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ABSTRACT. In this work we analyse the nonlinear Cauchy problem

(Op — A)u(t,z) = <()\g +0 <m>> Vizu(t, ), Vt,wu(t,x)> ,

whit initial data u(0,2) = eug(x),ut(0,2) = eup(x). We assume a > 1,
x € R™ (n > 3) and ¢ the matrix related to the Minkowski space. It can be
considerated a pertubation of the case when the quadratic term has constant
coefficient A\g (see Klainerman [6])

We prove a global existence and uniqueness theorem for very regular initial
data. The proof avoids a direct application of Klainermann method (Null
condition, energy conformal method), because the result is obtained by a
combination beetwen the energy estimate (norm L?) and the decay estimate
(norm L%).
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Introduction. In this work we study the nonlinear Cauchy problem for
the wave equation

(1) (O — A)u(t,z) = F(t,z,Vigu(t,z)),
u(0,z) = eug(x),
ug(0,2) = euy(x).

Here x € R", the space dimension is n > 3 and the nonlinear term F(¢,z,w) is
assumed to be a quadratic function in w with variable coefficients depending on
t, x. This quadratic form we can represent as follows

F(t,z,w) = (Q(t,x)w,w),

where w € R"™! and (,-) denotes the scalar product in R"*1,

For the matrix Q(t,x) we assume

Qt.7) = \g+ O <m> ,

where a > 1, a is an integer, and g is the matrix related to the Minkowski space
RnJrl

-1 0 0
0 1 0

9= .
0 0 1

The constant coefficient case, that is Q(t,z) = Ag, was studied by S.
Klainerman:

Theorem [S.Klainerman, 1984]. If up(z),ui(x) € C§°(R™) and the non-
linear term F(t,x,V u(t,z)) satisfies the “Null Condition”, there is €y, suffi-
ciently small, so that, for all 0 < € < ey, the solution of the Cauchy problem (1)
with Q(t,x) = Ag exists in the class C°(Ry x R™).

Remark 1. The choice Q(¢,z) = Ag in the above theorem of Klainerman
is closely connected with the null condition definition (see [4, 6]). Recall that the
quadratic form

(Qu, w)
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(Q being a constant symmetric matrix) satisfies the null condition, if the condition
(gw,w) = 0 implies that (Qw,w) = 0. Therefore, for any null co-vector w (i.e.
on the surface (gw,w) = 0) we have (Q w,w) = 0.

Our goal is to study the case when Q(¢,x) has additional perturbation

term of type
1
O —— |-
((1+t+ \fffl)a>

Under the assumption a > 1, a an integer, we aim at proving the ex-
istence of global solution for the Cauchy problem (1) with small initial data
eup(z), eup (z) € C§O(R™).

It seems that the case of quadratic form with variable coefficients needs
a specific approach, since the method of Klainerman (see [6]) can not be applied
directly for this case. More precisely, we need a suitable apriori estimate for
quadratic forms with variable coefficients. Nevertheless, exploiting the fact that
the decay rate of the perturbed coefficients is a > 1 we are able to adapt the
method of Klainerman for this problem.

Our main result is the following.
Theorem 1. Let n > 3, ug(x),ui(z) € C°(R™) and s > 2([n/2] +2).

There is €9 = €o(||uol| s, [|u1ll gs—1), sufficiently small, so that, for all
0 < € < €, there ezists a unique solution to the Cauchy problem (1)

u(t,z) € [ C*M([0,+ocf; H*(R™)).
k=0,...,s
Moreover we have the decay estimate
C

lu(t, ) foomny < ————-
L(rm) (1+zt)Tl

The main idea of the proof is based on a combination between energy
inequality and decay estimates.

A direct application of Klainerman method is complicated due to the fact
we have variable coefficients.

Moreover, modifiyng the pointwise estimates from Klainerman it is pos-
sible to obtein a suitable estimate for

HF(t7 z, anu(t, Jj))HLgo
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On the basis of a direct application of Fourier transform we establish
conformal energy estimate for the solution and its higher derivatives.

