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A CAUCHY INTEGRAL

RELATED TO A ROBOT-SAFETY DEVICE SYSTEM

E. J. Vanderperre, S. S. Makhanov

Communicated by S. T. Rachev

Abstract. We introduce a robot-safety device system attended by two
different repairmen. The twin system is characterized by the natural feature
of cold standby and by an admissible “risky” state. In order to analyse the
random behaviour of the entire system (robot, safety device, repair facility)
we employ a stochastic process endowed with probability measures satisfy-
ing general Hokstad-type differential equations. The solution procedure is
based on the theory of sectionally holomorphic functions, characterized by
a Cauchy-type integral defined as a Cauchy principal value in double sense.
An application of the Sokhotski-Plemelj formulae determines the long-run
availability of the robot-safety device. Finally, we consider the particular
but important case of deterministic repair.

1. Introduction. Innovations in the field of microelectronics and mi-

cromechanics have enhanced the involvement of “smart” robots in all kind of

advanced technical systems [2].

Unfortunately, no robot is completely reliable. Therefore, up-to-date

robots are often connected with a safety device [3]-[5]. Such a device prevents pos-

sible damage, caused by a robot failure, in the robot’s neighbouring environment.
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However, the random behaviour of the entire system (robot, safety device, repair

facility) could jeopardize some prescribed safety requirements. For instance, if

we allow the robot to operate during the repair time of the failed safety device.

Such a “risky” state is called admissible, if the associate event: “The robot is

operative but the safety device is under repair”, constitutes a rare event. There-

fore, an appropriate statistical analysis of robot-safety device systems is quite

indispensable to support the system designer in problems of risk acceptance and

safety assessments.

In order to avoid undesirable delays in repairing failed units, we introduce

a robot-safety device attended by two different repairmen (henceforth called a T-

system). The T-system satisfies the usual conditions, i.e. independent identically

distributed random variables and perfect repair [6].

Each repairman has his own particular task. Repairman S is skilled in

repairing the safety unit, whereas repairman R is an expert in repairing robots.

Both repairmen are jointly busy if, and only if, both units (robot + safety device)

are down. In the other case, at least one repairman is idle. In any case, the safety

device always waits (in cold standby [1]) until the repair of the robot has been

completed.

In order to analyse the random behaviour of the T-system, we intro-

duce a stochastic process endowed with probability measures satisfying general

Hokstad-type differential equations. The solution procedure is based on the the-

ory of sectionally holomorphic functions [7], characterized by a Cauchy-type in-

tegral defined as a Cauchy principal value in double sense. An application of

the Sokhotski-Plemelj formulae determines the long-run availability of the robot-

safety device.

Finally, we consider the particular but important case of deterministic

repair.

2. Formulation. Consider a T-system satisfying the usual conditions.

The robot has a constant failure rate λ > 0 and a general repair time

distribution R(•), R(0) = 0 with mean ρ and variance σ2.

The operative safety device has a constant failure rate λs > 0 but a zero

failure rate in standby (the so-called cold standby state) and a general repair time

distribution Rs(•), Rs(0) = 0 with mean ρs and variance σ2
s . The corresponding

repair times are denoted by r and rs.
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Characteristic functions (and their duals) are formulated in terms of a

complex transform variable. For instance,

Eeiωr =

∫ ∞

0

eiωxdR(x), Im ω ≥ 0.

Note that

Ee−iωr =

∫ ∞

0

e−iωxdR(x) =

∫ 0

−∞
eiωxd (1 −R((−x)−)) , Im ω ≤ 0.

The corresponding Fourier-Stieltjes transforms are called dual transforms.

Without loss of generality (see our forthcoming remarks) we may as-

sume that both repair time distributions have bounded densities (in the Radon-

Nikodym sense) defined on [0,∞).

In order to analyse the random behaviour of the T-system, we introduce a

stochastic process {Nt, t ≥ 0} with arbitrary discrete state space {A,B,C,D} ⊂

[0,∞), characterized by the following events:
{Nt = A}: “Both units are operating in parallel at time t.”
{Nt = B}: “The robot is operative but the safety device is under repair
at time t.” State B is the so-called risky state.
{Nt = C}: “The safety device is in cold standby and the robot is under
repair at time t.”
{Nt = D}: “Both units are simultaneously down at time t.”

The following Figure 1 shows a functional block-diagram of the T-system

operating in states A, B, C and D.

Fig. 1. Functional block-diagram of the T-system operating in states A, B, C, D.

A Markov characterization of the process {Nt} is piecewise and condi-

tionally defined by:
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{Nt}, if Nt = A (i.e. if the event {Nt = A} occurs).
{Nt,Xt}, if Nt = B, where Xt denotes the remaining repair time of the
safety device in progressive repair at time t.
{Nt, Yt}, if Nt = C, where Yt denotes the remaining repair time of the
robot in progressive repair at time t.
{(Nt,Xt, Yt)}, if Nt = D.

