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Abstract. This paper was extensively circulated in manuscript form be-
ginning in the Summer of 1989. It is being published here for the first time in
its original form except for minor corrections, updated references and some
concluding comments.

We call a Banach space descriptive (almost descriptive) if its weak topol-
ogy has a σ-relatively discrete (σ-scattered) network. A key property in
deriving many of our results is the fact that whenever the weak topology
has a network of either type, then the norm topology will have a network
of the same type where the discreteness property is again with respect to
the weak topology. Properties known to hold for Banach spaces with an
equivalent Kadec norm are shown to hold for the more general class of de-
scriptive Banach spaces. And almost descriptive Banach spaces are shown
to coincide with σ-fragmented Banach spaces introduced by Jayne, Namioka
and Rogers.
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1. Introduction. In order to study the geometric and topological
properties of non-separable Banach spaces it is usually necessary to impose some
condition to limit the size of this class. Usually this is accomplished by requiring
that the weak topology satisfy some compactness condition. This has led to
the study of progressively more general classes such as reflexive Banach spaces,
weakly compactly generated Banach spaces (see [1], [49], [65] and [8]) and, more
recently, to the classes of (weakly) K-analytic and countably determined Banach
spaces [71], [78]. All of these conditions, however, require that the underlying
Banach space be a Lindelöf space in the weak topology.

The object of this paper is to take this investigation further by considering
classes of non-separable Banach spaces whose weak topologies possess a certain
type of network, similar to the types of networks investigated in the study of
generalized metric spaces [23]. Recall that a collection N of subsets of a space
X is said to be a network for X if, whenever x ∈ U and U is open in X, then
for some N ∈ N we have x ∈ N ⊂ U ; thus, N is like a base except the sets need
not be open. The results we obtain seem to underscore the fact that this is a
potentially useful way to approach the study of certain classes of non-separable
Banach spaces. The classes study here provides a natural extension of the class
of K-analytic and countably determined Banach spaces, but need not be Lindelöf
in the weak topology.

It is often the case that results about separable metric spaces are of such
a special character that they provide little if any insight as to how such a result
might be generalized to the non-separable case. As an example, consider the
following standard result for separable Banach spaces, where we use (X,weak)
and (X,norm) to designate which topology is being associated with the Banach
space X.

Theorem 1.1. For a Banach space X the following are equivalent.
(a) X is separable.

(b) (X,weak) has a countable network.

(c) (X,norm) has a countable network consisting of weakly closed sets.

Note that property (b) follows from the fact that any continuous image
of a separable metric space has a countable network. (In fact, this property
is characteristic of all Hausdorff spaces that are continuous images of separable
metric spaces [51, Proposition 10.2]). Property (c) is especially useful and follows
from (a) by taking any countable collection of closed balls whose interiors form
a base (or open network) for the norm topology. Some immediate consequences
of (c) are that each norm open set is a weakly Fσ set (hence the norm and weak
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topologies have the same Borel sets), and this implies that the points of norm
discontinuity of any weakly continuous map into X is a set of the first category
(cf. [2, §1]).

It is natural to ask if something similar to the equivalence (b) ⇐⇒ (c)
in Theorem 1.1 holds for suitable classes of non-separable Banach spaces. For
example, suppose X is a Banach space such that (X,weak) has a network of
the form N = ∪

n∈N

Nn where each collection Nn is disjoint and satisfies some

“discreteness” property relative to the weak topology. Does it then follow that
(X,norm) has a network of the form M = ∪

n∈N

Mn where each collection Mn

satisfies the same discreteness property relative to the weak topology? In addition,
can we choose the members of Mn to be (say) Borel sets relative to the weak
topology? We show that this is indeed the case, and that such networks will in
fact exist for a wide class of non-separable Banach spaces, including all countably
determined Banach spaces. A number of results are deduced from this similar to
the above consequences of property (c) of Theorem 1.1.

Standard results of general topology show that separable metric spaces are
essentially characterized by the existence of a countable open base. In analogy
with this is the fact that non-separable metric spaces have a σ-discrete open
base. In view of this and Theorem 1.1 it is tempting to ask if the weak topology
of certain non-separable Banach spaces have a σ-discrete network. This turns
out to be too much to expect, since discrete collections in Lindelöf spaces must
be countable. Thus, for example, a weakly compactly generated Banach space
would have this property only if it has a countable network; that is, only if it is
separable.

No such problem is encountered however concerning the existence of σ-
relatively discrete network for the weak topology of a Banach space. Recall that
a collection E is relatively discrete if it is discrete relative to the subspace ∪E (i.e.,
each point in ∪E has a neighborhood meeting exactly one member of E). Not only
is this a useful property for the weak topology to have, but one which is satisfied
(as we will show) by a significantly wide class of Banach spaces. Although the
notion of a relatively discrete collections appears to have received little attention
in the past, we will see that it is the natural property to consider in this context.
We will see that relatively discrete collections have many of the usual preservation
properties of discrete collections, except one has to replace references to closed
sets by F ∩G sets (i.e., sets of the form F ∩G where F is closed and G is open).

Most of our results dealing with the topological properties of a Banach
space hold more generally for the case of a function space of the type C(K) with
the weak topology replaced by the topology of pointwise convergence. If K is
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a compact Hausdorff space, then C(K) denotes the Banach space of all real-
valued continuous functions on K with the usual supremum norm, and we let
Cp(K) denote the same space with the topology of pointwise convergence. More
generally, if X ⊂ C(K), then (X, τp) will denote the space X with the topology
of pointwise convergence. We can now state our first result which provides a
natural extension of Theorem 1.1 to non-separable Banach spaces.

Theorem 1.2. For any compact Hausdorff space K and for any X ⊂
C(K) the following are equivalent.

(a) (X, τp) has a σ-relatively discrete network.

(b) (X,norm) has a network which, relative to the topology of point-wise con-
vergence, is σ-relatively discrete and consists of F ∩ G sets.

(c) Each norm discrete collection of subsets of X has a τp σ-relatively discrete
refinement.

In particular, the above equivalences hold whenever X is a subset of a Banach
space and τp is replaced by the weak topology of X.

As we show below, property (b) of Theorem 1.2 implies that the Borel
sets for both the norm and τp topologies coincide. In order for this property
to hold in a dual Banach space X∗, relative to the norm and weak∗ topologies,
it is known that X∗ must have the Radon-Nikodým property (RNP) (see, for
example, [5, Theorems 4.4.2 and 4.4.3]). With this in mind we have the following
analog of Theorem 1.2 for dual Banach spaces.

Theorem 1.3. For any dual Banach space Z∗ with RNP and for any
X ⊂ Z∗ the following are equivalent.

(a) (X,weak∗) has a σ-relatively discrete network.

(b) (X,norm) has a network which, relative to the weak∗ topology, is σ-relatively
discrete and consists of F ∩ G sets.

(c) Each norm discrete collection of subsets of X has a weak∗ σ-relatively dis-
crete refinement.

(d) Any collection of weak∗ open sets has a σ-relatively discrete refinement.

Conversely, if the norm topology of a dual Banach space Z∗ has a network
that is σ-relatively discrete for the weak∗ topology, then Z∗ has RNP.

For general topological spaces property (d) of Theorem 1.3 is substan-
tially weaker than property (a). The topological covering property known as
weak θ-refinability can be characterized by the condition that every open cover
of a space has a σ-relatively discrete refinement (see [4] or [7, Theorem 3.7]). It
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follows that any space with a σ-relatively discrete network is hereditarily weakly
θ-refinable (equivalently, every collection of open sets, not necessarily a cover, has
a σ-relatively discrete refinement). Several classes of Banach spaces described in
detail below turn out to be equivalent when the weak topology is hereditarily
weakly θ-refinable. Although it is shown that a large number of Banach spaces
have this property, it remains an open question as to whether the weak topol-
ogy of every Banach space has this property. (Professor Robert Wheeler has
communicated to the author that he had raised this very question some years
ago.)

The following theorem gives a list of some properties enjoyed by the spaces
described in Theorems 1.2 and 1.3 above. The terms are explained following the
theorem. Other properties, satisfied by a more general class of Banach spaces
discussed below, are described later in this section.

Theorem 1.4. Let X be a subset of a Banach space Z and let τ denote
either the weak topology of Z, or the topology of pointwise convergence when
Z = C(K), or the weak∗ topology if Z is a dual Banach space with RNP. If
(X, τ) has a σ-relatively discrete network, then the following hold.

(a) Each norm open set in X is a (F ∩ G)σ set relative to (X, τ).

(b) In the case when X = Z and τ = weak topology, (Z,weak) is a (F ∩ G)σδ

set in (Z∗∗,weak∗).

(c) If X is a norm Souslin subset of Z, then (X, τ) is a Čech analytic space, and
every point-finite Souslin-additive family in (X, τ) is σ-relatively discretely
decomposable.

(d) If X is a norm Souslin subset of Z, then (X, τ) is either a countable union of
relatively discrete subspaces or else it contains a non-empty compact perfect
subset.

(e) (X, τ) is a Radon space, provided it contains no discrete subsets of measur-
able cardinality.

If A is any collection of sets, then Aσ and Aδ denote the collections of
all countable unions and countable intersections respectively of sets in A, and
Aσδ = (Aσ)δ. A set A is a Souslin(A) set if, for some collection {Aτ |n : τ |n ∈
N

n, n ∈ N} ⊂ A, we have

A = ∪
{ ∞

∩
n=1

Aτ |n : τ ∈ N
N

}
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where τ |n = (τ1, . . . , τn) for τ = (τ1, τ2, . . .) ∈ N
N. Standard results on the

properties of the Souslin operation imply that, if B denotes the family of Borel
sets of a space X, then

Souslin(B) = Souslin(F ∪ G),

where F ∪ G is the ordinary union of the closed and open sets of X. These sets
will simply be called Souslin sets in X. For metrizable spaces they coincide with
the more familiar Souslin(F) sets.

If X is a completely regular Hausdorff space, then X is said to be Čech
complete if X is a Gδ set in some (equivalently, every) compactification of X
(see [14, p. 142]). Following Fremlin [17], we say that X is Čech analytic if it
is a Souslin set in some (equivalently, every) compactification of X. The Čech
analytic subsets of a compact Hausdorff space X are precisely the projections to
X of Čech complete subsets of X × N

N. This and other results of Fremlin on
Čech analytic sets can be found in [34, Section 5] and in Fremlin unpublished
note [17].

Properties of families of sets are always understood to be in the sense
of an indexed family. In particular, if {Eλ : λ ∈ Λ} is disjoint, then λ 6= γ
implies Eλ ∩ Eγ = ∅. Similarly, a family of sets {Eλ : λ ∈ Λ} is said to be
point-finite or point-countable if, for any point x, {λ ∈ Λ : x ∈ Eλ} is finite or
countable, respectively. Suppose P denotes any property of sets or families of
sets. Then we say that a family is σ-P if it is a countable union of subfamilies
each of which has property P . We say that {Eλ : λ ∈ Λ} is σ-P -decomposable
if, for each λ ∈ Λ, Eλ = ∪{Eλn : n ∈ N} where {Eλn : λ ∈ Λ} is disjoint and
has property P for each n ∈ N. A family is said to be P -additive if the union
of each subset has property P . An important result in non-separable descriptive
topology states that a point-finite Souslin-additive family in an analytic metric
space is σ-discretely decomposable [44] (see also [26] and [19]). Property (c) of
Theorem 1.4 is a generalization of this, since in a metric space any relatively
discrete collection is σ–discretely decomposable [26, §1.2].

A Hausdorff space X is said to be a Radon space if each Borel measure
µ on X is Radon; i.e., for each Borel set B of X, µ(B) = sup{µ(K) : K ⊂
B and K compact}. A classical result of Marczewski and Sikorski [47] shows
that any complete (hence any absolutely analytic) metric space is a Radon space
if, and only if, it contains no discrete subset of measurable cardinality. (Recall
that measurable cardinals are also said not to be real-valued measurable; the
precise definitions are recalled in §5 below). Schachermayer [66] has shown that
a similar result holds for any weakly compact subset of a Banach space with the
weak topology (cf. also [11, p. 676]).
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We say that a Hausdorff space (X, τ) is descriptive if there is a complete
metric space T and a continuous surjection f : T → X such that, whenever
{Eλ : λ ∈ Λ} is a relatively discrete family in T , then {f(Eλ) : λ ∈ Λ} is σ-
relatively discretely decomposable in X. If we omit the word “relatively” in this
statement, then we obtain a characterization of an analytic metric space (not
necessarily separable), that is, a metric space which is a Souslin(F) set in every
metric embedding [27]. When T is separable the above mapping property is
automatically satisfied, and we get the definition of a Souslin space [67, p. 96]
(also called an analytic space [64, §5.5]). More generally, we say that (X, τ) is
K–descriptive if there is a complete metric space T and an upper semi-continuous
compact-valued map F : T → X such that X = ∪{F (t) : t ∈ T} and, whenever
{Eλ : λ ∈ Λ} is a discrete family in T , then {F (Eλ) : λ ∈ Λ} is σ-relatively
discretely decomposable in X. Recall that F is upper semi-continuous if {t ∈
T : F (t) ⊂ U} is open in T whenever U ⊂ X is open. When T is separable the
above mapping property is again automatically satisfied, and we get the usual
definition of a K-analytic space, or a (K-) countably determined space when T
is not assumed to be complete [64].

We say that a Banach space Z is descriptive or K-descriptive whenever
(Z,weak) is descriptive or K-descriptive, respectively. It is easy to see that any
descriptive space has a σ-relatively discrete network (see Theorem 5.1), but that
the converse is not true in general, since any metric space has such a network
(and, as noted above, a metric space will be descriptive if, and only if, it is
analytic). Notwithstanding this, Theorem 1.2 shows that a Banach space Z will
be descriptive precisely when (Z,weak) has a σ-relatively discrete network (note
that Theorem 1.2, (a) ⇒ (c), implies that the identity map (Z,norm) → (Z,weak)
has the properties of the map f in the definition of a descriptive space). A similar
statement holds for spaces of the type Cp(K), and also for (Z∗,weak∗) where Z∗

is a dual Banach space with RNP.

We will see below in Theorem 1.12 that descriptive, K-descriptive and
Čech analytic are all equivalent for a Banach space when the weak topology is
hereditarily weakly θ-refinable. We have already noted (Theorem 1.3, (a) ⇐⇒
(d)) that a dual Banach space with RNP is weak∗ descriptive if, and only if,
the weak∗ topology is hereditarily weakly θ-refinable. To see that there are dual
Banach spaces with RNP whose weak* topology does not have these properties,
recall that the ordinal space [0, ω1], where ω1 is the first uncountable ordinal,
is a scattered compact space which is not hereditarily weakly θ-refinable (since
[0, ω1) is countably compact and any weakly θ-refinable countably compact space
is compact [7, §9]). Since [0, ω1] is scattered, C([0, ω1]) is an Asplund space, and
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so the dual space C([0, ω1])
∗ has RNP [57, Theorem 18]; but (C([0, ω1]),weak∗)

is not hereditarily weakly θ-refinable since it contains [0, ω1].

As we will see, the following theorem shows that the class of descriptive
Banach spaces is significantly wide.

Theorem 1.5. Let Z be a Banach space, τ a locally convex topology on
Z, and let S = {z ∈ Z : ‖z‖ = 1}. If (S, τ) has a σ-relatively discrete network,
then any subspace of (Z, τ) has a σ-relatively discrete network. In particular, if
the norm and weak topologies agree on S, then Z is descriptive.

The class of Banach spaces Z that have an equivalent norm ‖·‖ for which
the weak and norm topologies coincide on {z ∈ Z : ‖z‖ = 1} is known to be
quite extensive. Such a norm is said to be a Kadec norm. Properties such as
(a), (b) and (e) of Theorem 1.4 are known to hold for Banach spaces having an
equivalent Kadec norm (see [11, Theorem 1.1] and [12, §2]). The most common
way of showing that a Banach space has such a norm is to produce a “long
sequence” of projections and then apply the renorming technique of Troyanski
[75]. In particular, this is true for the class of all countably determined (hence
all K-analytic) Banach spaces [77], [71], as well as all function spaces of the type
C(K), where K is of the form {0, 1}Γ for any index set Γ, or K = [0, τ ] for any
ordinal τ [12] (hence also for any continuous image of these compact spaces). It
is also known that C(K) will have an equivalent Kadec norm whenever K is a
“Valdivia compact” (see the definition below) which includes Corson compacts
and all “cubes” [0, 1]Γ (see [10], [3] and also [76]). For each of these Banach spaces
the weak topology will have a σ-relatively discrete network by Theorem 1.5.

Classes of dual Banach spaces which have an equivalent Kadec norm in-
clude all those having RNP [16] and all dual Banach spaces of the form C(K)∗

for any compact Hausdorff space K [75].

In all of the above cases the Banach space Z can be shown to have an
equivalent locally uniformly convex norm ‖ · ‖, that is, for any sequence zn and y
in S = {z ∈ Z : ‖z‖ = 1}, zn → y in norm whenever ‖zn + y‖ → 2 as n→ ∞. It
is easy to see that any locally uniformly convex norm is a Kadec norm.

A dual Banach space Z∗ is said to have property (∗∗) if the weak∗ and
norm topologies coincide on {z ∈ Z∗ : ‖z‖ = 1} [57, p. 741], hence whenever Z∗

has an equivalent locally uniformly convex dual norm. The space ℓ1(Γ) = c0(Γ)∗,
for example, is easily seen to have property (∗∗) for any set Γ. It is known that
if Z∗ has property (∗∗), then Z∗ has the RNP ([57, Corollary 8], [5, Theorem
4.4.3]). It follows from Theorem 1.5 that (Z∗,weak∗) is descriptive whenever Z∗

has property (∗∗).
The standard renorming techniques however will not permit us to use
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Theorem 1.5 to conclude that Cp(K) is descriptive when C(K) has an equiva-
lent Kadec norm. This is because the equivalent norm may not be lower semi-
continuous with respect to the topology of pointwise convergence, hence we can-
not conclude that the norm and pointwise convergence topologies coincide on the
unit sphere associated with the Kadec norm. Equivalent locally uniformly convex
norms satisfying this lower semi-continuity condition have recently been shown
to exist for C(K) for any “Valdivia compact” K [10]. A compact Hausdorff space
K, which we may assume is embedded in some cube [0, 1]Γ, is called a Valdivia
compact if K ∩ Σ(Γ) is dense in K where Σ(Γ) is the set of points x ∈ [0, 1]Γ

such that x(γ) 6= 0 for at most countably many γ ∈ Γ. Any compact K ⊂ Σ(Γ)
(Corson compact) and any cube [0, 1]Γ is a Valdivia compact, but the ordinal
space [0, ω2] is not [10]. From the results in [10] and Theorem 1.5 we obtain the
following.