A combination beetwen this energy estimate and decay estimate for wave
equation leads to global existence result and gives also informations about the
decay of solution of nonlinear wave equation.

The plan of the work is the following. In Section 1 we present the dif-
ferential operators of Poincare group. In Section 2 we give some L* — estimates
about the nonlinear term F (¢, z, V¢ zu(t,)). In Section 3 we prove a generalized
energy estimate and, finally, in Section 4 we show the global existence of the
solution to the problem (1).

Remark 2. It’s possible to improve the estimates presented in this
work. In fact, in Theorem 1 we need s > 2([n/2] + 2); this follows because we use
a subset (the Poincare group and the radial scalar field (Scaling)) of the conformal

group.

1. The generators of the Poincaré group. We consider the Minkowski

space R x R™ with g =t, © = (x1,...,2,) and
-1 0 0
0 1 0
9= y
0 O 1

If Z = (zg,z) € R x R™, the metrics in the Minkowski space is defined by
(2) @) = —g“ wamy = 12 — |af”,
where |z| is the euclidean metrics.

Set 0y = —0; and 0; = 0y, for i =1,...,n.

We have

(3) (O — &) = —g" 0.
with a,6 =0,1,...,n.
Let’s introduce the following differential operators:

— the classical partial derivates 0,, for a =0,1,...,n,
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— the spatial rotations €);; = x;0; — x;0;, for i,j =1,...,n,
— the spatial-time rotations Qy; = t9; + x;0;, for i = 17 ey T
— the radial vector field (Scaling) S = t0; + 101 + - - - + x,0p.

It’s clear that these operators satisfy the standard commutative proper-
ties:
a) [Qap, (O — A)] =0, for a,b=0,1,...,n,
b) [S, (0 — A)] = =2(0u — A),
c) [S, Q] =0, for a,b=0,1,.
d) [S,0a

Therefore,we can choose A as the family of operators whose elements are:

| = =04, fora=0,1,...,n

Q= {Qab}a,b:O,.--,n’

0= {aa}azo,...,n ’

and the scalar field S.
In this way, A results a subset of the conformal group.
Let’s now denote z = {2 }r=1,. p, C A.
We are able to introduce a generalized Sobolev norm, as follows:

(4) [[u(t, = > l2%u(t, )Ize(rey »

laf<s

where
(5) 2% = 2Kk

2. Preliminary results. Let us consider the Cauchy problem

(O — Au(t,z) = <<)\g to (ﬁ)) Veoult,2), Veoull, x)> ,
(6) u(0,z) = eup(x),
u(0,2) = eur(w).

In order to obtain a-priori estimate for the quadratic term

(7) MgViau(t,z), Veau(t,)) = A (<ol ) + Vau(t, 2)P)
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we use the generator

(8) Qo; = 10; + 0,
and we express the usual partial derivatives as follows
Qoi
) o= 0 T%
t t

Substituting in (7), we get

[(Ag Vieau, Viau)| =

Therefore, for ¢ > 0 and Qy = (Qo1,- -, Q0n) , we have the estimate

(10) 1091t 2), Vesult, o)) < SOV (5, Qo) ult,2)] 1V u(t,2)]

Remark 3. For t = 0 the estimate (10) is not valid: in fact, the identity
(9) works well only for ¢ # 0.
On the other hand, for ¢ + |z| — +o0,

1
7 [Veau(t, 2)|”.

(11) '<O (%) Vt7xu(t,x),vt,xu(t7x)>‘ = (2"

14+t+]x|)*

Remark 4. By the Huygens principle (the support of u(t,x) travels in
this way: |z| < R+t ), we find
1 1

(12) (14+t+|z)” = (1+6)*"

If we want to give similar estimates for t near 0,we have to modify (9). For this,
we proceed as follows.
We divide (8) for (1 + ¢):

Qo to; 70

1+t 1+t 1+t

(13)
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and we express the partial derivatives as follows

