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Abstract. We consider the variety of (p + 1)-tuples of matrices Aj (resp.
Mj) from given conjugacy classes cj ⊂ gl(n,C) (resp. Cj ⊂ GL(n,C))
such that A1 + . . . + Ap+1 = 0 (resp. M1 . . . Mp+1 = I). This variety is
connected with the weak Deligne-Simpson problem: give necessary and suf-
ficient conditions on the choice of the conjugacy classes cj ⊂ gl(n,C) (resp.
Cj ⊂ GL(n,C)) so that there exist (p + 1)-tuples with trivial centralizers of
matrices Aj ∈ cj (resp. Mj ∈ Cj) whose sum equals 0 (resp. whose product
equals I). The matrices Aj (resp. Mj) are interpreted as matrices-residua
of Fuchsian linear systems (resp. as monodromy operators of regular linear
systems) on Riemann’s sphere. We consider examples of such varieties of
dimension higher than the expected one due to the presence of (p+1)-tuples
with non-trivial centralizers; in one of the examples the difference between
the two dimensions is O(n).

1. Introduction.
1.1. Formulation of the (weak) Deligne-Simpson problem. In

the present article we consider examples related to the Deligne-Simpson problem
(DSP). The problem stems from the analytic theory of linear systems of ordinary
differential equations but its formulation is purely algebraic:
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Give necessary and sufficient conditions on the choice of the p + 1 conju-
gacy classes cj ⊂ gl(n,C), resp. Cj ⊂ GL(n,C), so that there exist irreducible
(p+1)-tuples of matrices Aj ∈ cj , A1+· · ·+Ap+1 = 0, resp. of matrices Mj ∈ Cj,
M1 . . . Mp+1 = I.

Here I stands for the identity matrix and “irreducible” means “with no
non-trivial common invariant subspace”. The version with matrices Aj (resp.
Mj) is called the additive (resp. the multiplicative) one. The matrices Aj are
interpreted as matrices-residua of Fuchsian systems on Riemann’s sphere (i.e.
linear systems of ordinary differential equations with logarithmic poles). The
sum of all matrices-residua of a Fuchsian system equals 0.

The matrices Mj are interpreted as monodromy operators of meromor-
phic linear regular systems on Riemann’s sphere (i.e. linear systems of ordinary
differential equations with moderate growth rate of the solutions at the poles).
(Fuchsian systems are always regular.) A monodromy operator of a regular sys-
tem is a linear operator acting on its solution space which maps the solution with
a given initial value at a given base point a0 onto the value at a0 of its analytic
continuation along some closed contour.

The monodromy operators generate the monodromy group. One usually
chooses as generators of the monodromy group operators defined by contours
which are freely homotopic to small loops each circumventing counterclockwise
one of the poles of the system. For a suitable indexation of the poles the product
of these generators equals I (and this is the only relation which they a priori
satisfy).

Remark 1. In the multiplicative version the classes Cj are interpreted
as local monodromies around the poles and the DSP admits the following inter-
pretation:

For what (p + 1)-tuples of local monodromies do there exist irreducible
monodromy groups with such local monodromies.

The monodromy group of a regular system is the only invariant of a reg-
ular system under the linear changes of the dependent variables meromorphically
depending on the time. Therefore the multiplicative version is more important
than the additive one; nevertheless, the additive one is easier to deal with when
computations are to be performed and one can easily deduce corollaries concern-
ing the multiplicative version as well due to Remark 2.

Remark 2. If A denotes a matrix-residuum at a given pole of a Fuchsian
system and if M denotes the corresponding operator of local monodromy, then
in the absence of non-zero integer differences between the eigenvalues of A the
operator M is conjugate to exp(2πiA).

By definition, the weak DSP is the DSP in which instead of irreducibility
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of the (p + 1)-tuple of matrices one requires only its centralizer to be trivial.
We say that the DSP (resp. the weak DSP) is solvable for a given (p + 1)-tuple
of conjugacy classes cj or Cj if there exist matrices Aj ∈ cj whose sum is 0 or
matrices Mj ∈ Cj whose product is I such that their (p + 1)-tuple is irreducible
(resp. with trivial centralizer). By definition, the (weak) DSP is solvable for
n = 1.

For given conjugacy classes cj satisfying the condition
∑

Tr(cj) = 0 and
also the ones of Theorem 8 below consider the variety

V(c1, . . . , cp+1) = {(A1, . . . , Ap+1) | Aj ∈ cj , A1 + · · · + Ap+1 = 0}.

(One can define such a variety in a similar way in the case of matrices Mj as
well.)

If the eigenvalues are generic (see the precise definition in Subsection 1.3),
then the variety V(c1, . . . , cp+1) (or just V for short) is smooth, see [4]. If not,
then it can have a complicated stratified structure defined by the invariants of the
(p+1)-tuple of matrices; the centralizers of the (p+1)-tuples might be trivial on
some strata and non-trivial on others; finally, a stratum on which the centralizer
is non-trivial can be of greater dimension than the one of a stratum on which it
is trivial; see [4] for some examples.