Theorem 1.6. Let K be the continuous image of a Valdivia compact.
Then Cp(K) has a σ-relatively discrete network and hence is a descriptive space.

There is another way to conclude that Cp(K) will be descriptive when
we know that C(K) admits a certain type of continuous linear injection into a
Banach space of the type c0(Γ). Recall that, for any infinite set Γ, c0(Γ) denotes
the Banach space where

c0(Γ) = {x ∈ R
Γ : for each ε > 0 the set {γ ∈ Γ : |x(γ) > ε} is finite},

and ‖x‖ = sup{|x(γ)| : γ ∈ Γ}. In §7 we give a direct proof that the norm
topology of c0(Γ) has a network that is σ-relatively discrete with respect to the
topology of pointwise convergence.

A number of authors have described classes of compact Hausdorff spaces
K for which there is a one-to-one bounded linear operator T : C(K) → c0(Γ)
which is also continuous when both Banach spaces are equipped with the topology
of pointwise convergence [24], [3], [10]. These results generalize a deep result of
Amir-Lindenstrauss [1], who origonally dealt with the case when K is a weakly
compact subset of a Banach space, Further, Spahn [68] has shown that the linear
operator T in these results also has the property that it takes norm discrete
collections in C(K) to norm σ-discretely decomposable collections in c0(Γ). Such
a map T is said to be index-σ-discrete [52], and it is known that such maps will
preserve Souslin sets [27] (these and related maps are discussed in more detail in
§§2–3 below). These results enable us to prove the following.

Theorem 1.7. Let K be a compact Hausdorff space for which there exist
a set Γ and a one-to-one bounded linear operator T : C(K) → c0(Γ) such that T
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is also continuous relative to the topologies of pointwise convergence and is norm
index-σ-discrete. Then Cp(K) has a σ-relatively discrete network and hence is a
descriptive space.

It is considerably more difficult to find Banach spaces C(K) such that
Cp(K) is not descriptive. In answer to a question of Edgar [11, Prob. 1.3], Ta-
lagrand [73] has shown that the weak and norm Borel sets of ℓ∞ = C(βN) do
not coincide, and that (ℓ∞,weak) does not embed as a Borel set in (ℓ∞∗∗,weak∗).
Thus ℓ∞ is not (weakly) descriptive (by (a) or (c) of Theorem 1.4). More gener-
ally, it has recently been shown in [39] that (ℓ∞,weak) is not even Čech analytic,
so (ℓ∞,weak) does not embed as a Souslin set in (ℓ∞∗∗,weak∗). It follows that
Cp(βN) is not descriptive, since this would imply that ℓ∞ is descriptive by The-
orem 1.2, (a)⇒(b).

The problem of delimiting the class of compact Hausdorff spaces K for
which Cp(K) will be descriptive has, at present, the same status as the corre-
sponding questions dealing with the existence of an equivalent Kadec norm for
C(K). Known counterexamples seem to be limited to those Banach spaces which
contain an isomorphic copy of ℓ∞. For example, we do not know if Cp(K) is
descriptive for every scattered compact space K, or even in the case when the
derived set K(ω1) = ∅ (cf. [10], Problem 3, where the corresponding question con-
cerning the existence of an equivalent locally uniformly convex norm is raised).
Note that in the case when K is scattered it is enough to show that C(K) is
(weakly) descriptive to conclude that Cp(K) is, although in general we do not
know if Cp(K) will be descriptive whenever C(K) is.

We now describe a second class of Hausdorff spaces obtained by weakening
the property of a relatively discrete collection in the definition of a descriptive
space. This class of spaces, and the type of network they give rise to, also relate
well to the various topologies associated with a Banach space. The resulting
class of “almost descriptive” Banach spaces has many properties similar to those
described above for the class of descriptive Banach spaces, except Borel and
Souslin sets are generally replaced by various types of sets having the Baire
property. Unexpectedly, our almost descriptive Banach spaces turn out to be
exactly equivalent to the Banach spaces, recently studied in [39], whose weak
topology is “σ-fragmented” by the norm metric. In order to describe these spaces
we need some additional terminology.

A collection of sets E in a topological space is said to be scattered if
E is disjoint and there is a well-ordering ≤ of E such that, for each E ∈ E ,
∪{M ∈ E : M ≤ E} is open relative to ∪E . Note that if {Uα : α < λ} is any
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ordinal-indexed family of open sets in a space, and

Dα ⊂ Uα \ ∪
β<α

Uβ ,

then {Dα : α < λ} is scattered. Consequently, any open collection in a space has
a scattered refinement. A collection is σ-scattered if it is a countable union of
scattered collections. Note that, as with the notion of a relatively discrete collec-
tion, the concept of a scattered collection is intrinsic and therefore is independent
of the particular space containing the given collection. Below we describe several
properties equivalent to the definition of a scattered collection from which it will
be clear that a topological space X is scattered in the usual sense (i.e., each non-
empty subset has an isolated point) if, and only if, {{x} : x ∈ X} is a scattered
collection (see Lemma 2.1). It is easy to see that any relatively discrete collection
is a scattered collection (Lemma 2.2), and we will show that in any hereditarily
weakly θ-refinable space (hence, in any metric space) every scattered collection
is σ-relatively discretely decomposable (Lemma 3.6).

Using the notion of a scattered collection as a substitute for relatively
discrete collections in the definitions of a descriptive and K-descriptive space
we obtain another interesting class of “analytic” spaces. However, we need to
modify the definition slightly to circumvent an anomaly of scattered collections
(see Example 2.8 and the discussion preceding it in §2).

We say that a Hausdorff space X is almost descriptive (resp. almost K-
descriptive) if there is a complete metric space T and a continuous (resp. an upper
semi-continuous compact valued) surjection f : T → X such that, whenever
{Ea : a ∈ A} is a scattered family in T , {f(Ea) : a ∈ A} is point-countable and
has a σ-scattered base. Recall that a collection of sets B is said to be a base for
a family A if each member of A is a union of sets from B.

If P denotes a property of families of sets in a topological space, it is easy
to see that for any family of sets E we have

σ-P decomposable ⇒ has a σ-P base ⇒ has a σ-P refinement.

A useful converse of the first implication is that any point-countable family hav-
ing a σ-discrete base is σ-discretely decomposable [52, Lemma 3.2], and the same
proof works for the corresponding statement involving relatively discrete collec-
tions. This, however, does not hold for scattered collections (see Example 2.8)
and this necessitates the difference in the above definition from the corresponding
one for descriptive spaces.

As noted above, we will see that in any hereditarily weakly-θ-refinable
space all scattered collections are σ-relatively discretely decomposable, and the
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converse is also true (see Lemma 3.6). This leads to the following simple rela-
tionships between these classes of spaces.

Theorem 1.8. Any Hausdorff space is descriptive if, and only if it is
almost descriptive and hereditarily weakly θ-refinable. Any hereditarily weakly
θ-refinable almost K-descriptive space is K-descriptive.

We say that a Banach space Z is almost descriptive (or almost K-descrip-
tive) whenever (Z,weak) has this property. In analogy with descriptive spaces, it
is easy to see that any almost descriptive space has a σ-scattered network (Theo-
rem 5.1), and that the converse is not true in general. However, for Banach spaces
taken with the weak topology we will see that the existence of a σ-scattered net-
work not only implies that the Banach space is almost descriptive, but also a
number of other structural properties which are seemingly much stronger. Before
discussing these results we describe yet another class of spaces recently investi-
gated in [39] which, rather unexpectedly, turns out to lead to exactly the same
class of Banach spaces.

Following Jayne, Namioka and Rogers [39], we say that a topological
space (X, τ) is σ-fragmented by a metric ρ on the set X if, for each ε > 0, we
can write X = ∪{Xn : n ∈ N} so that, for each n, each nonempty subset of
Xn contains a nonempty relatively τ -open set with ρ-diameter less than ε. If, on
the other hand, every nonempty subset of X contains nonempty relatively τ -open
subsets of arbitrarily small ρ-diameter, then (X, τ) is said to be fragmented by the
metric ρ. We used the terms properly σ-fragmented or properly fragmented if, in
addition, the metric topology contains the given topology τ . The metric ρ is said
to be lower semi-continuous if ρ is lower semi-continuous as a real-valued map
on (X, τ) × (X, τ) (equivalently, {(x, y) : ρ(x, y) ≤ r} is closed in (X, τ) × (X, τ)
for each real r ≥ 0). The concept of a fragmentable space, introduced explicitly
by Jayne and Rogers in [42], has proved useful in studying various topological
properties of Banach spaces ([42], [37], [56], [62], [69]). The weaker notion of a
σ-fragmentable space was recently introduced in [39] where, in particular, the
following result was obtained.

Lemma 1.9 [39, Thm. 4.1]. Let ρ be a lower semi-continuous metric on
a Hausdorff space (X, τ). If (X, τ) is σ-fragmented by ρ, then each τ -compact
subset of X is fragmented by ρ, and the converse holds whenever (X, τ) is Čech
analytic.

Namioka has shown that, for any compact Hausdorff space K, each com-
pact subset of Cp(K) is fragmented by the supremum norm metric, hence any
weakly compact subset of a Banach space is fragmented by its norm metric ([56,
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Theorem 1.2]). Thus, in view of the above lemma, for any weakly Čech analytic
Banach space Z, (Z,weak) is σ-fragmented by the norm metric of Z [39, Propo-
sition 6.3]. We will see that this implies that (Z,norm) has a weakly σ-scattered
network.

Dual Banach spaces with the Radon-Nikodým Property are characterized
by the condition that each weak∗-compact subset is fragmented by the norm
metric ([57, Lemma 3], [56]). Consequently, a dual Banach space Z∗ has the
Radon-Nikodým Property if, and only if, (Z∗,weak∗) is σ-fragmented by the
norm metric of Z∗ [39, Theorem 6.2]. We show below that these properties are
also equivalent to (Z∗,norm) having a weak∗σ-scattered network (see Theorem
1.11 below).

The following theorem shows that there is a close analogy between the
investigation described above, concerning the existence of certain types of net-
works for the topologies associated with a Banach space, and the corresponding
situation for the topologies associated with a properly σ-fragmented space.

Theorem 1.10. Let (X, τ) be a topological space which is properly σ-
fragmented by some metric ρ for the set X. Let P denote the property of a family
of sets being either relatively discrete or scattered for the space (X, τ). Then the
following are equivalent.
(a) Any collection of τ -open sets has a σ-P refinement.

(b) (X, τ) has a σ-P network.

(c) Any ρ discrete collection has a τ σ-P refinement.

(d) (X, ρ) has a network that is σ-P with respect to (X, τ).
Moreover, property (a), and thus all four properties, will always hold when P =
scattered; in the case when P = relatively discrete, property (a) is equivalent to
(X, τ) being hereditarily weakly θ-refinable.

Conversely, if ρ is any metric on X satisfying property (d) and τ is con-
tained in the metric topology, then (X, τ) is properly σ-fragmented by ρ.

If in Theorem 1.10 X is a Banach space, ρ is the norm metric, τ is the
weak topology and P = scattered, then properties (b), (c) and (d) can be shown
to be equivalent irrespective of whether the norm metric is known to σ-fragments
the weak topology (note that this is in analogy with Theorem 1.2). In this case,
we can conclude from the converse part of Theorem 1.10 that the norm metric will
σ-fragmented the weak topology whenever the latter has a σ-scattered network.
In the other direction, if the Banach space is weakly Čech analytic, then Lemma
1.9 implies that the norm metric σ-fragments the weak topology and so properties
(a)–(c) of Theorem 1.10 are now satisfied; in particular, the Banach space must be



14 R. W. Hansell

almost descriptive. These observations are summarized in the following general
theorem.

Theorem 1.11. Let X be a subset of a Banach space Z and let τ denote
either the weak topology of Z, or the topology of pointwise convergence when
Z = C(K), or the weak∗ topology if Z is a dual Banach space with RNP. Then
the following are equivalent, and always hold in the case of dual Banach spaces
with RNP.

(a) (X, τ) has a σ-scattered network.

(b) (X,norm) has a network which, relative to the topology τ , is σ-scattered
and consists of F ∩ G sets.

(c) Each norm discrete collection has a τ σ-scattered base.

(d) (X, τ) is σ-fragmented by the norm metric on X.

Property (c) implies that (X, τ) will be almost descriptive whenever X is a norm
Souslin subset of Z. Moreover, the above properties hold whenever (X, τ) is Čech
analytic.

Conversely, if X is a dual Banach space satisfying any one of the prop-
erties (b)–(d), then X has RNP.

Lemma 1.9 and Theorems 1.8 and 1.10 combine to give a number of
equivalent conditions for a subset of a Banach space to be weakly descriptive.

Theorem 1.12. Let X be a norm Souslin subset of a Banach space
Z and let τ denote either the weak topology of Z, or the topology of pointwise
convergence when Z = C(K), or the weak∗ topology if Z is a dual Banach space
with RNP. Then the following properties (a)–(e) are equivalent.

(a) (X, τ) is descriptive.

(b) (X, τ) is K-descriptive and hereditarily weakly θ-refinable.

(c) (X, τ) is Čech analytic and hereditarily weakly θ-refinable.

(d) (X, τ) is σ-fragmented by the norm metric of Z and hereditarily weakly
θ-refinable.

(e) (X, τ) is almost K-descriptive and hereditarily weakly θ-refinable.

Further, in the case of the weak∗ topology on a dual Banach space Z with
RNP, the above are equivalent to

(f) (X, τ) is hereditarily weakly θ-refinable.
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We have already indicated that it is an open question as to whether the
weak topology of every Banach space is hereditarily weakly θ-refinable. In view
of the equivalence (a) ⇐⇒ (e) in the above theorem, this would be answered in
the negative if we could find an example of an almost K-descriptive Banach space
which was not descriptive. But at present these remain very subtle questions to
be resolved.

Theorem 1.5 has the following analog for σ-scattered networks.

Theorem 1.13. Let Z be a Banach space, τ a locally convex topology on
Z, and let S = {z ∈ Z : ‖z‖ = 1}. If (S, τ) has a σ-scattered network, then any
subspace of (Z, τ) has a σ-scattered network.

In order to describe certain properties of almost descriptive Banach spaces
we need to recall the definitions of several additional concepts from descriptive
topology. A set B in a topological space X is said to have the Baire property in
X, or to be a BP-set in X, if, for some open set G in X, the symmetric difference
(G\B)∪ (B \G) is of the first category in X; equivalently, B is the union of a Gδ

set and a first category set in X (see [46, §11] or [60, Chapt. 4]). Since the family
of all sets having the Baire property in X is closed under the Souslin operation
[46, p. 94], every Souslin set in X is a BP-set. We say that B ⊂ X is a restricted
BP-set in X (in the terminology of [46, p. 92] B has the Baire property in the
restricted sense) if, for each E ⊂ X, B∩E is a BP-set in the subspace E. Again,
it is easy to see that all Souslin sets in X have this property. We will say that
B ⊂ X is a strong BP-set in X if B = G∪M , where G is an open set and M is a
set of the first category in X. Strong restricted BP-sets are defined analogously.
Any (F ∩ G)δ set in a space X is a strong restricted BP-set in X (see Lemma
2.6).

A fundamental property of scattered collections is that the union of any
collection of (strong) BP-sets having a σ-scattered refinement will again be a
(strong) BP-set, and a similar result holds for BP-sets in the restricted sense (see
Lemmas 2.3 and 2.6).

Let f : X → Y be a map from a topological space X to a metric space
Y . If Y is separable f is a Borel class 1 map (that is, f−1(U) is a (F ∩ G)δ set
in X for each open set U ⊂ Y ), then it is well known that the set of points of
discontinuity for f is a set of the first category in X. Whether this continues to
hold when Y is non-separable is not known in general, even whenX is metrizable.
Similar remarks apply to the case when f is a general Borel map and we wish to
conclude that there is a set M of the first category in X such that f ↾ X \M
is continuous. The following theorem shows that we can give affirmative answers
to these questions when X is an almost descriptive space. In particular, these
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results apply to any Čech analytic subset of a function space of the type Cp(K),
and for any norm Souslin subset of a dual Banach space with RNP in the weak∗

topology (by Theorem 1.11)

Theorem 1.14. The following are true for any almost descriptive Haus-
dorff space X.

(a) X is a restricted BP-set in every topological embedding.

(b) Each point-finite Souslin-additive collection in X is σ-scattered decompos-
able.

(c) If f : X → Y is any Borel class 1 map into a metric space Y , then the
points of discontinuity for f is a set of the first category in (X, τ).

(d) If f : X → Y is any Borel map into a metric space Y , then there is a set
M of the first category in X such that f ↾ X \M is continuous.

(e) If A ⊂ X is a Souslin set, then either A is a σ-scattered set or else it
contains a compact perfect set.

Our final application deals with the Namioka property concerning separate-
to-norm continuity [55]. A compact space K is said to have the Namioka property
if for every Baire topological space X and every continuous map f : X → Cp(K),
there is a dense Gδ set G ⊂ X such that f is norm continuous, as a map from X
to C(K), at each point of G. It is not difficult to see that this is equivalent to
the statement that if f : X ×K → R is separately continuous, then f is jointly
continuous at each point of G×K. Deville and Godefroy [10] have recently shown
that all Valdivia compacts (defined above) have the Namioka property, extending
an earlier result of Debs [9] who had shown that all Corson compacts have this
property. The class of compacts having the Namioka property is easily seen to
be closed to continuous images, but it is not stable to closed subspaces, since
all cubes [0, 1]Γ are Valdivia compact [10] but not all compact spaces have the
Namioka property [74].