0; QOZ’ l"at
14 0; = — S
(14) ! 1+t+1+t 1+t

By a straightforward calculation, we get

| (Ag Vigu(t, @), Vigu(t,z)) | <

210U T, 0 Qo1 u Qonu
< O, — ey — 0 Oru, u, . .., 0,
'<)‘g|:<tu7 1+t 3 ) 1+t>+<7 1+t> ) 1+t 7( tU, 01U, nU) +
81u 8
14 . Oru, 0 .50, .
i | (0 2t B o 0 )
Now, the first term in the right side of the above expression is equal to
1010 T,0ru Qo1u Qonu
A= 2_ e — 7wl =
“'(&m Tt g Onu Tt Ot T O

8tu QOiu
— A |- L+ 00+ Y @i | + 3 70

+t
1<i<n 1<i<n

at Q()Z Otu
<=1 | o+ > o +Z T +|)\|‘ Ol

1<i<n 1<z<n

From this estimates it follows that this term is not greater than

C(A])
1+ T |Orllorul.

For the second term in the right side of (14) we have

o O c(A)
(15) ‘<)\g (0, x0T —|—t> , (Opu, O1u, ,8nu)>‘ S — |V u)?

Therefore, for any ¢ > 0, we give the estimate

c(AD
1+t

(16)| <)‘g vt,$u(tv .1‘), ) vt,$u(t> J})> ‘ < ‘(S, QOa Qa ata a$)u(t7 x)Hvt,;Bu(ta J})‘



328 Fabio Catalano

So, by (11) and (16), we obtein a suitable estimate for

F(t,z,Vizu(t,z)) = (Q(t,x) Vigu(t,z), Vi zu(t, x)) ,

where )
t,x) =Ag+ 0| ——=5 .
a0 =20 +0 ()
This is our main a priori estimate for the quadratic non-linearity.
3. Generalized energy estimate. The classical energy estimate for
(17) (O — A)u(t,x) = F(t,x),
u(0,z) = 0,
Ut (07 x) =
gives

t
\WWMump<OAdﬂn&mm.

To control the L?— norm of the solution u(t, ) to problem (17), one can
use the conformal energy method developed by Klainerman (see [6]). But, in this
section, our approach is more direct and simplified. In fact we shall use Fourier
transform

u(t, &) = /dxeixéu(t,x)

in combination with the Hardy inequality.
In particular, we prove

Lemma 1. Ifsupp(F(s,y)) C {|ly| < s+ R}, we can establish for problem
(17) the estimate

Ju(t, ll= < C /0 as(R+ 5)|F (s, )] 2

To prove Lemma 1, we cite

Lemma 2. Let x(t,£) be an integrable function with respect to the time

[ asxts

and space. Then

t
< [ aslxts g
0

2
Le



Null condition for semilinear wave equation

Proof of Lemma 2. We have

%(/Rn&(/otdsx(s,&)f) =
zz/Rn d¢ <X(t,§) /Otdsx(s,i)) ;

By Scwhartz inequality, the last term is less than

/Ot ds x(s; )

By integrating with respect to ¢, we prove Lemma 2. O

i

It )z
i

329

Proof of Lemma 1. By using the Fourier transform, problem (17)

becomes
8ttﬂ(t7 5) + |£‘2a(t7 6) = F
,ll(()? 5) = 0?
) 0.

Ut 075 =

(t,€),

The Duhamels principle gives

e [ sl = s
u(t,{)—/o d €] F(s,¢).

In a standard way, we find

0,01 < ' as[S2L02E)

and

The Plancharel identity

lut, )z = @m) ™" [lat, )l 2

: 'R, 9)
G F(S’f)'g/ods G

(fasmeor)’ =  foas( [ o)
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in combination with Lemma 2, give

F(s,¢)
€]

t
W@N@SC/dS
0

2
Lg

Now, by the Huygens principle, it’s clear that, for every fixed s, F'(s,x) €
C§°(R™). For this, its Fourier transform with respect to the space decay very
rapidly at infinity.