The aim of the present paper is to give further examples of varieties V
and to discuss their stratified structure and dimension of the strata. This will be
explained in some more detail in Subsection 1.4 after some necessary notions will
be introduced in the next two subsections.

Remark 3. In what follows the sum of the matrices Aj is always pre-
sumed to be 0 and the product of the matrices Mj is always presumed to be I.

Notation 4. Double subscripts indicate matrix entries. We denote by
Ei,j the matrix having zeros everywhere except in position (i, j) where it has a
unit.

1.2. Necessary conditions for the solvability of the (weak) DSP.
The known results concerning the (weak) DSP are exposed in [2]. We recall in
this and in the next subsection only the most necessary ones.

Definition 5. A Jordan normal form (JNF) of size n is a collection of
positive integers {bi,l} whose sum is n where bi,l is the size of the i-th Jordan block
with the l-th eigenvalue; the eigenvalues are presumed distinct and for l fixed the
numbers bi,l form a non-increasing sequence. Denote by J(C) (resp. J(A)) the
JNF defined by the conjugacy class C (resp. by the matrix A).

Definition 6. For a conjugacy class C in GL(n,C) or gl(n,C) denote
by d(C) its dimension; recall that it is always even. For a matrix Y ∈ C set



146 Vladimir Petrov Kostov

r(C) := min
λ∈C

rank(Y − λI). The integer n − r(C) is the maximal number of

Jordan blocks of J(Y ) with one and the same eigenvalue. Set dj := d(Cj) (resp.
d(cj)), rj := r(Cj) (resp. r(cj)). The quantities r(C) and d(C) depend only on
the JNF J(Y ) = Jn, not on the eigenvalues, so we write sometimes r(Jn) and
d(Jn).

The following two inequalities are necessary conditions for the existence of
irreducible (p+1)-tuples of matrices Aj or Mj (their necessity in the multiplicative
version was proved by C. Simpson, see [8], and in the additive one by the author,
see [3]):

(αn) d1 + · · · + dp+1 ≥ 2n2 − 2,

(βn) for all j, r1 + · · · + r̂j + . . . + rp+1 ≥ n.

The inequality

(ωn) r1 + · · · + rp+1 ≥ 2n

is not a necessary condition (note that it implies (βn)) but it is “almost sufficient”,
i.e. sufficient in most part of the cases, see the details in [2].

We formulate below a necessary condition for the solvability of the (weak)
DSP which is a condition upon the p+1 JNFs Jn

j = J(cj) or J(Cj) (j = 1, . . . , p+
1, the upper index indicates the size of the matrices) but not upon the classes cj

or Cj themselves.

Definition 7. For a given (p + 1)-tuple of JNFs Jn
j with n > 1, which

satisfies condition (βn) and doesn’t satisfy condition (ωn) set n1 = r1 + · · · +
rp+1 − n. Hence, n1 < n and n − n1 ≤ n − rj. Define the (p + 1)-tuple of JNFs
Jn1

j as follows: to obtain the JNF Jn1

j from Jn
j one chooses one of the eigenvalues

of Jn
j with greatest number n − rj of Jordan blocks, then decreases by 1 the sizes

of the n − n1 smallest Jordan blocks with this eigenvalue and deletes the Jordan
blocks of size 0. Denote this construction by Ψ : (Jn

1 , . . . , Jn
p+1) 7→ (Jn1

1 , . . . , Jn1

p+1)
or just by Ψ for short.

Theorem 8. If the (weak) DSP is solvable for a given (p + 1)-tuple of
conjugacy classes cj or Cj defining the JNFs Jn

j , satisfying condition (βn) and
not satisfying condition (ωn), then the map Ψ iterated as long as defined stops at
a (p + 1)-tuple of JNFs Jn′

j either satisfying condition (ωn′) or with n′ = 1.

The theorem can be deduced from [2], see Theorem 8 there.

Remark 9. One can show that the results formulated by means of the
map Ψ do not depend on the choice of an eigenvalue with maximal number of
Jordan blocks belonging to it whenever such a choice is possible.
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1.3. Generic eigenvalues and (poly)multiplicity vectors. We pre-
sume in the case of matrices Mj the necessary condition

∏

det(Cj) = 1 to hold.
In the case of matrices Aj this is the condition

∑

Tr(cj) = 0. In terms of the
eigenvalues σk,j (resp. λk,j) of the matrices from Cj (resp. cj) repeated with

their multiplicities, this condition reads
n
∏

k=1

p+1
∏

j=1
σk,j = 1 (resp.

n
∑

k=1

p+1
∑

j=1
λk,j = 0).

