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Abstract. Let (Xi) be a sequence of i.i.d. random variables, and let
N be a geometric random variable independent of (Xi). Geometric stable
distributions are weak limits of (normalized) geometric compounds, SN =
X1 + · · · + XN , when the mean of N converges to infinity. By an appro-
priate representation of the individual summands in SN we obtain series
representation of the limiting geometric stable distribution. In addition, we

study the asymptotic behavior of the partial sum process SN (t) =
[Nt]
∑

i=1

Xi,

and derive series representations of the limiting geometric stable process
and the corresponding stochastic integral. We also obtain strong invariance
principles for stable and geometric stable laws.

1. Introduction. An increasing interest has been seen recently in geo-

metric stable (GS) distributions: the class of limiting laws of appropriately nor-
malized random sums of i.i.d. random variables,

SN = X1 + · · · +XN ,(1)
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where the number of terms is geometrically distributed with mean 1/p, and p→ 0
(see, e.g., [7], [8], [10], [11], [12], [13], [14] and [21]). These heavy-tailed distribu-
tions provide useful models in mathematical finance (see, e.g., [1], [20], [13]), as
well as in a variety of other fields (see, e.g., [6] for examples, applications, and
extensive references for geometric compounds (1)).

Gnedenko and Fakhim [5] in their classical transfer theorem gave the
conditions for the weak convergence and the form of the limiting distribution
of (1). Our approach, which is in the spirit of LePage et al. [17], is fundamentally
different from that of Gnedenko and Fakhim [5] and other authors. It utilizes the
following representation of a vector of symmetric i.i.d. random variables:

(X1, . . . ,Xn)
d
= (X1,n, . . . ,Xn,n)
def
= π((δ1G

−1(Γ1/Γn+1), . . . , δnG
−1(Γn/Γn+1)).

(2)

In the above equation, (Γi) is a sequence of arrival times of a standard Poisson
process, (δi) is a sequence of independent symmetric signs, and π is a random
uniform permutation of coordinates in Rn, all three mutually independent, while

G−1(y) = inf{x ≥ 0 : G(x) ≤ y},(3)

where G(x) = P (|X1| ≥ x).
After preliminary definitions of Section 2, in Section 3 of the paper we

generalize (2) to the case of random number of variables and then use it to prove
almost sure convergence of the obtained version of the random sum SN . Further,
in Theorem 3.1, we establish LePage type series representation of the limiting
distribution of (1). We also derive an almost sure version of the well-known
stability property of symmetric GS random variables (Proposition 3.1). Then,
we extend the representations to processes and consider

Sp(t) =

[Npt]
∑

i=1

Xi, 0 ≤ t ≤ 1,(4)

where Np is geometric with mean 1/p (independent of an i.i.d. sequence (Xi)).
Rachev and Samorodnitsky [21] define a GS Lévy motion as the week limit of
(4) in D[0, 1] (as p → 0). We study almost sure asymptotic behavior of a weak
representation of (4) using the method of LePage et al. [17]. Our approach leads
to a series representation of the limiting process and allows for a natural definition
of the stochastic integral with respect to a GS Lévy motion.

We conclude with Section 4, where we use the representation (2) to obtain
strong invariance principles for stable and GS laws. In a series of papers concluded
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by Berkes and Dehling [2], a sum of symmetric, i.i.d. random variables from

the normal α-stable domain,
n
∑

i=1
Xi, was approximated almost surely by a sum

of i.i.d. symmetric α-stable r.v.’s,
n
∑

i=1
Yi. We follow a different approach, and

approximate
n
∑

i=1
Xi,n strongly by

n
∑

i=1
Yi,n, where (Yi,n)ni=1

d
= (Yi)

n
i=1. While we

obtain a weaker form of approximation, the rate of convergence is always at
least o(n1/α), the rate that may not always hold for other strong invariance
principles (see examples [2]). Our proofs, which are essentially different and
simpler, allow for an extension to the general stable domain (not necessary normal
or symmetric). We also derive analogous strong invariance principle for random

sums
Np
∑

i=1
Xi,Np

, by approximating them by
Np
∑

i=1
Yi,Np

, where (Yi,Np
)
Np

i=1 is a vector

of i.i.d. symmetric GS r.v.’s.