The state space of the underlying Markov process is given by

{A} ∪ {(B,x);x ≥ 0} ∪ {(C, y); y ≥ 0} ∪ {(D,x, y);x ≥ 0, y ≥ 0} .

Next, we consider the T-system in stationary state (the so-called ergodic

state) with invariant measure {pK ;K = A,B,C,D},
∑

K pK = 1, where

pK := P {N = K} := lim
t→∞

P {Nt = K|N0 = A} .

Finally, we introduce the measures

ϕB(x)dx := P {N = B,X ∈ dx} := lim
t→∞

P {Nt = B,Xt ∈ dx|N0 = A} ,

ϕC(y)dy := P {N = C, Y ∈ dy} := lim
t→∞

P {Nt = C, Yt ∈ dy|N0 = A} ,

ϕD(x, y)dxdy := P {N = D,X ∈ dx, Y ∈ dy}

:= lim
t→∞

P {Nt = D,Xt ∈ dx, Yt ∈ dy|N0 = A} .

Notations

The robot and the safety device are only jointly available (operative) in state A.

Therefore, the long-run availability of the robot-safety device, denoted by A, is

given by pA.

The real line and the complex plane are denoted by R and C with obvious super-

script notations C+, C−, C+ ∪R, C− ∪ R. For instance, C+ : = {ω∈C : Imω>0}.

The indicator of an event E is denoted by

11(E) :=

{

1, if E occurs,
0, otherwise.

Note that, for instance,

E
{

eiωXeiηY 11(N = D)
}

=

∫ ∞

0

∫ ∞

0

eiωxeiηyϕD(x, y)dxdy, Im ω ≥ 0, Im η ≥ 0.
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So that,

pD =

∫ ∞

0

∫ ∞

0

pD(x, y)dxdy.

Finally, we propose the following risk-criterion: State B is admissible if

pB satisfies the relation pB < δ << 1 for some δ > 0, called the security level.

3. Differential equations. In order to determine the ϕ-functions, we

first construct a system of steady-state Hokstad-type differential equations based

on a time independent version of Hokstad’s supplementary variable technique

(see e.g. [8]).

Proposition 3.1. The ϕ-functions satisfy the following set of steady-

state Hokstad-type differential equations.

For x > 0, y > 0,

(λs + λ)pA = ϕB(0) + ϕC(0),
(

λ−
d

dx

)

ϕB(x) = ϕD(x, 0) + λspA
d

dx
Rs(x),

−
d

dy
ϕC(y) = ϕD(0, y) + λpA

d

dy
R(y),

(

−
∂

∂x
−

∂

∂y

)

ϕD(x, y) = λϕB(x)
d

dy
R(y).

P r o o f. The above differential equations are similar to the equations

derived in [8]. We refer to Ref [8, page 526] for further technical details.

4. Solution procedure. Note that our equations are well adapted to

an integral transformation. The integrability of the ϕ-functions and their corre-

sponding derivatives implies that each ϕ-function vanishes at infinity irrespective

of the asymptotic behaviour of the underlying repair time densities! Applying a

routine Fourier transform technique to the equations and invoking the boundary

condition (λs + λ)pA = ϕB(0) + ϕC(0), reveals that

(1)
i(ω + η)E

{

eiωXeiηY 11(N = D)
}

+
(

λ(1 − Eeiηr) + iω
)

E
{

eiωX11(N = B)
}

+
iηE

{

eiηY 11(N = C)
}

+ λpA(1 −Eeiηr) + λspA(1 − Eeiωrs) = 0.
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Observe that Eq (1) holds for any pair (ω, η) ∈ C×C: Im ω ≥ 0, Im η ≥ 0.

Therefore, substituting ω = t, η = −t(t ∈ R) into Eq (1), yields the functional

equation

(2) ψ+(t) − ψ−(t) = ϕ(t),

where

ψ+(t) := p−1
A E

{

eitX11(N = B)
}

,

ψ−(t) :=
1

1 + λρϕ−(t)
p−1

A E
{

e−itY 11(N = C)
}

−
λρϕ−(t)

1 + λρϕ−(t)
,

ϕ−(t) :=
1 − Ee−itr

itρ
, ϕ−(0) := 1, ϕ+(t) :=

Eeitrs − 1

itρs
,

ϕ+(0) := 1, ϕ(t) :=
λsρsϕ

+(t)

1 + λρϕ−(t)
.

Eq (2) constitutes a Plemelj boundary value problem on the real line

which can be solved by the theory of sectionally holomorphic functions. First,

we need the following

Definition 4.1. Let f(t), t ∈ R be a bounded and continuous function.

f is called Γ-integrable, if

lim
T → ∞
ε ↓ 0

∫

LT,ε

f(t)
dt

t− u
, u ∈ R,

exists, where LT,ε := (−T, u− ε]∪ [u+ ε, T ). The corresponding integral, denoted

by

1

2πi

∫

Γ

f(t)
dt

t− u
,

is called a Cauchy principal value in double sense.

