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WEAK POLYNOMIAL IDENTITIES FOR M1,1(E)

Onofrio Mario Di Vincenzo, Roberto La Scala

Communicated by V. Drensky

Abstract. We compute the cocharacter sequence and generators of the
ideal of the weak polynomial identities of the superalgebra M1,1(E).

1. Introduction. Since the 80s, together with the usual matrix alge-
bras over a field, a fundamental role in the theory of PI-algebras has been played
by the superalgebras Mk,l(E) of matrices with entries in the Grassmann algebra
E [Kem]. A main purpose in the study of Mk,l(E) is the description of bases for
ideals of polynomial identities satisfied by such algebras. In particular, Razmyslov
[Raz2, Raz3] introduced the notion of “weak polynomial identity” for both the
algebras Mn(F ) and Mk,l(E), and explained how these identities are correlated
with the central polynomials and the identities in the traces. The concept of weak
polynomial identity has been further generalized in the context of Jordan and Lie
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algebras (see [Kos]). In the present paper, for a characteristic zero base field, we
show that the ideal T of the weak polynomial identities for the superalgebra
M1,1(E) is generated by [[x1, x2], x3] and a suitable proper multilinear polyno-
mial of degree 6. The ideals of weak polynomial identities containing [[x1, x2], x3]
have been studied by Volichenko [Vo] as an important step to his result that a
variety of Lie algebras AN2 defined by the identity [[x1, x2, x3], [x4, x5, x6]] = 0
satisfies the Specht property. The results of [Vo] may be used to obtain alter-
native proofs of some of our results. Our approach consists in determining the
structure of the representation of the symmetric group over the vector space of
the proper multilinear polynomials of the ideal T . Such description allows us to
compute the cocharacter sequence together with the generating function of the
codimension sequence of T . Note that Razmyslov used the weak identities of the
pair (M2(F ), sl2(F )) to describe the polynomial identities of the algebra M2(F ).
We expect that our results may be used also to give a new proof of the description
of the polynomial identities of M1,1(E) given by Popov [Po].

2. Preliminaries. Let F be a field and denote by F 〈X〉 the free associa-
tive algebra generated by a countable set X = {x1, x2, . . .}. If R is an associative
algebra and S ⊂ R is a vector space, then the polynomial f(x1, . . . , xn) ∈ F 〈X〉
is called weak polynomial identity for the pair (R,S) if f(s1, . . . , sn) = 0, for
all the elements s1, . . . , sn ∈ S. The set of all weak polynomial identities is an
ideal T = T (R,S) of F 〈X〉. It is well known that, for an adequate description
of T , it is convenient to determine endomorphisms of F 〈X〉 which stabilizes T ,
that is to establish rules that allows to take consequences from any set of weak
polynomial identities. More precisely, let Ω be a non-empty subset of F 〈X〉 such
that ω(s1, . . . , sn) ∈ S, for all ω ∈ Ω and s1, . . . , sn ∈ S. If the polynomial
f(x1, . . . , xn) is a weak polynomial identity for R, then clearly f(ω1, . . . , ωn) ∈ T ,
for every choice of elements ω1, . . . , ωn ∈ Ω. In other words, the ideal T is stable
under the endomorphisms of the algebra F 〈X〉 corresponding to polynomials in
Ω. In general, each ideal I ⊂ F 〈X〉 which verifies such property is called Ω-

stable. Let now B be a non-empty subset of F 〈X〉. A polynomial g(x1, . . . , xm)
is an Ω-consequence of B if g belongs to the minimal Ω-stable ideal I ⊂ F 〈X〉
containing B. Moreover, we say that B is an Ω-generating set of the ideal I.

Let now F be a field of characteristic zero. We denote by E the Grass-
mann algebra generated by a vector space on F of countable dimension, and by
E0, E1 the homogeneous components of the Z2-graduation of E. We define R the
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following matrix superalgebra:

R = M1,1(E) =

{(

a b
c d

)

| a, d ∈ E0, b, c ∈ E1

}

It is well known that a supertrace is defined for M1,1(E) in the following way:

str(A) = a − d

This supertrace verifies the usual properties of traces. We denote by S the vector
space given by all the matrices of R with supertrace equal to zero. We define
then T = T (R,S), the ideal of F 〈X〉 of the weak polynomial identities for the
pair (R,S). Let now Ω be the subspace of F 〈X〉 spanned by the set X∪{1}. The
main purpose of this paper is to compute an Ω-generating set for the ideal T .