In [10, Lemma II.1] it is shown, more generally, that if K is a compact
Hausdorff space such that C(K) has an equivalent locally uniformly convex norm
which is τp-lower semi-continuous, then K has the Namioka property. By The-
orem 1.5, such a space C(K) will be descriptive, without assuming the norm is
τp-lower semi-continuous. In view of this, the following theorem improves on the
results in [10].

Theorem 1.15. Let X be a Baire topological space, K a compact Haus-
dorff space and f : X → Cp(K) a continuous map. If (f(X), τp) has a σ-scattered
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network, then f : X → C(K) will be norm continuous at each point of some dense
Gδ subset of X. In particular, K has the Namioka property whenever Cp(K) is
almost descriptive.

In order to avoid duplicating proofs for the two types of networks de-
scribed above, and to possibly pave the way for other similar types of network,
we deal with an abstract generalization of both which we call a discreteness class
in §6. The proofs of the main theorems are given in §9 essentially by referring
back to the appropriate lemmas and theorems in §§2–8.

2. Scattered collections and Baire property sets. In this section we
give several equivalent descriptions of scattered collections of sets and use these
to prove some permanence properties of sets with the Baire property.

Recall that a topological space X is said to be scattered if each nonempty
subset has an isolated point, or, equivalently, X has no perfect subset. From the
equivalence (a) ⇐⇒ (c) in the following lemma it follows that a space X is
scattered if and only if {{x} : x ∈ X} is a scattered collection.

Lemma 2.1. For any collection E of disjoint subsets of a topological
space the following are equivalent.

(a) E is scattered.

(b) There is a well-ordering ≤ of E such that, for any E ∈ E, the set ∪{M ∈
E : M ≤ E} is open relative to ∪E.

(c) For any nonempty H ⊂ E, some H ∈ H is open relative to ∪H.

(d) Each nonempty H ⊂ ∪E has a nonempty relatively open subset of the form
H ∩E for some E ∈ E.

P r o o f. The equivalence (a) ⇐⇒ (b) is simply the definition of a
scattered collection (see §1), and the proof of (b) ⇐⇒ (d) is given in [53,
Lemma 2.1].

To prove that (b) ⇒ (c), suppose H is the first element of H and let

U = ∪{E ∈ E : E ≤ H}.

Then U is open in ∪E and U ∩ (∪H) = H, showing that H is open in ∪H.
Conversely, suppose E satisfies (c), and define E0 to be any member of E which
is open relative to ∪E . Assuming we have defined {Eα : α < λ} ⊂ E with ∪

β≤α
Eα

open relative to ∪E for each α < λ, if

H = E \ {Eα : α < λ}
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is nonempty, define Eλ to be any H ∈ H open relative to ∪H, and note that
∪

α≤λ
Eα is open relative to ∪E . This defines a well-ordering of E for which (b) is

satisfied. �

A scattered cover of a space has also been called an “exhaustive cover” [53]
(cf. also [65] where the term “relatively open” is used for a scattered partition).
Our terminology follows [79]. Of the three properties characterizing scattered
collections, property (d) of Lemma 2.1 is often the most useful to work with and
is due to Michael [53, Lemma 2.1]. When a transfinite sequence E = {Eα : α < λ}
is said to be scattered, it will always be understood that sets having different
indices are disjoint and that ∪{Eβ : β ≤ α} is open in ∪E for each α < λ. Note
that {Eα : α < λ} is a scattered collection of subsets of a space X if, and only if,
there is a collection {Uα : α < λ} of open sets in X such that

Eα ⊂ Uα \ ∪
β<α

Uβ

for each α < λ.

Lemma 2.2. Let Σ = Σ(X) denote the family of all scattered collections
of subsets of a space X. Then Σ has the following properties.

(a) If E, H ∈ Σ, then {E ∩H : E ∈ E ,H ∈ H} ∈ Σ.

(b) If E ∈ Σ and HE ⊂ E for each E ∈ E, then {HE : E ∈ E} ∈ Σ. In
particular, any subcollection of a scattered collection is scattered.

(c) If E ∈ Σ and, for each E ∈ E, E = ∪HE with HE ∈ Σ, then H ≡ {H : H ∈
HE, E ∈ E} ∈ Σ.

(d) If X is a subspace of Y , then Σ(X) ⊂ Σ(Y ) and E ∈ Σ(Y ) implies {E∩X :
E ∈ E} ∈ Σ(X).

(e) If E is a relatively discrete collection of subsets of X, then E ∈ Σ.

P r o o f. (a) Given any nonempty A ⊂ (∪E)∩ (∪H), by (d) of Lemma 2.1
there is some E ∈ E such that A∩E is nonempty and relatively open in A. Since
A ∩ E ⊂ ∪H, a second application of Lemma 2.1 (d) implies there exists H ∈ H
such that A ∩E ∩H is nonempty and relatively open in A ∩E, hence also in A.
It follows that {E ∩H : E ∈ E ,H ∈ H} by Lemma 2.1, (d) ⇒ (a).

(b) Given any nonempty A ⊂ ∪{HE : E ∈ E}, by Lemma 2.1 (d) there
is some E ∈ E such that A ∩ E is nonempty and relatively open in A, since
E ∈ Σ. But A ∩ E = A ∩ HE (since the members of E are disjoint), and so
{HE : E ∈ E} ∈ Σ.
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(c) Given any nonempty A ⊂ ∪H = ∪E , since E is scattered there is
some E ∈ E such that A ∩ E is nonempty and relatively open in A. Since
A ∩ E ⊂ E = ∪HE and HE is scattered, there is some H ∈ HE such that
A∩E ∩H = A∩H is nonempty and relatively one in A∩E, hence also in A. It
follows that H is scattered by Lemma 2.1, (d) ⇒ (a).

(d) This is obvious from the definition.

(e) If H ⊂ ∪E is nonempty, then any nonempty set of the form H ∩ E,
E ∈ E , will be a nonempty open set relative to H, since each E is open relative
to ∪E .

Lemma 2.3. If {Eα : α < λ} is a scattered collection of subsets of a
topological space X, then there is a scattered collection {Hα : α < λ} of F ∩ G
sets in X such that Eα ⊂ Hα for each α < λ.

P r o o f. We can choose open sets {Uα : α < λ} in the space X such that
Uα ∩ (∪E) = ∪

β≤α
Eβ for each α < λ (see the remarks after Lemma 2.1). If

Hα = Uα \ ∪
β<α

Uβ,

then Eα ⊂ Hα for each α < λ, and {Hα : α < λ} is a scattered collection of F ∩G
sets in X. �

Lemma 2.4. Let P be a property of subsets of a topological space X
closed to finite unions and such that, whenever a set A ⊂ X is locally-P (i.e.,
each point of A has a neighborhood U such that U ∩ A has P ), then A has P .
Then the union of any scattered collection of subsets of X having property P will
also have P .

P r o o f. Let E be a scattered collection of subsets E of X each having
property P . We may assume that E = {Eα : α < λ}, where ∪

β≤α
Eβ is open in

∪E , for each α < λ, and λ is an infinite ordinal. Proceeding inductively on the
order type of λ, we may assume that ∪

β≤α
Eβ has property P for each α < λ. But

then ∪E is clearly locally-P , and thus has property P by assumption. �

Corollary 2.5. The union of a σ-scattered collection (hence also any
collection with a σ-scattered refinement) consisting of sets of the first category in
X, is of the first category in X.

P r o o f. This follows easily from Lemma 2.4 and the Banach Category
Theorem [60, Theorem 16.1]. �
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The following result is the basis for many of the properties of almost
descriptive spaces.

Lemma 2.6. (a) Every (F ∩ G)σ set in a topological space X is a
restricted strong BP-set in X.

(b) The union of any collection of BP-sets (resp. strong BP-sets) in X
having a σ-scattered refinement, will again be a BP-set (resp. strong BP-set) in
X, and the same results hold in the restricted case.

P r o o f. (a) If H is a (F ∩ G)δ in X and E ⊂ X is arbitrary, then H ∩E
is a (F ∩ G)σ in E, so it suffices to show that H is a strong BP-set in X. Let
H = ∪

n∈N

Fn ∩Gn, where each Fn is closed and each Gn is open in X, and let

G = ∪
n∈N

(intFn) ∩Gn and M = H \G.

Since M ⊂ ∪
n∈N

(Fn \ intFn), M is of the first category in X, whence H = G ∪M

is a strong BP-set in X.
(b) Let C be a collection of restricted BP-sets in X having a σ-scattered

refinement B. Then, for any E ⊂ X, {B∩E : B ∈ B} is a σ-scattered refinement
of {C∩E : C ∈ C} and the latter is a collection of BP-sets in E. Thus it suffices to
show that ∪B = ∪C is a BP-set in X. Since the BP-sets are closed to countable
unions we may assume that B is scattered.

By Lemma 2.3, we can find a scattered collection {HB : B ∈ B} of F ∩G
sets in X such that B ⊂ HB for each B ∈ B. For each B ∈ B, let CB ∈ C

be such that B ⊂ CB . It follows that H = {CB ∩ HB : B ∈ B} is a scattered
collection of BP-sets in X, and ∪B = ∪H.

For each B ∈ B let

CB ∩HB = (WB \ PB) ∪QB

where WB is open in X, PB and QB are of the first category in X, and PB ⊂
CB ∩HB . As the union of a scattered collection of sets of the first category in
X, the sets

P = ∪{PB : B ∈ B} and Q = ∪{QB : B ∈ B}

are of the first category in X by Corollary 2.5. Letting W = ∪{WB : B ∈ B}, it
follows that

∪{CB ∩HB : B ∈ B} = (W \ P ) ∪Q,

since the sets HB are disjoint. Hence ∪H has the Baire property in X.
The proof for the strong Baire property follows the same line of reasoning. �
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We need to establish certain stability properties for families of sets that
are point-countable and have a σ-scattered base. It will be convenient to let Ω(X)
denote all such families for a given space X.

Lemma 2.7.

(a) If {Ea : a ∈ A} ∈ Ω(X) and Ha ⊂ Ea for each a ∈ A, then {Ha : a ∈ A} ∈
Ω(X).

(b) If {Ea : a ∈ A} ∈ Ω(X) and {Hb : b ∈ B} ∈ Ω(X), then {Ea ∩ Hb : a ∈
A, b ∈ B} ∈ Ω(X).

(c) If {Ea : a ∈ A} ∈ Ω(X) and A = ∪{Ap : p ∈ P} is a partition of A, then
{Hp : p ∈ P} ∈ Ω(X) where Hp = ∪{Ep : p ∈ Ap} for each p ∈ P .

(d) If {Ea : a ∈ A} ∈ Ω(X), then we can write Ea = ∪
n∈N

Ean so that, for each

n, {Ean : a ∈ A} is disjoint and has a scattered base.

P r o o f. (a) It is clear that {Ha : a ∈ A} is point-countable. Let B =
∪

n∈N

Bn be a base for {Ea : a ∈ A} where each Bn is a scattered collection. For

each B ∈ B \ {∅} let NB = {a1, a2, . . .} be an enumeration of {a ∈ A : B ∈ Ea}
as a finite or infinite sequence, and define

Bnm = {B ∩Ha : B ∈ Bn and a = am ∈ NB}.

Then Bnm is a scattered collection by Lemma 2.2 (b), and it is routine to verify
that ∪

n,m∈N

Bnm is a base for {Ha : a ∈ A}.

(b) The point-countability of {Ea ∩Hb : a ∈ A, b ∈ B} is clear, and the
existence of a σ-scattered base follows from Lemma 2.2 (a).

(c) Again, it is clear that {Hp : p ∈ P} is point-countable since each a ∈ A
can belong to only one Ap. Moreover, any base for {Ea : a ∈ A} will also be a
base for {Hp : p ∈ P}.

(d) Let B = ∪
n∈N

Bn be a base for {Ea : a ∈ A} where each Bn is a

scattered collection. For each B ∈ B let NB = {a1, a2, . . .} be an enumeration of
{a ∈ A : B ⊂ Ea} as a finite or infinite sequence, and define

Eanm = ∪{B : B ∈ Bn and a = am ∈ NB}.

Then Ea = ∪
n,m∈N

Eanm for each a ∈ A, by the property of a base, and {Eanm :

a ∈ A} is disjoint and has a subcollection of Bn as a base. �

It will be convenient to have names for the maps used in the definitions
of a descriptive and almost descriptive Hausdorff space. If P denotes a property
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of disjoint families of sets in a topological space, we say that a map (or set-valued
map) f : X → Y is index-σ-P if, whenever {Ea : a ∈ A} is a P family in X, then
{f(Ea) : a ∈ A} is (index) point-countable and has a σ-P base. Thus a Hausdorff
space is descriptive (resp. almost descriptive) if, and only if, it is a continuous
index-σ-relatively discrete (resp. index-σ-scattered) image of a complete metric
space. For the case of descriptive spaces, this utilizes the fact that a family is
σ-relatively discretely decomposable if, and only if, it is point-countable and has
a σ-relatively discrete base [52, Lemma 3.2]. (Example 2.9 below shows that this
relationship doesn’t hold for the case of scattered families.) Note that when the
domain space is metrizable, a map will take scattered families to point-countable
families (always taken with the same indexing set) if, and only if, all point-inverses
are separable, since scattered collections in separable metric spaces are at most
countable.

Our final lemma of this section deals with the stability of scattered collec-
tions relative to taking inverse images under continuous maps, and to the stability
of index-σ-scattered maps under compositions.

Lemma 2.8. (a) If f : X → Y is a continuous map and E ∈ Σ(Y ),
then f−1(E) ∈ Σ(X).
(b) The composition of two index-σ-scattered maps is also index-σ-scattered.

P r o o f. (a) Let E = {Eα : α < λ} and let {Uα : α < λ} be a collection of
open sets in Y such that

Eα ⊂ Uα \ ∪
β<α

Uβ

for each α < λ. But then

f−1(Eα) ⊂ f−1(Uα) \ ∪
β<α

f−1(Uβ),

for each α < λ, proving that f−1(E) ∈ Σ(X), since the sets f−1(Uα) are open in
X.

(b) Let f : X → Y and g : Y → Z be index-σ-scattered, and suppose
E = {Ea : a ∈ A} is a scattered collection of subsets of X. Then f(E) has a
σ-scattered base B, and g(B) has a σ-scattered base C. Since it is easy to see
that C will also be a base for g ◦ f(E), it remains only to show that the family

{g ◦ f(Ea) : a ∈ A}

is point-countable. Suppose, on the contrary, there is some z ∈ Z such that the
set

I = {a ∈ A : z ∈ g ◦ f(Ea)}
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is uncountable. For each a ∈ I, choose xa ∈ X and Ba ∈ B so that

xa ∈ Ea ∩ f
−1(g−1(z)) and f(xa) ∈ Ba ⊂ f(Ea).

Since {f(Ea) : a ∈ A} is point-countable, we must have

{B ∈ B : B = Ba for some a ∈ I}

uncountable. But this implies that z = g(f(xa)) ∈ g(B) for uncountably many
B ∈ B, contradicting the point-countability of {g(B) : B ∈ B}. �

We conclude this section with an example which shows that a point-
countable (in fact, a disjoint) family with a σ-scattered base (or even a scattered
base) need not be σ-scattered decomposable. The problem is related to the simple
observation that, although the intervals (1, 2), [2, 3) and [3, 4) form a scattered
partition of (1, 4) ⊂ R, the sets [2, 3) and (1, 2) ∪ [3, 4) do not.

Example 2.9. Let X = [0, ω1) be the space of all countable ordinals
with the order topology. Since X is a scattered space, every collection of subsets
of X has a scattered base consisting of singletons. Let

E = {[α, ω1) : α < ω1}.

The family E is clearly point-countable and so it suffices to show that E is not
σ-scattered decomposable. Suppose, on the contrary, that E is σ-scattered de-
composable, say

[α, ω1) = ∪
n∈N

Eαn,

where {Eαn : α < ω1} is a scattered collection for each n ∈ N. By Lemma 2.3,
we can find a scattered collection {Hαn : α < ω1} of F ∩ G sets in X such that

Eαn ⊂ Hαn ⊂ [α, ω1)

for each α < ω1 and for each n ∈ N.

We will make use of the following two facts from [25, p. 231, Ex. 10]:

(i) The class of all closed and unbounded (abbrev. c.u.b.) subsets of X is
closed under countable intersections.

(ii) Each Borel set B ⊂ X is such that either B or X \ B contains a c.u.b. of
X (but not both, of course).
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Since [α, ω1) is a c.u.b. in X and is the union of the sequence of Borel
sets Hαn, it follows from (i) and (ii) that Hαn contains a c.u.b. for at least one
n ∈ N. But since E is uncountable, this implies that for some n we have disjoint
sets Hαn and Hβn with each containing a c.u.b. which is impossible (again by
(i)). This shows that E is not σ-scattered decomposable.

To see that this implies the existence of a disjoint collection with the
same properties, for each β < ω1 let {β1, β2, . . .} be an enumeration of the set
{α : β ∈ [α, ω1)} as a finite or infinite sequence. Defining

Eαn = {β ∈ [α, ω1) : α = βn},

we have [α, ω1) = ∪
n∈N

Eαn for each α < ω1, and {Eαn : α < ω1} is a disjoint

collection for each n ∈ N. It follows that, for at least one n ∈ N, {Eαn : α < ω1}
is not σ-scattered decomposable, for otherwise E would be.

3. Relatively discrete collections and Borel and Souslin sets.

In this section we present the basic properties of relatively discrete collections
leading up to the principal result that certain classes of Borel sets, as well as all
Souslin sets, are stable under unions of σ-relatively discretely refinable collections.

Lemma 3.1. Let ∆ρ(X) denote the family of all relatively discrete col-
lections of subsets of a space X. Then ∆ρ(X) has the following properties.

(a) If E, H ∈ ∆ρ(X), then {E ∩H : E ∈ E ,H ∈ H} ∈ ∆ρ(X).

(b) If E ∈ ∆ρ(X) and HE ⊂ E for each E ∈ E, then {HE : E ∈ E} ∈ ∆ρ(X).

(c) If E ∈ ∆ρ(X) and, for each E ∈ E, E = ∪HE with HE ∈ ∆ρ(X), then
{H : H ∈ HE, E ∈ E} ∈ ∆ρ(X).

