(a_{1}, \ldots, a_{r} ; \boldsymbol{m}-1\right) \leqq m+7$. Consider the graph P_{2}, whose complementary graph \bar{P}_{2} is given in Fig. 2. This is well known construction of Greenwood and Gleason [3], which shows that the Ramsey number $R(3,5) \geqq 14$. We prove that this graph satisfies the conditions of Lemma 3 with $p=4$ and $m=6$. Obviously, from

$$
\left\{\begin{array}{c}
b_{i} \in \mathbb{Z}, i=1, \ldots, s \\
2 \leqq b_{1} \leqq \cdots \leqq b_{s} \leqq 4 \\
\sum_{i=1}^{s}\left(b_{i}-1\right)+1=6
\end{array}\right.
$$

it follows that:

1. $s=2, b_{1}=3, b_{2}=4$;
2. $s=3, b_{1}=b_{2}=2, b_{3}=4$;
3. $s=3, b_{1}=2, b_{3}=b_{4}=3$;
4. $s=4, b_{1}=b_{2}=b_{3}=2, b_{4}=3$;
5. $s=5, b_{1}=b_{2}=b_{3}=b_{4}=b_{5}=2$.

It is proved in [10] that $P_{2} \rightarrow(3,4)$. From Lemma 4 it follows that $P_{2} \rightarrow$ $(2,2,4), P_{2} \rightarrow(2,3,3), P_{2} \rightarrow(2,2,2,3), P_{2} \rightarrow(2,2,2,2,2)$. By Proposition 1 and Lemma 3, $K_{m-6}+P_{2} \rightarrow\left(a_{1}, \ldots, a_{r}\right)$. Since $\operatorname{cl}\left(P_{2}\right)=4, \operatorname{cl}\left(K_{m-6}+P_{2}\right)=m-2$. Hence, $F\left(a_{1}, \ldots, a_{r} ; m-1\right) \leqq\left|V\left(K_{m-6}+P_{2}\right)\right|=m+7$.

REFERENCES

[1] V. Chvátal. The minimality of the Mycielski graph. Lecture Notes in Math. 406 (1974), 243-246.
[2] J. Folkman. Graphs with monochromatic complete subgraphs in every edge coloring. SIAM J. Appl. Math. 18 (1970), 19-24.
[3] R. Greenwood, A. Gleason. Combinatorial relations and chromatic graphs. Canad. J. Math. 7 (1955), 1-7.
[4] T. Łuczak, A. Ruciński, S. Urbański. On minimal vertex Folkman graphs. Discrete Math. 236 (2001), 245-262.
[5] J. Mycielski. Sur le coloriage des graphes. Colloq. Math. 3 (1955), 161162.
[6] N. Nenov. An example of a 15-vertex (3,3)-Ramsey graph with clique number 4. C. R. Acad. Bulgare Sci. 34 (1981), 1487-1489 (in Russian).
[7] N. Nenov. On the Zykov numbers and some its applications to Ramsey theory. Serdica Bulg. Math. Publ. 9 (1983), 161-167 (in Russian).
[8] N. Nenov. The chromatic number of any 10-vertex graph without 4-cliques is at most 4. C. R. Acad. Bulgare Sci. 37 (1984), 301-304 (in Russian).
[9] N. Nenov. On the small graphs with chromatic number 5 without 4cliques. Discrete Math. 188 (1998), 297-298.
[10] N. Nenov. On the vertex Folkman number $F(3,4)$. C. R. Acad. Bulgare Sci. 54, 2 (2001), 23-26.
[11] N. Nenov. On the 3-colouring vertex Folkman number $F(2,2,4)$. Serdica Math. J. 27 (2001), 131-136.
[12] N. Nenov. Ramsey graphs and some constants related to them. Ph. D. Thesis, University of Sofia, Sofia, 1980.
[13] N. Nenov. On a class of vertex Folkman graphs. Annuaire Univ. Sofia, Fac. Math. Inform. 94 (2000), 15-25.
[14] N. Nenov. A generalization of a result of Dirac. Annuaire Univ. Sofia Fac. Math. Inform. 95 (2001), 7-16.
[15] N. Nenov. Lower bound for a number of vertices of some vertex Folkman graphs. C. R. Acad. Bulgare Sci. 55, 4 (2002), 33-36.
[16] N. Nenov. On the triangle vertex Folkman numbers. Discrete Math., to appear.
[17] N. Nenov. Computation of the vertex Folkman numbers $F(2,2,2,3 ; 5)$ and F(2, 3, 3; 5). Annuaire Univ. Sofia, Fac. Math. Inform. 95 (2001), 17-27.
[18] E. Nedialkov, N. Nenov. Computation of the vertex Folkman numbers $F(2,2,2,4 ; 6)$ and $F(2,3,4 ; 6)$. Electron. J. Combin. 9 (2002), \# R9.
[19] E. Nedialkov, N. Nenov. Computation of the vertex Folkman number $F(4,4 ; 6)$. Proceedings of the Third Euro Workshop on Optimal Codes and related topics, Sunny Beach, Bulgaria, 11-16 June 2001, 123-128.
[20] K. Piwakowski, S. Radziszowski, S. Urbański. Computation of the Folkman number $F_{e}(3,3 ; 5)$. J. Graph Theory, 32 (1999), 41-49.

Faculty of Mathematics and Informatics
"St. Kliment Ohridski" University of Sofia
5, James Bourchier Blvd.
1164 Sofia, Bulgaria
e-mail: nenov@fmi.uni-sofia.bg Received April 29, 2002

[^0]: 2000 Mathematics Subject Classification: 05C55.
 Key words: vertex Folkman graph, vertex Folkman number.