Since char(F ) = 0, by the linearization process we have that each Ω-
stable ideal I ⊂ F 〈X〉 is determined by its multilinear components. Moreover,
from our definition of Ω it follows that I is completely determined also by its
proper multilinear components. More precisely, let Vn be the vector space of
the multilinear polynomials of F 〈X〉 in the indeterminates x1, . . . , xn, and put
Vn(I) = Vn/(Vn ∩ I). Note that the symmetric group Sn acts on Vn(I) in the
natural way. Denote by χn(I) the character of this representation. Since F is a
characteristic zero field, we have:

χn(I) =
∑

λ

mλχλ

where λ ranges over the partitions of n, χλ is the character of the irreducible
representation corresponding to λ and mλ ≥ 0 is an integer. We denote also by
Γn the Sn-submodule of Vn given by the proper multilinear polynomials of F 〈X〉
in x1, . . . , xn (see [Dre2]). We put Γn(I) = Γn/(Γn ∩ I) and let ξn(I) denote the
character of Γn(I). Finally, we define cn(I), γn(I) the dimensions of the vector
spaces Vn(I),Γn(I) respectively, for any n ≥ 0, and we denote by c(I, z), γ(I, z)
the generating functions of such sequences.

Proposition 2.1. For any integer n ≥ 0, it holds:

χn(I) =

n
∑

i=0

χ(n−i) ⊗̂ ξi(I)(1)

cn(I) =

n
∑

i=0

(

n

i

)

γi(I)(2)

c(I, z) =
1

1 − z
γ

(

I,
z

1 − z

)

(3)
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where χ(n−i) is the character of the irreducible representation of Sn−i correspond-

ing to the partition λ = (n − i), and ⊗̂ denotes the outer product between char-

acters of the symmetric group.

P r o o f. The argument follows verbatim the proof of the similar result
for the ordinary case of polynomial identities. The starting point is the following
remark. Let L(X) ⊂ F 〈X〉 be the free Lie algebra generated by X = {x1, x2, . . .}.
By the Poincaré-Birkoff-Witt theorem, the algebra F 〈X〉 as the basis:

xp1

1 · · · xpn
n [xi1 , xi2 ]

q1 · · · [xl1 , . . . , xlp ]
qm

where p1, . . . , pn, q1, . . . , qm ≥ 0 are integers and [xi1 , xi2 ] < . . . < [xl1 , . . . , xlp ]
are in the ordered basis of L(X). Hence, we may write each polynomial of F 〈X〉
in the following way:

f(x1, . . . , xn) =
∑

p,q

αp,qx
p1

1 · · · xpn
n uq1

1 · · · uqm
m

where p = (p1, . . . , pn), q = (q1, . . . , qm), αp,q belongs to F and u1, . . . , um are
commutators. Since the substitution x 7→ x + 1 is allowed by the definition of
Ω, we have that if f(x1, . . . , xn) ∈ I then, for any fixed p, the proper polynomial
fp =

∑

q αp,qu
q1

1 · · · uqm
m belongs to I. Now, the argument proceeds as in [Dre2],

Proposition 4.3.3. �

3. Computing the identities. Note that [[x1, x2], x3] is a weak poly-
nomial identity for R = M1,1(E). Actually, for each s1, s2 ∈ S, the commutator
[s1, s2] is in the center of R. It follows immediately that Γ2m+1(T ) = 0 (m ≥ 0)
and the space Γ2m(T ) is generated as F (S2m)-module by the element:

[x1, x2] · · · [x2m−1, x2m] + (Γ2m ∩ T )

We will compute explicitely a basis for the vector space Γ2m(T ) and prove that

its dimension is γ2m(T ) =

(

2m − 1

m

)

. For this purpose, let us introduce the

following notation. For any subset A = {xi1 , . . . , xin} ⊂ X, we denote by VA the
subspace of F 〈X〉 of all multilinear polynomials of degree n in the indeterminates
xi1 , . . . , xin . As usual, we put VA(T ) = VA/(VA ∩ T ). In the same way, we define
ΓA and ΓA(T ).