(d) If X is a subspace of Y , then ∆ρ(X) ⊂ ∆ρ(Y ) and E ∈ ∆ρ(Y ) implies
{E ∩X : E ∈ E} ∈ ∆ρ(X).

P r o o f. All of these properties are routine consequences of the defini-
tions. �

Lemma 3.2. If E is a relatively discrete collection of subsets of a space
X, then there is a relatively discrete collection {HE : E ∈ E} of F ∩ G sets in X
such that E ⊂ HE for each E ∈ E.

P r o o f. Since E is relatively discrete, for each E ∈ E we can choose an
open set UE in X such that E ⊂ UE and E′ ∩ UE = ∅ for all E′ 6= E in E . It
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now suffices to take HE = E ∩ UE , where E denotes the closure of E in X, as
one easily verifies. �

For a general topological space X and for any countable ordinal α < ω1,
we define the Borel classes Bα as follows: B0 = F ∩ G, and if α = β + 1, then
Bα is the class (Bβ)σ of all countable unions of sets in Bβ, if α is odd, or Bα is
the class (Bβ)δ of all countable intersections of sets in Bβ, if α is even; if α is a
limit ordinal, then we define Bα = ∪

β<α
Bβ. It will also be convenient to define

Cα = {X \ B : B ∈ Bα}, for each α < ω1, so that C0 = F ∪ G, C1 = (F ∪ G)δ ,
etc. It is clear that Borel(X) = ∪

α<ω1

Bα = ∪
α<ω1

Cα.

Lemma 3.3. Let {Ea : a ∈ A} be a relatively discrete collection of subsets
of a space X, and let E denote its union.

(a) If each Ea ∈ Bα (resp. Cα) for some α < ω1 (resp. 1 ≤ α < ω1), then
E ∈ Bα (resp. Cα).

(b) If each Ea is a Souslin set in X, then so is E.

P r o o f. (a) Let {Fa ∩ Ga : a ∈ A} be a relatively discrete collection of
F ∩G sets in X, where Fa is closed and Ga is open in X. For each a ∈ A, we can
choose an open set Ua ⊂ Ga such that Fa ∩Ga ⊂ Ua and Fa ∩ Ua ∩Ub = ∅ for all
b 6= a. Since the sets Fa ∩Ga form a discrete collection relative to the subspace
G = ∪

b∈A
Ub, the union of their closures in G will be a closed set in G, and so there

is a closed set F in X such that

F ∩G = ∪
a∈A

Fa ∩Ga ∩G.

Clearly, F ∩G contains ∪
a∈A

Fa ∩Ga. Conversely, if x ∈ F ∩G, then x ∈ Fa ∩Ga

and x ∈ Ub for some a, b ∈ A. By the definition of Ub we must have a = b, and so

x ∈ Fa ∩Ga ∩ Ua ⊂ Fa ∩Ga = Fa ∩Ga.

This proves the lemma for the class B0. The proof for the class B1 = (F ∩ G)σ
follows easily from this. To prove it for the class C1 of (F ∩ G)δ sets, we first use
Lemma 3.2 to expand {Ea : a ∈ A} to a relatively discrete family {Ha : a ∈ A}
of F ∩G sets in X. Since {Ha \Ea : a ∈ A} is then a relatively discrete collection
of sets in B1, and H = ∪{Ha : a ∈ A} ∈ B0 ⊂ C1, it follows that

∪
a∈A

Ea = H \ ∪
a∈A

(Ha \ Ea) ∈ C1.
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Suppose the lemma is true for all classes < λ and let {Ea : a ∈ A} be a
relatively discrete collection of sets in Bλ. Suppose λ = β+1 and that λ is even,
so that Ea = ∩

n∈N

Ean, where Ean ∈ Bβ for each a. By Lemma 3.2, there is a

relatively discrete collection {Ha : a ∈ A} of F ∩ G sets in X with Ea ⊂ Ha for
each a ∈ A. It follows from our inductive hypothesis that ∪{Ha ∩ Ean : a ∈ A}
belongs to Bβ for each n. Since the sets Ha are also disjoint we have

E = ∪
a∈A

Ea = ∪
a∈A

∞
∩

n=1
Ha ∩ Ean =

∞
∩

n=1
∪

a∈A
Ha ∩ Ean,

hence E belongs to Bλ. The proofs of the other cases are similar to the case
λ = 1 treated above.

(b) Now suppose each set Ea is a Souslin set in X, and let {Ha : a ∈ A}
be as in part (a). For each a ∈ A, let

Ea = ∪
{ ∞

∩
n=1

Ea
t|n : t ∈ N

N

}

,

where Ea
t|n is either a closed or open set in X. For each t|n, {Ea

t|n ∩Ha : a ∈ A}
is a relatively discrete collection of F ∩ G sets in X. In particular, since these
sets are disjoint, we have

E = ∪
a∈A

∪
t∈NN

∞
∩

n=1
Ea

t|n ∩Ha = ∪
t∈NN

∞
∩

n=1
∪

a∈A
Ea

t|n ∩Ha,

and it follows from this and part (a) that E is a Souslin set in X. �

Lemma 3.4. Let E be a family of subsets of a space X, and suppose E
has a σ-relatively discretely refinement. If each member of E is a (F ∩G)σ (resp.
Souslin) set in X, then so is ∪E. Moreover, (F ∩ G)σ can be replaced by any
Borel class which is closed to countable unions.

P r o o f. Let E be a family of (F ∩ G)σ sets in X, and let R = ∪
n∈N

Rn be

a refinement of E such that each collection Rn is relatively discrete. By Lemma
3.2, for each n ∈ N there exists a relatively discrete families {HR : R ∈ Rn} of
F ∩ G sets in X such that R ⊂ HR for each R. For each R ∈ R we fix some
ER ∈ E such that R ⊂ ER. Then

Hn = {ER ∩HR : R ∈ Rn}

is a relatively discrete family of (F ∩ G)σ sets in X, and

∪E = ∪{∪Hn : n ∈ N}.
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It follows from part (a) of Lemma 3.3 that ∪E is a (F ∪ G)σ sets in X.
The proof for any countably additive Borel class and for Souslin sets is

exactly the same in view of the other parts of Lemma 3.3. �

The union of a relatively discrete collection of Borel sets in a space X is
not necessarily a Borel set in X, even if X is a locally separable metric space.
For if X = Σ{Xα : α < ω1} is the (discrete) sum of ω1 copies of the space of real
numbers and Bα ⊂ Xα is a Borel set of class not less than α, then ∪{Bα : α < ω1}
is not a Borel set in X (for it has no class).

One of the first major results in the nonseparable topological theory of
descriptive sets was Montgomery’s Lemma [54]: If {Uα : α < λ} is a transfinite
sequence of open sets in an arbitrary metric space X and Eα is an Fσ (resp. a
Gδ) set in X for each α < λ, then

∪
α<λ

Eα ∩

(

Uα \ ∪
β<α

Uβ

)

is an Fσ (resp. a Gδ) set in X. The result also holds for higher Borel classes.
(For applications of Montgomery’s Lemma see [46, §30, X], [60, Chapt 16], and
[37].) Here we give the following general version of this useful result.

Lemma 3.5. Let X be a hereditarily weakly θ-refinable space and let
{Uα : α < λ} be any transfinite sequence of open sets in X. If Dα = Uα \ ∪

β<α
Uβ

for each α < λ, then {Dα : α < λ} is σ-relatively discretely decomposable.
Moreover, if B denotes any one of the Borel classes Bγ or Cγ with γ ≥ 1, and
{Hα : α < λ} ⊂ B, then ∪{Hα ∩Dα : α < λ} belongs to B.

P r o o f. It is quite routine to verify that if E is any σ-relatively discrete
cover of ∪

α<λ
Dα such that {E ∩Dα : α < λ} is σ-relatively discretely decompos-

able for each E ∈ E , then {Dα : α < λ} is σ-relatively discretely decomposable
(see [26, p. 151] for the proof when the word “relatively” is omitted). Conse-
quently, since the assumptions on X imply that every collection of open sets in
X has a σ-relatively discrete refinement, it follows that any collection which is
locally σ-relatively discretely decomposable in X will be σ-relatively discretely
decomposable.

Proceeding to prove the lemma by induction on λ, assume that for each
γ < λ the collection {Dα : α < γ} is σ-relatively discretely decomposable. We
may also assume that λ is a limit ordinal. But this implies that {Dα : α < λ}
is locally σ-relatively discretely decomposable, since each point in the union of
this family has some Uα as a neighborhood meeting at most sets with a smaller
index.
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Since {Dα : α < γ} is σ-relatively discretely decomposable, the second
part of the lemma has already been established for Borel classes which are closed
to countable unions (see Lemma 3.4). Using this we can obtain the result for
countably multiplicative classes via complementation, as we now illustrate in the
case of (F ∪ G)δ sets. If each Hα is a (F ∪ G)δ set in X, then each complement
Hc

α is a (F ∩ G)σ set in X and it follows that

∪
α<λ

Hα ∩Dα = ∪
α<λ

Uα \

(

∪
α<λ

Hc
α ∩Dα

)

is a (F ∪ G)δ set in X, since the set in parenthesis is a (F ∩ G)σ set in X by
Lemma 3.4. �

As a corollary to Lemma 3.5 we have the following basic relationship
between relatively discrete and scattered collections.

Lemma 3.6. A topological space X is hereditarily weakly θ-refinable if,
and only if, each scattered collection in X is σ-relatively discretely decomposable.

P r o o f. If X is hereditarily weakly θ-refinable and {Hα : α < λ} is a scat-
tered collection in X, then there is an open collection {Uα : α < λ} in X such that
Hα ⊂ Uα\ ∪

β<α
Uβ. But the latter sets form a σ-relatively discretely decomposable

collection by Lemma 3.5, hence {Hα : α < λ} also has this property.
Conversely, suppose each scattered collection in X is σ-relatively dis-

cretely decomposable. If {Uα : α < λ} is any collection of open sets in X, then
{

Uα \ ∪
β<α

Uβ : α < λ

}

is scattered, hence σ-relatively discretely decomposable.

This easily implies that {Uα : σ < λ} has a σ-relatively discrete refinement. �

A space X is σ-relatively discrete if it is a countable union of subsets
each of which is discrete in its relative topology (equivalently, {{x} : x ∈ X} is
a σ-relatively discrete collection; cf. the notion of a scattered space). Lemma
3.6 immediately implies that in any hereditarily weakly θ-refinable space, a set
is σ-scattered if, and only if, it is σ-relatively discrete. This also implies the
following.

Corollary 3.7 [58, Theorem 3.4]. A scattered space is hereditarily weakly
θ-refinable if, and only if, it is σ-relatively discrete.

We close this section with two lemmas on index-σ-relatively discrete maps.
Since the proof of Lemma 3.8 differs in no essential way from that given for index-
σ-scattered maps (Lemma 2.8), we omit it.



Descriptive sets and the topology of nonseparable Banach spaces 29

Lemma 3.8. (a) If f : X → Y is a continuous map and E ∈ ∆ρ(Y ),
then f−1(E) ∈ ∆ρ(X).
(b) The composition of two index-σ-relatively discrete maps is also index-σ-
relatively discrete.

Lemma 3.9. Let f : X → Y be a map (or a set-valued map) between
topological spaces. For the following conditions we have (a) ⇐⇒ (b) ⇒ (c), and
all three properties are equivalent if X is metrizable.

(a) f is index-σ-relatively discrete.

(b) {f(Ea) : a ∈ A} is a σ-relatively discretely decomposable family in Y ,
whenever {Ea : a ∈ A} is a relatively discrete family in X.

(c) {f(Ea) : a ∈ A} is a σ-relatively-discretely decomposable family in Y , when-
ever {Ea : a ∈ A} is a discrete family in X.

P r o o f. The proof of (a) ⇐⇒ (b) is essentially known, and not difficult
to prove (see [52, Lemma 3.2]). The implication (b) ⇒ (c) is immediate. Fi-
nally, if X is metrizable, then each relatively discrete family in X is σ-discretely
decomposable by [26, §1.2], and it follows that (c) ⇒ (b). �

4. Embedding properties of K-descriptive and almost K-

descriptive spaces. Recall that a topological space X is a Lindelöf space if
each open cover of X has a countable subcover (equivalently, a countable refine-
ment), and X is subparacompact if each open cover has a σ-discrete refinement.
Thus, Lindelöf implies subparacompact, and subparacompact implies weakly θ-
refinable. It is known that each K-analytic space is a Lindelöf space and will
be a Souslin(F) set in every Hausdorff embedding [64, 2.5.2]. Similarly, if X
is the image of a complete metric space T (not necessarily separable) under an
upper semi-continuous compact-valued map which is index-σ-discrete (this is al-
ways satisfied when T is separable), then it is known that X is a subparacompact
space and is a Souslin(F) ∩ Gδ set in every Hausdorff embedding [35, Theorem
12]. In this section we prove analogous results for K-descriptive and almost
K-descriptive spaces.

Theorem 4.1. Every K-descriptive Hausdorf space X is weakly θ-
refinable and is a Souslin set in any Hausdorff topological embedding. Conse-
quently, X is Čech analytic whenever it is completely regular.

Every almost K-descriptive space has the Baire property in the restricted
sense in any Hausdorff topological embedding. Consequently, X will contain a
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dense Gδ Čech complete subspace whenever it is a completely regular Baire space.

P r o o f. We will give the proof for K-descriptive spaces and cover the
almost K-descriptive case by appending statements in brackets. Let Ψ be an
upper semi-continuous compact-valued map from a complete metric space T to
X such that Ψ(T ) = X and Ψ maps discrete (hence also σ-discrete) families in
T to point-countable families having a σ-relatively discrete base [respectively, to
point-countable families having a σ-scattered base].

Let V be an open cover of X, and let W denote the open cover obtained
by taking all finite unions of sets from V. Then {Ψ−1(W ) : W ∈ W} is an open
cover of T , where

Ψ−1(W ) = {t ∈ T : Ψ(t) ⊂W}.

Since T is paracompact, this cover has a σ-discrete refinement, say E . It follows
that {Ψ(E) : E ∈ E} has a σ-relatively discrete [resp. σ-scattered] base D, and it
is easy to see that D is also a refinement of W. For each D ∈ D there is a finite
collection VD ⊂ V such that D ⊂ ∪VD. It follows that {D ∩ V : V ∈ VD,D ∈ D}
is a σ-relatively discrete refinement of V, proving that X is weakly θ-refinable.

Now suppose X is a subspace of the Hausdorff space Y . Let U be a
σ-discrete (open) base for the complete metric space T and put

Un = {U ∈ U : diamU < 1/n},

for each n ∈ N. Since Un is σ-discrete in T , we can write, for each U ∈ Un,

Ψ(U) =
∞
∪

m=1
WUm,

such that {WUm : U ∈ Un} is disjoint and has a relatively discrete [resp. scattered]
base Bm for each m ∈ N [see Lemmas 2.7 (c) and 3.9]. By Lemma 3.1 [resp.
Lemma 2.3] we can find relatively discrete [resp. scattered] collections {HB : B ∈
Bm} of F ∩G sets in Y such that B ⊂ HB ⊂ clYB, for each B ∈ Bm and m ∈ N.
For each U ∈ Un, define

HUm = ∪{HB : B ∈ Bm and B ⊂WUm},

and note that

WUm ⊂ HUm ⊂ clYWUm,

and {HUm : U ∈ Un} is disjoint and has {HB : B ∈ Bm} as a relatively discrete
[resp. scattered] base of F ∩ G sets in Y .
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For each finite sequence m1, . . . ,mn ∈ N we define

(∗) Hm1...mn = ∪

{

n
∩

p=1
HUpmp : ∃Up ∈ Up, p ≤ n and clTUp ⊂ Up+1, p ≤ n− 1

}

.

Then each Hm1...mn , as the union of sets having a relatively discrete [resp. scat-
tered] base of F ∩ G sets in Y , is a F ∩ G set [resp. a set having the restricted
Baire property] in Y by Lemma 3.3 [resp. Lemma 2.6]. Hence, it suffices to show
that

(∗∗) X = ∪
{ ∞

∩
n=1

Hm1...mn : (mn) ∈ N
N

}

[since sets having the restricted Baire property are closed with respect to the
Souslin operation [46, p. 95]].

That X is contained in the set on the right is clear from the fact that
∞
∪

n=1
Un is a base for T . Thus suppose y ∈

∞
∩

n=1
Hm1...mn . We define inductively

(nonempty) sets Un ∈ Un such that y ∈ HUnmn and clTUn ⊂ Un+1 for each n ∈ N.
Since y ∈ Hm1

, we have y ∈ HU1m1
for some U1 ∈ U1 by (∗). Suppose we have

found U1, . . . , Un−1 with the above properties. Since y ∈ Hm1...mn , by (∗) there
exist Vp ∈ Up, for p ≤ n, with clTVp ⊂ Vp+1, for p ≤ n− 1, such that

y ∈
n
∩

p=1
HVpmp .

Now, for each p < n, {HUmp : U ∈ Up} is a disjoint family and y belongs to both
HUpmp and HVpmp . It follows that Up = Vp for all p < n, and so we can define
Un = Vn.

By the definition of Un and since T is complete, there is a t ∈ T such
that t ∈ Un for every n ∈ N. The proof will be complete if we can show that
y ∈ Ψ(t). If y /∈ Ψ(t), then, since Ψ(t) is compact and Y is Hausdorff, there
exist disjoint open sets V and W in Y such that y ∈ V and Ψ(t) ⊂ W . Since
y ∈ HUnmn ⊂ clY WUnmn , V must intersect WUnmn for each n, hence there exist
tn ∈ Un and yn ∈ Ψ(tn) ∩ V . Now tn → t in T (since diamUn → 0), so by the
upper semi-continuity of Ψ the sequence yn must cluster in Ψ(t). But this implies
that clY V intersects Ψ(t) which contradicts our choice of V . This proves (∗∗).

