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A PRODUCT TWISTOR SPACE

David E. Blair
∗

Communicated by O. Mushkarov

Abstract. In previous work a hyperbolic twistor space over a paraquater-
nionic Kähler manifold was defined, the fibre being the hyperboloid model
of the hyperbolic plane with constant curvature −1. Two almost complex
structures were defined on this twistor space and their properties studied. In
the present paper we consider a twistor space over a paraquaternionic Kähler
manifold with fibre given by the hyperboloid of 1-sheet, the anti-de-Sitter
plane with constant curvature −1. This twistor space admits two natural
almost product structures, more precisely almost para-Hermitian structures,
which form the objects of our study.

1. Introduction and hyperbolic twistor spaces. In [2, 3] we
introduced a hyperbolic twistor space which we will need to review. The starting
point was the following simple observation. In [12] P. Libermann introduced the
notion of an almost quaternionic structure of the second kind (presque quater-
nioniennes de deuxième espèce). This consists of an almost complex structure J1
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and an almost product structure, J2 such that J1J2+J2J1 = 0. Setting J3 = J1J2

one has a second almost product structure which also anti-commutes with J1 and
J2. Now on a manifold M with such a structure, set

j = y1J1 + y2J2 + y3J3.

Then j is an almost complex structure on M if and only if

−y2

1
+ y2

2
+ y2

3
= −1.

This suggested a hyperbolic twistor space π : Z −→ M as a hypersurface in
the subbundle E of End(TM) spanned by {J1, J2, J3} with each fibre being
this hyperboloid, noting that either branch may be regarded as a model of the
hyperbolic plane. Recall that the classical twistor space over a quaternionic
Kähler manifold of dimension ≥ 8 is a bundle over the manifold with the fibre
being a sphere in the subbundle of the bundle of endomorphisms determined by
the three underlying local almost complex structures defining the quaternionic
Kähler structure.

There are a number of examples of almost quaternionic structures of
the second kind including the paraquaternionic projective space as described
by Blaz̆ić [4]. Under certain holonomy assumptions almost quaternionic struc-
tures of the second kind become paraquaternionic Kähler (see e.g. Garcia-Rio,
Matsushita and Vazquez-Lorenzo [7]). Even more strongly one has the notion
of a neutral hyperkähler structure and Kamada [11] has observed that the only
compact four-manifolds admitting such a structure are complex tori and primary
Kodaira surfaces. We remark that the neutral hyperkähler four-manifolds are
Ricci flat and self-dual ([11]).

Also the tangent bundle of a differentiable manifold carries an almost
quaternionic structure of the second kind as studied by S. Ianus and C. Udriste
[8, 9]; this includes examples where the dimension of the manifold carrying the
structure is not necessarily 4n.

However the most natural setting for this kind of structure is on a manifold
M of dimension 4n with a neutral metric g, i.e. a semi-Riemannian metric of
signature (2n, 2n). One reason for this is that such a metric may be given with
respect to which J1 acts as an isometry on tangent spaces and J2, J3 act as anti-
isometries; the effect of this is that we may define three fundamental 2-forms Ωa,
a = 1, 2, 3, by Ωa(X,Y ) = g(X,JaY ). Riemannian metrics can be chosen such
that g(JaX,JaY ) = g(X,Y ), but then Ω2 and Ω3 are symmetric tensor fields
instead of 2-forms.
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The neutral metric g induces a metric on the fibres of E by
1

4n
trAtB

where A and B are endomorphisms of TpM and At is the adjoint of A with
respect to g. This metric on the fibre is of signature (+ − −), the norm of J1

being +1 and the norms of J2 and J3 being −1.

Alternatively one may choose a Lorentz metric 〈 , 〉 directly on the fibres
of E such that 〈J1, J1〉 = −1, 〈J2, J2〉 = +1, 〈J3, J3〉 = +1. This metric is of
signature (−+ +) and has the advantage of inducing immediately a Riemannian
metric of constant curvature −1 on the hyperbolic planes defined by −y2

1
+ y2

2
+

y2

3
= −1, y1 > 0, in each fibre. In [3] we adopted this metric for its geometric

attractiveness and as a matter of notation set ǫ1 = −1 and ǫ2 = ǫ3 = +1. Further,
denoting also by π the projection of E onto M , if xi are local coordinates on M ,
set qi = xi ◦π. For a section of E we denote its vertical lift to E as a vector field
by the superscript v and frequently utilize the natural identifications of Jv

a with

Ja itself and with
∂

∂ya

in terms of the fibre coordinates y1, y2, y3.