Proposition 4.1. The Cauchy-type integral

1

2πi

∫

Γ

ϕ(τ)
dτ

τ − ω
,

exists for all ω ∈ C (real or complex).
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P r o o f. ϕ is (uniformly) Lipschitz continuous on R. (Indeed, |ϕ′(t)| is

bounded on R. Therefore, our assertion follows from the mean value theorem).

Finally, ϕ is Hölder continuous at infinity, i.e. |ϕ(t)| = O(|t|−1), if |t| → ∞.

Consequently, the Cauchy-type integral exists for all ω ∈ C (real or com-

plex) and defines a sectionally holomorphic function.

Proposition 4.2. For the T-system, satisfying the usual conditions,

the long-run availability of the robot-safety device is given by

A =
1

(1 + λρ)(1 + ψ+(0))
,

where

ψ+(0) =
1

2
ϕ(0) +

1

2πi

∫

Γ

ϕ(τ)
dτ

τ
.

P r o o f. An application of Rouché’s theorem reveals that the function

1 + λρϕ−(ω), Im ω ≤ 0, has no zeros in C− ∪ R. Consequently, the function

ψ−(ω), Im ω ≤ 0, is analytic in C−, bounded and continuous on C− ∪ R, whereas

ψ+(ω), Im ω ≥ 0, is analytic in C+, bounded and continuous on C+ ∪ R and

lim
|ω|→∞

π≤arg ω≤2π

ψ−(ω) = lim
|ω|→∞

0≤arg ω≤π

ψ+(ω) = 0.

A straightforward application of the Cauchy formulae for the regions C+

and C−, entails that

E
{

eiωX11(N = B)
}

= pA
1

2πi

∫

Γ

ϕ(τ)
dτ

τ − ω
, ω ∈ C+,

E
{

e−iωY 11(N = C)
}

=

= pA

{

(

1 + λρϕ−(ω)
) 1

2πi

∫

Γ

ϕ(τ)
dτ

τ − ω
+ λρϕ−(ω)

}

, ω ∈ C−.

In particular, pB = pAψ
+(0), where

ψ+(0) = lim
ω→0

ω∈C
+

1

2πi

∫

Γ

ϕ(τ)
dτ

τ − ω
.
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Note that by the Sokhotski-Plemelj formulae,

ψ+(0) =
1

2
ϕ(0) +

1

2πi

∫

Γ

ϕ(τ)
dτ

τ
.

Moreover,

pD = lim
η→0

η∈C
+

lim
ω→0

ω∈C
+

E
{

eiωXeiηY 11(N = D)
}

.

Applying the limit procedure to Eq (1) and invoking the condition pA +

pB + pC + pD = 1, yields the additional relations

pA + pB =
1

1 + λρ
; pC + pD =

λρ

1 + λρ
; pD + pB = λsρspA.

Substituting pB = pAψ
+(0) into the first relation yields

pA = [(1 + λρ)(1 + ψ+(0))]
−1

. Observe that we have completely determined the

invariant measure simply and solely depending upon ψ+(0).

Remarks. Note that the kernel ϕ(t), t ∈ R, preserves all the relevant

properties to ensure the existence of the Cauchy integral for arbitrary repair

time distributions with finite mean and variance. First of all, the order relation

|ϕ(t)| = O(|t|−1), |t| → ∞, also holds for arbitrary characteristic functions.

Moreover, the H-continuity of ϕ on R does not depend on the canonical structure

(decomposition) of R or Rs. For instance, the Hölder inequality

∣

∣Eeit2r − Eeit1r
∣

∣ ≤ ρ |t2 − t1| , (t1, t2 ∈ R),

always holds for any r with mean ρ.

The requirement of finite variances is extremely mild since the current probability

distributions employed to model repair times [1] even have moments of all orders!

Consequently, our initial assumptions concerning the existence of repair

time densities are totally superfluous to ensure the existence of an invariant mea-

sure.

5. Example. As an example, we consider the case of deterministic repair,

i.e., for t0 > 0 and θ < 1, let

R(x) =

{

1, if x ≥ t0,

0, if x < t0,
Rs(x) =

{

1, if x ≥ θt0,

0, if x < θt0.
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Theorem 5.1. For a T-system with deterministic repair, the long-run

availability of the robot-safety device is given by

A =
1

(1 + λ−1λs(1 − e−λt0)) (1 + λθt0)
.

P r o o f. Clearly, Eeitr = eitt0 , ρ = t0, σ
2 = 0 and Ee−itrs = e−itθt0 ,

ρs = θt0, σ
2
s = 0.

From the identity

1

2πi

∫

Γ

ϕ(t)
dt

t− ω
=















iλs(e
−λt0 − eiωt0)

ω − iλ
, if Im ω > 0, ω 6= iλ,

λst0e
−λt0 , if ω = iλ,

we obtain ψ+(0) = λ−1λs(1 − e−λt0).
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