Definition 10. An equality of the form
p+1
∏

j=1

∏

k∈Φj

σk,j = 1, resp.

p+1
∑

j=1

∑

k∈Φj

λk,j = 0, is called a non-genericity relation; the sets Φj contain one and

the same number < n of indices for all j. Eigenvalues satisfying none of these
relations are called generic. If one replaces for all j the sets Φj by their comple-
ments in {1, . . . , n}, then one obtains another non-genericity relation which we
identify with the initial one.

Remarks 11. 1) Reducible (p + 1)-tuples exist only for non-generic
eigenvalues. Indeed, if the (p+1)-tuple is block upper-triangular, then the eigen-
values of each diagonal block satisfy some non-genericity relation.

2) For generic eigenvalues the conditions of Theorem 8 are sufficient as
well, see [2] (Theorem 8), [3] and [7].

Remark 12. Condition (βn) admits the following generalizations which
in certain cases of non-generic eigenvalues are stronger than (βn) itself – these
are the inequalities

(δn) min
bj∈C

b1+...+bp+1=0

p+1
∑

j=1

rk(Aj − bjI) ≥ 2n, min
bj∈C

∗

b1...bp+1=1

p+1
∑

j=1

rk(bjMj − I) ≥ 2n

which are necessary conditions for the existence of irreducible (p + 1)-tuples of
matrices Aj or Mj (see [2], Lemma 10 and the line after it).

Definition 13. A multiplicity vector (MV) is a vector with positive inte-
ger components whose sum is n and which are the multiplicities of the eigenvalues
of an n × n-matrix. In the case of diagonalizable matrices the MV defines com-
pletely the JNF. A polymultiplicity vector (PMV) is a (p+1)-tuple of multiplicity
vectors, the ones of the eigenvalues of the matrices Aj or Mj .

Remark 14. For a diagonal JNF Jn defined by the MV (m1, . . . ,ms),
m1 ≥ · · · ≥ ms, one has r(Jn) = m2 + · · ·+ ms and d(Jn) = n2 −m2

1 − · · · −m2
s.

If the JNF J(cj) or J(Cj) is diagonal, then the construction Ψ (see the previous
subsection) results in decreasing the greatest component of the j-th MV by n−n1.
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1.4. The index of rigidity and the expected dimension of the
variety V.

Definition 15. Call index of rigidity of the (p + 1)-tuple of conjugacy
classes cj or Cj (or of the (p + 1)-tuple of JNFs defined by them) the quantity
κ = 2n2 − d1 − · · · − dp+1. This notion was introduced in [1].

Remarks 16. 1) If condition (αn) holds, then κ can take the values 2,
0, −2, −4, . . ..

2) If κ = 2 and the DSP is solvable for given conjugacy classes, then such
(p + 1)-tuples are unique up to conjugacy, see [1] and [8] for the multiplicative
version; from this result one easily deduces the uniqueness in the additive version.

3) For κ = 2 the coexistence of irreducible and reducible (p + 1)-tuples of
matrices Mj is impossible, see [1], Theorem 1.1.2, or [4], Theorem 18. One can
easily deduce from this fact that the same is true for matrices Aj.

Recall that the variety V was defined in Subsection 1.1..

Remarks 17. 1) If V is nonempty and if the eigenvalues are generic,
then it contains only irreducible (p + 1)-tuples, it is smooth and its dimension
equals 1 − κ + n2, see [4].

2) If on some stratum of V the centralizer is trivial, then the stratum is
smooth and its dimension equals 1 − κ + n2; we call this dimension the expected
dimension of V, see [4], Proposition 2.

In the present paper we consider examples of varieties V for conjugacy
classes satisfying the conditions of Theorem 8. The first of them (see Section 2)
is with κ = 2, n odd and p = 3. We discuss its stratified structure and we show
that it contains a stratum (on which the centralizer is non-trivial) of dimension
n2 + (n − 3)/2, i.e. exceeding the expected one by (n − 1)/2, as well as strata
of dimensions n2 + s − 1 for s = 1, 2, . . . , (n − 1)/2. And it contains strata of
expected dimension n2 − 1 on which the centralizer is trivial.

The second example (see Section 3) is one with κ = 2 where the variety
V is not connected (but its closure is).

In Section 4 we show that for (−κ) arbitrarily high there exist examples
of varieties V in which certain strata where the centralizer is non-trivial do not
belong to the closures of the strata where it is trivial and are of dimension higher
than the expected one. This provides a negative answer to a question stated in [4].

2. An example with p = 3.

2.1. Description of the example. Consider for p = 3, n = 2k + 1,
k ∈ N∗, the PMV Λ(k) = ((k +1, k), (k +1, k), (k +1, k), (k +1, k)) (the matrices
Aj are presumed diagonalizable; a similar example can be given for matrices Mj
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as well). Denote the respective eigenvalues of the matrices Aj with such a PMV
by λj, µj (λj is of multiplicity k + 1, one has λj 6= µj, j = 1, 2, 3, 4,). One
has dj = 2k(k + 1), see Remark 14, hence, κ = 2. The PMV Λ(k) satisfies the
conditions of Theorem 8 – one has Ψ(Λ(k)) = Λ(k − 1) (see Remark 14) and the
iterations of Ψ stop at a quadruple of JNFs of size 1.