As with the theory of twistor spaces over quaternionic Kähler manifolds,
the theory of hyperbolic twistor spaces over paraquaternionic Kähler manifolds of
dimension ≥ 8 develops nicely by virtue of the fact that the covariant derivatives
of sections of the subbundle of the endomorphism bundle are again sections of the
subbundle. In particular we have the machinery of horizontal lifts: Let D denote
the Levi-Civita connection of the neutral metric on M . Then the horizontal lift
Xh of a vector field X to the bundle E is is given by

(1.1) Xh =
∑

i

Xi ∂

∂qi
−

3
∑

a,b=1

ǫbya(〈DXJa, Jb〉 ◦ π)
∂

∂yb

.

We then defined two almost complex structures J1 and J2 on the hyper-
bolic twistor space Z as follows. Acting on horizontal vectors these are the same
and given by J1X

h = J2X
h = (jX)h where as before j =

∑

yaJa. For a vertical

vector V = V 1
∂

∂y1

+ V 2
∂

∂y2

+ V 3
∂

∂y3

tangent to Z, i.e. 〈σ, V 〉 = 0, let

(1.2) J1V = (y3V
2 − y2V

3)
∂

∂y1

+ (y3V
1 − y1V

3)
∂

∂y2

+ (y1V
2 − y2V

1)
∂

∂y3

and let J2V be the negative of this expression. In particular JkV = (−1)k−1σ×V ,
k = 1, 2, σ ∈ Z where × is the vector product determined by the paraquaternionic
algebra.
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We also defined a semi-Riemannian metric on Z by h = π∗g + 〈 , 〉v , 〈 , 〉v
being the restriction of 〈 , 〉 to the fibres of Z. It is easy to check that this metric
is Hermitian with respect to both J1 and J2.

The theory now develops as in the quaternionic Kähler case and we have
the following result from [3] quite analogous to the classical twistor space theory;
τ denotes the scalar curvature of the base manifold.

Theorem 1. On the hyperbolic twistor space of a paraquaternionic
Kähler manifold of dimension ≥ 8 we have the following: The almost complex
structure J1 is integrable and the Hermitian structure (J1, h) is indefinite semi-
Kähler. The structure (J1, h) is indefinite Kähler if and only if τ = −4n(n + 2).
The almost complex structure J2 is never integrable but (J2, h) is indefinite
semi-Kähler. The structure (J2, h) is indefinite almost Kähler if and only if
τ = 4n(n + 2) and indefinite nearly Kähler if and only if τ = −2n(n + 2).

These numbers are the negatives of what one would have in the usual
twistor space over a quaternionic Kähler manifold of dimension ≥ 8. This sign
change is due to our choice of metric on the fibres of E. If we take < ,> as the
(+ − −) metric we would have the other values, but the fibres of Z would then
have a negative definite metric.

We end this section with a brief discussion of the Levi-Civita connection
by ∇ of the metric h = π∗g + 〈 , 〉, on E. At a point σ ∈ Z ⊂ E,

(∇XhY h)σ = (DXY )hσ −
1

2
(RXY σ)v .

For sections s and t of E we have

(∇Xhsv)σ =
1

2
(R̂σsX)h + (DXs)vσ, (∇svXh)σ =

1

2
(R̂σsX)h, ∇sv tv = 0.

where R̂σsX is defined by g(R̂σsX,Y ) = h((RXY σ)v , sv).