2. Geometric stable laws. Let (Xi) be a sequence of i.i.d. random vec-
tors in Rd, and let Np be a r.v. independent of (Xi) and geometrically distributed
with parameter p ∈ (0, 1),

P (Np = k) = p(1 − p)k−1, k = 1, 2, . . . .(5)

We say that Y (and its distribution) is geometric stable (GS) if and only if

a(p)

Np
∑

i=1

(Xi − b(p))
d→ Y, p→ 0,(6)

for some a(p) > 0 and b(p) ∈ Rd. As shown in Mittnik and Rachev [19], Y is
GS if and only if its characteristic function (ch.f.) has the form

Ψ(t) = (1 − log Φ(t))−1, t ∈ Rd,(7)

where Φ is a ch.f. of some multivariate α-stable distribution. A random vector
Y is strictly GS if it corresponds to a strictly α-stable r.v. via (7).

In the univariate case, GS laws form a four parameter family given by
ch.f.

ψ(t) = [1 + σα |t|α ωα,β(t) − iµt]−1,(8)

where

ωα,β(x) =

{

1 − iβsign(x) tan(πα/2), if α 6= 1,

1 + iβ 2
π sign(x) log |x| , if α = 1.

(9)
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The parameter α ∈ (0, 2] is the index of stability, determining the tail of the
distribution, β ∈ [−1, 1] is the skewness parameter, and µ ∈ R and σ ≥ 0
control the location and scale, respectively. A GS distribution given by (8) will
be denoted as GSα(σ, β, µ). Similarly, the stable law corresponding to (8) via
(7) will be denoted Sα(σ, β, µ). Strictly GS laws have ch.f. (8) with α 6= 1 and
µ = 0, or α = 1 and β = 0. In the symmetric case (µ = 0 and β = 0), the
ch.f. simplifies to ψ(t) = 1/(1 + σα|t|α), and is known in the literature as the
Linnik characteristic function (see, e.g., [9], [3]). Positive and completely skewed
GS distributions (0 < α < 1 and β = 1) are Mittag-Leffler distributions, studied
in [23] in relation to relaxation phenomena.

Relation (7) leads to the fundamental representation of a GS r.v.’s in
terms of stable and exponential variates (see, e.g., [10]).

Proposition 2.1. Let Y ∼ GSα(σ, β, µ). Then,

Y
d
=

{

µW +W 1/ασX, if α 6= 1,

µW +WσX + 2π−1σβW log(Wσ), if α = 1,
(10)

where X ∼ Sα(1, β, 0) and W , independent of X, has the standard exponential

distribution.

A GS stochastic process can be defined through its finite-dimensional
distributions: {X(t), t ∈ T} is geometric stable if all of its finite-dimensional
distributions,

(X(t1), . . . ,X(td)), t1, . . . , td ∈ T, d ≥ 1,(11)

are GS. It is strictly GS (symmetric GS) , if all of its finite-dimensional distri-
butions are strictly GS (symmetric GS), respectively. Note that if the finite-
dimensional distributions are GS, then by consistency, they must all have the
same index α.

3. Series representations. The series representations of stable and,
in general, infinitely divisible random variables, were studied on various occa-
sions (see [18], [4], [15], [16], [22]). It is well-known that a symmetric α-stable
distribution has the representation

∞
∑

i=1

δiΓ
−1/α
i ,

where (Γi) is a sequence of arrival times of a Poisson process with intensity one
and (δi) is a Rademacher sequence independent of (Γi). By Proposition 2.1, the
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corresponding symmetric GS distribution can be written as

W 1/α
∞
∑

i=1

δiΓ
−1/α
i ,

where W has the standard exponential distribution and is independent of (δi)
and (Γi).

We derive similar representation for the general non-symmetric case through
almost sure convergence of an appropriately scaled and centered representation of
Np
∑

i=1
Xi. Our approach is based on the results of LePage et al. [17] and illustrates

probabilistic structure of the weak convergence of normalized random sums. Let
(Xi) be a sequence of i.i.d. random variables. Define

G+(x) = P (X1 ≥ x|X1 ≥ 0),

G−(x) = P (−X1 > x| −X1 > 0),

G(x) = P (|X1| ≥ x)

p0 = P (X1 ≥ 0), q0 = P (−X1 > 0).

