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BOOLEAN RINGS THAT ARE BAIRE SPACES
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Communicated by J. Orihuela∗

Abstract. Weak completeness properties of Boolean rings are related to
the property of being a Baire space (when suitably topologised) and to
renorming properties of the Banach spaces of continuous functions on the
corresponding Stone spaces.

1. Introduction. This paper is loosely based on a talk entitled “Banach

spaces without a strictly convex equivalent norm”, delivered to the Murcia Func-

tional Analysis Seminar in April 1989. In that talk, I exhibited a Banach space

X with no subspace isomorphic to ℓ∞ which admits no strictly convex equiv-

alent norm. The space X was of the type C(K) for a certain compact, totally

disconnected space K. The construction involved the notion of tree-completeness
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for a Boolean ring, something which, together with the related notion of subse-

quential completeness, had previously appeared in the construction of examples

of non-reflexive Grothendieck spaces [8] and of spaces without locally uniformly

convex renormings [1, 10]. In each of these cases the aim was to build a space that

would behave rather like ℓ∞ without containing a copy of that space. Shortly

after my stay in Murcia, I realised that the example I had spoken about there

was also an example of a compact space K which does not have the Namioka

property but is such that C(K) has no subspace isomorphic to ℓ∞; it was also

the case that C(K) under the pointwise topology was not σ-fragmentable by the

norm (c.f. [11]). I subsequently learned that Namioka had shown that the same

things were true of the example of [10]. In planning this article, my original idea

was to give a survey of weak completeness properties of Boolean rings and of

their applications to renorming theory, σ-fragmentability and the Grothendieck

property. However, as time elapsed, it began to seem to me that the properties

of subsequential completeness and tree-completeness were not in themselves of

such fundamental importance and that most of the results obtained using them

could be deduced from the validity of the Baire Category Theorem for certain

Boolean rings equipped with certain topologies. The article in its present form

is intended to show why this is so. The perceptive reader will see that I have

benefited greatly from the thoughts of Isaac Namioka, and his co-authors John

Jayne and Ambrose Rogers. I should like to thank them for some useful and

stimulating conversations both in Murcia and in London. I should also like to

thank members of the Murcia Functional Analysis Group, and José Orihuela in

particular, for their hospitality during my all too brief visit.

2. Weak completeness properties and Baire properties. On the

whole, Boolean rings are more straightforward objects to construct and to ma-

nipulate than are Banach spaces. On the other hand, given a Boolean ring A, one

can associate the Stone space S(A), a locally compact space such that the ring

of compact open subsets of S(A) is isomorphic to A. The Banach space C0(S(A))

of continuous real-valued function vanishing at infinity on S(A) is then a Banach

space whose properties are determined by the properties of A. A good account

of these ideas can be found in [13] (One can alternatively go straight from A to

the Banach space, missing out the construction of the Stone space [6].) This can

be a useful way to construct Banach space counterexamples, and the relationship

between algebraic properties of a Boolean ring A (or topological properties of a

locally compact space S (and Banach space properties of the corresponding space
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of continuous functions can be a topic of interest in itself. As stated in the Intro-

duction, we shall be concerned here with certain weak versions of completeness

for Boolean rings, and with the Baire Category Theorem for certain topologies

on them. We start by recalling the definition of the Subsequential Completeness

Property.

We say that a Boolean ring A is subsequentially complete if, for every

disjoint sequence (An)n∈ω in A, there is an infinite subset M of the set ω of

natural numbers such that {Am : m ∈ M} has a least upper bound in A.

This property (in the special case of a Boolean algebra, that is to say a

Boolean ring with maximal element (was introduced in [8], where it was shown to

be sufficiently strong to guarantee that C0(S(A)) is a Grothendieck space; it was

also shown that there exists a subsequentially complete subalgebra of P(ω), the

power set of the set of natural numbers such that C(S(A)) does not contain ℓ∞.

At the time, the SCP was probably the weakest algebraic property of A known

to force C0(S(A)) to be a Grothendieck space, though the intention had been

to find a simple and convenient property of this type rather than the weakest

one. In fact, weaker such properties now known, for instance the Subsequential

Interpolation Property of Freniche [7]. A still weaker property (new, as far as I

am aware), the Subsequential Separation Property, will be mentioned later on in

this paper.