2. Product twistor spaces. The idea of a hyperbolic twistor space
with fibre coming from the two-sheeted hyperboloid raises the question: What
about the other hyperboloid, −y2

1
+ y2

2
+ y2

3
= +1? This hyperboloid is a doubly

ruled surface and hence has a natural almost product structure. The geometry

of this hyperboloid is the following. The position vector is σ = y1

∂

∂y1

+ y2

∂

∂y2

+

y3

∂

∂y3

and the induced metric is ds2 = dy2

1
−dy2

2
−dy2

3
making the hyperboloid the

anti-de Sitter plane with constant curvature −1. We’ve chosen the induced metric
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as the hyperboloid inherits a neutral metric from either the induced metric or the
Lorentz metric on the fibres of E; the latter option would make the hyperboloid
the de-Sitter plane of constant curvature +1. The vector fields

e1 = (1 + y2

1)
∂

∂y1

− (y3 − y1y2)
∂

∂y2

+ (y2 + y1y3)
∂

∂y3

,

e2 = (1 + y2

1
)

∂

∂y1

+ (y3 + y1y2)
∂

∂y2

− (y2 − y1y3)
∂

∂y3

are both light-like and tangent to the rulings. We note also that 〈e1, e2〉 =
2(1 + y2

1
), 〈σ, e1〉 = 0 and 〈σ, e1〉 = 0.

Now on a manifold M with an almost quaternionic structure of the second
kind, set

p = y1J1 + y2J2 + y3J3.

Then p is an almost product structure on M if and only if

−y2

1 + y2

2 + y2

3 = +1.

This suggests a product twistor space π : Z −→ M as a hypersurface in the sub-
bundle E of End(TM) spanned by {J1, J2, J3} with each fibre being this doubly
ruled hyperboloid viewed as the anti-de-Sitter plane with constant curvature −1.

Lemma. The Weingarten map of the product twistor space Z as a hy-
persurface in the bundle space E annihilates horizontal vectors and acts as the
identity on vertical vectors.

P r o o f. The position vector σ is also a normal ν to the hyperboloid in the
fibres of E and the Weingarten map of a hypersurface is given by ∇Xν = −ǫAX

where ǫ = −1 if 〈ν, ν〉 = −1 as in the present case. Using the summation
convention for repeated indices a, b, c = 1, 2, 3, we have first for a horizontal lift
(equation (1.1)) to a point σ

∇Xhν = ∇Xhyc

∂

∂yc

= −ǫcya(〈DXJa, Jc〉 ◦ π)
∂

∂yc

+ yc(
1

2
(R̂σJc

X)h + (DXJc)
v
σ)

=
1

2
(R̂σσX)h = 0.
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Similarly for a vertical tangent vector V

∇V ν = ∇V yc

∂

∂yc

= (V yc)
∂

∂yc

= V c ∂

∂yc

= V.

Thus AV = V for a vertical tangent V and AX = 0 for a horizontal tangent X.

We now define two almost product structures P1 and P2 on the product
twistor space Z as follows. Acting on horizontal vectors these are the same and
given by P1(X

h
σ ) = P2(X

h
σ ) = (pX)hσ. For a vertical vector V tangent to Z, let

P1V = P1(V
1e1 + V 2e2) = V 2e2 − V 1e1

and let P2V be the negative of this expression. Then P2

i = I giving two almost

product structures on the product twistor space Z. If V is written V = V 1
∂

∂y1

+

V 2
∂

∂y2

+ V 3
∂

∂y3

, 〈σ, V 〉 = 0, the expression for P1V is the same as that for J1V

in equation (1.2) and P2

1
V = V instead of −V simply because −y2

1
+y2

2
+y2

3
= +1

instead of −y2

1
+ y2

2
+ y2

3
= −1.

Restricting the metric 〈 , 〉 to the fibres (hyperboloids of 1-sheet) of Z and
denoting the restriction by 〈 , 〉v , we define a semi-Riemannian metric on Z by
h = π∗g + 〈 , 〉v with signature (2n + 1, 2n + 1). With respect to this metric both
P1 and P2 act as anti-isometries. This latter property implies that each Pi is
an almost paracomplex structure, again a structure introduced by P. Libermann
[13] in 1952, i.e. each Pi is an almost product structure whose corresponding
eigenspaces are isomorphic.

When an almost paracomplex structure P is considered along with the
anti-isometry property, it is called an almost para-Hermitian structure and a
para-Hermitian structure if P is integrable. If P is parallel with respect to the
Levi-Civita connection ∇ of the metric, the structure is said to be para-Kähler. If
the corresponding fundamental 2-form is closed the structure is said to be almost
para-Kähler. If (∇XP)X = 0, the structure is said to be nearly para-Kähler. If
the fundamental 2-form is coclosed, the almost para-Hermitian structure is said to
be semi-para-Kähler. Refinements of these and other classes may be introduced;
classifications of almost para-Hermitian manifolds were given by C. Bejan [1] and
by P. M. Gadea and J. M. Masque [6]. For a general reference to paracomplex
geometry see [5].