We apply the Hardy inequality (we are working in the case n = 3) and

t
s
0

Since VgF(s, &) =—i (:c}?)(g), we finally prove that

we get: R
F(s,8)
€l

t
<C [ asIVeP (s,
L2 0 ¢

t
HMuW@<CAdﬂM%wM@<

t
< c/ ds(R+5)| F(s, ) 2 -
0

{lzl<R+s}

Our next step is to obtein higher order derivative estimates involving the
operators in the family 4. This complete the proof of the global existence and
uniqueness to the solution of problem (1).

Let’s denote, for semplicity, z = (£2,Qo, S, O, Oz.).

Proposition 1. We have the following energy estimate:

(18) Do = ult e <€ Y 12%u(0 ) (e +

0<|a|<s 0<||<s

t
0 3 [ a9l

0<|al<s

Let’s recall, for the moment, the commutative properties
1) [(On — A), Q5] =0, for i, j=1,...,n,

2) [0 — A), Q] =0, fori=1,...,n,

3) [(On — A), 5] =2(0n — A).
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Proof of Proposition 1. In general, for the problem

(19) (att - A)u(t’x) = F(t,l‘),
u(0, uo(z),

w(0,2) = wuy(x),

~—

we know the standard estimate for the solution u(t, z):

t
(20) Jutt, Y 2 < Cllu(0, ) 2 + C /0 as |yl F (s, ) 12 -

Remark 5. As we said before, S. Klainerman proved similar energy esti-
mates by using the energy conformal method. Here, instead, we have initial data
with compact support and F'(t,z, V¢ zu(t,x)) is a quadratic term in Vy zu(t, ).
We can therefore only work with Fourier transform.

We proceed in the proof of Proposition 1. We analyse two different cases:
1) If T = 02 or 9f or Q2 or Q, then [(9y — A),T'] =0 and
(21) (O — A)I%u(t,z) =TF(t, z),

with initial data T%u(0, ) and T'%u (0, ) ;

2) If, instead, we have the operator S, then
(22) (O — A) Sult, z) = (2 + S)F(t, ),

with initial data Su(0,z) and Su.(0, ).
So, in general, for z = (2, Qo, S, 04, ),

(23) (O — A) 2u(t,x) = Y C§"F(t,x),

181<le

with initial data z%u(0,x) e z2%u(0,x).
By denoting
' (t,x) = 2%u(t, z)

and
FOtz)= > O3 F(t,2),
18I<]e
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we find (see (20))

t
(24) 1) (¢, ) 2 < Cllu(0, )] 2 + C/O ds [[ly|F (s, ) 2

The Huygens principle states that

t
(25) [[2%u(t, )2 < Cllz%u(0, )| 12 +C/O ds(L+s)| > C§z"F(s,)
181<lal L2

or, equivalently,

2%u(t, )| 2 < Cl2*u(0, )] 1> + c/ot ds(1+s) Y CgHZﬁF(s, .)‘ "

1B1<]e|
Finally
t
Do lut )l <€D [12%(0,) | +C Y /d8(1+8)\|zaF(8,')HL2-
0<|a|<s 0<|a|<s 0<|al<s 0

We recall that

1
F(t, xT, Vtﬂ;’u) = < <Ag +o (m)) Vtwu(t, .’E) s Vt@’u(t, .’E)>
and that
C(JA)
| (Mg Vigu(t,x), Vigu(t,x)) | < T+ |(S, Q0,Q, 0, Oy )u(t, x) ||V gu(t, ).

Moreover, if we consider the higher derivatives, we find

(26) 2% (AgVigu, Vizu) = A Z C5.5 <zﬁg V2, z5Vt7$u> =
B+y+i=a

=A Z Cff‘#; <g Zvvt7xu,z‘5vt,xu> .
Y=o
Before getting on in the proof of Proposition 1, we need to prove the
identity
(27) 2V gu = Z Cﬁvt,xzﬂu
Bl
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Proof of identity (27). For simplicity, we show that