We assume that
4
∑

j=1
λj = 0 (A) is the only non-genericity relation satisfied

by the eigenvalues (note that it implies
4
∑

j=1
µj = 0).

Proposition 18. Any quadruple of matrices Aj like above whose sum is
0 is up to conjugacy block upper-triangular, with diagonal blocks of sizes 1 or 2.
The diagonal blocks of size 1 equal either (λ1, λ2, λ3, λ4) or (µ1, µ2, µ3, µ4). The
restriction of Aj to a diagonal block of size 2 has eigenvalues λj , µj .

The propositions from this subsection are proved in the next ones.

Example 19. There exist irreducible quadruples of 2 × 2-matrices Bj

whose sum is 0 and with eigenvalues λj, µj:

B1 =

(

λ1 1
0 µ1

)

, B2 =

(

λ2 −1
0 µ2

)

, B3 =

(

λ3 0
u µ3

)

, B4 =

(

λ4 0
−u µ4

)

where u ∈ C∗.

Proposition 20. 1) The variety Π of quadruples of diagonalizable 2× 2-
matrices Bj with eigenvalues λj , µj and such that B1 + · · ·+B4 = 0 is connected.

2) Its subvariety Π0 consisting of all such irreducible quadruples is also
connected.

Example 21. For l ∈ N∗ there exist upper-triangular quadruples of
(2l + 1) × (2l + 1)-matrices Hj with zero sum, with trivial centralizers and with
eigenvalues λj, µj of multiplicity l + 1, l (the matrix I is l × l):

H1 =





λ1 0 0
0 λ1I 0
0 0 µ1I



 , H2 =





λ2 0 0
0 λ2I I
0 0 µ2I



 , H3 =





λ3I 0 I
0 λ3 0
0 0 µ3I





(pay attention to the block-decomposition of H3 which is different from the one
of H1 and H2). If for Z ∈ gl(2l + 1,C) one has [Z,H1] = [Z,H2] = [Z,H3] = 0,
then [Z,H1] = 0 implies that Z is block-diagonal, with diagonal blocks of sizes
(l + 1)× (l + 1) and l × l. One deduces then from [Z,H2] = [Z,H3] = 0 that Z is
scalar (the details are left for the reader).

Remark 22. Examples similar to the above one can be given for other
permutations of the eigenvalues on the diagonal as well (e.g. when all µj come
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first followed by all λj). For some permutations there exist no examples of such
upper-triangular quadruples with trivial centralizers (e.g. when the first and the
last eigenvalues on the diagonal are equal – in this case the matrices commute
with E1,2l+1).

Definition 23. An irreducible quadruple of diagonalizable 2×2-matrices
with eigenvalues (λj , µj) whose sum is 0 is said to be of type B. (Example 19
shows such a quadruple.)

An upper-triangular quadruple with trivial centralizer of diagonalizable
h × h-matrices (h = 2l + 1) with eigenvalues λj, µj of multiplicities l + 1, l is
said to be of type Hh. (Example 21 shows such a quadruple.)

A stratum of V the quadruples of which up to conjugacy are block-diagonal,
with s diagonal blocks of type B defining non-equivalent representations and with
one diagonal block of type Hn−2s is said to be of type HBs.

Proposition 24. 1) A stratum of type HBs is locally a smooth algebraic
variety of dimension n2 + s − 1.

2) It is globally connected.

Proposition 25. The variety V from the example is connected.

Conclusive remarks. As we saw, the stratum of type HB0 (Exam-
ple 21) consists of quadruples with trivial centralizers and is of dimension n2 − 1
(the expected one) while the one of type HB(n−1)/2 is of dimension n2+(n−3)/2.
All intermediate dimensions are attained on the strata HBs, see Proposition 24.
For s > 0 they consist of quadruples with non-trivial centralizers (they are block-
diagonal up to conjugacy). Except the strata of type HBs there are other strata
of V with non-trivial centralizer, e.g. such on which the representation is a direct
sum of some representations of type B and a representation with a non-trivial
centralizer as mentioned in Remark 22.

2.2. Proof of Proposition 18. 10. It is clear that there exist diagonal
quadruples of matrices Aj like above whose sum is 0 (their first k + 1 diagonal
entries equal λj and the last k ones equal µj , see the non-genericity relation (A)).
It follows from 3) of Remarks 16 that there exist no irreducible such quadruples.

20. Any reducible quadruple can be conjugated to a block upper-triangular
form. The restriction of the quadruple to each diagonal block B is presumed to
define an irreducible representation.

If the size l of the block is odd and > 1, then the minimal possible value
of κ for this block is 2 and it is attained only when for each j the multiplicities
of λj and µj as eigenvalues of Aj |B equal (s + 1, s) or (s, s + 1) where l = 2s + 1.
(To prove this one can use Remark 14.) The absence of non-genericity relations
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other than (A) implies that the multiplicity of λj (and, hence, the one of µj)
is one and the same for all j. However, the existence of diagonal quadruples of
matrices Aj of size l with such multiplicities of λj , µj implies that such blocks B
do not exist.