Then,

Sn = X1 + · · · +Xn
d
= δ1G

−1
δ1

(Γ1/Γn+1) + · · · + δnG
−1
δn

(Γn/Γn+1),(12)

where (δi) is an i.i.d. sequence of random signs: P (δi = +) = p0 and P (δi = −) =
q0. If the distribution of X1 is in an α-stable domain of attraction with α < 2, the
representation on the right hand side of (12), appropriately normalized, converges
almost surely to a stable law:

lim
n→∞

∑n
i=1(δiG

−1
δi

(Γi/Γn+1) − bn)

an

a.s.
=

∞
∑

i=1

(ziΓ
−1/α
i − Ci),(13)

where

an = G−1(1/n), bn = p0A
∫ 1
1/nG

−1
+ (x)dx− q0B

∫ 1
1/nG

−1
− (x)dx,

zi = A δi+1
2 +B δi−1

2 , Ci = Ezi
∫ i+1
i x−1/αdx,

with A = lim
n→∞

G−1
+ (1/n)/G−1(1/n), B = limn→∞G−1

− (1/n)/G−1(1/n) (see [17]).

We extend (13) to the case where n is a random variable. In the following result,
Np is a geometric r.v. (5) independent of (Xi) and

Gp(x) = P (Np ≤ x), G−1
p (y) = inf{x : Gp(x) ≥ y}.(14)
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Theorem 3.1. The following representation holds

SNp

d
=

N∗

p
∑

i=1

δiG
−1
δi

(Γi/ΓN∗

p +1),(15)

where N∗
p = G−1

p (U) and U is uniformly distributed on (0, 1), independent of (δi)
and (Γi).

Moreover,

lim
p→0

∑N∗

p

i=1(δiG
−1
δi

(Γi/ΓN∗

p +1) − bp)

ap

a.s.
= W 1/α

∞
∑

i=1

(ziΓ
−1/α
i − Ci)(16)

+

{

α
α−1(p0A

2 − q0B
2)(W −W 1/α), if α 6= 1,

(p0A
2 − q0B

2)W (lnW − 1), if α = 1,

where bp = p0A
∫ 1
p G

−1
+ (x)dx− q0B

∫ 1
p G

−1
− (x)dx, ap = G−1(p), and W = − lnU .

P r o o f. First, by (12), the right hand side of (15), conditionally on N∗
p =

n, has the same distribution as Sn. Thus, the equality of distributions follows,
since Np is independent of Sn and N∗

p is independent of (δi) and (Γi).

Next, write

N∗

p
∑

i=1
(δiG

−1
δi

(Γi/ΓN∗

p +1) − bp)

ap
=

=
aN∗

p

ap











N∗

p
∑

i=1
(δiG

−1
δi

(Γi/ΓN∗

p +1) − bN∗

p
)

aN∗

p

+N∗
p

bN∗

p
− bp

aN∗

p











,

and note that aN∗

p
/ap = G−1(1/N∗

p )/G−1(p) converges almost surely to W 1/α,
since pN∗

p converges almost surely to − lnU . Further, since N∗
p → ∞ with

probability one, (13) implies

lim
p→0

∑N∗

p

i=1(δiG
−1
δi

(Γi/ΓN∗

p +1) − bN∗

p
)

aN∗

p

a.s.
=

∞
∑

i=1

(ziΓ
−1/α
i − Ci).
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Finally, note that

lim
p→0

G−1
+ (u/N∗

p )

G−1(1/N∗
p )

= Au−1/α, lim
p→0

G−1
− (u/N∗

p )

G−1(1/N∗
p )

= Bu−1/α,

and apply the dominated convergence theorem to obtain

lim
p→0

N∗
p

bN∗

p
− bp

aN∗

p

= p0AN
∗
p lim

p→0

∫ p
1/N∗

p
G−1

+ (x)dx

G−1(1/N∗
p )

− q0BN
∗
p lim

p→0

∫ p
1/N∗

p
G−1

− (x)dx

G−1(1/N∗
p )

= p0A lim
p→0

∫ pN∗

p

1

G−1
+ (u/N∗

p )

G−1(1/N∗
p )
du− q0B lim

p→0

∫ pN∗

p

1

G−1
− (u/N∗

p )

G−1(1/N∗
p )
du

= (p0A
2 − q0B

2)

∫ W

1
u−1/αdu,

which concludes the proof. �

Symmetric GS laws possess the well-known stability property: if Xi are
i.i.d. symmetric GS random variables with index α ∈ (0, 2), then for any p > 0
we have

p1/α(X1 + · · · +XNp
)

d
= X1,(17)

where Np is geometrically distributed and independent of (Xi). Using our se-
ries representation we can obtain an almost sure version of (17). Suppose that
the arrival times of Np Poisson processes are combined to define a new process.
More precisely, let N1,N2, . . . be a sequence of independent standard Poisson
processes with corresponding arrival times (Γ1,i), (Γ2,i), . . .. The observed pro-
cesses are N1(W1·), . . . ,NNp