[vt,%(QvQOuSaatuax)]: Z clﬁl

1=0,...,n
In fact it’s sufficient to show that
105, Qo] = 05, T0m] — (03, £mOk| = 0ikOm — dimO; -

with ¢; the Kronecker deltas. O

By using (27) we write (26) in the equivalent expression

(28) A Z Cys <g Vt7xz'yu,vmz5u> i
v+6<a
So
C(IA
(20) A [(9V102"0, Viaz'u)| < ﬂ%‘) (S, 20,2, 01, 8,)27ult, )| Vewtult, z)].
and, in L? norm,
(30) A (9 Vearu, ViazPu) ||, <

C
< S5, 00,0001, 00) 770t V21 Va2t ) -

On the other hand,

H< () Vesn:) Fiante )

1
< (].-i-t—i—‘ |)a||vt$u( )HLOOHvtCEU( )HLQ

and, for generical derivatives z* we proceed as follows.

IN

L2

First, we consider

(31) Lo <o (ﬁ) Vioult, o) ,vmu(t,x)> _

-y <%) (2 V4 ult, 2)) (2% Vi qult, z)) ;

ajtaztaz=« 1+t+ ‘$|
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then, we exchange, by (27), 2* with V;,. Finally we prove:

C
(4t |z

1
(32) ‘Zﬁ (EEEarE

for every z°.
Proof of identity (32). We consider, for semplicity, z = Qg =
t0; + x;0¢; in this case we get
1
(14+t+|z)”

lalt |al|z|
Tt )T (@t )

‘(t@i + 2;0;)

Since supp(u(t,z)) C {|z|] < 1+ ¢}, for t + || — +o0, the expression
above decay as

C
(14t)

O

Therefore, for n = 3,

3 (o () Veslts) Veste )

< Y Y Chamgggel Ve el Vs ult,

0<\a|<s Y+o<a

L2

where we can also assume that |y| < s/2.
This complete the proof of Proposition 1. O

4. The global existence. In this last section we prove the global exis-
tence of the solution to the problem (1). For this purpose we use the continuation
principle of differential equations.

Let’s define

(34) &)= > 1=t )l
0<|a|<s

and

(35) gt) = Y (L+B)lz%ut, )] peo-

0<]a|<s/2
We first prove: .
o < ces [[arlle)
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(37) g(t) < Ce+ sup M
0<r<t (1 + T)—5+§
with § a sufficiently small positive constant(we assume that 0 < 6 < 1/2 ).
(36) and (37) imlpy that there exists two constants C' > 0, ¢ > 0 so that

{f(t)<06(1+t)0>
g(t) < Ce.

Proof of (36). Let us recall formula (18). Its first member is f(t),
while our hypothesis on the initial data assure that

(38) D 1z%u(0, )l agpey < Ce.

0<|al<s

On the other and,

S e <<)\g I (ﬁ)) Viault, ), Viault, ~)>

0<]||<s
< D 12 (AgVeault, ), Vegult, ) |2+

0<|a|<s
1
@ 1 4 1 Nna x t"? x t"
L <O<<1+t+lx\)“> Veatlts) Vit )>
0<al<s

If we recall (30) and (33) and if we notice that, for t — 400, (a > 1)

<

L2

L2

1 1
<

(39) 1+~ (1+1t)

we get

t

t N C
(10) |Z | st 1P < a1+ 3 00000,

and so (36). O
To prove (37) we cite from [2] the following

Lemma 3. Letu(t,x) be a solution to the problem (17), with supp(F(t,z)) C
{lz] <1+t}.
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Let’s denote

(41) ult, M= Y 2%, ) e s

0<lal<k
where z € (Q,Q, 0, 0z) (we are excluding the Scaling operator).
By [2] we have, for any t >0,

(42) lu(t, )]y < sup 292 (s, )llyps |

(1+1) se1;n[0,1]

7=0,...,400
where I; = [2971 271 for j > 0, and Iy = [0, 2] are the supports of the functions
related to the Littlewood-Paley decomposition.

