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ON PROJECTIVE PLANE OF ORDER 13 WITH A

FROBENIUS GROUP OF ORDER 39 AS A COLLINEATION

GROUP

Razim Hoxha

Communicated by S. L. Troyanski

Abstract. One of the most outstanding problems in combinatorial math-
ematics and geometry is the problem of existence of finite projective planes
whose order is not a prime power.

It is well known that a Desarguesian plane of order p, p prime number,

has not a proper subplane, also every known non Desarguesian plane (of order

pr, p – odd prime number and r ≥ 2) has a subplane of order 2.

It was shown by E. Ademaj [1] that: If P is a projective plane of order

11 on which operates a group G = 〈ρ, τ/ρ7 = τ9 = 1, ρτ = ρ2〉 of order 63, then

G cannot fix a subplane of order 2.

The next number is p = 13.

In this paper we shall look projective plane of order 13 with a Frobenius

group of order F3.13 . Using the method of tactical decomposition, we shall con-

struct the orbit structure of Frobenius group as a collineation group of projective

plane of order 13.
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We begin with two definitions

Definition 1. A projective plane of order n ≥ 2 is a set P with n2+n+1

elements called points with n2 + n + 1 subsets of P called lines, such that:

1. each line contains (is incident with) n + 1 points,

2. any two (distinct) lines intersect in exactly one point.

Definition 2. A permutation α of the points P which maps lines of P

onto lines of P is called a collineation (automorphims).

The purpose of this paper is to prove the following result:

Theorem. It exists orbit structure of a Frobenius group of order 39 as a

collineation group of projective plane of order 13.

P r o o f. Let P be a projective plane of order 13 which possesses a Frobe-

nius group

G = 〈ρ, µ/ρ13 = µ3 = 1, ρµ = ρ3〉

of order 39 as a collineation group. Then P has 132 + 13 + 1 = 183 points and

lines. We take a partition of the point set P.

P = {P∞, P1, P2, . . . , P14},

where Pi = {i0, i1, i2, . . . , i12}, i = 1, 2, . . . , 14 and bloch set

B = {B∞, B1B2, . . . , B14} so that the partition

P = {P∞, P1, P2, . . . , P14, B∞, B1B2, . . . , B14},

is a tactical decomposition of P.

According to the definition of tactical decomposition, let r to a collineation

of order 13 of AutP. The we can set:

(∗) ρ = (∞)(10, 11, . . . , 112)(20, 21, . . . , 212) . . . (140, 141, . . . , 1412)

where ∞ is a fixed point and 10, 11, . . . , 112, 20, 21, . . . , 212, . . . , 140, 141, . . . , 1412

are all other points of P.

Since the number of orbits of blocs and points is the same, for the fixed

bloc we can set

v = {∞, 10, 11, . . . , 112}

Since through every point of P passes exactly 14 = 13 + 1 lines, for the other

lines through ∞ without loos of generality we can set

P = {∞, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140}
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with the action of 〈ρ〉 on line p, we get the other lines through ∞:

pρ = {∞, 21, 31, . . . , 141}

pρ2

= {∞, 22, 32, . . . , 142}

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

pρ12

= {∞, 212, 312, . . . , 1412}

We have constructed one nontrivial orbit of lines of P (the lines through

∞). There are exactly 13 futher nontrivial 〈ρ〉- orbits of lines of P.

The collineation ρ regarded as the permutation of the points of P is given

by (∗). We can see that restriction of ρ at Z13 = {0, 1, . . . , 12} is ρ/Z13 =

(0, 1, 2, . . . , 12) that is ρ/Z13 : x → x + 1(mod 13). The assumption is that on

〈ρ〉 acts the collineation µ of order 3. That is µ normalizes 〈ρ〉 and replaces

〈ρ〉-orbits (of points) again into the 〈ρ〉 orbits and also it permutes the ordinal

numbers (indeces) 0, 1, 2, . . . , 12. We can take of restriction ρ/Z13.

From

ρ1 = ρ/Z13 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

ρ13 = (0, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, 10)

it follovs that

µ1 = µ/Z13 = (0)(1, 3, 9)(2, 6, 5)(4, 12, 10)(7, 8, 11).

One can see that 〈µ1〉 to the conjugation (also conjugation with help of ρi
1
, i ∈

Z13) is the only subgroup of order 3 (in Σ13) normalizing 〈ρ1〉 = 〈(0, 1, 2, . . . , 12)〉.

Besides we can easily verify that

µ1 : x → kx (x ∈ Z13, compution mod 13), k ∈ {3, 9}.