The tree-completeness property, introduced in [10], is a stronger property

than the SCP; the version considered in [10] was specially tailored for convenience

in proving that C0(S(A)) has no equivalent l.u.r. norm. Alexandrov and Babev,

working independently of the authors of [10], gave an ingenious proof that the

non-existence of such norms already follows from the SCP. In Section 4 of this

paper I shall give an alternative proof of a version of their result using argu-

ments of Baire Category type. It is time to clarify what these arguments will be

concerned with.

Given a Boolean ring A and an ideal I of A we define a topology (not

necessarily Hausdorff(τ(I) on A by taking basic neighbourhoods of A to be of

the form N (A, I) = {B ∈ A : B ∩ I = A ∩ I} with I ∈ I. An alternative

way of looking at this involves the Stone space. An ideal I of A corresponds

to the set of all compact open subsets of some open subset U of S(A): the

topology τ(I) corresponds to uniform convergence of indicator functions on the

compact subsets of U ; if we are thinking of in this way we shall write τc(U). It

is perhaps remarking right away that if I = A and A has a maximal element

(equivalently, U = S(A) and S(A) is compact (then A, τ(I) is discrete; in all
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other cases, however, A, τ(I) has no isolated points. The connection between

weak completeness properties and the topologies τ(I) is the following theorem.

Recall that we say that a topological space X is a Baire space if X satisfies the

conclusion of the Baire Category Theorem, that is to say, if the intersection of

any countable collection of dense open sets is again dense in X.

Theorem 2.1. If A is a Boolean ring with the subsequential complete-

ness property and I is an ideal of A then A, τ(I) is a Baire space.

P r o o f. For each n ∈ ω let Gn be a τ(I)-dense open subset of A. To show

that
⋂

n∈ω Gn is dense in A, I shall show that this intersection meets an arbitrary

basic open set N (A, I). Since N (A, I) = N (A∩ I, I) we may assume that A ∈ I.

The proof will make repeated use of the following simple lemma.

Lemma 2.2. Let I be an ideal of a Boolean ring A, let J be a member of

I, let B1 , . . . , Bm be elements of A with Bi ⊆ J for all i and let G be a τ(I)-dense

open subset of A. Then there exist J ′ ∈ I with J ′ ⊇ J and D ∈ A, with D ⊆ J ′,

D ∩ Bi = ∅ (i ≤ m), such that N (Ni ∪ D,J ′) ⊆ G for all i ≤ n.

P r o o f. Set I0 = J and note that N (B1 , I0) is a non-empty τ(I)-open

set, so that the intersection G ∩ N (B1 , I0) is nonempty and open too. This

intersection must contain a basic neighbourhood of B1, necessarily of the form

N (B1 ∪C1 , I1), with I0 ⊆ I1 ∈ I, I1 ⊇ C1 ∈ I, C1 ∩ I0 = ∅. Next we consider the

nonempty open set N (B2∪C1 , I1) and find, by the same method, I2 and C2 with

I1 ⊆ I2 ∈ I, I1 ⊆ I2 ∈ I, I2 ⊇ C2 ∈ I, C2 ∩ I1 = ∅ and N (B2 ∪ C1 ∪ C2 , I2) ⊆ G.

After several repetitions of the same procedure, we set D = C1 ∪ C2 ∪ · · · ∪ Cn,

J ′ = In and have the result we need. �

We now resume the proof of the theorem. We shall construct by recursion

an increasing sequence I = J0 ⊆ J1 ⊆ · · · in I and a disjoint sequence D1 ,D2 . . .

in I such that Dj ⊆ Jj \ Jj−1 for all j, in such a way that

N (A ∪
⋃

j∈F

Dj ∪ Dn+1 , Jn) ⊆ Gn

for all n ∈ ω and all subsets F of {1, 2, . . . , n}. The inductive step from n to

n + 1 (and the initial stage, which is a trivial degenerate case(follow easily from

the lemma. If Jj and Dj have been defined for j ≤ n we set G = Gn, J = Jn and

let B1 . . . B2n be the sets A ∪
⋃

j∈F Dj with F a subset of {1, 2, . . . , n}. We take

Dn+1 and Jn+1 to be the objects D, J ′ the existence of which is guaranteed by

2.2. �

While we are thinking about such things it will be worth making a remark

about the topologies τ(I) for a special class of ideals I. This will show that in
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some circumstances we can assert the validity of a very strong version of the Baire

Category Theorem.

Remark 2.3. Let A be a Boolean ring and let I be an ideal of A having

the property that every countable subset of I is bounded above in I. Then for

the topology τ(I) on A every Gδ subset is open.