We now review paraquaternionic Kähler geometry following [7]. An al-
most quaternionic manifold of the second kind M of dimension 4n and neutral
metric g is said to be paraquaternionic Kähler if the bundle E is parallel with
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respect to the Levi-Civita connection of g. This is equivalent to the existence of
local 1-forms α, β and γ such that

DXJ1 = − γ(X)J2 − β(X)J3,

DXJ2 = −γ(X)J1 − α(X)J3,

DXJ3 = −β(X)J1 + α(X)J2.

From the group theoretic point of view this structure corresponds to the
linear holonomy group being a subgroup of Sp(n, R) · Sp(1, R), just as a quater-
nionic Kähler structure corresponds to the linear holonomy group being a sub-
group of Sp(n) · Sp(1). For n = 1 this is not a restriction.

Setting

A = 2(dα − β ∧ γ), B = 2(dβ + γ ∧ α), C = 2(dγ + α ∧ β)

one can easily obtain the following central relations for the action of the curvature
tensor:

[RXY , J1] = − C(X,Y )J2 − B(X,Y )J3,

[RXY , J2] = −C(X,Y )J1 − A(X,Y )J3,

[RXY , J3] = −B(X,Y )J1 + A(X,Y )J2.

Moreover a paraquaternionic Kähler manifold of dimension ≥ 8 is Einstein and
A, B, C satisfy

A(X,Y ) = −
τg(X,J1Y )

4n(n + 2)
, B(X,Y ) = −

τg(X,J2Y )

4n(n + 2)
, C(X,Y ) =

τg(X,J3Y )

4n(n + 2)

where τ is the scalar curvature of g.
For the product twistor space Z with its almost product structures P1

and P2 and neutral metric h we have the following result.

Theorem 2. On the product twistor space of a paraquaternionic Kähler
manifold of dimension ≥ 8 we have the following: The almost product structure
P1 is integrable and the para-Hermitian structure (P1, h) is semi-para-Kähler.
The structure (P1, h) is para-Kähler if and only if τ = −4n(n + 2). The almost
product structure P2 is never integrable but (P2, h) is semi-para-Kähler. The
structure (P2, h) is almost para-Kähler if and only if τ = 4n(n + 2) and nearly
para-Kähler if and only if τ = −2n(n + 2).

P r o o f. The major effort of the proof is to compute the covariant deriv-
atives of Pi, i = 1, 2. To begin, by the Lemma,

(∇XhPi)Y
h|σ = ∇XhPiY

h − Pi∇XhY h
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= ∇Xh(y1J1Y + y2J2Y + y3J3Y )h − Pi(DXY )h +
1

2
Pi(RXY σ)v

and

RXY σ = y1(−C(X,Y )J2 − B(X,Y )J3) + y2(−C(X,Y )J1 − A(X,Y )J3)

+y3(−B(X,Y )J1 + A(X,Y )J2).

Now

PiRXY σ = (−1)i−1

{

C(X,Y )
[y2 − y1y3

2(1 + y2

1
)
e1 −

y2 + y1y3

2(1 + y2

1
)
e2

]

+B(X,Y )
[y3 + y1y2

2(1 + y2

1
)
e1 −

y3 − y1y2

2(1 + y2

1
)
e2

]

+ A(X,Y )
[1

2
e1 +

1

2
e2

]}

=
(−1)iτ

4n(n + 2)

{[

− g(X,J3Y )
y2 − y1y3

2(1 + y2

1
)

+ g(X,J2Y )
y3 + y1y2

2(1 + y2

1
)

+
1

2
g(X,J1Y )

]

e1

+
[

g(X,J3Y )
y2 + y1y3

2(1 + y2

1
)
− g(X,J2Y )

y3 − y1y2

2(1 + y2

1
)

+
1

2
g(X,J1Y )

]

e2

}

.