(WNp
·), where (Wi) is a sequence of intensities, and

Np is a geometric r.v. (5) independent of (Ni). The observed arrival times,
Γ1,i/W1, . . . ,ΓNp,i/WNp

, i ∈ N , when combined and ordered, define a new count-
ing process,

N ((W1 + · · · +WNp
)·).

Thus, N is the combined process with time scaled by the divisor (W1+· · ·+WNp
).

Consequently, if Γi’s are arrival times of N , then the observed arrivals have the
form Γi/(W1+ · · ·+WNp

). Assuming that the intensities W1,W2, . . . are standard
exponential random variables, mutually independent, and independent of (Ni),
we have the following almost sure version of (17).

Proposition 3.1. The process N defined above is a standard Poisson

process, and with probability one

p1/α

(

∞
∑

i=1

δ1,i

(

W1

Γ1,i

)1/α

+ · · · +
∞
∑

i=1

δNp,i

(

WNp

ΓNp,i

)1/α
)

=
∞
∑

i=1

δi

(

W

Γi

)1/α

,
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where W = p(W1 + · · ·+WNp
) has the standard exponential distribution and (δi)

is an independent of ((Γi),W ) Rademacher sequence defined by

δi = δj,k if and only if
Γi

W1 + · · · +WNp

=
Γj,k

Wj
.

P r o o f. Conditionally on W1 = λ1,W2 = λ2, . . ., and Np = n, the ob-
served process N ((W1 + · · · + WNp

)·) is a Poisson process with intensity λ1 +
· · · + λn. Thus, under the same conditioning, N is a standard Poisson process
whose distribution does not depend on the conditioning. Consequently, the un-
conditional distribution of N must be the same as that of a standard Poisson
process. �

Next let us consider symmetric GS processes. Let (Xi) be a sequence of
i.i.d. random variables independent of a geometrically distributed (5) random
variable Np. The partial sum process on [0, 1],

Sp(t) =

[Npt]
∑

i=1

Xi,(18)

has càdlàg trajectories with jumps at points k/Np for k ∈ {1, . . . , Np} and is con-
stant between the jumps. The values of jumps are equal to Xk, k ∈ {1, . . . , Np}.
It does not have independent increments. Note that the integral

∫ 1
0 vdSp is well

defined for any measurable function v on [0, 1].

Rachev and Samorodnitsky [21] introduced a GS Lévy motion S(t) as the
weak limit (as p→ 0) of an appropriately normalized Sp(t). We study the limits

of Sp(t) and
∫ 1
0 vdSp through their almost sure representations.

We use a sequence (Ui) of i.i.d. random variables uniformly distributed
on [0, 1] to define a random permutation (Jn

k )nk=1 of (k/n)nk=1. Let Jn
1 be the right

end of the interval ((k−1)/n, k/n] which includes U1. For l > 1, define Jn
l as the

right end of the shortest interval of the form (j/n, k/n] and containing Ul, with
k/n 6= Jn

j for j < l. It can be shown that (Jn
k )nk=1 is uniformly distributed over

all possible permutations of (k/n)nk=1. Thus, we have the distributional equality

[nt]
∑

i=1

Xi
d
=

n
∑

i=1

δi|X|(i,n)1{Jn
i
≤t},

where (|X|(i,n)) are order statistics of |Xi| and δi’s are ±1’s (see [17] for details).
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The above equality also produces

[Npt]
∑

i=1

Xi
d
=

Np
∑

i=1

δi|X|(i,Np)1{J
Np

i
≤t}

.

The random vector (|X|(i,n)) has the well-known representation in distri-
bution:

(|X|(1,n), . . . , |X|(n,n))
d
= (G−1(Γ1/Γn+1), . . . , G

−1(Γn/Γn+1)).

Consequently, assuming mutual independence of (Γn), (δn), (Un), and U , we can
define a process S̃p as follows

S̃p(t) =

Np
∑

i=1

δiG
−1(Γi/ΓNp+1)1{J

Np

i
≤t}

.