P r o o f. Let Gn be a sequence of τ(I)-open sets and let A be in the

intersection H =
⋂

n∈ω Gn. For each n there exists In ∈ I such that N (A, In) ⊆
Gn. By hypothesis there exists J ∈ I such that In ⊆ J for all n, and the

neighbourhood N (A, J) is contained in H. �

Corollary 2.4. Let A be a Boolean ring with the SCP and let I be an

ideal of A with the property that every countable subset of I is bounded above in

I. Then the intersection of any countable collection of τ(I)-dense open subsets

of A is again a τ(I)-dense open subset.

3. Construction of Boolean rings with the SCP. As I have already

mentioned, the paper [8] contained a construction of a Boolean subalgebra of

P(ω) which has the SCP but is such that C(S(A)) has no subspace isomorphic to

ℓ∞. Alexandrov and Babev showed that this C(S(A)) admits no locally uniformly

convex renorming. In order to get a stronger example, in which there is no strictly

convex renorming, we shall need to carry out a related construction working with

the countable subsets of an uncountable set rather than with the subsets of ω.

The resulting space C0(S(A)) will resemble the space ℓc∞(ω1) of bounded functions

of countable support on ω1 in the same sort of way that the original space of [8]

resembled ℓ∞. The role of the condition (iii) in the theorem that follows is to

ensure that ℓ∞ does not embed in C0(S(A)). The proof of this is exactly as given

in [8] so I shall not include it. In fact, the proof of the theorem is almost the

same as in [8], but since we have shifted to an uncountable base set it may be

best to spell it out.

Theorem 3.1. There exists a subring A of the Boolean ring Pc(ω1) of

countable subsets of ω1 with the following properties:

(i) [0, α(∈ A for each countable ordinal α;

(ii) A has the SCP;

(iii) for every countably infinite subset M of ω1 there is a subset N of M such

that for no A ∈ A is N equal to M ∩ A.
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P r o o f. We start by establishing some notation: we write c for the small-

est ordinal of cardinality the continuum and fix a surjection φ : c → c × c having

the property that β < α when φ(α) = (β, γ). We fix an enumeration (Mα)α∈c of

the countably infinite subsets of ω1. We let A0 be the subring of P(ω1) generated

by the initial segments [0, α) (α < ω1). The cardinality #A0 is at most c so that

there are a total of c disjoint sequences in A. We fix an enumeration of these,

denoting the ξth such sequence by (An(0, ξ))n∈ω . We note that {A∩M : A ∈ A0}
is countable whenever M is a countable subset of ω1, so that we may choose a

subset N0 of M0 which is not of the form A ∩ M0 with A ∈ A0.

Now let δ < c be an ordinal and assume inductively that we have con-

structed the following:

• an increasing family of subrings Aα (α < δ) of Pc(ω1);

• for each α, an enumeration (An(α, ξ)) (ξ ∈ c) of the disjoint sequences in

Aα;

• for each α a subset Nα of Mα.

Assume also that the following are true for all α, γ < δ:

(a) for each countable M ⊂ ω1, the cardinality #{A ∩ M : A ∈ Aα} is at most

max{ω,#α};

(b) if φ(α) = (β, ξ( and α+1 < δ, then, for some infinite L ⊂ ω,
⋃

n∈L An(β, ξ) ∈
Aα+1;

(c) for no A ∈ Aα does Mγ ∩ A equal Nγ .

If δ is a limit ordinal, we just take Aδ =
⋃

α<δ Aα. Condition (a) still

holds by cardinal arithmetic. Conditions (b) and (c) still hold trivially.

If δ is of the form α + 1 we have to show how to choose an infinite subset

L of ω so that, when we define Aα+1 to be the ring generated by Aα together with

the extra element
⋃

n∈L An(φ(α)), the condition (c) remains true for all γ ≤ α.

The following lemma shows us how to do it.

Lemma 3.2. Let B be a Boolean subring of Pc(ω1) and assume that

there is a cardinal d < c such that #{A∩M : A ∈ B} ≤ d for all countable subsets

M of ω1 . Assume further that Mγ , Nγ (γ < d) are countably infinite subsets of

ω1 with the property that Nγ ∈ P \ {A ∩ Mγ : A ∈ B} for all γ. Let (An)n∈ω be

any disjoint sequence in B. Then there exists an infinite subset L of ω such that

Mγ ∩ A 6= Nγ for all γ < d and all A in the ring generated by B ∪ {
⋃

n∈L An}.
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P r o o f. Let L(η) (η ∈ c) be a family of infinite subsets of ω with the

property that L(η) ∩ L(ζ) is finite whenever η 6= ζ. For each η, let B(η) be the

ring generated by B together with the additional element A(η) =
⋃

n∈L(η) An .