30. If the size of B is 2m, m ∈ N∗, then the minimal possible value of κ
is 0 and it is attained only when the multiplicities of λj and µj as eigenvalues of
Aj |B equal (m,m) (the easy computation is left for the reader). Such blocks B
exist only for m = 1, see [6].

40. If the size of B is 2m, m ∈ N∗, and if κ = 2, then this can happen
only if for three of the indices j the multiplicities of λj and µj as eigenvalues of
Aj |B equal (m,m) and for the fourth one (say, for j = 4) they equal (m−1,m+1)
or (m + 1,m − 1) (we leave the proof for the reader again). This together with
(A) implies that λ4 = µ4 which is impossible. Hence, such blocks B do not exist.

Hence, only blocks of size 1 and of size 2 are possible to occur on the
diagonal (for the ones of size 2 see 30). The fact that (A) is the only non-
genericity relation implies that the blocks of size 1 equal either (λ1, λ2, λ3, λ4) or
(µ1, µ2, µ3, µ4).

The proposition is proved. �

2.3. Proof of Proposition 20. 10. Prove 1). Denote by c∗j the conju-
gacy class of the matrix Bj. Denote by τ the quantity tr(B1 + B2). By varying
the matrices B1 and B2 (resp. B3 and B4) within their conjugacy classes one can
obtain as their sum S = B1 + B2 (resp. as −(B3 + B4)) any non-scalar matrix
from the set ∆(τ) of 2 × 2-matrices with trace equal to τ .

Indeed, if S1,2 = g 6= 0, then set B1 =

(

λ1 0
u µ1

)

, B2 =

(

h g
w λ2 + µ2 − h

)

.

One fixes first h to obtain the necessary entry S1,1. One has g 6= 0, hence, there
exists a unique w satisfying the condition det(B2) = λ2µ2; after this one chooses
u to obtain the necessary entry S2,1.

20. If S1,2 = 0, then one can conjugate S by some matrix Y ∈ GL(2,C)
to obtain the condition S1,2 6= 0, find the matrices B1 and B2 like above and then
conjugate them (and S) by Y −1. This is possible to do because S is not scalar.

The sets ∆(τ) and ∆(τ)\{τI/2} being connected so is the variety Π.
Indeed, one has Π = {(B1, B2, B3, B4)|Bj ∈ c∗j , B1 + B2 = −(B3 + B4)}.

30. Prove 2). If the quadruple of matrices Bj is reducible, then so is the
couple B1, B2, hence, the eigenvalues of B1 + B2 equal either (λ1 + λ2, µ1 + µ2)
or (λ1 + µ2, µ1 + λ2).

The subset ∆0(τ) of ∆(τ) defined by the condition the eigenvalues of a
matrix from ∆(τ) to equal either (λ1+λ2, µ1+µ2) or (λ1+µ2, µ1+λ2) is a proper
subvariety of the smooth irreducible variety ∆(τ). Therefore the connectedness
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of Π0 is proved just like the one of Π, by replacing ∆(τ) by ∆(τ)\∆0(τ). �

2.4. Proof of Proposition 24. 10. Prove 1). Denote by Σ the variety of
block-diagonal quadruples whose first s diagonal blocks are of type B and the last
block up to conjugacy is of type Hn−2s. Each of the first s blocks defines a smooth
variety of dimension 5, see Remarks 17. The last block defines a smooth variety of
dimension (n−2s)2−1. Hence, dim Σ = 5s+(n−2s)2−1. To deduce dim (HBs)
from dim Σ one has to add to dim Σ the dimension of a transversal T to the group
of infinitesimal conjugations preserving the block-diagonal form of the quadruple.
This is the group G of block-diagonal matrices (which are deformations of I) with
the same sizes of the diagonal blocks as the ones of the quadruple (we leave the
proof of this statement for the reader; use the fact that the diagonal blocks define
non-equivalent representations the first s of which of type B and the last of type
Hn−2s). Hence, dim G = 4s + (n − 2s)2, dim T = n2 − 4s − (n − 2s)2 and
dim V = n2 − 4s − (n − 2s)2 + 5s + (n − 2s)2 − 1 = n2 + s − 1.

The stratum of type HBs is locally diffeomorphic to Σ × T , hence, it is
smooth.

20. Prove 2). The variety Π0 of quadruples of matrices of type B is
connected, see Proposition 20. It is smooth as well, hence, it is irreducible.
Hence, the cartesian product of s copies of Π0 is connected; if one deletes from
it the subvariety on which two of the representations are equivalent, then the
resulting variety is still connected.