It follows that, if X is a completely regular K-descriptive space, then X
is a Souslin set in some compact Hausdorff space and hence is Čech analytic. On
the other hand, if X is completely regular and is almost K-descriptive, then, as
a subspace of its Stone-Čech compactification, X has the form G ∪M where G
is a Gδ set and M is a set of the first category in βX. Since X is dense in βX,
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M is also of the first category in X. Consequently, if X is a Baire space, then G
must be a dense Čech complete subspace of X. �

5. Topological properties of general descriptive and almost de-

scriptive spaces. The aim of this section is not to attempt to give a complete
and systematic study of the properties of descriptive and almost descriptive Haus-
dorff spaces. Here we concentrate instead on those results most relevant to the
present work, and illustrate in subsequent sections their application in the study
of the topological properties of Banach spaces. As we illustrate below, a number
of the results of the theory of nonseparable absolutely analytic metric spaces,
and the recent generalization of these to non-metrizable spaces (see, for example,
[35, 36]), carry over to descriptive or even K-descriptive spaces.

Theorem 5.1. Every descriptive Hausdorff space X has a σ-relatively
discrete network of Souslin sets (in fact, F ∩G sets when X is regular), and is a
Souslin set in every Hausdorff topological embedding. Consequently, X will be a
Čech analytic space whenever it is completely regular.

Every almost descriptive Hausdorff space X has a σ-scattered network of
sets having the restricted Baire property (in fact, F ∩ G sets when X is regu-
lar), and X will have the restricted Baire property in every Hausdorff topological
embedding. Consequently, X will contain a dense Gδ Čech complete subspace
whenever it is a completely regular Baire space.

P r o o f. Since any descriptive space isK-descriptive, the embedding prop-
erty and the stated consequence follow from Theorem 4.1, and similarly for almost
descriptive spaces.

Suppose X is a descriptive space, and let us show that it has a network
of the type described. Let f : T → X be a continuous, index-σ-relatively discrete
map from a complete metric space T onto X, and let F = ∪

n∈N

Fn be a network

for T where each Fn is a discrete family of closed sets in T . Since each F ∈ F is a
complete metric space, f(F ) is a Souslin set inX by Theorem 4.1. For each n ∈ N,
let ∪

m∈N

Bnm be a σ-relatively discrete base for f(Fn), and let {HB : B ∈ Bnm}

be a relatively discrete family of F∩G sets in X expanding Bnm, which is possible
by Lemma 3.2. For each nonempty B ∈ ∪

m∈N

Bnm the set

SB = ∩{f(F ) : F ∈ Fn and B ⊂ f(F )}

will be a Souslin set inX by the point-countability of the family {f(F ) : F ∈ Fn}.
It follows that

Nnm = {HB ∩ SB : B ∈ Bnm}
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is a relatively discrete family of Souslin sets in X for each n,m ∈ N, and it suffices
to show that ∪

n,m∈N

Nnm is a network for X.

If x ∈ V for some open V ⊂ X, then for any t ∈ f−1(x) ⊂ f−1(V ) we can
find n ∈ N and F ∈ Fn such that t ∈ F ⊂ f−1(V ), by the property of a network.
Since x ∈ f(F ) ⊂ V , for some m ∈ N and B ∈ Bnm, we have x ∈ B ⊂ f(F ), by
the definition of a base. It follows that,

x ∈ HB ∩ SB ⊂ f(F ) ⊂ V,

as required. If X is regular, it is routine to verify that the family

{HB ∩ clXB : B ∈ Bnm and n,m ∈ N}

is a σ-relatively discrete network of F∩G sets in X. The proof for almost descrip-
tive spaces is identical except we replace “relatively discrete” by “scattered”. �

Theorem 5.2. A Hausdorff space is descriptive if, and only if, it is
almost descriptive and hereditarily weakly θ-refinable. Any hereditarily weakly
θ-refinable almost K-descriptive space is K-descriptive.

P r o o f. Since any space with a σ-relatively discrete network is clearly
hereditarily weakly θ-refinable, the implication from left to right in the first
statement follows from Theorem 5.1 and the fact that each relatively discrete
collection is scattered (Lemma 2.2). The reverse implication follows from Lemma
3.6. The second statement also follows directly from Lemma 3.6. �

The following result gives the basic stability properties of descriptive and
almost descriptive spaces.

Theorem 5.3. Any index-σ-relatively discrete, continuous Hausdorff
image of a descriptive space is descriptive. Any Souslin subset of a descriptive
space, and any countable product of descriptive spaces, is descriptive. The same
properties hold for almost descriptive spaces except that we may weaken index-σ-
relatively discrete to index-σ-scattered.

We first prove a lemma which gives a single criterion for a map to be
index-σ-relatively discrete (resp. index-σ-scattered).

Lemma. Given f : T → X, suppose T has a network N such that the
image {f(N) : N ∈ N} is point-countable and has a σ-relatively discrete (resp.
σ-scattered) base. Then f is index-σ-relatively discrete (resp. index-σ-scattered).
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P r o o f. Let P stand for the property of a collection being relatively
discrete or scattered, and let {Eα : α < λ} be a P family of subsets of T . Choose
open sets Uα ⊂ X such that

Uα ⊃ Eα and Uα ∩Eβ = ∅ for β 6= α,

in the case when P means relatively discrete, or

Uα ∩

(

∪
β<λ

Eβ

)

= ∪
β≤α

Eβ,

if P means scattered. We first show that {f(Eα) : α < λ} is point-countable.
Suppose, on the contrary, for some x ∈ X we have

tα ∈ Eα ∩ f−1(x)

for uncountably many α < λ. By the property of a network, there exist sets
Nα ∈ N such that

tα ∈ Nα ∩ Eα ⊂ Uα.

By the definition of Uα we have

Uβ ∩ (Nα ∩ Eα) = ∅ whenever β < α,

hence Nα 6= Nβ whenever α 6= β. But this implies that x ∈ f(N) for uncountably
many N ∈ N, contradicting the point-countability of the family f(N).

Now let B be a σ-P base for f(N), and let us show that

C ≡ {f(Eα) ∩B : ∃ N ∈ N with N ∩Eα 6= ∅, N ⊂ Uα, and B ⊂ f(N)}

is a σ-P base for {f(Eα) : α < λ}. As noted above, for each N ∈ N there can
be at most one α such that N ⊂ Uα and N ∩Eα 6= ∅. Also, for each (nonempty)
B ∈ B we can have B ⊂ f(N) for at most countably many N ∈ N, by the point-
countability of f(N). It follows that C is σ-P . To see that C is also a base, suppose
x = f(t) for some t ∈ Eα. We need to show that x ∈ C ⊂ f(Eα) for some C ∈ C.
Since N is a network for T , we can choose some N ∈ N such that t ∈ N ⊂ Uα.
Then x ∈ f(N) and so there is some B ∈ B such that x ∈ B ⊂ f(N), since B is
a base for f(N). It follows that x ∈ f(Eα) ∩B ∈ C as required. �

P r o o f o f T h e o r e m 5.3. The property dealing with continuous im-
ages is clear since the composition of two index-σ-relatively discrete maps will
again have this property (Lemma 3.8), and similarly for index-σ-scattered maps
(Lemma 2.8).
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Any Souslin subset of a complete metric spaces is an index-σ-discrete, con-
tinuous image of a complete metric space (see the proof of Theorem 4.1 of [27]
where the map g ↾ C has the required properties). Such spaces are thus descrip-
tive spaces. Since any Souslin subset of a descriptive (resp. almost descriptive)
space is clearly a continuous, index-σ-relatively discrete (resp. index-σ-scattered)
image of a Souslin subset of a complete metric space, the second property follows
from the first.

For convenience, we again let P denote the property of a collection being
either relatively discrete or scattered. Suppose that, for each n ∈ N, Xn is
a Hausdorff space which is an index-σ-P and continuous image of a complete
metric space Tn under a map fn : Tn → Xn. Let T = ΠTn and X = ΠXn denote
the product spaces, and let f : T → X denote the product map associated with
the maps fn. Since T is a complete metric space and f is a continuous surjection,
we need only show that f is index-σ-P to prove that (almost) descriptive spaces
are closed to countable products. In view of the above Lemma, it suffices to find
a network N for T such that f(N) is point-countable (as a family indexed by N)
and has a σ-P base.

For each n ∈ N, let ∪
m∈N

Bnm be a σ-discrete open base for the metric

space Tn, and for each (m1, . . . ,mn) ∈ N
n, let Cm1...mn denote the family of sets

in T of the form

(1) π−1
1 (B1) ∩ . . . ∩ π

−1
n (Bn)

with Bk ∈ Bkmk
for k = 1, . . . , n, and where πn denotes the n-th projection map.

Then each family Cm1...mn is discrete in T and together they form a σ-discrete
base for the topology of T . Moreover, for each set of the form (1) we have

f [π−1
1 (B1) ∩ . . . ∩ π

−1
n (Bn)] = π−1

1 (f1(B1)) ∩ . . . ∩ π
−1
n (fn(Bn)).

We know that, for each n,m ∈ N, {fn(B) : B ∈ Bnm} is point-countable and
has a σ-P base, hence this is true of {π−1

n (fn(B)) : B ∈ Bnm} also (see Lemmas
2.8 and 3.8). Since the pairwise intersections of members of collections having
these properties will again have this property (Lemma 2.7 (c)), it follows that
the image of Cm1...mn under f is point-countable and has a σ-P base. The above
Lemma now implies that f is index-σ-P . �

A classical result due to Souslin states that any Souslin set in a Polish
space is either countable or contains a compact perfect set (i.e., a nonempty
compact set in which each point is a limit point). El’kin [13] has shown that
this result holds for nonseparable absolutely analytic metric spaces provided we
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replace “countable” by “σ-discrete” (i.e., a countable union of closed discrete
subsets). In a recent paper, Koumoullis [45] has extended this by showing that
any Čech analytic space is either σ-scattered or contains a compact perfect set.
Koumoullis’ proof of this depends on a number of measure-theoretic results, and
a purely topological proof was recently given in [39]. We deduce these and two
related results from a more general theorem which has the additional merit of
providing a more direct proof of the above results.

Theorem 5.4. Let X be a Hausdorff space, T a Čech analytic space, and
f : T → X a continuous surjection. If {f−1(x) : x ∈ X} has a selector E ⊂ T
which is not σ-scattered, then X has a compact perfect subset.

P r o o f. We first prove the theorem in the case when T is Čech complete.
Let E be a non-σ-scattered subset of T having exactly one point in common with
each of the sets f−1(x), x ∈ X. Since E is not scattered it contains a nonempty
dense-in-itself subset D. Since T is Čech complete, we may choose a decreasing
sequence of open sets {Gn : n ∈ N} in some compactification βT of T such that
T = ∩

n∈N

Gn. Using a standard argument we inductively construct, for each finite

sequence i|n = i1, . . . , in in {0, 1}, open sets U(i|n) in βT such that
(1)n U(i|n) ∩D 6= ∅,
(2)n clβTU(i|n) ⊂ U(i|n − 1) ⊂ Gn−1 (we take U(i|0) = βT = G0),
(3)n clβTU(i|n − 1, 0) ∩ clβTU(i|n − 1, 1) = ∅,
(4)n f [T ∩ clβTU(i|n− 1, 0)] ∩ f [T ∩ clβTU(i|n − 1, 1)] = ∅.

Given that we have constructed the sets U(i|n − 1), for all sequences of length
n − 1, (1)n−1 implies that U(i|n − 1) ∩D is infinite, so it contains two distinct
points t and s. Since D ⊂ E, f(t) and f(s) are distinct. Hence, by the continuity
of f , we can find neighborhoods U(i|n− 1, 0) and U(i|n− 1, 1) in βT , of t and s
respectively, so that their closures in βT satisfy properties (2)n − (4)n above.

Now let Φ be the set-valued map from {0, 1}N to the non-empty compact
subsets of βT defined by

Φ(i) =
∞
∩

n=1
clβTU(i|n),

and let C = Φ({0, 1}N). To see that Φ is upper semi-continuous, let G ⊃ Φ(i)
be open. Then U(i|n) ⊂ G for some n, by the compactness of Φ(i), and so W =
{j ∈ {0, 1}N : j|n = i|n} is a neighborhood of i such that Φ(W ) ⊂ G, proving
that Φ is upper semi-continuous. Also, by property (3)n, we have Φ(i)∩Φ(j) = ∅
whenever i 6= j. Hence the map g : C → {0, 1}N given by g(Φ(i)) = i is well-
defined. Moreover, since Φ takes compact sets to compact sets, g is continuous,
hence a perfect map from C onto {0, 1}N. Let P be a closed subset of C minimal
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with respect to the property g(P ) = {0, 1}N. Then P is a compact perfect subset
of T . For if {x} were open in P and x ∈ Φ(i), then by the minimality of P it
follows that {x} = Φ(i), hence

{i} = {0, 1}N \ g(P \ {x})

is isolated in {0, 1}N which is not possible.

Finally, since f ↾ C is one-to-one by property (4), f ↾ P is a homeomor-
phism, proving that X has a compact perfect subset.

Now suppose T is Čech analytic. By one of the equivalent properties
characterizing Čech analytic spaces [17], T is the projection on βT of some Čech
complete subspace S of βT × N

N (cf. also [34, §5]). By a result we prove below
(see Lemma 7.1), any projection map parallel to a space with a countable net-
work preserves scattered σ-decomposable collections (thus, in particular, takes
scattered sets to σ-scattered sets). It follows that, if p : S → T denotes the above
projection, then p preserves σ-scattered sets (since scattered sets in S are also
scattered in βT ).

To complete the proof, let E ⊂ T be a non-σ-scattered selector for
{f−1(x) : x ∈ X}. Choosing any set H ⊂ S having a single point in com-
mon with p−1(t), for t ∈ E, it follows that H is non-σ-scattered. But this implies
that any selector for {p−1(f−1(x)) : x ∈ X} containing H is non-σ-scattered.
The first part of the proof now applies and shows that X has a compact perfect
subset. �

Part (a) of the following corollary improves on a recent result of Stegall
[70] where T is assumed to be Čech complete and is a base for the topology of T .

Corollary 5.5. Let X be a Hausdorff space, T a Čech analytic space,
and f : T → X a continuous surjection.

(a) If T has a network N such that Card N < Card X and Card X is uncount-
able, then X has a compact perfect subset.

(b) If f maps scattered sets to σ-scattered sets, then X is either σ-scattered or
contains a compact perfect set.

(c) If T is hereditarily weakly θ-refinable and f maps relatively discrete sets to
σ-relatively discrete sets, then X is either σ-relatively discrete or contains
a compact perfect set.

P r o o f. Suppose N is a network for T such that Card N < Card X where
Card X is uncountable. In view of Theorem 5.4 it is enough to show that any
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scattered subset of T has cardinality at most Card N, since this will imply that
any selector for {f−1(x) : x ∈ X} must be non-σ-scattered.

Suppose S ⊂ T is scattered and has cardinality λ. Then we can write
S = {tα : α < λ} and find open sets Uα in T such that tα ∈ Uα and tα /∈ Uβ

for all β < α, for each α < λ. Since N is a network for T , we can find Nα ∈ N

such that tα ∈ Nα ⊂ Uα for each α. Since β < α implies that tα /∈ Nβ, the
correspondence tα 7→ Nα is one-to-one, hence Card S ≤ Card N.

To prove (b), note that since f : T → X preserves σ-scattered sets, if X is
not σ-scattered, then any selector for {f−1(x) : x ∈ X} must be non-σ-scattered.
Hence the theorem applies.

The proof for part (c) is exactly the same, except we replace “scattered”
throughout by “relatively discrete”, noting that scattered sets in T are now σ-
relatively discrete (by Lemma 3.6), and that Lemma 7.1 shows that the projection
map in Theorem 5.4 will also preserve σ-relatively discrete sets. �

The following corollary is an immediate consequence of Theorem 5.4 and
the definitions.

Corollary 5.6.

(a) Any Čech analytic hereditarily weakly θ-refinable space (in particular, any
descriptive space) is either σ-relatively discrete or contains a compact per-
fect subset.

(b) (Koumoullis [45]) A Čech analytic space is either σ-scattered or contains a
compact perfect subset.

(c) An almost descriptive space is either σ-scattered or contains a compact
perfect subset.

Lemma 3.4 shows that if a family of Souslin sets in arbitrary topological
space X has a σ-relatively discrete base, then the union of any subcollection
will be a Souslin set in X. The following theorem gives a useful converse to
this. The proof illustrates how results that are known to hold for Borel and
Souslin sets in complete (or absolutely analytic) metric spaces can often be carried
over to give corresponding results in descriptive and almost descriptive spaces.
(Unfortunately, the situation is not as clear in the case of K-descriptive spaces
as we will indicate below).

Theorem 5.7. The following properties hold for any descriptive (resp.
almost descriptive) Hausdorff space X.

(a) Every point-finite Souslin-additive family in X has a σ-relatively discrete
(resp. σ-scattered) base.



Descriptive sets and the topology of nonseparable Banach spaces 39

(b) Every point-countable (F ∩ G)σ set cover of X either has a σ-relatively
discrete (resp. σ-scattered) refinement, or X contains a compact subset
meeting uncountably many members of the cover.

P r o o f. (a) Let T be a complete metric space and let f : T → X be a
continuous index-σ-relatively discrete (resp. index-σ-scattered) surjection. If S
is a point-finite Souslin-additive collection in X, then f−1(S) = {f−1(S) : S ∈ S}
is a point-finite Souslin(F)-additive collection in T , hence f−1(S) is σ-discretely
decomposable in T [44]. In particular, f−1(S) has a σ-discrete base B. Taking
forward images it follows that f(B), and hence also S, has a σ-relatively discrete
(resp. σ-scattered) base.

(b) Let f : T → X have the same meaning as in part (a). If H is a point-
countable cover of X by (F ∩G)σ sets, then f−1(H) is a point-countable cover of
T by Fσ sets. By [28, Theorem 2.1], f−1(H) either has a σ-discrete refinement
or else some compact subset of T meets uncountably many members of f−1(H).
The properties of f easily imply that H has the desired properties. �

Froĺık and Holický [19] have shown that point-finite Souslin(F)-additive
collections are σ-discretely decomposable in general (not necessarily Lindelöf) K-
analytic spaces. The same proof in [19] shows that this will hold for point-finite
Souslin(F)-additive collections in K-descriptive spaces provided the conclusion
reads “σ-relatively discretely decomposable” (cf. [18, Theorem 3]). What would
be of greater interest in studying the topological properties of Banach spaces is
whether Theorem 5.7 holds in K-descriptive spaces. (For a positive answer based
on additional set-theoretic assumptions see the paper by Holický [38].)