Note that the elements of B(η) have the form (B ∩A(η)) ∪ (C \A(η)) with B,C

disjoint elements of B. We suppose that none of the L(η) will do as the L we are

looking for. This means that for each η there exist B(η), C(η) ∈ B and γ(η(< d

such that the intersection Mγ(η) ∩ ((B(η) ∩ A(η)) ∪ (C(η) \ A(η))) is exactly the

forbidden subset Nγ(η) . By our cardinality assumptions there must exist distinct

η, ζ such that γ(η) = γ(ζ) (= γ, say(and such that B(η) ∩ Mγ = B(ζ) ∩ Mγ ,

C(η) ∩ Mγ = C(ζ) ∩ Mγ . Now L(η) ∩ L(ζ) is some finite set F and, since the

sets An are disjoint, we have A(η) ∩ A(ζ) =
⋃

n∈F An. Writing AF for this last

set, we see that Nγ = Mγ ∩ ((B(η) ∩AF )∪ (C(η) \AF )). This is a contradiction

since (B(η) ∩ AF ) ∪ (C(η) \ AF ) is in B. �

In the proof of 3.1, we can now see how to obtain Aα+1 as the algebra

generated by A and an additional element A =
⋃

n∈L An(φ(α)). Recalling from

the proof of 3.2 the formula (B ∩ A) ∪ (C \ A) for the general element of Aα+1 ,

we see that for a countable subset M of ω1 , the number of new sets of the form

M ∩ ((B ∩ A) ∪ (C \ A)) that we have created is at most the number of ways of

choosing B ∩ M and C ∩ M with B and C in Aα. By our inductive hypothesis,

this is at most max{ω,#α}. Thus (a) remains true.

In either the limit ordinal case or the successor ordinal case we now fix

an enumeration (An(δ, ξ)) (ξ ∈ c) of the disjoint sequences in Aδ, and (using (a))

choose any subset Nδ of Mδ which is not of the form D ∩ Mδ with D ∈ Aδ.

When the recursion is complete, the algebra A =
⋃

α<c Aα has the prop-

erties we wanted. �

4. Baire properties and convex renormings. This section is devoted

to showing that suitable properties of Baire Category type for the ring A imply

that C0(S(A)) admits no locally uniformly convex renorming, or even no strictly

convex renorming.

Theorem 4.1. Let A be a Boolean ring without maximal element. If A

is a Baire space for the topology τ(A) then C0(S(A)) admits no locally uniformly

convex equivalent norm. If, in addition, every countable subset of A is bounded

above, then C0(S(A)) admits no strictly convex equivalent norm.

P r o o f. Let ‖ · ‖ be any equivalent norm on C0(S(A)). We consider the

function ν : A → R given by νA = ‖1lA‖. (We are identifying an element of A with
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the corresponding compact open subset of S(A).) Since the measures of compact

support are norm-dense in the dual space of C0(S(A)), any equivalent norm on

C0(S(A)) is lower semicontinuous for the topology τc(S(A)) of uniform conver-

gence on the compact subsets of S(A). By the way the topology τ(A) is defined,

the map A 7→ 1lA is a homeomorphic embedding of A, τ(A) into C0(S(A)), τc, so

that the function ν is l.s.c. on A, τ(A). Now an l.s.c. function on a Baire space

is continuous at all points of some dense Gδ; let us choose one continuity point A

of ν. By continuity, there exists, for each n ∈ ω, an element In of A with In ⊇ A

such that |ν(A ∪ C) − ν(A)| ≤ 2−n whenever C ∈ A and C ∩ In = ∅. We may

define recursively a sequence (Cn) of elements of A in such a way that, for each n,

Cn ∩ [In ∪
⋃

j<n Cj ] = ∅. Indeed, to do this we only have to note at stage n that

In ∪
⋃

j<n Cj is not a maximal element of A (since we are assuming none exists).

We now have ‖1lA∪Cn
‖ → ‖1lA‖ as n → ∞. Since the norm ‖ · ‖ is equivalent to

the supremum norm, we do not have ‖1lA∪Cn
− 1lA‖ → 0. Thus if ‖ · ‖ were l.u.r.

we should have lim supn→∞ ‖1lA + 1
21lCn

‖ < ‖1lA‖. This is a contradiction, since

1lA is the weak limit of the sequence (1lA + 1
21lCn

).