In the above presentation of µ1 we have chosen µ1 so that it fixes index

0. In fact, µ1 which is of order 3, fixes one index from Z13, which we take to be

zero. Other wise, it can be any other index by the conjugation µ1 → µ
ρi
1

1
.

The presentation of the permutation of the big (orbital) numbers 1, 2, . . . , 14

— under µ, without loss of generality, can be deseribed by

µ = (∞)(1)(2)(3, 4, 5)(6, 7, 8)(9, 10, 11)(12, 13, 14)
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The collineation µ (as it normalizes ρ) fixes globaly the sets {∞}, {1}, {2},

of the points and {v}, {p}, {l} of the lines of P. The other lines pρi

, i =

0, 1, 2, . . . , 12 leavs invariant, as m permutes the orbital numbers.

Hence we have two possibilities of the action of G = 〈ρ, µ〉 on a projective

plane P of order 13.

Case I: G acts faithfully on a subplane of order 3.

Case II: Does not fix a subplane of order 3.

We must contruct the representatives other remaining 13 nontrivial orbits of lines

of P.

At first we difine the Haming number:

H = (|ρ| − 1)λ = (|13| − 1)1 = 12

We have the following presentation of number 12:

(a) 12 = 4 · 3

(b) 12 = 3 · 2 + 2 · 1 + 2 · 1 + 2 · 1

(c) 12 = 3 · 2 + 3 · 2

(d) 12 = 2 · 1 + 2 · 1 + 2 · 1 + 2 · 1 + 2 · 1 + 2 · 1.

Thus, we shall look the case (a) for invariant line, but other lines we get

of from type (b).

Since the next line must be µ-invariant, we have the following presentation

for the µ-invariant line l:

I: l = {10, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

II: l = {1, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 2}

In case I, we construct other 12 representatives (of 〈ρ〉-orbits lines) which

passes through 10.

We define number (game product):

(k1, l) = |r|λ = 13 · 1 = 13

Since, Haming number H = 3 · 2 + 2 · 1 + 2 · 1 + 2 · 1, then for line k1 we

can set:

k1 = {1, a, a, a, b, b, c, c, d, d, e, f, g, h}

so that (k1, l) = 13. Let a = 2, then (k1, l) = 1 + 12 = 13. Since b, c, d, e, f, g, h ∈

{12, 13, 14}, and on the one other and b, c, d, e, f, g, h /∈ {3, 4, 5, 6, 7, 8, 9, 10, 11},

then we conclude a 6= 2.

Suppose a = 3. Then we have

k1 = {1, 3, 3, 3, b, b, c, c, d, d, e, f, g, h}
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and (k1, l) = 1 + 3 = 4. For b = 2 have (k1, l) = 4 + 8 = 12. Since c, d /∈

{4, 5, 6, 7, 8, 9, 10, 11} and c, d ∈ {12, 13, 14}, then we must have c = 12, d = 13

and have (k1, l) = 12 + 0 = 12. Since e ∈ {4, 5, 6, 7, 8, 9, 10, 11, 14}, then have

e = 4, and have (k1, l) = 12 + 1 = 13. Since f, g, h /∈ {5, 6, 7, 8, 9, 10, 11} and

f, g, h ∈ {14}, then we conclude b 6= 2. Permuting numbers 4, 5, 6, we conclude

that b /∈ {4, 5, 6}.

Let b = 7, then

k1 = {1, 3, 3, 3, 7, 7, c, c, d, d, e, f, g, h}

and (k1, l) = 4 + 2 = 6. For c = 2 we have (k1, l) = 6 + 8 = 14 it means c 6= 2.

Permuting numbers 4, 5, 6 we conclude that c /∈ {4, 5, 6}. If c = 8, then

k1 = {1, 3, 3, 3, 7, 7, 8, 8, d, d, e, f, g, h}

and (k1, l) = 6 + 2 = 8. Since, and d 6= 2, d /∈ {4, 5, 6} then we take d = 9, and

we have

k1 = {1, 3, 3, 3, 7, 7, 8, 8, 9, 9, e, f, g, h}

where (k1, l) = 8 + 2 = 10. For e = 2 have (k1, l) = 10 + 4 = 14 it means e 6= 2.

Since e ∈ {4, 5, 6, 10, 11, 12, 13, 14} then let e = 4, and we have

k1 = {1, 3, 3, 3, 7, 7, 8, 8, 9, 9, 4, f, g, h}

where (k1, l) = 10 + 1 = 11. Permuting numbers 5, 6, 10, 11, 12, 13, 14 we may

conclude f, g /∈ {5, 6} and f, g ∈ {10, 11, 12, 13, 14}. If f = 10 and g = 11, then

we have

k1 = {1, 3, 3, 3, 7, 7, 8, 8, 9, 9, 4, 10, 11, h}

where (k1, l) = 11+2 = 13. Since, h /∈ {5, 6} and h ∈ {12, 13, 14} suppose h = 12.