By a function base for a map f : X → Y we mean a family B of subsets
of X which is a base for {f−1(V ) : V open in Y }. Note that if N is a network
for Y , then {f−1(N) : N ∈ N} will be a function base for f . To motivate the
need for introducing this concept, we consider several problems in nonseparable
descriptive topology that are still not completely resolved, but which have nice
solutions when certain types of function bases are assumed. For example, if
f : T → X is a Borel measurable map for metric spaces T and X, must f have a
class in the sense that there is a fixed countable ordinal α such f−1(U) is of Borel
class α for each open set U ⊂ X? The answer is yes if f has a σ-discrete function
base (hence if X is separable or T is absolutely analytic [26]), or if additional set
theoretic axioms are assumed [20]. As a second example, suppose f : T → X is a
class 1 map, for metric spaces T and X, and suppose T is a Baire space. Must f
be continuous at each point of a dense Gδ subset of T ? Again, the answer is yes
(even for a non-metrizable T ) if f has a σ-discrete function base [31, Theorem
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4]. As a final example, suppose f : T → X is a Borel class 1 map from a metric
spaces T to a normed linear space X. Then a necessary and sufficient condition
for f to be a pointwise limit of a sequence of continuous maps is that f have a
σ-discrete function base. The sufficiency is given in [33, Lemma 7] (where such
maps are said to be “σ-discrete”) and the necessity follows from [30, Lemma 3.2].
This result was recently applied in [42] and [37] to obtain Baire class 1 selectors
for upper semi-continuous set-valued maps.

The point we wish to make is that function properties that are known to
hold for maps into separable metric space can often be extended to maps having
a σ-discrete function base taking values in a non-separable metric space (see [26],
[30], and [31]). The following lemma, which is needed for the proof of Theorem
1.14 of the introduction, is in the same spirit. Recall that a map has the Baire
property if the inverse image of each open set is a BP-set in the domain (see [60,
p. 36] or [46, p. 399]). Similarly, we say that a map has the strong Baire property
if the inverse image of each open set is a strong BP-set in the domain. Note that
all class 1 Borel maps (i.e., inverse images of open sets are (F ∩ G)σ sets) have
the strong property of Baire by Theorem 2.6 (a).

Lemma 5.8. Suppose f : X → Y is a map of topological spaces having
a σ-scattered function base B.

(a) If each set in B has the Baire property, then there is a set M of the first
category in X such that f ↾ X \M is continuous.

(b) If each set in B has the strong Baire property (in particular, if B consists
of (F ∩ G)σ sets in X), then the set of points of discontinuity of f is a set
of the first category in X.

P r o o f. (a) For each B ∈ B we have B = (WB \ PB) ∪QB where WB is
open in X, PB and QB are of the first category in X, and we may assume that
PB ⊂ B. Then

M = ∪{PB ∪QB : B ∈ B}

is of the first category in X by Corollary 2.5. To prove that

g = f ↾ X \M

is continuous, let U ⊂ Y be a given open set. By the property of a function base,

g−1(U) = ∪{WB \M : B ∈ B and B ⊂ f−1(U)},

showing that g−1(U) is open in X \M .
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(b) For each B ∈ B we have B = WB ∪QB where WB is open and QB is
of the first category in X. Let x be any point not in the set

M = ∪{QB : B ∈ B},

a set which is of the first category in X by Corollary 2.5. If f(x) ∈ U , for some
open set U ⊂ Y , then we have x ∈ B ⊂ f−1(U), for some B ∈ B, by the property
of a function base. Then it follows that x ∈WB (since x /∈M) and f(WB) ⊂ U ,
proving that f is continuous at x. �

The following lemma gives a sufficient condition for maps to has a σ-
relatively discrete or σ-scattered function base.

Lemma 5.9. Let f : T → X be Borel measurable where X is a descriptive
space.

(a) If T is descriptive, then f has a σ-relatively discrete function base of Souslin
sets.

(b) If T is almost descriptive, then f has a σ-scattered function base of restricted
Baire property sets.

P r o o f. (a) Since X is descriptive, it has a network ∪
n∈N

Nn where each Nn

is a relatively discrete collection of Souslin sets in X by Theorem 5.1. Since the
union of each subcollection of Nn is a Souslin set in Y by Lemma 3.3, it follows
that f−1(Nn) is a disjoint Souslin-additive family in T . Hence, by Theorem 5.7,
f−1(Nn) has a σ-relatively discrete base Bn, which we may assume consists of
Souslin sets in view of Lemma 3.2 (just as in the proof of Theorem 5.1). It follows
that ∪

n∈N

Bn is the desired function base for f . The proof of (b) is identical using

Theorem 5.7 and Lemma 2.3. �

If M is a collection of subsets of a set T containing the empty set and
closed to the operations of finite intersections and countable unions, then we call
(T,M) a measurable space. Recall that, if X is a topological space, then a map
f : T → X is said to be M-measurable if f−1(U) ∈ M whenever U is an open set
in X. It is often difficult, if not impossible, to establish useful stability properties
for M-measurable maps in such a general setting. For example, if f : T → X
and g : T → Y are M-measurable for metric spaces X and Y , must the diagonal
map t 7→ (f(t), g(t)) be M-measurable? The answer isn’t known in general, even
when M is the Borel σ-algebra of a metric space (see, however, [31] for a proof
in the case when both maps are of bounded class). Affirmative answers to this
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and related stability questions can usually be found given the existence of certain
function bases.

A collection E ⊂ M is said to be M-hereditarily additive if, whenever
ME ∈ M for each E ∈ E , then

∪{ME ∩ E : E ∈ E} ∈ M.

By Lemma 2.6, if T is a topological space and M is the family of restricted BP-sets
in T , then any collection in M having a σ-scattered base is M-hereditarily addi-
tive. Similarly, any collection of Souslin sets having a σ-relatively discrete base is
Souslin-hereditarily additive by Lemma 3.4. (Conversely, if T is descriptive, then
any point-finite Souslin-additive family in T will have a σ-relatively discrete base
by Lemma 5.7.) Note that any map f : T → X which has a M-hereditarily addi-
tive function base is necessarily M-measurable. Stability properties of maps hav-
ing M-hereditarily additive function bases can usually be established as Lemma
5.10 below illustrates (cf. also [31, Theorem 7]). We say that a map f : T → X
is M-descriptive if it has a function base which is a countable union of disjoint
M-hereditarily additive families.

We make use of the following lemma proved in [32, Lemma 2.2].

Lemma 5.10. Let (T,M) be a measurable space. If E and H are M-
hereditarily additive, then so is {E ∩H : E ∈ E ,H ∈ H}.

Lemma 5.11. Let (T,M) be a measurable space. Let X = Π{Xa : a ∈
A} be a product space with projection maps πa : X → Xa where A is at most
countable. If f : T → X is such that πa ◦ f is M-descriptive for each a ∈ A, then
f is M-descriptive.

P r o o f. Let ∪
n∈N

Han be a function base for πa ◦ f for each a ∈ A, where

each Han is disjoint and M-hereditarily additive. Then, for each m ∈ N and finite
sets F = {a1, . . . , am} ⊂ A and {n1, . . . , nm} ∈ N,

BF (n1, . . . , nm) = {H1 ∩ . . . ∩Hm : Hi ∈ Haini
for i = 1, . . . ,m}

is also disjoint and M-hereditarily additive by Lemma 5.9. Now note that any
base for the sets

f−1[π−1
a1

(U1) ∩ . . . ∩ π
−1
am

(Um)],

as {a1, . . . , am} runs over all finite subsets of A and where each Ui is open in Xai
,

will be a function base for the map f , in view of the definition of the product
topology. But clearly, the countably many families of the type BF (n1, . . . , nm)
described above will be such a base. It follows that f is M-descriptive. �
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Corollary 5.12. Let (T,M) be a measurable space and let X be a linear
topological space. If f, g : T → X are M-descriptive, then so is the vector sum
f + g.

P r o o f. By Lemma 5.10 the complex map (f, g) : T → X × X is M-
descriptive, hence the composition of this map followed by any continuous map is
M-descriptive. But f + g is the composition of (f, g) followed by the continuous
map + : X ×X → X. �

Our final topic in this section deals with the concept of a Radon space.
By a measure on a Hausdorff space X we will mean a non-negative, countably
additive and finite real-valued set function defined on the Borel sets of X. A
measure µ on X is said to be a Radon measure if

µ(B) = sup{µ(K) : K ⊂ B compact}

for each Borel set B. The space X is said to be a Radon space if each measure
on X is a Radon measure. An important result in the work of Schwartz [67,
p. 122-6] due to P. A. Meyer is that every Souslin space is a Radon space. If a
space contains uncountable discrete subspaces, then in order to be a Radon space
one needs to impose some cardinality restriction on these subspaces. Recall that
a cardinal κ is said to have measure zero if every finite measure defined on the
power set P(κ) and assigning measure zero to each singleton is identically zero
(such cardinals are also said to be not real-valued measurable). From Ulam’s work
[76] it follows that one can consistently assume that all cardinals are of measure
zero.

Consider the following condition for a topological space X:

(∗) the cardinality of each discrete subset of X has measure zero.

Marczewski and Sikorski [47] has shown that if a metric space X has (∗), then
every measure on X has closed separable support. Hence any absolutely analytic
metric space (not necessarily separable) satisfying (∗) is a Radon space (using the
above result of Meyer’s for example). Schachermayer [66] has shown that, for any
weakly compact subset K of a Banach space, (K,weak) will be a Radon space
whenever it satisfies condition (∗). He later noted that, for any Banach space
having an equivalent norm for which the norm and weak topologies coincide on
the unit sphere, the same conclusion holds for any weak Borel set with the weak
topology (see [11, p. 676]).

There have been a number of generalizations of the Marczewski-Sikorski
theorem leading to sufficient conditions for a space to be Radon. The most recent
of these, due to Gardner and Pfeffer, is well-suited for our work:
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Lemma 5.13 [22, Theorem 9]. Any completely regular Hausdorff space
X satisfying the following properties is a Radon space.

(1) X is universally Radon measurable,
(2) X is hereditarily weakly θ-refinable,
(3) X satisfies condition (∗).

A completely regular Hausdorff space X is universally Radon measurable
if it is measurable relative to the completion of every Radon measure on βX, its
Stone-Čech compactification. Since every Souslin set in βX has this property
[63, Theorem 26], any Čech analytic space is universally Radon measurable.

Theorem 5.14. Any completely regular descriptive space satisfying con-
dition (∗) above is a Radon space.

P r o o f. This follows immediately from Lemma 5.13 and Theorem 5.1 �

6. Networks for the various topologies of a Banach space. The
topological relationships between the norm and weak topologies of descriptive
and almost descriptive Banach spaces follow from the existence of a network for
the norm topology having certain discreteness properties relative to the weak
topology. In this section we show how such networks are obtained. We establish
general results of this type which enable us to prove similar theorems for the norm
and pointwise convergence topologies on function spaces of the type C(K), and
also for the norm and weak∗ topologies on a dual Banach space. In order to cover
simultaneously the cases of a σ-relatively discrete and a σ-scattered network, it
will be convenient to work with an abstraction of both properties.

By a discreteness class associated with topological spaces we mean a cor-
respondence ∆ : X 7→ ∆(X) which associates with each topological space X a
family ∆(X) whose members are disjoint collections of subsets of X having the
following properties:
(i) {E} ∈ ∆(X) for any E ⊂ X.
(ii) If E and H belong to ∆(X), then so does {E ∩H : E ∈ E ,H ∈ H}.
(iii) If E ∈ ∆(X) and DE ⊂ E for each E ∈ E , then {DE : E ∈ E} ⊂ ∆(X).
(iv) If X is a subspace of Y , then ∆(X) ⊂ ∆(Y ) and E ∈ ∆(Y ) implies

{E ∩X : E ∈ E} ⊂ ∆(X).
The members of ∆(X) are said to be ∆(X)-discrete. It will also be convenient
to let ∆σ(X) denote the set of all families that are countable unions of ∆(X)-
discrete collections. Note that ∆σ(X) will also satisfy the properties (i)–(iv). It
is easy to verify using Lemmas 2.2 and 3.1 that the correspondences X 7→ Σ(X)
(scattered collections) and X 7→ ∆ρ(X) (relatively discrete collections) define
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discreteness classes for each topological space X. When the space X is fixed we
will often write ∆ in place of ∆(X), and say that ∆ defines a discreteness class
for X.

If ∆ defines a discreteness class for X, a map f : X → Y is said to be
∆σ-simple if X has a partition E ∈ ∆σ such that f ↾ E is constant for each E ∈ E .
Note that this property is independent of any topology on Y .

Lemma 6.1. Let ∆ define a discreteness class for X and let Y be a vector
space. If f, g : X → Y are ∆σ-simple maps, then so is any linear combination of
f and g.

P r o o f. Any scalar multiple of a ∆σ-simple map is clearly ∆σ-simple.
Also, if E and H are partitions of X which belong to ∆σ and are such that f ↾ E
and g ↾ H are constant for each E ∈ E and H ∈ H, then {E∩H : E ∈ E ,H ∈ H}
belongs to ∆σ (as easily follows from the definitions) and is a partition of X on
each member of which f + g takes a constant value. �

The following result is central to our work.

Theorem 6.2. Let ∆ define a discreteness class for X, and let Y be a
Banach space. Suppose f : X → Y is a weak pointwise limit of a sequence of
∆σ-simple maps fn : X → Y . Then f is a norm uniform limit of a sequence of
∆σ-simple maps gn : X → Y . Moreover, f has a norm function base B ∈ ∆σ(X).

P r o o f. Let {hn}n≥1 be a sequence representing all rational (finite) linear
combinations of the maps fn. By Lemma 6.1, each hn is ∆σ-simple, so there is a
Hn ∈ ∆σ which partitions X and is such that hn ↾ H takes a constant value, say

y
(n)
H , for each H ∈ Hn.

Given ε > 0, for each n ∈ N and H ∈ Hn define

NH(n, ε) = {x ∈ X:‖f(x) − y
(n)
H ‖ < ε}

and let

M(n, ε) = ∪{H ∩NH(n, ε) : H ∈ Hn}.

To see thatX = ∪{M(n, ε) : n ∈ N}, let x ∈ X. Since the norm and weak closures
of the convex hull of {fn(x) : n ≥ 1} coincide, it follows that f(x) will be a norm
cluster point of the sequence {hn(x)}n≥1, and so we have ‖f(x)− hn(x)‖ < ε for

some n. Let H ∈ Hn be such that x ∈ H. Then hn(x) = y
(n)
H , and it follows that

x ∈ H ∩NH(n, ε) ⊂M(n, ε).
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We now choose any disjoint sets D(n, ε) ⊂M(n, ε) such that

X = ∪{D(n, ε) : n ∈ N}.

Doing the above with ε = 1/m for each m ∈ N, we define maps gm : X →
Y by the rule

gm(x) = y
(n)
H if and only if x ∈ H ∩D(n, 1/m), H ∈ Hn, n ∈ N.

Since the family {H ∩D(n, 1/m) : H ∈ Hn, n ∈ N} belongs to ∆σ and partitions
X, each gm is a ∆σ-simple map. Moreover, since

H ∩D(n, 1/m) ⊂ H ∩M(n, 1/m) ⊂ NH(n, 1/m)

it follows that ‖f(x) − gm(x)‖ < 1/m for all x ∈ X. Whence the sequence
{gm}m≥1 converges norm uniformly to f .

Finally, let us show that the ∆σ family

B = {H ∩D(n, 1/m) : H ∈ Hn, n ∈ N}

is a norm function base for f . Let x0 ∈ f−1(U) for some norm open set U ⊂ Y .
Choose m ∈ N so that the ball about f(x0) of radius 1/m is contained in U ,
and let n ∈ N be such that x0 ∈ D(n, 1/2m). Finally, choose H ∈ Hn such that
x0 ∈ H. Then for every x ∈ H ∩D(n, 1/2m) we have

‖f(x) − f(x0)‖ ≤ ‖f(x) − y
(n)
H ‖ + ‖y

(n)
H − f(x0)‖ ≤ 1/m.

It follows that x0 ∈ H ∩D(n, 1/2m) ⊂ f−1(U). �

If ∆ defines a discreteness class for X and X has associated with it several
topologies, then ∆(τ) will denote the ∆-discrete families in X relative to the
topology τ .

Theorem 6.3. Let X be a subset of a Banach space Y and let ∆ define
a discreteness class for X.

(a) If (X,weak) has a network N ∈ ∆σ(weak), then there is some N
∗ ∈

∆σ(weak) that is also a network for (X,norm).

(b) If Y = C(K), for some compact Hausdorff space K, and (X, τp) has a
network N ∈ ∆σ(τp), then there is some N

∗ ∈ ∆σ(τp) that is also a network
for (X,norm).
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P r o o f. (a) Let N = ∪
n∈N

Nn where each Nn ∈ ∆(weak). Let

Bn = {N1 ∩ . . . ∩Nn : Nk ∈ Nk ∪ {X \ ∪Nk} for k = 1, . . . , n}.

Then Bn is a partition of X and is easily seen to belong to ∆σ(weak) using
properties (i) and (ii) of a discreteness class.

We fix a point in each member of Bn and let fn : X → X be the map that
is constant on each member of Bn and assumes the fixed point of that member.
Then each fn is a ∆σ-simple map, and we claim that the sequence {fn} will
converge pointwise relative to the weak topology to the identity map on X.

Given x ∈ X let Bn be the member of Bn that contains x, and suppose
fn ↾ Bn takes the constant value xn ∈ Bn. If U is any neighborhood of the
point x relative to the weak topology, we can find n0 ∈ N and Nn0

∈ Nn0
such

that x ∈ Nn0
⊂ U by the property of a network. Since {Bn}n≥1 is necessarily

decreasing and Bn0
⊂ Nn0

(by the definition of Bn0
), it follows that xn ∈ Bn ⊂ U

for all n ≥ n0. This proves that {fn(x)}n≥1 converges weakly to x.
Letting h denotes the identity map on X, it follows from Theorem 6.2

that there is a B ∈ ∆σ(weak) which is a base for the sets h−1(U) = U , U ⊂ X
norm open, and thus N

∗ = B is the desired network for the norm topology on X.