Lemma 3.1. The polynomial

p(x1, . . . , x6) =
∑

σ∈S({4,5,6})

[x1, xσ(4)][x2, xσ(5)][x3, xσ(6)]
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is a weak polynomial identity for R.

P r o o f. Recall that R is a Z2-graded algebra with homogeneous compo-
nents:

R0 =

{(

a 0
0 d

)

| a, d ∈ E0

}

and R1 =

{(

0 b
c 0

)

| b, c ∈ E1

}

Note that S = (S ∩ R0) ⊕ (S ∩ R1). Since S ∩ R0 is in the center of R, a proper
multilinear polynomial f(x1, . . . , xn) is a weak identity for R if and only if it
vanishes for all substitutions of indeterminates with elements in S ∩ R1 = R1,
that is if f is a polynomial identity for the odd Z2-component of R.

In particular, the polynomial [[x1, x2], x3] vanishes on R1. Moreover, it is
proved in [DiVi] that g := x1x2x3 + x3x2x1 is also a polynomial identity for the
odd component of R. By commuting progressively g with the variables x4, x5, x6,
we obtain a polynomial congruent to 2p modulo the consequences of [[x1, x2], x3].
Since p is a proper polynomial, we have so proved that p is a weak polynomial
identity for R. �

Let I denote the ideal of F 〈X〉 which is Ω-generated by the polynomials
[[x1, x2], x3] and p(x1, . . . , x6). Define the vector space Γ2m(I) as the quotient
Γ2m/(Γ2m ∩ I) and denote γ2m(I) = dimF Γ2m(I). In the same way, we may
define Γ2m+1(I) and γ2m+1(I), and we get γ2m+1(I) = 0. We want to prove that
T = I.

Let A = {xi1 , . . . , xi2n
} be a subset of X and consider for the polyno-

mials of type [xa1
, xb1 ] · · · [xan , xbn

] ({xa1
, xb1 , . . . , xan , xbn

} = A) the following
conditions:

1. ai < bi (i = 1, 2, . . . , n)

2. a1 < a2 < . . . < an

3. there exists no integers p < q < r such that bp < bq < br

Denote by CA the set of such polynomials which verify conditions 1 and 2. Let
BA ⊂ CA be the subset of polynomials which verify also condition 3. Moreover,
for A = {x1, . . . , x2m} we will write simply C2m = CA, B2m = BA. Each set CA

can be totally ordered in the following way:

[xa1
, xb1 ] · · · [xan , xbn

] < [xc1 , xd1
] · · · [xcn , xdn

] ⇐⇒

(a1, b1, . . . , an, bn) < (c1, d1, . . . , cn, dn) in the lexicographic order

With such notation, we prove:
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Lemma 3.2. A generating set for the vector space Γ2m(I) is given by the

polynomials of B2m, for any integer m ≥ 0.

P r o o f. Since [xi, xj ] = −[xj, xi] and [[x1, x2], x3] ∈ I, we have clearly
that a generating set of Γ2m(I) is given by the polynomials of C2m (note that
# C2m =

∏m
i=1(2i − 1)). Let us introduce the following notation:

[xa1
, xb1 ][xa2

, xb2 ] · · · [xam , xbm
] =

[

a1 a2 . . . am

b1 b2 . . . bm

]

Note immediately that C2m = B2m, for any m < 3. For m = 3, among the 15
elements of C6, five of them do not satisfy the condition 3. Precisely, they are:

(4)

[

1 3 5
2 4 6

]

,

[

1 3 4
2 5 6

]

,

[

1 2 5
3 4 6

]

,

[

1 2 4
3 5 6

]

,

[

1 2 3
4 5 6

]