Direct expansion of ∇Xh(y1J1Y + y2J2Y + y3J3Y )h −Pi(DXY )h shows that it is

−
1

2
(RXpY σ)v , which is vertical, and expanding this curvature term we have

(RXpY σ)v

= y1(−C(X, y1J1Y + y2J2Y + y3J3Y )J2 − B(X, y1J1Y + y2J2Y + y3J3Y )J3)

+y2(−C(X, y1J1Y + y2J2Y + y3J3Y )J1 − A(X, y1J1Y + y2J2Y + y3J3Y )J3)

+y3(−B(X, y1J1Y + y2J2Y + y3J3Y )J1 + A(X, y1J1Y + y2J2Y + y3J3Y )J2)

=
τ

4n(n + 2)

{

( − y1g(X,J2Y ) − y2g(X,J1Y ))
[y2 − y1y3

2(1 + y2

1
)
e1 +

y2 + y1y3

2(1 + y2

1
)
e2

]

+( − y1g(X,J3Y ) − y3g(X,J1Y ))
[y3 + y1y2

2(1 + y2

1
)
e1 +

y3 − y1y2

2(1 + y2

1
)
e2

]

+( − y2g(X,J3Y ) + y3g(X,J2Y ))
[

−
1

2
e1 +

1

2
e2

]}

.

Now since (∇XhPi)Y
h is vertical, it is enough to consider its inner product with

a vertical tangent vector field V and we have

(2.1) h((∇XhP2)Y
h, V ) =

τ

4n(n + 2)
[V 1g(X,J1Y )+V 2g(X,J2Y )+V 3g(X,J3Y )],
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while

(2.2) (∇XhP1)Y
h = 0.

For (∇XhPi)V , its horizontal part may be found immediately from the
above and to show that its vertical part vanishes we show that (∇XhPi)V is
horizontal. To do this effectively recall that P1 can be given by equation (1.2)
and we may regard this formula as extended to E, i.e. P1V is given by this
formula for V tangent to E, even though one no longer has P2

1
= I. Then

(∇XhP1)
∂

∂y1

= ∇Xh

(

y3

∂

∂y2

−y2

∂

∂y3

)

−P1

(1

2
(R̂σJ1

X)h −γ(X)
∂

∂y2

−β(X)
∂

∂y3

)

= (y1β(X) + y2α(X))
∂

∂y2

+ y3

(1

2
(R̂σJ2

X)h − γ(X)
∂

∂y1

− α(X)
∂

∂y3

)

+( − y1γ(X) + y3α(X))
∂

∂y3

− y2

(1

2
(R̂σJ3

X)h − β(X)
∂

∂y1

+ α(X)
∂

∂y2

)

−
1

2
(pR̂σJ1

X)h + γ(X)
(

y3

∂

∂y1

+ y1

∂

∂y3

)

+ β(X)
(

− y2

∂

∂y1

− y1

∂

∂y2

)

=
1

2
y3(R̂σJ2

X)h −
1

2
y2(R̂σJ3

X)h −
1

2
(pR̂σJ1

X)h

which is horizontal. The proofs for
∂

∂y2

and
∂

∂y3

and for P2 are similar.

Similarly treating (∇V Pi)X
h we find that

h((∇V Pi)X
h, Y h)

(2.3) =
4n(n + 2) + τ

4n(n + 2)
[V 1g(J1X,Y ) + V 2g(J2X,Y ) + V 3g(J3X,Y )].

Finally for vertical tangent vectors V and W

(∇V Pi)W = ∇V PiW − 〈AV,PiW 〉ν − Pi∇V W

noting that the extension of Pi to E annihilates ν. Treating the terms separately
for P1

∇V P1W = (V 3W 2 + y3V W 2 − V 2W 3 − y2V W 3)
∂

∂y1

+(V 3W 1 + y3V W 1 − V 1W 3 − y1V W 3)
∂

∂y2
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+(V 1W 2 + y1V W 2 − V 2W 1 − y2V W 1)
∂

∂y3

,

P1∇V W = (V W 1)
(

y3

∂

∂y2

− y2

∂

∂y3

)

+ (V W 2)
(

y3

∂

∂y1

+ y1

∂

∂y3

)

+(V W 3)
(

− y2

∂

∂y1

− y1

∂

∂y2

)

and using 〈y, V 〉 = 〈y,W 〉 = 0 and −y2

1
+ y2

2
+ y2

3
= 1

y1〈V,P1W 〉 = V 2W 3 − V 3W 2,

y2〈V,P1W 〉 = V 1W 3 − V 3W 1,

y3〈V,P1W 〉 = V 1W 2 − V 2W 1.