We now make the additional assumption that every countable subset of

A is bounded above in A. We obtain a continuity point of ν and the sequence

(In) as before but are now able to construct a transfinite sequence (Cα)α∈ω1
such

that, for each β ∈ ω1, Cβ ∩ [
⋃

α<β Cα ∪
⋃

n∈ω In] = ∅. The point is that at stage β

we know that the countable subset {Cα : α < β}∪{In : n ∈ ω} is bounded above

by some J ∈ A and that this J is not a maximal element of A. By the choice of

the sets In we have ‖1lA∪Cα
‖ = ‖1lA‖ for all α. If the norm were strictly convex

we should have ‖1lA + 1
21lCα

‖ < ‖1lA‖ for all α. So for some ǫ > 0) there would

exist uncountably many α with ‖1lA + 1
21lCα

‖ < ‖1lA‖− ǫ. This leads to the same

contradiction that we had in the first part. �

Corollary 4.2. There exists a Banach space which does not have a

subspace isomorphic to ℓ∞ and which admits no strictly convex equivalent norm.

P r o o f. We take A to be the Boolean ring constructed in 3.1 and consider

the Banach space C0(S(A)). �

5. The Namioka Property and σ-fragmentability. A compact

space K has the Namioka Property (N∗) if, for every Baire space B, and every

separately continuous function φ : B × K → R, there is a dense Gδ subset H of

B such that φ is (jointly) continuous at every point of H × K. The Namioka

Property can be equivalently formulated as follows: a compact space has (N∗)
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if and only if, for every Baire space B, every function χ : B → C(K), continuous

into the topology τp(K) of pointwise convergence, is continuous into the norm

topology at every point of some dense Gδ subset of B. It is known that members of

several familiar classes of “good” compact spaces (for example, Corson compacta

[2] and dyadic compacta [5]) have this property, but that not all compact spaces

do [14, 3]. Talagrand’s example was essentially based on the space ℓc∞(ω1) and

Deville’s on ℓ∞. Namioka and the present author observed independently that

examples of non-Namioka compact spaces K such that C(K) does not contain ℓ∞
could be constructed using the tree-completeness property of [10]. In fact, the

crucial issue is exactly the kind of Baire property that we have been looking at,

and indeed it was the role of Baire ideas in this context that made it seem worth

examining them in greater detail.

As well as dealing with the Namioka Property, both Namioka and I also

proved a similar result about σ-fragmentability. We recall from [11] that a topo-

logical space X is said to be σ-fragmentable by a metric d if, for each ǫ > 0,

there exists a countable covering (Xn)n∈ω of X such that, for each n and each

nonempty subset Y of Xn, some non-empty, relatively open subset of Y has d-

diameter at most ǫ. We say that a Banach space X is σ-fragmentable if (X,weak)

is σ-fragmentable by the norm. It is shown in [11] that many Banach spaces are

of this type, but that ℓ∞ is not, while ℓc∞(ω1), under the weak topology, is σ-

fragmentable by no l.s.c. norm. We shall now look at what σ-fragmentability of

C0(S(A)) says about the Boolean ring A.

We start by defining a property of Namioka type for a general topological

space. We shall say that a topological space X has the property (DN) if, for

every non-empty Baire space B and every continuous function φ : B → X, there

is a non-empty open subset U of B on which φ is constant. We start with an

easy lemma of general topology. Recall that a topological space Y is said to be

scattered if every non-empty subset Z of Y has a (relatively) isolated point. We

shall say that X is σ-scattered if X is the union of countably many scattered

subsets.

Proposition 5.1. If the topological space is σ-scattered, then X has

Property (DN).

P r o o f. Let φ be a continuous mapping from a Baire space B into X and

let (Xn)n∈ω be a covering of X by scattered subsets. By the Baire property of B,

there is some n such that cl φ−1[Xn] has nonempty interior. Set V = int cl φ−1[Xn]

and W = V ∩ φ−1[Xn], noting that V ⊆ cl W . The nonempty subset φ[W ] of Xn

has an isolated point x, which means that there exists an open subset U of X
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with U ∩ φ[W ] = {x}. So φ−1[U \ {x}] ∩ W is empty. But φ−1[U \ {x}] is open

in B and W is dense in V , so that φ−1[U \ {x}] ∩ V is also empty. This shows

that φ takes the value x everywhere on the non-empty open set φ−1[U ] ∩ V . �

Proposition 5.2. Let A be a Boolean ring and let I be an ideal of A.

• If C0(S(A)) is σ-fragmentable then I, τ(I) is σ-scattered.