Moreover, the polynomial p determines in Γ6(I) the following identities:
[

1 3 5
2 4 6

]

+

[

1 3 5
2 6 4

]

+

[

1 3 5
4 2 6

]

+

[

1 3 5
6 2 4

]

+

[

1 3 5
4 6 2

]

+

[

1 3 5
6 4 2

]

= 0

[

1 3 4
2 5 6

]

+

[

1 3 4
2 6 5

]

+

[

1 3 4
5 2 6

]

+

[

1 3 4
6 2 5

]

+

[

1 3 4
5 6 2

]

+

[

1 3 4
6 5 2

]

= 0

[

1 2 5
3 4 6

]

+

[

1 2 5
3 6 4

]

+

[

1 2 5
4 3 6

]

+

[

1 2 5
6 3 4

]

+

[

1 2 5
4 6 3

]

+

[

1 2 5
6 4 3

]

= 0

[

1 2 4
3 5 6

]

+

[

1 2 4
3 6 5

]

+

[

1 2 4
5 3 6

]

+

[

1 2 4
6 3 5

]

+

[

1 2 4
5 6 3

]

+

[

1 2 4
6 5 6

]

= 0

[

1 2 3
4 5 6

]

+

[

1 2 3
4 6 5

]

+

[

1 2 3
5 4 6

]

+

[

1 2 3
6 4 5

]

+

[

1 2 3
5 6 4

]

+

[

1 2 3
6 5 4

]

= 0

Owing to [xi, xj ] = −[xj , xi] and [[x1, x2], x3] ∈ I, the above five identities make
us able to rewrite in Γ6(I) the five polynomials (4) as a linear combination of
elements of B6 which are greater of them in the defined ordering.

We prove now for any m > 3. Let w ∈ C2m be the maximum in the subset
of elements of C2m which can’t be rewritten in Γ2m(I) as a linear combination of

elements of B2m, say w =

[

a1 a2 . . . am

b1 b2 . . . bm

]

. In particular, there exist indexes

p < q < r such that bp < bq < br and

w = w0

[

ap

bp

]

w1

[

aq

bq

]

w2

[

ar

br

]

w3
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with wi ∈ CAi
for suitable subsets Ai ⊂ {x1, . . . , x2m}. We put therefore A =

{xap , xbp
, xaq , xbq

, xar , xbr
} and let w′ =

[

ap aq ar

bp bq br

]

. Since the polynomial

[[x1, x2], x3] ∈ I, we have that w = w0w1w2w3w
′ in Γ2m(I). Clearly w′ belongs

to CA and hence, using the first part of the proof, it holds that w′ is a linear
combination of elements vi ∈ BA that are greater than w′ in the fixed ordering.
Then, w =

∑

i αiw0w1w2w3vi (αi ∈ Z) and again each term of the sum can be
written in Γ2m(I) as an element of B2m greater than w. �

We want now to compute the number of elements of the generating set
B2m. For doing this, let us introduce the following notation. For any i =
2, 3, . . . , 2m, let B2m,i be the subset of B2m of the generators of type [1, i]w, with
w a product of commutators. Denote moreover βm = #B2m and βm,i = #B2m,i

(hence βm = βm,2 + βm,3 + · · · + βm,2m).

Proposition 3.3. For any integer m ≥ 1, it holds:

i) βm,2 = 1

ii) βm+1,i =
∑min(i−1,2m)

j=2 βm,j ∀i = 3, 4, . . . , 2(m + 1)

P r o o f. We prove (i). Let w be any element of B2m,i. With the notation
of Lemma 3.2, we put:

w =

[

1 a2 . . . am

2 b2 . . . bm

]

with {a2, b2, . . . , am, bm} = {3, 4, . . . , 2m}. Since 2 < bk for any k, from the
condition 3 of B2m it follows that bk > bk+1. Owing to the conditions 1,2, we
conclude that (a2, . . . , am, bm, . . . , b2) = (3, 4, . . . , 2m) and hence βm,2 = 1.