Hence, the variety Σ is connected. The connectedness of Σ and the one
of GL(n,C) imply the one of the stratum of type HBs. �

2.5. Proof of Proposition 25. Every quadruple of matrices Aj from V
can be conjugated to a block upper-triangular form with diagonal blocks of sizes
1 or 2 (Proposition 18). Conjugate the quadruple by a suitable one-parameter
family of diagonal matrices to make the entries of all blocks above the diagonal
tend to 0 while preserving the diagonal blocks. The limit quadruple (denoted by
(A′

1, . . . , A
′

4)) also belongs to V. Indeed, the restriction of A′

j to each diagonal
block of size 2 is diagonalizable, hence, A′

j is diagonalizable, the eigenvalues and
their multiplicities are the same as for Aj and the sum of the matrices A′

j is 0.

After this deform continuously the blocks of size 2 so that they become
diagonal (by Proposition 20 this is possible). The resulting quadruple is diago-
nal. It is a direct sum of k + 1 quadruples (λ1, λ2, λ3, λ4) and of k quadruples
(µ1, µ2, µ3, µ4). It is unique up to conjugacy and can be reached by continuous
deformation from any quadruple of V. Hence, V is connected. �
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3. The variety V is not always connected. We illustrate the title
of the section by the following

Example 26. Consider the case n = 2, p = 2, the conjugacy classes
c1 and c2 being diagonalizable, with eigenvalues π, 2 and 1−π,−1, the conjugacy
class c3 consisting of the non-scalar matrices with eigenvalues −1,−1. Hence,
κ = 2 and the triple of conjugacy classes satisfies the conditions of Theorem 8 (to
be checked directly). A priori V contains at least the following two components
(denoted by V1 and V2). In V1 the triples of matrices Aj equal (up to conjugacy)

A1 =

(

π 1
0 2

)

, A2 =

(

1 − π 0
0 −1

)

, A3 =

(

−1 −1
0 −1

)

.

In V2 they equal (up to conjugacy)

A1 =

(

π 0
1 2

)

, A2 =

(

1 − π 0
0 −1

)

, A3 =

(

−1 0
−1 −1

)

.

The variety V contains no irreducible triples, see 3) of Remarks 16. Hence, every
triple from V is triangular up to conjugacy but not diagonal (otherwise A3 must
be scalar). Hence, V = V1 ∪ V2.

On the other hand, V1 ∩ V2 = ∅ because the eigenvalues with which each
matrix acts on the invariant subspace are different for the two components. Hence
V is disconnected.

In the above example, however, the closure of V is connected. Indeed,
consider the matrices

A′

1(ε) =

(

π ε
0 2

)

, A′

2(ε) =

(

1 − π 0
0 −1

)

, A′

3(ε) =

(

−1 −ε
0 −1

)

,

where ε ∈ (C, 0). For ε 6= 0 this is a triple of matrices from V1, for ε = 0 this is
a triple from its closure (but not from V because A3 is scalar). In the same way,
for ε 6= 0 the matrices

A′′

1(ε) =

(

π 0
ε 2

)

, A′′

2(ε) =

(

1 − π 0
0 −1

)

, A′′

3(ε) =

(

−1 0
−ε −1

)

belong to V2, for ε = 0 they belong to its closure but not to V and one has
A′

j(0) = A′′

j (0).
In the above example the disconnectedness of V seems to result from the

class c3 not being closed. It would be interesting to prove or disprove that the
closure of V is always connected.

4. Another example.
4.1 Description of the example. For values of (−κ) arbitrarily big

there exist examples when a component of V does not lie in the closure of the
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union of its components on which the centralizer is trivial, and is of dimension
higher than the expected one.

Indeed, consider the following example. Suppose that p > 3 and that
the (p + 1) conjugacy classes cj (or Cj) are diagonalizable, each MV being of
the form (mj, 1, 1, . . . , 1), 3 ≤ mj ≤ n − 1. Hence, rj = n − mj. Suppose that
r1 + · · · + rp+1 = 2n − 2.

Lemma 27. The (p + 1)-tuple of conjugacy classes cj or Cj like above
satisfies the conditions of Theorem 8.

Indeed, one has n1 = n−2 and applying Ψ once one obtains a (p+1)-tuple
of conjugacy classes satisfying condition (ωn−2), see Remark 14. �

Denote by µj the eigenvalue of Aj (or of Mj) of multiplicity mj. Suppose
that there holds the only non-genericity relation µ1 + · · · + µp+1 = 0 (∗) (resp.
µ1 . . . µp+1 = 1).

Remark 28. There exists no irreducible (p + 1)-tuple of matrices
Aj ∈ cj whose sum is 0, see Remark 12. Indeed, condition (δn) from Remark 12
does not hold – set bj = µj and recall that (∗) holds; then rk(Aj − bjI) = rj and
r1 + . . . + rp+1 = 2n − 2 < 2n. A similar remark holds for matrices Mj as well.