(b) Note first that, for any discreteness class ∆, if a space is a countable
union of subspaces each having a ∆σ-network, then the union of these networks
will be a ∆σ-network for the whole space (as follows easily from property (iv) of
a discreteness class and the definition of a network). Consequently, it suffices to
show that (b) holds when (X, τp) is further assumed to be a bounded subset of
C(K). Also, the assumptions of (b) imply the existence of a network in ∆σ(τp)
for any subspace of X. If we proceed exactly as in the proof of part (a) and
adopt the notation of that proof, it follows that the sequence {fn(x)}n≥1 now
converge to x relative to the topology of pointwise convergence on X, for each
x ∈ X. However, by a theorem of Grothendieck [21, Theorem 5], it follows that
the sequence {fn(x)}n≥1 must also converge to x relative to the weak topology
on X. Hence the rest of the proof of part (a) applies verbatim. �

For the case of a dual Banach space we need the following theorem. For
the definition of a space being (properly) σ-fragmented by a metric see the dis-
cussion leading up to Theorem 1.10 in §1.

Theorem 6.4. Let (X, τ) be a topological space which is properly σ-
fragmented by some metric ρ on the set X. Let ∆ denote either of the discreteness
classes Σ or ∆ρ. Then the following are equivalent.
(a) Any collection of τ -open subsets of X has a ∆σ(τ) refinement.
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(b) (X, τ) has a network N ∈ ∆σ(τ).
(c) Any ρ-discrete collection has a ∆σ(τ) refinement.
(d) (X, ρ) has a network N ∈ ∆σ(τ).
Moreover, any topological space will satisfy condition (a) when ∆ = Σ, hence
(X, ρ) always has a network which is σ-scattered relative to the τ topology.

Conversely, if ρ is a metric on X such that τρ ⊃ τ and (X, ρ) has a
network which is σ-scattered relative to τ , then (X, τ) is σ-fragmented by ρ.

P r o o f. For each m ∈ N , let X = ∪{Xmn : n ∈ N} satisfy the definition
of σ-fragmentability for ε = 1/m (see §1). For each m,n ∈ N we define inductively
a τ -open cover {Uλ : λ < Λmn} of Xmn such that

ρ− diamDλ < 1/m, where Dλ = (Uλ \ ∪
ξ<λ

Uξ) ∩Xmn.

This is always possible, for if the relatively τ -closed set

F = Xmn \ ∪
ξ<λ

Uξ

is nonempty, it must contain a nonempty relatively τ -open set W of diameter
less than 1/m, and so we may take Uλ to be any τ -open set in X such that
Uλ ∩ F = W .

Note that if ∆σ(τ) is the class of all σ-relatively discrete collections in
(X, τ), then (a) is just the condition that (X, τ) is hereditarily weakly θ-refinable.
If, on the other hand, ∆σ(τ) is the class of all σ-scattered collections, then (a) is
satisfied by any space (X, τ).

(a) ⇒ (c) If (X, τ) is hereditarily weakly θ-refinable, then each of the
families {Dλ : λ < Λmn} is σ-relatively discretely decomposable by Lemma 3.5.
In either case, {Dλ : λ < Λmn} has a ∆σ(τ) base Nmn, and it suffices to show
that N = ∪

m,n∈N

Nmn is a network for (X, ρ). For this it is enough to show that if

B is the open ρ-ball about x ∈ X of radius 1/m, then there is some N ∈ N such
that x ∈ N ⊂ B. Let n be such that x ∈ Xmn, and thus x ∈ Dλ ⊂ Uλ for some
λ < Λmn. Since Nmn is a base for {Dλ : λ < Λmn}, there is some N ∈ Nmn such
that x ∈ N ⊂ Dλ ⊂ B as required.

The implication (c) ⇒ (b) follows since τ ⊂ τρ. Since (b) ⇒ (a) is clear
the proof of the first part is complete.

Conversely, let ρ be a metric on X such that τρ ⊃ τ , and suppose (X, ρ)
has a network N = ∪

n∈N

Nn where each collection Nn is scattered relative to τ .

Given ε > 0, define

Nn(ε) = {N ∈ Nn : ρ− diam(N) < ε},
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and put Xn = ∪
n∈N

Nn(ε), for each n ∈ N. Note that X = ∪
n∈N

Xn since N is a

network for (X, ρ). Since Nn(ε) is τ -scattered, we can write Nn(ε) = {Nα : α <
λn} and find τ -open sets Uα ⊂ X so that

∪{Nξ : ξ ≤ α} = Uα ∩Xm

for each α < λn and n ∈= N. Given any nonempty set A ⊂ Xn, if

ξ = min{α < λn : A ∩Nα 6= ∅},

then A ∩ Uξ = A ∩Nξ is a nonempty relatively τ -open subset of A such that

ρ− diam(A ∩ Uξ) ≤ ρ− diam(Nξ) < ε.

This proves that (X, τ) is σ-fragmented by the metric ρ. �

Theorem 6.5. Let ∆ denote either of the discreteness classes Σ or ∆ρ,
let Z be a dual Banach space with the Radon-Nikodým Property (RNP), and let
X be any subset of Z. Then the following are equivalent.
(a) (X,weak∗) has a network N ∈ ∆σ(weak∗).
(b) (X,norm) has a network N ∈ ∆σ(weak∗).
(c) Each norm discrete collection has a ∆σ(weak∗) refinement.
(d) Any collection of weak∗ open subsets of X has a ∆σ(weak∗) refinement.
Moreover, (a) always holds when ∆ = Σ, hence the norm topology of any dual
Banach space with RNP always has a weak∗ σ-scattered network.

Conversely, if the norm topology of a dual Banach space Z∗ has a network
that is σ-relatively discrete for the weak∗ topology, then Z∗ has RNP.

P r o o f. Since Z has the Radon-Nikodým Property, (Z,weak∗) is σ-
fragmented by the norm of Z [39, Theorem 6.2]. Since this property is inherited
by every topological subspace, the theorem follows from Lemma 6.4.

To prove the converse, recall that Z will have the Radon-Nikodým Prop-
erty if every nonempty weak∗ compact subset K of Z contains weak∗ rela-
tively open nonempty subsets of arbitrarily small norm diameter or, equivalently,
(K,weak∗) → (K,norm) has at least one point of continuity (see [57, Lemma 3]
or [5, Theorem 4.2.13]). Since K is a Baire space, this follows from Theorem 6.6,
(a) ⇒ (e), below. �

We now describe some of the relationships between the norm and weak (or
τp or weak∗) topologies of a Banach space which result when the norm topology
has a network of the type under consideration. In order to cover all the cases
simultaneously the theorem is presented in a general setting.
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Theorem 6.6. Let X be a set with two topologies τ and µ such that,
whenever x ∈ U with U ∈ µ , there exists V ∈ µ such that x ∈ V and clτV ⊂ U .
Let ∆ denote either of the discreteness classes Σ or ∆ρ. Then (a) ⇐⇒ (b)
and (b) implies each of the properties (c) through (e). If (X,µ) has a network
N ∈ ∆σ(µ) (for example, if µ is metrizable), then (c) ⇒ (a).

(a) (X,µ) has a network N ∈ ∆σ(τ).

(b) (X,µ) has a network N
∗ ∈ ∆σ(τ) consisting of F ∩ G sets with respect to

τ .

(c) The identity map (X,µ) → (X, τ) is index-σ-∆ (equivalently, any ∆(µ)
family has a ∆σ(τ) base).

(d) For ∆ = ∆ρ, each open set in (X,µ) is a (F ∩ G)σ set in (X, τ).

(d)′ For ∆ = Σ, each open set in (X,µ) is a strong restricted BP-set in (X, τ).

(e) For any A ⊂ X, the set of points of discontinuity of the identity map
(A, τ) → (A,µ) is a set of the first category in (A, τ). In particular, if
(A, τ) is a Baire space, then the τ and µ topologies coincide on a τ dense
Gδ subset of A.

P r o o f. (a) ⇒ (b) Let N = ∪
n∈N

Nn be a network for (X,µ) where each

Nn belongs to ∆(τ). By Lemmas 2.3 and 3.2, each of the families Nn can be
expanded to a family N

∗
n = {HN : N ∈ Nn} ∈ ∆(τ) consisting of F ∩ G relative

to the τ topology, and such that N ⊂ HN ⊂ clτN for each N . Hence it suffices
to show that N

∗ = ∪
n∈N

N
∗
n is a network for (X,µ). Let x ∈ U with U ∈ µ, and

chose V ∈ µ such that x ∈ V ⊂ clτV ⊂ U . Since N is a network for (X,µ), there
are n ∈ N and N ∈ Nn such that x ∈ N ⊂ V , and so

x ∈ HN =⊂ clτN ⊂ clτV ⊂ U.

This proves (b).

(b) ⇒ (a) This is obvious.

(b) ⇒ (c) Let N = ∪
n∈N

Nn be a network for (X,µ) where each Nn belongs

to ∆(τ). Let E = {Eα : α < λ} ∈ ∆(µ). It is enough to show that E has a base
in ∆σ(τ). Choose µ-open sets Uα ⊃ Eα such that, in the case when ∆ = ∆ρ,
Uα ∩ Eβ = ∅ whenever β 6= α, or Uα ∩ (∪E) = ∪

β≤α
Eβ in the case when ∆ = Σ.

Now define

Bn = {Eα ∩N : α < λ, N ∈ Nn, N ⊂ Uα, and Eα ∩N 6= ∅}
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for each n ∈ N. Then ∪
n∈N

Bn ∈ ∆σ(τ) and it is easy to verify that it is a base

for E .

(b) ⇒ (d) and (b) ⇒ (d)′ Since each open set in (X,µ) is a union of sets
from the network N

∗, property (d) follows from Lemma 3.4, and (d)′ follows from
Lemma 2.6 (b).

(b) ⇒ (e) This follows immediately from Lemma 5.8 (b) since {N ∩A :
N ∈ N

∗} will be a σ-scattered function base for the map (A, τ) → (A,µ) and
each µ-open set in A is a strong BP-set by (d)′.

Finally, suppose N = ∪
n∈N

Nn is a network for (X,µ) where each Nn be-

longs to ∆(µ), and let us show that (c) ⇒ (a). Assuming (c), it follows that each
Nn has a base of the form ∪

m∈N

Nnm with Nnm ∈ ∆(τ) for each m. But then

∪
n,m∈N

Nnm is clearly a ∆σ(τ) network for (X,µ). �

7. Banach spaces which are descriptive. The main objective of this
section is to describe classes of Banach spaces Z for which Z is descriptive, and
similarly for the cases when Z = C(K) or when Z is a dual Banach space. Our
first lemma is at the heart of the proof of Theorem 1.5 and has a number of
interesting precursors (see [27, 3.11], [44, Lemma 2], [29, Theorem 5] and [18,
Lemma 1]).

Lemma 7.1. If Y has a countable network, then for any space X the pro-
jection map π : X × Y → X is index-σ-relatively discrete and index-σ-scattered.

P r o o f. For the first part, it suffices to prove that π maps relatively
discrete collections in X × Y to σ-relatively discretely decomposable collections
in X. Let {Eα : α ∈ A} be a relatively discrete collection of subsets of X × Y .
We need to show that

π(Eα) =
∞
∪

n=1
Eαn

where {Eαn : α ∈ A} is a relatively discrete family for each n.

For each α, let Uα be open in X×Y and satisfy Eα ⊂ Uα and Eβ∩Uα = ∅
for all β 6= α. Let {Nn : n ∈ N} be a countable network for Y , and define

Eαn = π({(x, y) ∈ Eα : (x, y) ∈ U ×Nn ⊂ Uα for some open set U ⊂ X}

Uαn = ∪{U : U is open in X and U ×Nn ⊂ Uα}
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for each α ∈ A and n ∈ N. By the definition of a network, it is easy to verify
that the above defined sets satisfy

π(Eα) =
∞
∪

n=1
Eαn and Eαn ⊂ Uαn

for each α ∈ A and n ∈ N. Moreover, if for some β we have x ∈ Eβn ∩Uαn, then,
for some y ∈ Nn and for some open neighborhood U of x, we have

(x, y) ∈ Eβ and U ×Nn ⊂ Uα.

But this leads to the contradiction that Eβ∩Uα 6= ∅. It follows that the collection
{Eαn : α ∈ A} is relatively discrete for each n.

Now suppose {Eα : α < λ} is scattered in X × Y and let {Uα : α < λ} be
a collection of open sets in X × Y such that

Eα ⊂ Uα \ ∪
β<α

Uβ

for each α < λ. Let Eαn and Uαn be defined exactly as above, and let us show
that

Eαn ⊂ Uαn \ ∪
β<α

Uβn.

If x ∈ Eαn, then for some open set U ⊂ X and for some y ∈ Y we have (x, y) ∈
U ×Nn ⊂ Uα, and it follows that x ∈ U ⊂ Uαn. Were x ∈ Uβn for some β < α,
then for some open U∗ ⊂ X we would have x ∈ U∗ and U∗ ×Nn ⊂ Uβ, and this
would imply that (x, y) ∈ Uβ , which is impossible since (x, y) ∈ Eα. �

The proof of the following theorem employs a very useful technique due
to W. Schackermeyer (see [12, §2] or [5, p. 362]).

Theorem 7.2. Let Z be a Banach space, τ a locally convex topology on
Z, and let S = {z ∈ Z : ‖z‖ = 1}. If (S, τ) has a σ-relatively discrete [resp.
σ-scattered] network, then any subspace of (Z, τ) has a σ-relatively discrete [resp.
σ-scattered] network. In particular, if the norm and weak topologies agree on S,
then Z (hence also any norm Souslin subset of Z) is weakly descriptive.

P r o o f. It is enough to show that (Z, τ) has a σ-relatively discrete net-
work, since this property is hereditary [and similarly for the σ-scattered case].
With the τ topology on both S and Z \ {0}, the map (t, z) 7→ (t, tz) is a homeo-
morphism from the product space (0,∞)×S onto some subset M of the product
space (0,∞) × Z \ {0}. (Note that the inverse map is the “diagonal” of the con-
tinuous maps (t, tz) 7→ t and (t, tz) 7→ (t−1, tz) 7→ t−1(tz) = z.) Moreover, the
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space M projects onto all of Z \ {0}. Since (0,∞) has a countable network and
(S, τ) has a σ-relatively discrete network, it is easy to verify that the product
space (0,∞) × S has a σ-relatively discrete network. From this it follows that
the space

M ⊂ (0,∞) × Z \ {0}

also has a σ-relatively discrete network. By Lemma 7.1, the image of this network
under the projection map π : (0,∞)×Z \{0} → Z \{0} has a σ-relatively discrete
base; hence, this will be a σ-relatively discrete network for Z \ {0}. (Note that,
if N is a network for the domain of a continuous map f , then any base for f(N)
will be a network for the topology of the range.) Adjoining to this network the
singleton {0} yields a σ-relatively discrete network for (Z, τ). The proof for the
σ-scattered case is identical. �

Any Banach space which admits an equivalent Kadec norm satisfies the
assumptions in Theorem 7.2 with τ taken to be the weak topology. As noted in
the introduction, this class is relatively large and apparently only those spaces
containing an isomorphic copy of ℓ∞ are known to be excluded.

As noted in §1, the following theorem is an immediate consequence of
Theorem 7.2.

Theorem 7.3. If Z∗ is a dual Banach space with property (∗∗), then Z∗

is a descriptive space.

Since the Banach space c0(Γ) is locally uniformly convexifiable [75], it
admits an equivalent Kadec norm, and it follows that c0(Γ) is descriptive by
Theorem 7.2. Since the topology of pointwise convergence and the weak topology
on c0(Γ) coincide for bounded subsets, it follows that (c0(Γ), τp) is also descriptive
(since any space which is a countable union of subspaces each having a σ-relatively
discrete network will itself have such a network). It would seem instructive to give
a more direct proof of this result (not dependent on the existence of a certain
equivalent norm), which we presently do. It is then shown how this in turn
implies that Cp(K) will be a descriptive space whenever there exists a certain
type of linear injection from C(K) into c0(Γ) (Theorem 1.7 of §1). We first prove
a lemma.

Lemma 7.4. Any point-finite collection of open sets in an arbitrary
topological space is σ-relatively discretely decomposable.

P r o o f. Let U be a point-finite collection of open sets in the space X.
Since relative discreteness is independent of the containing space, we may assume
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that U is a cover of X. For each x ∈ X and n ∈ N let

Ux = {U ∈ U : x ∈ U} and Cn = {x ∈ X : card(Ux) = n}.

Now put
U(n) = {∩V : V ⊂ U and card(V) = n},

and note that if U ∈ U and V = ∩V ∈ U(n), then either V ∩ Cn ⊂ U (when
U ∈ V) or V ∩ Cn ∩ U = ∅. It follows that {V ∩ Cn : V ∈ U(n)} is relatively
discrete for each n ∈ N. Moreover, if for each U ∈ U and n ∈ N we let

Un = ∪{V ∩ Cn : V ∈ U(n) and V ∩ Cn ⊂ U},

then U = ∪{Un : n ∈ N} and {Un : U ∈ U} is relatively discrete for each n. That
completes the proof. �

Theorem 7.5. The norm topology of c0(Γ) has a network N that is
σ-relatively discrete with respect to the topology of pointwise convergence.

P r o o f. Let B = {Bn : n ∈ N} be a sequence of bounded open intervals of
R such that, for each n there is an ε > 0 for which Bn ⊂ (−∞,−ε) or Bn ⊂ (ε,∞),
and each nonempty open subset of R \ {0} is a union of some subcollection of
{Bn : n ∈ N}.

For n ∈ N let

Γ(n) = {Λ ∈ Γ : card(Λ) ≤ n},

M(n) = {f : f : Λ → {B1, . . . , Bn},Λ ∈ Γ(n)}.

For each n,m ∈ N and for each Λ ∈ Γ(n) and f ∈M(n) define

R(Λ, f) = c0(Γ) ∩ Π
λ<Γ

Rλ where Rλ =

{

f(λ) if λ ∈ Λ
R otherwise

and

Rm(Λ, f) = c0(Γ) ∩ Π
λ<Γ

Rλ where Rλ =











f(λ) if λ ∈ Λ
(

−
1

m
,

1

m

)

otherwise
.