Proof of (37). By (35)

(43) 9(t) = (L +D)|ult, )/ -

By calling v;(s) the Littlewood-Paley functions, we give an estimate
equivalent to (42)

C .
44) u(t, )]s/ < —— sup 2524 (T)||F (T, - s
(@) ult )l < g jogwfemm 1Ol PACDI AP

In (44) initial data are 0. But, if it’s not the case,the Von Wahl estimates
give:
(15) g <CetC S sup B mes

§=0,..., 400 TGIjﬂ[O,ﬂ

Since, in the Littlewood-Paley decomposition, 2%7/2 is equivalent to 73/2,
we find
(46) g(t) < Ce+

—+00

1
3/2,, . a
sup 7% (7) z <<)\g+o<—a>>vﬁu,v,u>
jgoreljﬂ[o,t} ’ |a<(zs/:2)+3 (1+7+z]) b TR
If we choose s > (s/2) 4+ 3 or, equivalently, s > 6 we get
a0 S | (Moo () ) Veew Vi O ()
(14+7+]z))* el L27(1—|—7)2 ’

la|<(s/2)+3
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and so

C
48 g t S CE + sup 7—3/211). T
(48) () Z T€1;N[0,1] i )(1 +7)?

(1) g(7).

7=0,...,400

But Vj =0,...,+00, 3C > 0 so that 0 < ¢;(7) < Cif we multiply and
divide for (14 7)°, with 0 < § < 1/2 we find

1 C
g(t) < Ce+ sup
jo;—f—oo rennof (1+ 7)5 (1+ T)%—a

f(r)g(r).

Moreover (1 + 7)° ~ (2(3'_1))(S and so
C 1
g(t) < Ce+ sup ————f(7)g(7) —
rel04] (1 + r)%‘é jg;oo (2(J—1>)‘S

The convergence of the series prove (37).

Proposition 2. We are now able to show our main result: there exists
two constants C' >0, o > 0 so that

{f(t) <Ce(l+1)°,
g(t) <Ce.

Proof. Proof of Proposition 2. Let
(49) B(t) = £(8) (1+8) 2",
by (36) it’s clear that

l_

h(t) < Ce(1+1)7210 4 (14 ¢)" 210 /t dr(+7) 201+ 1) 20 f(r) g(r) =
0

= Ce(1+6)72H 4 (14 4)72 70 /Ot dr(1+7)72°h(r) g(r),

while

g(t) < Ce+ sup h(r)g(r).
0<r<t

The corresponding monotone functions

(50) H(t)= sup h(r)
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and
(51) G(t) = sup g(r).
0<r<t
verify:
t
H(t) < Ce(1+) 27+ (1 +t)—%+5H(t)G(t)/ ar(147) 50
0
and

G(t) < Ce+ H(t)G(t).

By solving the integral in the time, we get

(52)  H(t) < Ce(1+1) 5+ 1 (1) G(1) - g J;t);MH(t)G(t)
2 2

It follows:

(53) H{t) < Ce+ 15 H{t) G(b),
Gl < Cet H G,

We rewrite (53) in the form

(54) H) < Cer o ((HOP +(G0)),
2
G(t) < Ce+ (H®)*+ (Gt)%

In this way, if
(55) Y(t) = (H(t), G(t)) € R?,
has norm
(56) 1Y (#)2. = (H(t)* + (G(t)?,

system (54) results equivalent to
(57) 1Y (8)llge < Ce+ CIY (D]lz2 -

Initial data sufficiently small gives the stability of the system (57): in
fact, H(0) < Ce and G(0) < Ce imply

(58) Y (0)l[ge < Ce
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and, by (57), Vt > 0,
(59) 1Y (O)llge < Ce.

Therefore, we obtein

(60) H(t) < Ce,
G(t) < Ce,

and so

(61) Wt) < Ce,
g(t) < Ce

(61) and the continuation principle of differential equations (see [3, 9]) say that
thereEIC>0,a:%—5>Osothat,Vt20,

{f(t) < Ce(1+1)777, -
g(t) < Ce.
Remark 6. In particular we have obtained:
C
1) u(t,z) and its derivatives are estimated in the L*° norm by ﬁ;

2) u(t, r) and its derivatives are estimated in the L? norm by Ce(1 + t)%fa.

Remark 7. We have proved our result in the case n = 3. The same
works well for n > 3.
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