Define the conjugacy classes c∗j ⊂ gl(n−2,C) and c′j ⊂ gl(n−1,C) (resp.
C∗

j ⊂ GL(n− 2,C) and C ′

j ⊂ GL(n− 1,C)) as obtained from cj (resp. from Cj)
by keeping the distinct eigenvalues the same and by decreasing the multiplicity
of µj by 2 and by 1; the JNFs defined by the conjugacy classes c∗j , C∗

j , c′j and C ′

j

are diagonal. Hence, the sum (resp. the product) of all eigenvalues of the classes
c∗j and c′j (resp. C∗

j and C ′

j) counted with the multiplicities equals 0 (resp. 1).

Condition (ωn−2) holds for the classes c∗j or C∗

j while condition (ωn−1)
holds for the classes c′j or C ′

j . By Theorem 2 from [5] (we need p > 3 to apply
it), the DSP is solvable for the classes c∗j (resp. C∗

j ) and c′j (resp. C ′

j). Denote by
Hj ∈ c∗j (resp. Hj ∈ C∗

j ) and Gj ∈ c′j (resp. Gj ∈ C ′

j) matrices with sum equal
to 0 (resp. with product equal to I) whose (p + 1)-tuple is irreducible.

Proposition 29. 1) There exist (p + 1)-tuples of n × n-matrices with
trivial centralizers, whose sums equal 0 (or whose products equal I) and blocked
as follows:

Aj (or Mj) =





Hj Rj Qj

0 µj 0
0 0 µj



 or Aj (or Mj) =





µj 0 Tj

0 µj Sj

0 0 Hj



 .

2) Any (p+1)-tuple with trivial centralizer of matrices Aj ∈ cj or Mj ∈ Cj

is up to conjugacy block upper-triangular, with all diagonal blocks but one being
equal, of size one, the restriction of Aj or Mj to such a block being equal to µj.
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The different block is first or last on the diagonal. The number of diagonal blocks
is ≥ 3.

The proposition is proved in the next subsection.
Consider the stratum U ⊂ V of (p + 1)-tuples of matrices which up to

conjugacy are of the form G̃j =

(

Gj 0
0 µj

)

.

Lemma 30. A point of the stratum U does not belong to the closure of
any of the strata on which the centralizer is trivial.

Indeed, the matrix algebra generated by the (p + 1)-tuples of matrices
defined by a point of the stratum U contains a matrix with distinct eigenvalues
(the (p + 1)-tuple of matrices Gj is irreducible and defines a representation not
equivalent to (µ1, . . . , µp+1)) while each matrix from an algebra defined by a
point of any stratum of V where the centralizer is trivial has an eigenvalue of
multiplicity ≥ 2, see 2) of Proposition 29. �

Proposition 31. 1) One has dim U = 3(n − 1)2 + 1 −
p+1
∑

j=1
r2
j .

2) The dimension of each of the two strata of V (denoted by W1, W2) of
the (p + 1)-tuples of matrices which up to conjugacy are like the ones from 1) of

Proposition 29 is the expected one; it equals 3(n − 1)2 −
p+1
∑

j=1
r2
j = dim U − 1.

The proposition is proved in Subsection 4.3. It implies that dim U >
dim Wi, i.e. dim U is greater than the expected dimension.

4.2. Proof of Proposition 29. We prove the proposition only in
the case of matrices Aj and for the left (p + 1)-tuple of matrices given in 1) of
the proposition leaving for the reader the proof in the other cases – it can be
performed in a similar way. We prove part 1) in 10 – 20 and part 2) in 30 – 40.

10. Denote by H an irreducible (p + 1)-tuple of matrices like in the
proposition as well as the representation defined by it and by µ the (p + 1)-tuple
(µ1, . . . , µp+1).

One has δ := dim Ext1(H,µ) = dim Ext1(µ,H) = 2. Indeed, δ =
dim (L/N ) where

L = {(L1, . . . , Lp+1) | Lj = (Hj − µjI)Xj , L1 + · · · + Lp+1 = 0},

N = {((H1 − µ1I)X, . . . , (Hp+1 − µp+1I)X)}

where the matrices Xj and X are (n − 2) × 1.
The dimension of the space of matrices of the form (Hj −µjI)Y = (where

Y is (n − 2) × 1) equals rj. The condition L1 + · · · + Lp+1 = 0 is equivalent
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to n− 2 linearly independent conditions (their linear independence follows easily
from the fact that the representation H is irreducible and not equivalent to the
one-dimensional representation µ). Hence, dim L = r1 + · · · + rp+1 − n + 2 = n.
The same kind of argument shows that dim N = n− 2 which implies that δ = 2.

20. It follows from 10 that one can construct two linearly indepent (p+1)-
tuples of (n−2)×1-matrices belonging to the space L/N – these are the (p+1)-
tuples of matrices Rj and Qj . Show that the centralizer of the thus constructed
(p + 1)-tuple of matrices is trivial. Denote a matrix from the centralizer by

Z =





K B C
D e f
U v w



 where K is of the size of Hj etc.