We prove now (ii). For simplify the notation, assume βm,j = 0 for j > 2m.
Let w be any element of B2(m+1),i and put Am+1 = {1, 2, . . . , 2m + 2}. Since 2 is
the minimum of the set Am+1 \ {1, i}, we have:

w =

[

1 2 a2 . . . am+1

i j b2 . . . bm+1

]

with j ∈ {3, 4, . . . , 2m + 2}, j 6= i. Moreover, we define:

B′
2(m+1),i = {w ∈ B2(m+1),i | i < j} and B′′

2(m+1),i = {w ∈ B2(m+1),i | i > j}

If i < j then by the condition 3, we have that j = max{3, 4, . . . , 2m+2} = 2m+2.
Then, we put A′

m+1 = Am+1 \ {2, 2m + 2} and we order this set in the natural
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way. Since i > 2 and 2m+2 = maxAm+1, from the condition 3 it follows that the
sets B′

2(m+1),i, B{xk|k∈A′

m+1
} and B2m,i−1 have all the same number of elements

which is βm,i−1.
We assume now i > j. We put A′′

m+1,j = Am+1 \ {1, i} with the natural
ordering. Then, by the condition 3 we have that the sets:

B′′
2(m+1),i,

i−1
⋃

j=3

B{xk|k∈A′′

m+1,j}
and

i−1
⋃

j=3

B2m,j−1

have all the same number of elements that is
i−1
∑

j=3
βm,j−1. Owing to B2(m+1),i =

B′
2(m+1),i∪B′′

2(m+1),i, we conclude that βm+1,i = βm,i−1+
i−1
∑

j=3
βm,j−1 =

i−1
∑

j=2
βm,j . �

4. Bounding the codimensions. In this section, we finally prove:

Proposition 4.1. For any integer m ≥ 1, it holds βm =
(2m−1

m

)

and

hence

γ2m(I) ≤

(

2m − 1

m

)

For proving this proposition, some new notation and preparatory results
are needed. Proposition 3.3 proves that we have the equations:

ǫn+1,j : βn+1,j =

min(j−1,2n)
∑

k=2

βn,k (j ≥ 3)

with βn,2 = 1, for any integer n ≥ 1. Since βm = βm,2 + βm,3 + · · · + βm,2m, to
prove Proposition 4.1 it is sufficient to show that:

βm+1,2(m+1) =

(

2m − 1

m

)

Example 4.2. βm,i, for m = 1, . . . , 5.

m/i 2 3 4 5 6 7 8 9 10

1 1
2 1 1 1
3 1 1 2 3 3
4 1 1 2 4 7 10 10
5 1 1 2 4 8 15 25 35 35
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By eliminating βn+1,j from the equations ǫn+1,j, for all the integers n =
1, 2, . . . ,m and j = 3, 4, . . . , 2(n + 1), we get:

βm+1,2(m+1) = η1β1,2 + η2β2,2 + . . . + ηmβm,2 = η1 + η2 + . . . + ηm

for some integers ηn ≥ 1 (n = 1, 2 . . . ,m). Clearly we have ηm = 1. In the
elimination process, note that the equation ǫm+1,2(m+1) is just used once. Then,
we say that the multiplicity of the equation ǫm+1,2(m+1) is equal to 1. In general,
for n = 2, 3, . . . ,m and k = 3, 4, . . . , 2n, we may define recursively the multiplicity

of the equation ǫn,k as the number of times that βn,k occurs in the equations
ǫn+1,j, the latter computed with their multiplicity. We will denote by ηn−1,k the
multiplicity of ǫn,k. From the shape of these equations it follows therefore:

ηn−1 = ηn−1,3 + ηn−1,4 + . . . + ηn−1,2n

Moreover, the integers ηn,j (n = 1, 2, . . . ,m− 1 and j = 3, 4, . . . , 2(n + 1)) satisfy
the equations:

δn,j : ηn,j =

2(n+2)
∑

k=j+1

ηn+1,k

with ηm−1,j = 1, for all j. The claim of Proposition 4.1 may be rewritten now as:

(5)

m−1
∑

n=1

2(n+1)
∑

j=3

ηn,j =

(

2m − 1

m

)