We first show that, for each fixed n ∈ N,

{R(Λ, f) : Λ ∈ Γ(n), f ∈M(n)}
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is a point-finite collection of τp-open subsets of c0(Γ). Since the sets are clearly
τp-open, we need only show that each x ∈ c0(Γ) belongs to R(Λ, f) for at most
a finite number of distinct pairs (Λ, f). But if x ∈ R(Λm, fm) with {(Λm, fm) :
m ∈ N} infinite, then ∪

m≥1
Λm must be infinite since each fm takes values in

{B1, . . . , Bn} and n is fixed. Hence for some infinite set Ψ ⊂ ∪
m≥1

Λm and for

some Bj , 1 ≤ j ≤ n, we would have x(ψ) ∈ Bj for each ψ ∈ Ψ; but this
contradicts the fact that x ∈ c0(Γ) since Bj is bounded away from 0.

It follows from Lemma 7.4 that each of the families {R(Λ, f) : Λ ∈
Γ(n), f ∈ M(n)} is σ-relatively-discretely decomposable for the topology τp.
Since Rm(Λ, f) ⊂ R(Λ, f) for each m ∈ N, it also follows that the family
Rnm = {Rm(Λ, f) : Λ ∈ Γ(n), f ∈ M(n)} is also σ-relatively discretely de-
composable for the topology τp for each n and m ∈ N.

To see that the sets ∪
n,m≥1

Rnm form an open base for the norm topology

on c0(Γ), let x ∈ c0(Γ) and let B(x, 1/m) denote the open ball about x of radius
1/m. If ‖x‖ < 1/m, let Λ = ∅, otherwise let

Λ = {λ1, . . . , λk} = {λ ∈ Γ : |x(λ)| ≥ 1/m},

and choose sets Bni
∈ B for i = 1, . . . , k such that

x(λi) ∈ Bni
⊂

(

x(λi) −
1

m
, x(λi) +

1

m

)

.

Let n = max{k, n1, . . . , nk} and define f : Λ → {B1, . . . , Bn} so that f(λi) = Bni

for i = 1, . . . , k. Then Λ ∈ Γ(n), f ∈M(n) and

x ∈ Rm(Λ, f) ⊂ B(x, 1/m)

(note that ‖x‖ = x(λ) for some λ ∈ Γ for x ∈ c0(Γ)).
It now follows that the sets making up a σ-relatively-discrete decomposi-

tion of Rnm (in the topology τp) will, when taken together, constitute a network
for the norm topology of c0(Γ), and will of course be a σ-relatively-discrete family
with respect to the topology τp. �

Theorem 7.5 can be used to deduce similar results for any space that
admits a certain type of continuous mapping into c0(Γ). Although the conditions
in the following lemma might at first seem artificial, we will see that they are
satisfied by a wide class of Banach spaces.

Lemma 7.6. Let X be a set with two topologies τ and µ, and suppose
that (X,µ) has a σ-relatively discrete network. Suppose there exists a map f :
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X → c0(Γ) that is µ-to-norm index-σ-relatively discrete and τ -to-τp continuous.
Then (X,µ) has a network that is σ-relatively discrete with respect to τ .

P r o o f. Let N = ∪
n∈N

Nn be a network for (X,µ) with each Nn µ-relatively

discrete. Since f is µ-to-norm index-σ-relatively discrete, by Lemma 3.9 we can
write f(N) = ∪

n∈N

MNm so that {MNm : N ∈ Nn} is a norm relatively discrete

collection in c0(Γ) for each n ∈ N. By Theorem 7.5, and since relatively discrete
implies σ-discretely decomposable in metric spaces, we can further write

MNm = ∪
k∈N

MNmk

where {MNmk
: N ∈ Nn} is τp-relatively discrete for each fixed m and k. Since

f is τ -to-τp continuous, it follows that {f−1(MNmk
) : N ∈ Nn} is τ -relatively

discrete for each fixed m and n. Letting

Nmk = N ∩ f−1(MNmk
)

for each N ∈ Nn, it is clear that we have

N = ∪{Nmk : m,k ∈ N},

where {Nmk : N ∈ Nn} is τ -relatively discrete and

{Nmk : N ∈ Nn, m ∈ N, k ∈ N}

is a network for (X,µ). �

Recall that the weight of a topological space X, denoted w(X), is the least
cardinal of an open base for X. By a retractional resolution of the identity for
a compact Hausdorff space K we mean a “long sequence” {rα : ω0 ≤ α ≤ µ}
of continuous retractions rα : K → Kα (i.e., rα is a continuous extension of the
identity map on Kα ⊂ K), where µ is the least ordinal such that |µ| = w(K),
and which satisfies:

(i) rα ◦ rβ = rβ ◦ rα = rα if ω0 ≤ α ≤ β ≤ µ,

(ii) w(Kα) ≤ |α| ∀α,

(iii) ∪{Kβ+1|β < α} = Kα ∀α,

(iv) lim
α<λ

rα(x) = rλ(x) ∀x ∈ K, ∀ limit ordinals λ ≤ µ.

(v) rµ is the identity map on K,

(vi) {α < µ : ‖f ◦ rα − f ◦ rα+1‖ > ε} is finite ∀ f ∈ C(K), ∀ ε > 0.
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Property (vi) can be shown to follow from the other conditions whenever K has a
dense relatively sequentially compact subset, hence when K itself is sequentially
compact. Any Valdivia compact has a retractional resolution of the identity [3,
Lemma 1.3], [10, Lemma II.2]. Letting Pα denote the corresponding projection
on C(K) defined by

Pα(f) = f ◦ rα ∀ C(K),

we obtain a “long sequence” of projections {Pα : ω0 ≤ α ≤ µ} which defines a
projectional resolution of the identity on the Banach space C(K) [8].

Theorem. (a) (Gul’ko [24]) If K is a compact Hausdorff having a re-
tractional resolution of the identity, then there exist a set Γ and a one-to-one
bounded linear operator T : C(K) → c0(Γ) which is also continuous when both
Banach spaces are equipped with the topology of pointwise convergence (cf. also
[3, Theorem 1.4]).

(b) (Spahn [68, §3]) The linear operator T in part (a) is also norm-to-
norm index-σ-discrete.

Theorem 7.7. If K is a compact Hausdorff space having a retractional
resolution of the identity, then Cp(K) is descriptive.

P r o o f. This follows from the preceding Theorem and Theorems 7.5 and
7.6. (Note also the fact that for metric spaces index-σ-relatively discrete and
index-σ-discrete coincide [26, §1.2].) �

8. An embedding property of descriptive Banach spaces. Tala-
grand [71] has shown that if Z is a subspace of a weakly compactly generated
Banach space, then (Z,weak) will be a Kσδ in (Z∗∗,weak∗), where K is the fam-
ily of all weak∗ compact sets in the bidual Z∗∗. Also, a Banach space Z is a
(weakly) Lindelöf K-analytic space if, and only if, (Z,weak) is a Souslin(K) set
in (Z∗∗,weak∗) (see [71, Theorem 3.2 and Proposition 3.3]). Whether (Z,weak)
will in fact be a Kσδ in (Z∗∗,weak∗) whenever Z is a Lindelöf K-analytic space
remains an open question (cf. [72]). However, the corresponding question for
descriptive Banach spaces has the following affirmative answer.

Theorem 8.1. If Z is a descriptive Banach space, then (Z,weak) is a
(F ∩ G)σδ set in (Z∗∗,weak∗). If Z is an almost descriptive Banach space, then
(Z,weak) is a restricted Baire property set in (Z∗∗,weak∗).

P r o o f. Since Z is descriptive, the norm topology has a weakly σ-
relatively discrete network N by Theorem 6.3. For each n ∈ N, let

Nn = {U ∈ N : norm-diamU < 1/n},
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and note that Nn will be a cover of Z since N is a network for the norm topology.
Since each family Nn is σ-relatively discrete in (Z∗∗,weak∗), by Lemma 3.2 we can
find a σ-relatively discrete family Hn = {HU : U ∈ Nn} of F ∩ G in (Z∗∗,weak∗)
such that U ⊂ HU for each U ∈ Nn. Then

Hn = ∪{HU ∩ cl∗[U ] : U ∈ Nn},

where cl∗ denote the closure in the weak∗ topology, is a (F∩G)σ set in (Z∗∗,weak∗)
by Lemma 3.4. Now let us show that Z = ∩

n∈N

Hn.

Suppose z ∈ Hn for each n ∈ N, so that z ∈ cl∗[Un] for some Un ∈ Nn. Since
norm-diamUn < 1/n and the dual norm is lower semi-continuous relative to the
weak∗ topology, we have

norm-diam cl∗[Un] ≤ 1/n.

It follows that the norm distance from z to Z is zero, hence z ∈ Z as Z is norm
closed in Z∗∗. Since the reverse inclusion is obvious, that completes the proof.
The exact same proof, with Lemma 2.6 in place of Lemma 3.4, proves the second
statement of the theorem. �

9. Summary of proofs of the main theorems. In this section we sup-
ply the proofs of the theorems stated in the introduction. This is done primarily
by citing the appropriate results from §§2–8.

9.1. Proof of Theorems 1.2. Let X ⊂ C(K), for some compact
Hausdorff space K. Theorem 6.6 can be applied to the space X with µ taken
to be the norm topology on X and τ = τp (note that sets of the form {x ∈
X : ‖x − a‖ ≤ ε} are τp-closed in X for the supremum norm). Since the norm
topology on X is metrizable, properties (a), (b) and (c) of Theorem 6.6 are
equivalent. With ∆ taken to be the class of all τp relatively discrete families
of subsets of X, it is easy to see that properties (b) and (c) of Theorem 6.6 are
precisely properties (b) and (c) of Theorem 1.2. It remains to show that (a) ⇐⇒
(b) in Theorem 1.2. But (a) ⇒ (b) follows immediately from Theorem 6.3 (b)
and Theorem 6.6, (a) ⇒ (b). Since the reverse implication is trivial, the proof of
the equivalence is complete.

If Z is a Banach space and K denotes the closed unit ball of Z∗ taken
with the weak∗ topology, then by a standard result Z is isometrically isomorphic
to a subspace of C(K), and the topology τp coincides with the weak topology of
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Z. Hence, Theorem 1.2 applies when X is a subset of any Banach space and τp
is replaced by the weak topology on X. �

9.2. Proof of Theorem 1.3. This is precisely Theorem 6.5 with ∆
taken to be the class of all weak∗ relatively discrete families of subsets of X. The
reference to F ∩ G sets in (b) of Theorem 1.3 is covered by Theorem 6.6, (a) ⇒
(b). �

9.3. Proof of Theorem 1.4. (a) In each of the three cases, the as-
sumption that (X, τ) has a σ-relatively discrete network implies that (X,norm)
has a network which is also σ-relatively discrete for the τ topology by Theorems
6.3 and 6.5. Property (a) now follows from Theorem 6.6, (a) ⇒ (d).

(b) This is covered by Theorem 8.1.
(c) If X is a norm Souslin subset of the Banach space Z, then (X,norm)

is an analytic metric space and hence descriptive. Since property (a) of Theo-
rems 1.2 and 1.3 hold by assumption, property (c) implies that the identity map
(X,norm) → (X, τ) is index-σ-relatively discrete, hence (X, τ) will be descriptive
by Theorem 5.3. In particular, it follows that (X, τ) is Čech analytic by Theorem
4.1. The part concerning Souslin-additive families follows from Theorem 5.7 (a).

(d) As in part (c) above, the assumptions imply that (X, τ) is a descriptive
space, hence the conclusion follows from Corollary 5.6 (a).

(e) This follows from Theorem 5.14 since (X, τ) is a completely regular
descriptive space. �

9.4. Proof of Theorem 1.5. This is covered by Theorem 7.2. �

9.5. Proof of Theorem 1.6. If g : K → H is a continuous surjection,
then f 7→ f ◦g is a τp-continuous isomorphism from C(H) into C(K). It thus suf-
fices to prove the result for a Valdivia compact K. By [10, Lemma II.3] C(K) has
an equivalent locally uniformly convex norm ‖ · ‖ which is lower semi-continuous
for the τp topology. But this easily implies that the norm and τp topologies coin-
cide on {x : ‖x‖ = 1} (see, for example, the proof of [10, Lemma II.2]). Theorem
7.2 now implies that Cp(K) has a σ-relatively discrete network. �

9.6. Proof of Theorem 1.7. This is covered by Theorem 7.7. �

9.7. Proof of Theorem 1.8. This is covered by Theorem 5.2. �
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9.8. Proof of Theorem 1.10. This is covered by Theorem 6.4. �

9.9. Proof of Theorem 1.11. The proof of the equivalence of properties
(a), (b) and (c) is exactly the same as that given for Theorems 1.2 and 1.3 in
9.1 and 9.2 above, except reference is made to the discreteness class of scattered
families instead of relatively discrete families.

To prove that (d) ⇐⇒ (a) in Theorem 1.11, note that under the as-
sumption of (d), all of the properties (a)–(d) of Theorem 6.4 hold (since we are
dealing with the case when ∆ = Σ). In particular, property (b) of Theorem 6.4
implies that (X, τ) has a σ-scattered network. Conversely, if (a) holds, then the
converse part of Theorem 6.4 implies that (X, τ) will be σ-fragmented by ρ.

If X is a norm Souslin subset of the Banach space Z, then (X,norm) is
an analytic metric space and hence almost descriptive. Since property (c) implies
that the identity map (X,norm) → (X, τ) is index-σ-scattered, it follows that
(X, τ) will be almost descriptive by Theorem 5.3.

If (X, τ) is Čech analytic, then X is a τ Souslin subset, hence also a norm
Souslin subset, of Z and Lemma 1.9 implies that (X, τ) is σ-fragmented by the
norm metric. Thus all of the properties apply in this case.

That any one of the properties (a)–(d) implies that X has RNP when X
is a dual Banach space follows from Theorem 6.5. �

9.10. Proof of Theorem 1.12. The implications (a) ⇒ (b) ⇒ (c) ⇒
(d) follow from Theorem 5.1, Theorem 4.1 and Lemma 1.9, respectively. Since
X is a norm Souslin subset of Z, (d) ⇒ (e) follows from Theorem 1.11. Theorem
5.2 covers (e) ⇒ (b). Since X is a norm Souslin subset of Z, (d) implies that
(X, τ) is almost descriptive by Theorem 1.11, and hence descriptive by Theorem
5.2; that is, (d) ⇒ (a). Finally, when Z is a dual Banach space with RNP, it is
easy to see that Theorems 6.4 and 6.5 imply (d) ⇐⇒ (f). �

9.11. Proof of Theorem 1.13. This is covered by Theorem 7.2. �

9.12. Proof of Theorem 1.14. (a) This holds more generally for any
almost K-descriptive Hausdorff space by Theorem 4.1.

(b) This is covered by Theorem 5.7 (a).

(c) This follows from Lemmas 5.9 (b) and 5.8 (b).

(d) This follows from Lemmas 5.9 (b) and 5.8 (a).

(e) This follows from Theorem 5.3 and Corollary 5.6 (c). �
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9.13. Proof of Theorem 1.15. Let X be a Baire space, f : X →
Cp(K) a continuous map and suppose (Y, τp) has a σ-scattered network where
Y = f(X). Then, by Theorem 1.11 (a) ⇒ (b), (Y,norm) has a network N which
is, relative to the topology τp, σ-scattered and consists of F ∩ G sets. By the
continuity of f and Lemma 2.8, f−1(N) is a σ-scattered family of F ∩ G sets in
X. Moreover, since N is a network for (Y,norm), it is easy to check that f−1(N)
will be a function base for f : X → (Y,norm). Lemma 5.8 (b) now applies and
shows that the points D of discontinuity of f : X → (Y,norm) is a set of first
category in X. Since X is a Baire space, this implies that X \D is a dense Gδ in
X.

Standard arguments apply to show that the above result is also true when
f is replaced by any minimal upper semi-continuous compact valued map (see,
for example, [49, Theorem 1]).

10. Concluding remarks. Our work was motivated in part by the
preprint [39] where the concept of a σ-fragmented Banach space first appeared
(subsequently published in revised form in [40] and [41]). In [40] the ostensibly
stronger property of the weak topology of a Banach space having a countable cover
by sets of small norm-diameter was introduced – such Banach spaces are now said
to have the JNR property. Similar to our proof showing that σ-fragmented and
almost descriptive Banach spaces coincide (Theorem 6.4), it can be shown that
Banach spaces with the JNR property and descriptive Banach spaces coincide.
This was first established by Oncina (see [59]). A proof of this as well as other
useful equivalents is given in the seminal paper of Molto, Orihuela, Troyanski,
and Valdivia [48]. The results and proof techniques of the latter paper and recent
results of Raja [61] seem to underscore the feeling that the network approach
highlighted in the present paper is a fruitful one in the study of renorming theory
of Banach spaces.

As was shown in Theorem 1.8, an almost descriptive Banach space will be
descriptive if and only if the weak topology has the property that every collection
of open sets has a σ-relatively discrete refinement (that is, the space is hereditarily
weakly θ-refinable in the parlance of general topological spaces). It is not known
whether every almost descriptive (equivalently, σ-fragmented) Banach space has
this property. Our Theorem 6.4 shows that if the weak topology of a Banach space
X is σ-fragmented by any metric on X such that the metric topology contains
the weak topology, then the weak topology has a σ-scattered network. Hence the
Banach space is almost descriptive and thus σ-fragmentable. From this we can
now deduce the main result of a recent paper by Kenderov and Moors [43] who
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utilize game-theoretic techniques in proving the above. One of the main results of
the present paper is Theorem 1.15 which states that a compact Hausdorff space
K has the Namioka property whenever the function space C(K) has a σ-scattered
network relative to the topology of pointwise convergence. A similar result was
published later in [40] in the guise of σ-fragmented Banach spaces.

As to the question raised concerning Theorem 5.7 (see the remarks fol-
lowing the proof of that theorem), for a positive answer based on additional
set-theoretic assumptions the reader is referred to the paper of Holicky [38].
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