• If S(A) has the Namioka Property then I, τ(I) has Property (DN).

P r o o f. (1) If C(S(A)) is σ-fragmentable by the norm then so is its closed

subspace C0(S(I)). We apply σ-fragmentability, with ǫ = 1
2 . Let Xn (n ∈ ω) be

the subsets whose existence is thus guaranteed. We may assume that each Xn is

bounded. Since the measures of compact support form a norm-dense subspace

of C0(S(I))∗, the weak topology on each each Xn is now coarser than τc. It

follows that if Xn = {I ∈ I : 1lI ∈ Xn} then each map I 7→ 1lI : Xn → Xn

is continuous from τ(I) into the weak topology. If Y is a non-empty subset

of Xn there thus exists I ∈ Y and a τ(I) neighbourhood N of I such that

‖1lI − 1lJ‖∞ < 1
2 whenever J ∈ N∩Y. Of course, this implies that N ∩Y = {I},

so that I is an isolated point of Y.

(2) Again we identify C0(S(I)) with a closed subspace of C0(S(A)) and

note that the topologies τp(S(A)), τp(S(I)) coincide on it. Thus if φ : B →
I, τ(I) is a continuous map, the map x 7→ 1lφ(x) : B → C0(S(A)), τp is continuous

too. Provided B is a Baire space, this map has points of continuity into the norm

topology. Since the set of indicator functions is norm-discrete, this gives what we

want. �

Proposition 5.3. Let A be a Boolean algebra and assume either that

S(A) has the Namioka Property or that C(S(A)) is σ-fragmentable. If I is an

ideal of A and I, τ(I) is a Baire space then I has a maximal element.

P r o o f. It follows from 5.1 and 5.2 that, subject to either of our hypothe-

ses, I, τ(I) must have the (DN) property. If this space is also Baire then the

identity map must be constant on some nonempty open set. This is a way of

saying that I must have an isolated point, A say. By the way τ(I) is defined,

there exists I ∈ I such that if B ∈ I and B∩ I = A∩ I then B = A. A moment’s

thought allows us to deduce that I is a maximal element of I. �

The above proposition gives us a way to construct many examples of non-

Namioka compacta with non-σ-fragmentable spaces of continuous functions. In

particular, we have the following corollary.
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Corollary 5.4. Let A be an infinite Boolean ring with the SCP. Then

S(A) does not have the Namioka Property and C0(S(A)) is not σ-fragmentable.

P r o o f. If A is not a Boolean algebra we may take I = A in the theorem.

Otherwise, let I be a non-principal maximal ideal of A. It is easy to see that

I has the SCP. Indeed, given a disjoint sequence (An) in I there exist infinite

subsets M,N of ω such that {A2m : m ∈ M} and {A2n+1 : n ∈ N} have least

upper bounds A,B respectively in A. Of the disjoint elements A,B of A at least

one lies in I by maximality of this ideal. Since I has the SCP it is a Baire space.

On the other hand, saying that I is non-principal is the same as saying that it

has no maximal element. �

Corollary 5.5. There exists a non-Namioka compact space K such that

C(K) is not σ-fragmentable and has no subspace isomorphic to ℓ∞.

It is shown in [11] that a Banach space that admits an equivalent l.u.r.

norm is necessarily σ-fragmentable. Thus the results above give an alternative

way to prove the “l.u.r. part” of 4.1. The “strictly convex part”, on the other

hand, seems to need the technique of Section 4.

Corollary 5.4 is an analogue of the results of [3] and and of [11] about ℓ∞.

Not surprisingly, there is also an analogue of the result of [11] about ℓc∞.

Theorem 5.6. Let A be a Boolean ring without maximal element.

Assume that every countable subset of A is bounded above and that A is a Baire

space for the topology τ(A). Then there is no weakly l.s.c. metric on C0(S(A))

for which this space is σ-fragmentable.

From this theorem and the construction of Section 3 we immediately get

the following corollary.

Corollary 5.7. There exists a Banach space X which contains no copy

of ℓ∞ but which is σ-fragmentable for no weakly l.s.c. metric.

We devote the rest of the present section to the proof of Theorem 5.6.

Applying arguments similar to those used earlier, we see that it will be enough to

show that A, τ(A) is not σ-fragmentable for a τ(A)-l.s.c. metric. We shall deduce

this from a result about σ-fragmentability in more general Baire spaces. More

subtle arguments of the same type appear in [11].