The process S̃p has identical distribution in D[0, 1] as the randomized partial sum
process Sp. We show below that the normalized S̃p is almost surely convergent,
and derive almost sure series representation for the limiting process. We assume
(14), where Np is geometric with mean 1/p.

Theorem 3.2. With the above notation, denoting cp = G−1(p) and

W = − ln(U), we have

lim
p→0

Sp/cp
d
= lim

p→0
S̃p/cp

a.s
= W 1/α

∞
∑

i=1

δi/Γ
1/α
i 1[Ui,1]

in the Skorohod metric in D[0, 1]. Moreover, if a real function v on [0, 1] has

bounded variation, then

lim
p→0

∫ 1

0
vdSp/cp

d
= lim

p→0

∫ 1

0
vdS̃p/cp

a.s
= W 1/α

∞
∑

i=1

δi/Γ
1/α
i v(Ui).

P r o o f. Since Np = G−1
p (U) and pG−1

p (u) converges to − lnu as p → 0,
Np diverges almost surely to infinity, and with probability one

lim
p→0

pNp = W.(19)

Moreover,

S̃p

cp
=
CNp

cp

∑Np

i=1 δiG
−1(Γi/ΓNp+1)1{J

Np
i

≤t}

CNp

,
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where CNp
= G−1(1/Np).

The function G−1 is regularly varying at zero with index −1/α. Thus, by
(19),

lim
p→0

CNp

cp
= W 1/α.

Since Np → ∞, it follows from the corresponding result for the stable case given
in [17] that, with probability one,

lim
p→0

∑Np

i=1 δiG
−1(Γi/ΓNp+1)1{J

Np

i
≤t}

CNp

=

∞
∑

i=1

δi/Γ
1/α
i 1[Ui,1]

in the Skorohod metric in D[0, 1]. This establishes the first part of the theorem.
The second part follows by almost identical arguments. �

4. Strong invariance principles. Let (Xi) be a sequence of symmetric,
i.i.d. random variables from the normal domain of attraction of a stable law. It
is well-known that X1 satisfies the following tail condition

G(x) = cx−α + β(x)x−α,(20)

or, equivalently,
G−1(y) = c̃y−1/α + γ(y)y−1/α,(21)

where β(x) → 0 as x → ∞ and γ(y) → 0 as y → 0. Without loss of generality,
we may assume that c̃ = 1.

We shall exploit the representation (Xi,n)ni=1 of (Xi)
n
i=1 given in (2) to

derive an almost sure approximation of
n
∑

i=1
Xi,n by

n
∑

i=1
Yi,n, as well as

Np
∑

i=1
Xi,Np

by
Np
∑

i=1
Yi,Np

, where (Yi,n) is a sequence of symmetric, i.i.d. α-stable (respectively,

GS) random variables.
Using (2) and the definitions of (Γ1,j), (Γ2,j), . . ., and (δ1,j), (δ2,j), . . .

given in Section 3 we have

n
∑

i=1

Xi
d
=

n
∑

i=1

Xi,n =
n
∑

i=1

δiG
−1(Γi/Γn+1)

and

X
d
=

n
∑

i=1

Yi,n
def
=

n
∑

i=1





∞
∑

j=1

δi,jΓ
−1/α
i,j



 ,
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where the stable r.v. X = n1/α
∞
∑

j=1
δjΓ

−1/α
j . The following theorem holds in this

setting.

Theorem 4.1. Let Mn be a sequence of integers such that Mn → ∞ and

Mn/n → 0 as n→ ∞. Then, with probability one,

n
∑

i=1

Xi,n −
n
∑

i=1

Yi,n =

= O(n1/α)

[

Mn
∑

i=1

δiΓ
−1/α
i γ(Γi/Γn+1) +

√
log logMn

M
1/α−1/2
n

+

√

log log n

n

]

.

Remarks.

1. The exact rate of convergence in the above approximation depends on
the rate of convergence of γ at the origin: the faster γ tends to zero,
the faster Mn can tend to infinity, increasing the rate of convergence of

M
1/2−1/α
n

√
log logMn to zero.

2. Regardless of the rate of convergence of γ, we obtain almost sure conver-
gence with the rate at least o(n1/α). This rate could not always be obtained
without additional assumptions, when another form of strong invariance

principle for
n
∑

i=1
Xi −

n
∑

i=1
Yi was considered in [2] (see examples therein).