− 1

Example 4.3 ηn,j, for n = 1, . . . , 3.

n/j 3 4 5 6 7 8

1 9 5
2 5 4 3 2
3 1 1 1 1 1 1

To prove the equality (5), it is easier to use the normalized sequence νn,j =
ηm−n−1,2m−j . The claim now is:

(6)
m−2
∑

n=0

2m−3
∑

j=2n

νn,j =

(

2m − 1

m

)

− 1
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For n = 0, 1, . . . ,m − 2 and j = 2n, 2n + 1, . . . , 2m − 3, the integers νn,j verify
hence the recursion:

κn,j : νn,j =

j−1
∑

k=2(n−1)

νn−1,k

with ν0,j = 1, for all j.

Example 4.4. νn,j, for n = 0, . . . , 2.

n/j 0 1 2 3 4 5

0 1 1 1 1 1 1
1 0 0 2 3 4 5
2 0 0 0 0 5 9

Lemma 4.5. For all n = 0, 1, . . . ,m− 2 and j = 2n, 2n + 1, . . . , 2m − 3,
it holds:

νn,j =

(

j

n

)

−

(

j

n − 2

)

where we assume

(

j

k

)

= 0 if k < 0.

P r o o f. We argument by induction on n, j. The case n = j = 0 is
obvious. Moreover, by the equations κn,j we get the equalities:

i) νn+1,j+1 = νn,j + νn+1,j per ogni j ≥ 2(n + 1);

ii) νn+1,2(n+1) = νn,2n + νn,2n+1.

For νn+1,j+1 with j ≥ 2(n + 1), the claim follows immediately from the equality
(i) and the Stifel formula. For νn+1,2(n+1) we use instead the equality (ii), and
by induction we get:

νn+1,2(n+1) =

=

(

2n

n

)

−

(

2n

n − 2

)

+

(

2n + 1

n

)

−

(

2n + 1

n − 2

)

=

=

(

2n

n + 1

)

+

(

2n

n

)

+

(

2n + 1

n

)

−

(

2n

n − 1

)

−

(

2n

n − 2

)

−

(

2n + 1

n − 2

)

=

=

(

2n + 1

n + 1

)

+

(

2n + 1

n

)

−

(

2n + 1

n − 1

)

−

(

2n + 1

n − 2

)

=

=

(

2n + 2

n + 1

)

−

(

2n + 2

n − 1

)
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�

We have finally:
P r o o f o f P r o p o s i t i o n 4.1. By induction on m ≥ 1, we prove the

equality (6). For m = 1, the left hand side vanishes and so the difference in the
right hand side. For m > 1, we denote briefly αm =

(

2m−1
m

)

. We get:

m−1
∑

n=0

2m−1
∑

j=2n

νn,j =

m−2
∑

n=0

2m−3
∑

j=2n

νn,j +

m−1
∑

n=0

νn,2m−2 +

m−1
∑

n=0

νn,2m−1

By induction, the first term of the sum in the right hand side is equal to αm − 1.
Moreover, still by induction and using the equations κn,j, we obtain that the
second term of the sum is αm and the third 2αm − νm−1,2m−2. Therefore, the
sum in the left hand side equals:

−1 + 4αm − νm−1,2m−2 = −1 + 4

(

2m − 1

m

)

−

(

2m − 2

m − 1

)

+

(

2m − 2

m − 3

)

=

−1+

[

4(m + 1)

2(2m + 1)
−

m(m + 1)

2(2m + 1)(2m − 1)
+

(m − 1)(m − 2)

2(2m + 1)(2m − 1)

]

αm+1=−1+αm+1

�

5. Computing the cocharacters.

Lemma 5.1. Let 2m be an even integer and λ = (22p, 12q) be a partition

of 2m with p, q ≥ 0 integers such that m = 2p+q. The character of the irreducible

representation associated to λ is a component of the proper cocharacter ξ2m(T ).

P r o o f. Let us consider the following standard tableau:

Tλ =

1 2r + 1

.

..
.
..

2p 2m

9>>>>>=>>>>>; 2p

2p + 1
...