Then, we have the following solution for line k1

k1 = {1, 3, 3, 3, 7, 7, 8, 8, 9, 9, 4, 10, 11, 12}.

We act with 〈µ〉 on line k1, then

kµ
1

= {1, 4, 4, 4, 5, 8, 8, 6, 6, 10, 10, 11, 9, 13}

kµ2

1
= {1, 5, 5, 5, 3, 6, 6, 7, 7, 11, 11, 9, 10, 14}

Since, the conditions are filled (k1, l) = (k1, k
µ
1
) = (k1, k

µ2

1
) = 13 and (kµ

1
, kµ2

1
) =

13 then we conclude that these are three representatives lines (of 〈ρ〉 – nontrivial

orbits) which passes through 10. Now, we shall construct the line k2:

k2 = {1, a, a, a, b, b, c, c, d, d, e, f, g, h}
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so that (kµi

2
, l) = 13, (kµi

2
, kµj

2
) = 13, where i 6= j and i, j ∈ {0, 1, 2}.

Using the same method we may construct other representatives line k2:

k2 = {1, 7, 7, 7, 4, 4, 6, 6, 12, 12, 9, 13, 14, 2}

and the conditions are filled (k2, l) = (k2, k
µi

1
) = (kµi

1
, kµj

1
) = 13, where i 6= j and

i, j ∈ {0, 1, 2}.

We act with 〈µ〉 on line k2 and we have

kµ
2

= {1, 2, 5, 5, 8, 8, 8, 7, 7, 10, 13, 13, 14, 12}

kµ2

2
= {1, 2, 3, 3, 6, 6, 6, 8, 8, 11, 14, 14, 12, 13}

Using the same method we may construct other the representatives line

k3:

k3 = {1, 2, 5, 6, 8, 9, 9, 9, 10, 10, 12, 12, 14, 14}

which fills given conditions.

We act with 〈µ〉 on line k3, then we have

kµ
3

= {1, 2, 3, 7, 6, 10, 10, 10, 11, 11, 13, 13, 12, 12}

kµ2

3
= {1, 2, 4, 8, 7, 11, 11, 11, 9, 9, 14, 14, 13, 13}

Finally, using the same method, we obtain the following solution for line

k4:

k4 = {1, 2, 3, 3, 4, 4, 5, 7, 10, 10, 13, 14, 14, 14}

and with the action of 〈µ〉 on in this line we may set:

kµ
4

= {1, 2, 4, 4, 5, 5, 3, 8, 11, 11, 14, 12, 12, 12}

kµ2

4
= {1, 2, 5, 5, 3, 3, 4, 6, 9, 9, 12, 13, 13, 13}
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Thus, we obtain the following orbital structure (in case I):

l = 1 2 2 2 2 3 4 5 6 7 8 9 10 11

k1 = k1 = 1 3 3 3 4 7 7 8 8 9 9 10 11 12

k2 = kµ
1

= 1 4 4 4 5 8 8 6 6 10 10 11 9 13

k3 = kµ2

1
= 1 5 5 5 3 6 6 7 7 11 11 9 10 14

k4 = k2 = 1 2 4 4 7 7 7 6 6 9 12 12 13 14

k5 = kµ
2

= 1 2 5 5 8 8 8 7 7 10 13 13 14 12

k6 = kµ
2

= 1 2 3 3 6 6 6 8 8 11 14 14 12 13

k7 = k3 = 1 2 5 6 8 9 9 9 10 10 12 12 14 14

k8 = kµ
3

= 1 2 3 7 6 10 10 10 11 11 13 13 12 12

k9 = kµ2

3
= 1 2 4 8 7 11 11 11 9 9 14 14 13 13

k10 = k4 = 1 2 3 3 4 4 5 7 10 10 13 14 14 14

k11 = kµ
4

= 1 2 4 4 5 5 3 8 11 11 14 12 12 12

k12 = kµ2

4
= 1 2 5 5 3 3 4 6 9 9 12 13 13 13

Thus, we showed that, there exists orbit structure of the Frobenius group

of order 39 as a collineation group of projective plane of order 13. We can say

that in orbit structure of the lines the Haming number is 12 but the game product

is 13 that in fact is a condition that lines will be compatible (it means that they

fulfill conditions of projective plane).

The prof of the Theorem is complete.
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