Combining these we have (∇V P1)W = 0 and similarly (∇V P2)W = 0.
Using these computations we can now easily complete the proof of The-

orem 2. That the almost para-Hermitian structure (P1, h) is para-Kähler if and
only if τ = −4n(n + 2) follows immediately from the above relations, especially
equations (2.2) and (2.3). To show the integrability of P1 first recall that the
Nijenhuis tensor of P1 may be written in terms of the connection ∇ as

(2.4) [P1,P1](X,Y ) = P1(∇Y P1)X − (∇P1Y P1)X −P1(∇XP1)Y +(∇P1XP1)Y.

The cases [P1,P1](X
h, Y h) = 0 and [P1,P1](V,W ) = 0 are immediate. For

[P1,P1](V,Xh), observe that the first two terms of the expansion (2.4) vanish
while the remaining two are horizontal. Thus it is enough to compute

h([P1,P1](V,Xh), Y h) = h((∇V P1)X
h, (pY )h) + h((∇P1V P1)X

H , Y h);

upon expansion using (2.3) the two terms will cancel.
For the almost para-Hermitian structure (P2, h), to see that it is almost

para-Kähler if and only if τ = 4n(n + 2), the key case to consider is

h((∇XhP2)Y
h, V ) + h((∇V P2)X

h, Y h) + h((∇Y hP2)V,Xh)

=
τ − 4n(n + 2)

4n(n + 2)
[V 1g(X,J1Y ) + V 2g(X,J2Y ) + V 3g(X,J3Y )].

To see that (P2, h) is nearly para-Kähler if and only if τ = −2n(n+2), note that
h((∇XhP2)Y

h + (∇Y hP2)X
h, V ) = 0 by the skew-symmetry in equation (2.1)

and by equations (2.1) and (2.3)

h((∇XhP2)V + (∇V P2)X
h, Y h)
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=
4n(n + 2) + 2τ

4n(n + 2)
[V 1g(J1X,Y ) + V 2g(J2X,Y ) + V 3g(J3X,Y )].

To show the non-integrability of P2 compute h([P2,P2](V,Xh), Y h) at the

point (0, 0, 1) with V = e1 =
∂

∂y1

−
∂

∂y2

. The first term in the expansion (2.4)

yields

−h((∇XhP2)V, (pY )h) = −
τ

4n(n + 2)
[g(X,J2Y ) − g(X,J1Y )].

Proceeding in this way with the other terms

h([P2,P2](V,Xh), Y h) = 2[g(X,J2Y ) − g(X,J1Y )]

which is not identically zero, e.g take X = J2Y .

Also by the above computation, (∇XhPi)X
h = 0 for any X ∈ TM and

(∇V Pi)V = 0 for any vertical vector V , i = 1, 2. Therefore (Pi, h) is indefinite
semi-para-Kähler.

Finally we remark that, motivated by other considerations, Jensen and
Rigoli [10] developed for neutral 4-dimensional manifolds, a similar analogue of
the classical twistor space, called the reflector space.
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[4] N. Blaz̆ić. Paraquaternionic projective space and pseudo-Riemannian
geometry. Publ. Inst. Math. (Beograd) (N.S.) 60 (1996), 101–107.

[5] V. Cruceanu, P. Fortuny, P. M. Gadea. A survey on paracomplex
geometry. Rocky Mountain J. Math. 26 (1996), 83–115.



174 David E. Blair

[6] P. M. Gadea, J. M. Masque. Classification of almost parahermitian man-
ifolds. Rend. Mat. Appl. 11 (1991), 377–396.

[7] E. Garcia-Rio, Y. Matsushita, R. Vázquez-Lorenzo. Paraquater-
nionic Kähler manifolds. Rocky Mountain J. Math. 31 (2001), 237–260.

[8] S. Ianus. Sulle strutture canoniche dello spazio fibrato tangente di una
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