2r

9>=>; 2q

with r = p + q, and denote by eTλ
the essential idempotent of the group algebra

F (S2m) associated to such tableau. It is sufficient to prove that the polynomial

eTλ
· [x1, x2] · · · [x2m−1, x2m]
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is not a weak polynomial identity for R. By identifying the variables whose
indexes occur in the same row of Tλ, the previous polynomial becomes a scalar
multiple of g · h, where:

g =
∑

σ∈S2r

(−1)σ [xσ(1), xσ(2)] · · · [xσ(2r−1), xσ(2r)]

h =
∑

σ∈S2p

(−1)σ[xσ(1), xσ(2)] · · · [xσ(2p−1), xσ(2p)]

In the ordered basis of the vector space W which generate the Grassmann algebra
E, consider the elements a1 < b1 < . . . < a2r < b2r. For i = 1, 2, . . . , 2r, we define
the following matrices of the superalgebra R = M1,1(E)

Mi = Ai + Bi =

(

0 ai

ai 0

)

+

(

0 bi

−bi 0

)

Note that [Mσ(i),Mσ(i+1)] = 2(aσ(i)aσ(i+1) − bσ(i)bσ(i+1))I, where I is the identity
matrix, and hence g(M1, . . . ,M2r) = αI and h(M1, . . . ,M2p) = βI, with α, β ∈
E0. In the expansion of α in terms of the canonical basis of E, there occur
monomials v of lenght 2r with an even number of vectors ai and an even number
of vectors bj , in such a way that the set of indexes of all vectors ai, bj is equal to
{1, 2, . . . , 2r}. Denoted by 2s the number of vectors bj occurring in v, it is easy
to verify that the coefficient of v in α is:

(−1)s2r

(

r

s

)

(2s)!(2r − 2s)!

In the same way, the coefficient of a monomial w in the expansion of β which has
2t occurrences of the vectors bj equals:

(−1)t2p

(

p

t

)

(2t)!(2p − 2t)!

Denote by γ the monomial b2p+1 · · · b2r (γ = 1 if p = r) and let us verify that
the product αβγ is different from zero in E. Let v,w be monomials of α, β
respectively, and suppose that vwγ 6= 0. Let B = {j1, . . . , j2t} be the subset of
S = {1, 2, . . . , 2p} given by the indexes of the vectors bj which occurs in w. The
subset of the indexes of the vectors ai which occur in w is hence A = S \B. Since
vwγ 6= 0, then the set of indices of the vectors bj occurring in v is precisely A.
In the same way, the set of indices of the vectors ai occurring in v is equal to
B ∪ {2p + 1, . . . , 2r}. Therefore, by operating 2t transpositions between v and
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w, we have that the product vwγ equals the element z = a1 · · · a2rb1 · · · b2r. The
product of the coefficients of v,w is then:

(−1)(p−t)2r

(

r

p − t

)

(2p − 2t)!(2r − 2p + 2t)! · (−1)t2p

(

p

t

)

(2t)!(2p − 2t)!

which has sign (−1)p for any t. We conclude that αβγ = cz, for some integers
c 6= 0. �

Lemma 5.2. The sequence of proper codimensions of the ideal T satisfies,

for any m ≥ 0, the following equalities:

1. γ2m+1(T ) = 0

2. γ2m(T ) ≥
(2m−1

m

)

P r o o f. Owing to Lemma 5.1, the module Γ2m(T ) contains the sum of
the irreducible modules of F (S2m) associated to partitions of type λ = (22p, 12q)

λ =

9>>>>=>>>>; 2p9=; 2q

with p, q ≥ 0 integers and m = 2p + q. Denoted by dλ the dimension of the
irreducible representation of shape λ, by means of the hook length formula we
compute easily:

dλ =
(2m)!(2q + 1)

(2p)!(2p + 2q + 1)!
=

(2m)!(2q + 1)

(m − q)!(m + q + 1)!
=

(

2m

m − q

)

−

(

2m

m − q − 1

)