Proposition 5.8. Let B be a Baire space which is σ-fragmentable by a

metric d. Then there is a non-empty Gδ subset of B which is d-separable. If d is

l.s.c. then B contains a dense set of Gδ points.
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P r o o f. For each n ∈ ω let (Xn,k)k∈ω be a covering of B such that, for

every k and every non-empty Y ⊆ Xn,k, there exists an open subset U of B with

U ∩ Y 6= ∅ and d-diam Y ∩ U < 2−n. For each n, k we define

Gn,k =
⋃

{U : U is open in B and d-diam (U ∩ Xn,k) < 2−n}.

Our convention is that d-diam ∅ = −∞ so that Gn,k ⊇ int (B \ Xn,k). I claim

that each Gn,k is dense in B; because of what we have just said, it is enough to

show that Gn,k meets every non-empty open subset V of int cl Xn,k. For such a

V , V ∩ Xn,k is non-empty and so there exists an open subset W of B such that

W ∩ V ∩Xn,k 6= ∅ and d-diam W ∩ V ∩ Xn,k < 2−n. Thus Gn,k ∩ V contains the

non-empty set W ∩ V .

By the Baire property of B, the intersection
⋂

n,k∈ω Gn,k is dense in B.

Let x be any point of this intersection and choose, for each n, k an open set Un,k

containing x, with d-diam (Un,k ∩ Xn,k) < 2−n. Let T be the intersection of all

the Un,k , a non-empty Gδ subset of B. I claim that T is d-separable. Indeed,

for any m = (m(n))n∈ω ∈ ωω and any l ∈ ω, the d-diameter of T ∩
⋂

n≤l Xn,m(n)

is at most 2−l. Thus, for the d-topology, T is a continuous image of the subset

{m : T ∩
⋂

n∈ω Xn,m(n) 6= ∅} of ωω, the mapping φ being such that {φ(m)} =

T ∩
⋂

n∈ω Xn,m(n).

Finally, if d is lower semicontinuous, then every closed d-ball is closed for

the topology of B. If x and T are as above and D is a countable d-dense subset

of T then

{x} = T \
⋃

z∈D,n∈ω

{y ∈ B : d(y, z) ≤ d(x, z) − 2−n},

so that x is a Gδ point. �

Corollary 5.9. Let A be a Boolean ring in which every countable subset

is bounded above and assume that A is a Baire space for τ(A). If d is a metric

for which A, τ(A) is σ-fragmentable then there is a nonempty τ(A)-open subset of

A which is d-separable. If d is τ(A)-l.s.c. then A must have a maximal element.

P r o o f. We have already noted that the hypothesis about countable

subsets of A implies that all Gδ subsets of A are open. Thus the first assertion

follows from 5.8. When we assume lower semicontinuity of d, we see that A

must contain a point that is τ(A)-isolated. We have already noted that such a

point exists only if A has a maximal element (in which case τ(A) is the discrete

topology). �

We have now completed the proof of 5.6. It is worth noting that the

assertion in 5.9 about d-separable τ(A)-open sets shows that the space C0(S(A))
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constructed in Section 3 is σ-fragmentable for no “sensible” metric. For instance,

since this space C0(S(A)) can be regarded as a subspace of ℓc∞(ω1), one notion of

a sensible metric might be one that induces a topology finer than the topology

of pointwise convergence on ω1. It is easy to see that no non-empty τ(A)-open

set is separable for this pointwise topology. On the other hand there do exist

metrics (not “sensible”) on this space, for which it is σ-fragmentable. Indeed,

since the cardinality of the space is equal to the continuum, we may equip it with

the structure of a separable metric space.

6. Grothendieck spaces. As we noted in the introduction, the Subse-

quential Completeness Property was originally introduced to answer a question

about Grothendieck spaces. It is natural to ask, after what we have seen in the

preceding sections, whether a Baire property for A of the kind that we have been

looking at will suffice to prove that C0(S(A)) is a Grothendieck space. The answer

is yes, provided we take a rather strong Baire assertion, namely the conclusion of

Theorem 2.1. The proof goes somewhat against the philosophy of the previous

sections, since, rather than using the Baire property itself, we use it to deduce a

new weak completeness property, the SSP, which we then show implies the our

desired conclusion. On the other hand we shall indicate at the end of this section

a way in which the SSP may turn out to be of independent interest.

We shall say that a Boolean ring A has the Subsequential Separation

Property if, whenever (An)n∈ω is a disjoint sequence in A there exists an infinite

subset M ⊆ ω and an element D of A such that A2n ⊆ D and A2n+1 ∩D = ∅ for

all n ∈ M .