The commutation relations imply UHj − µjU = 0, j = 1, . . . , p + 1. It
follows from H and µ being non-equivalent and H being irreducible that U = 0.
But then DHj − µjD = 0, j = 1, . . . , p + 1, and in the same way one obtains
D = 0.

Hence, one has [K,Hj ] = 0, j = 1, . . . , p + 1, which implies that K = αI,
α ∈ C (recall that H is irreducible).

This in turn implies that

(Hj − µjI)B + (e − α)Rj + vQj = 0, (Hj − µjI)C + fRj + (w − α)Qj = 0.

The definition of the matrices Rj and Qj implies that B = C = 0, v = f = 0,
e = w = α. Hence, the centralizer is trivial. This proves 1) of the proposition.

30. Prove 2). Recall that there exists no irreducible (p + 1)-tuple of
matrices Aj ∈ cj whose sum is 0 (Remark 28) and that (∗) is the only non-
genericity relation satisfied by the eigenvalues. Hence, every (p + 1)-tuple of
matrices Aj ∈ cj whose sum is 0 is up to conjugacy block upper-triangular and
all diagonal blocks but one (denoted by D) are of size 1 and the restrictions of Aj

to them equal µj . (The block D can also be of size 1 but in this case Aj |D 6= µj .)

40. If the first and the last diagonal blocks are equal, then the centralizer
of the (p + 1)-tuple is non-trivial – it contains the matrix E1,n. So assume that
the first diagonal block is different from all others (the case when this is the last
block can be treated in a similar way). If there are only two diagonal blocks (D
of size n− 1 and µ of size 1), then one has dim Ext1(D,µ) = 0 (this follows from
r1 + · · · + rp+1 = 2n − 2) and, hence, the representation defined by the matrices
Aj is a direct sum. Hence, if the centralizer of the (p + 1)-tuple is trivial, then
there are at least three diagonal blocks. �

4.3. Proof of Proposition 31. We prove the proposition only for
matrices Aj, for matrices Mj the proof is similar.

10. Prove 1). The dimension of the variety of irreducible (p + 1)-tuples
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of matrices Gj ∈ c′j with zero sum equals u′ =

(

p+1
∑

j=1
d(c′j)

)

− ((n − 1)2 − 1), see

Remarks 17. Hence, the dimension of block-diagonal matrices G̃j whose sum is 0
equals u′. To obtain dim U one has to add to u′ the dimension of a transversal T
at I to the subgroup of GL(n,C) of block-diagonal matrices with diagonal blocks
of sizes n − 1 and 1, the only ones conjugation with which preserves the block-
diagonal form of the (p+1)-tuple. One has d(c′j) = (n−1)2− rj − (n−1− rj)

2 =

(2n − 3)rj − r2
j (see Remark 14) and dim T = 2n − 2. Hence,

dim U = (2n− 3)

p+1
∑

j=1

rj −

p+1
∑

j=1

r2
j − ((n− 1)2 − 1)+2n− 2 = 3(n− 1)2 +1−

p+1
∑

j=1

r2
j .

20. Prove 2). The dimension of the variety of (p + 1)-tuples of matrices

Hj ∈ c∗j whose sum is 0 equals u∗ =

(

p+1
∑

j=1
d(c∗j )

)

− ((n − 2)2 − 1) (computed like

u′, by changing n − 1 to n − 2). Hence, this is the dimension of the variety of
n × n-matrices which are block-diagonal, with diagonal blocks equal to Hj, µj,
µj . Note that d(c∗j ) = (n−2)2 − rj − (n−2− rj)

2 = (2n−5)rj − r2
j (Remark 14).

30. The dimension of each of the two varieties of (p+1)-tuples of matrices

like in 1) of Proposition 29 equals u∗ +2
p+1
∑

j=1
rj −2(n−2) = u∗ +2n. Indeed, each

of the matrices Qj , Rj or Tj , Sj belongs to a linear space of dimension rj (this
is the image of the linear operator (.) 7→ (Hj − µjI)(.) or (.) 7→ (.)(Hj − µjI)
acting on Cn−2). One has to subtract 2(n − 2) because

∑

Rj =
∑

Qj = 0 and
∑

Tj =
∑

Sj = 0.
40. One can consider the matrices from 1) of Proposition 29 like block

upper-triangular, with two diagonal blocks the lower of which is of size 2 and is
scalar. The subgroup of GL(n,C) conjugation with which preserves this form
is the subgroup of block upper-triangular matrices with diagonal blocks of sizes
n− 2 and 2. Hence, a transversal at I to it is of dimension 2(n− 2) and one has

dim Wi = u∗ + 2n + 2(n − 2) = u∗ + 4n − 4 =

= (2n − 5)

p+1
∑

j=1

rj −

p+1
∑

j=1

r2
j − ((n − 2)2 − 1) + 4n − 4 = 3(n − 1)2 −

p+1
∑

j=1

r2
j . �
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Université de Nice

Laboratoire de Mathématiques
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