By putting d =
∑

λ dλ, we have then γ2m(T ) ≥ d. If m is odd, from m − q = 2p
it follows:

d =
∑

q ∈ {0, . . . , m}
q odd

[(

2m

m − q

)

−

(

2m

m − q − 1

)]

=
m−1
∑

i=0

(−1)i
(

2m

i

)

=
1

2

(

2m

m

)

owing to d −

(

2m

m

)

+ d = (−1 + 1)2m = 0. For m an even integer, in a similar

way we are still able to prove that d =
1

2

(

2m

m

)

=

(

2m − 1

m

)

. �
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Theorem 5.3. The ideal T of the weak polynomial identities satisfied by

the superalgebra M1,1(E) is Ω-generated by the polynomials:

(7) [[x1, x2], x3] and
∑

σ∈S({4,5,6})

[x1, xσ(4)][x2, xσ(5)][x3, xσ(6)]

Moreover, it holds χn(T ) =
∑

λ χλ where λ = (λ1, λ2, . . . , λr) runs over all the

partitions of the integer n that verify the condition:

(8) r = 1 or λ2 ≤ 2

P r o o f. Lemma 3.1 states that the polynomials (7) belong to the ideal
T . Recall that we have defined I as the ideal of F 〈X〉 which is Ω-generated just
by these polynomials. We have then I ⊂ T and hence γn(T ) ≤ γn(I). By using
the identity [[x1, x2], x3] = 0, we get immediately that γ2m+1(T ) = γ2m+1(I) = 0,
for any integer m ≥ 0. Moreover, by means of Lemma 3.2 and Proposition

4.1 we have shown that γ2m(I) ≤

(

2m − 1

m

)

. Finally, Lemma 5.2 states that
(

2m − 1

m

)

≤ γ2m(T ) and we conclude that I = T , where γ2m(T ) =

(

2m − 1

m

)

for any integer m ≥ 0.

We prove now the result about the cocharacter sequence χn(T ). We make
use of the formula (1) contained in Proposition 2.1, that is:

χn(T ) =
n

∑

i=0

χ(n−i) ⊗̂ ξi(T )

If i = 2m + 1 we get clearly ξ2m+1(T ) = 0. If instead i = 2m, since γ2m(T ) =
(2m−1

m

)

, from Lemma 5.1 and 5.2 it follows that:

ξ2m(T ) =
m

∑

q=0

χ(2m−q ,12q)

Now the claim follows by the Young’s rule. �

Theorem 5.4. It holds:

cn(T ) =

⌊n/2⌋
∑

i=0

(

n

2i

)(

2i − 1

i

)

and c(T, z) =
1

2
(

1

1 − z
+

i
√

(z + 1)(3z − 1)
)
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P r o o f. The computation of the sequence of the codimensions cn(T )
follows immediately from the formula (2) of Proposition 2.1. Moreover, such
proposition contains also the relation (3) between the generating functions of the
sequences cn(T ) and γn(T ), that is:

c(T, z) =
1

1 − z
γ(T,

z

1 − z
)

It is sufficient therefore to prove that the generating function γ(T, z) equals:

γ(T, z) =
1

2
(1 +

i
√

(2z + 1)(2z − 1)
)

Denote by g(z) the function defined in the right hand side. By induction on
m ≥ 1, it is sufficient to verify:

g(2m)(z) =
i pm(z2)

√

(4z2 − 1)4m+1

g(2m+1)(z) =
−i z qm(z2)

√

(4z2 − 1)4m+3

where pm(z), qm(z) are polynomials with integer coefficients both of degree at
most m such that:

pm(0) =
1

2

(2m)!2

(m)!2

p′m(0) =
1

4

(2(m + 1))!2

(m + 1)!2
− 2(4m + 1) pm(0)

In fact, such relations are needed to correlate the derivative g(2m)(0) with g(2(m+1))(0)
and allow hence the induction. �

Finally, note that radius of convergence of the series c(T, z) is 1/3 and

therefore lim sup
n→∞

n
√

cn(T ) = 3, in analogy with the results of Giambruno and

Zaicev [GiZa] about the exponent of ideals of ordinary polynomial identities.
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