Theorem 6.1. Let A be a Boolean algebra and assume that A, τ(I) is

a Baire space for every ideal I of A. Then A has the SSP.

P r o o f. Let (An)n∈ω be a disjoint sequence in A and let I be the ideal

generated by the An . For each positive integer m define

Gm = {B ∈ A : A2n ⊆ B and A2n+1 ∩ B = ∅ for at least m values of n}
=

⋃
F⊆ω, #F=m{B ∈ A : B ∩

⋃
n∈F (A2n ∪ A2n+1) =

⋃
n∈F A2n}.

The second expression above shows that Gm is τ(I)-open. I shall show that it is

also τ(I)-dense. Let A be any element of A and let I be in I. Then I ⊆
⋃

j<2k

for some integer k and the neighbourhood N (A, I) of A contains the element

(A ∩ I) ∪
⋃

0≤j<m A2k+2j of Gm . The assumption that τ(I) is a Baire topology

implies that
⋂

m≥1 Gm 6= ∅ and any element D of this intersection has the property

required for the SSP. �
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We now recall that a Banach space X is said to be a Grothendieck space

if every weak* convergent sequence in X∗ is also weakly convergent. The key

to all existing criteria for C0(S(A)) to be a Grothendieck space is a reduction to

the case of sequences of measures supported by disjoint compact open sets. The

following version of this idea is the one used in [15].

Proposition 6.2. Let S be a locally compact, totally disconnected space

and assume that c0(S) is not a Grothendieck space. Then there exist a disjoint

sequence (Bn) of compact open subsets of S and a sequence of Radon measures

(µn) on S such that ‖µn‖ = |µn|(Bn) = 1 for all n, and µn → 0 in the weak*

topology.

Theorem 6.3. Let A be a Boolean ring with the SSP. Then C0(S(A))

is a Grothendieck space.

P r o o f. Suppose that C0(S(A)) is not a Grothendieck space. Let the

sequences (Bn) in A and (µn) in C0(S(A))∗ be as in the conclusion of 6.2. For

each n, |µn|(Bn) = 1, so there exists an element A2n of A with A2n ⊆ Bn and

|µn(A2n)| > 1
3 . We set A2n+1 = Bn \ A2n . If M and D are as in the definition

of the SSP, then |µn(D)| = |µn(D ∩ Bn)| = |µn(A2n)| > 1
3 for all n ∈ M ,

contradicting the weak* convergence of (µn) to 0. �

The Subsequential Completeness Property and the weaker Subsequen-

tial Interpolation Property introduced by Freniche [7] both imply the so-called

Nikodym Boundedness Property as well as the Grothendieck Property. Now Ta-

lagrand [16] gave an example, constructed using the Continuum Hypothesis, to

show that, in general, Grothendieck does not imply Nikodym. The SSP seems

to be a good candidate for an algebraic property of A which would imply the

Grothendieck Property but not the Nikodym Property. I conjecture that this is

indeed the case and that the necessary construction can be carried out without

a special axiom such as CH.

Final remarks. The topologies τ(I) which we have considered in this

article have the advantage that they are quite “algebraic” and lend themselves

to nice combinatorial arguments. Also, as we have noted, the map A 7→ 1lA is

continuous from τ(A) into the the weak topology of C0(S(A)). However, it is

possible to look at the topology τp of pointwise convergence, defined so that

A 7→ 1lA is a homeomorphic embedding into C0(S(A)), τp. Certain implications

are easy to establish:

• if S(A) has the Namioka Property, then A, τp has the property (DN);



Boolean rings that are Baire spaces 105

• if C0(S(A)), τp is σ-fragmentable by the norm then A, τp is σ-scattered;

• if C0(s(A)) admits a τp-l.s.c., l.u.r. equivalent norm, then A, τp is σ-discrete.

It is not clear whether any of the reverse implications hold, that is to say whether

properties of the Boolean ring imply the corresponding properties of the Banach

space. If this turned out to be the case it might be a useful tool for investigating

problems such as whether σ-fragmentability implies l.u.r. renormability.

To finish I must mention a very recent result [9] which provides a coun-

terexample stronger than 4.2 and 5.5 of this paper. It is a compact scattered

space K such that C(K) admits no strictly convex equivalent norm and is not

σ-fragmentable; K does not have the Namioka Property. The reader will recall

that one crucial property of the spaces C0(S(A)) was that they contained no copy

of ℓ∞; when K is a scattered compact the space C(K) does not contain ℓ1 , a

much more restrictive condition.
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