For the random summation, we have the following representation (see Theorem
3.1),

Np
∑

i=1

Xi
d
=

N∗

p
∑

i=1

Xi,N∗

p
=

N∗

p
∑

i=1

δiG
−1(Γi/ΓN∗

p +1).

By Proposition 3.1 of Section 3, a GS r.v. Y =
∞
∑

i=1
δi(W/Γi)

1/α has the

representation

Y
d
= p1/α

Np
∑

i=1

Yi,Np

def
= p1/α

Np
∑

i=1





∞
∑

j=1

δi,j(Wi/Γi,j)
1/α





(see the definitions in Section 3).
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Theorem 4.2. Let the assumptions of Theorems 4.1 and 3.1 hold. If

Mp → ∞ and pMp → 0 as p→ 0, then, with probability one,

N∗

p
∑

i=1

Xi,N∗

p
−

Np
∑

i=1

Yi,Np
=

= O(p−1/α)





Mp
∑

k=1

Γ
−1/α
k γ(Γk/ΓN∗

p +1) +

√

log logMp

M
1/α−1/2
p

+

√

log log(1/p)

(1/p)1/2



 .

We prove Theorem 4.1. Similar proof of Theorem 4.2, based on Theo-
rem 3.1, is omitted.

P r o o f o f Th e o r e m 4.1. It follows directly from the definition of
(Xi,n) and (Yi,n) that

∣

∣

∣

∣

∣

n
∑

i=1

Xi,n −
n
∑

i=1

Yi,n

∣

∣

∣

∣

∣

≤

≤
∣

∣

∣

∣

∣

n
∑

i=1

δiG
−1(Γi/Γn+1) − n1/α

n
∑

i=1

δiΓ
−1/α
i

∣

∣

∣

∣

∣

+ n1/α

∣

∣

∣

∣

∣

∞
∑

i=n+1

δiΓ
−1/α
i

∣

∣

∣

∣

∣

≤ I1,n + I2,n + I3,n,

where

I1,n =
∣

∣

∑n
i=1 δi

[

G−1(Γi/Γn+1) − (Γi/Γn+1)
−1/α

]∣

∣ ,

I2,n =
∣

∣

∣
Γ

1/α
n+1 − n1/α

∣

∣

∣

∣

∣

∣

∑n
i=1 δiΓ

−1/α
i

∣

∣

∣
, I3,n = n1/α

∣

∣

∣

∑∞
i=n+1 δiΓ

−1/α
i

∣

∣

∣
.

First, by the Law of Iterated Logarithm (LIL) and integration by parts
formula,

I3,n ≤ O(1)

(

√

n log log n+

∫ ∞

Γn+1

x−1/α−1/2
√

log log xdx

)

= O(n1/α)

√
log log n

n1/α−1/2
.

Then, again by LIL,

I2,n ≤ O(n1/α)

√

log log n

n
.
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Equation (21) and the discrete version of integration by parts formula
produce

I1,n = O(n1/α)

[

Mn
∑

i=1

δiΓ
−1/α
i γ(Γi/Γn+1)

+γ(Γn/Γn+1)

∑n
i=1 δi

n1/α
+ γ(ΓMn

/Γn+1)

∑Mn

i=1 δi

M
1/α
n

+ n−1/α

(

N
∑

i=Mn+1

i−1
∑

k=1

δk∆i +
N
∑

i=Mn+1

i−1
∑

k=1

δk∆̃i

)]

,

where ∆i and ∆̃i are increments of x−1/α andG−1 taken at Γi/Γn+1, i = 1, . . . , n+
1.

The approximation (from above) of the last two sums, coupled with the
LIL, yields

I1,n = O(n1/α)

[

Mn
∑

i=1

δiΓ
−1/α
i γ(Γi/Γn+1) +

√
log logMn

M
1/α−1/2
n

+n1/2−1/α

(

∫ 1

ΓMn/Γn+1

√

x log log(2nx)d(x−1/α)

+

∫ 1

ΓMn/Γn+1

√

x log log(2nx)dG−1(x)

)]

.

Denote H(u) =
∫ 1
u t

1/αdG−1(t) and apply integration by parts formula,
to obtain
∣

∣

∣

∣

∣

∫ 1

ΓMn/Γn+1

√

x log log(2nx)dG−1(x)

∣

∣

∣

∣

∣

≤ H(1)
√

log log(2n) +H(ΓMn
/Γn+1)

√

log log(ΓMn
n/Γn+1)

+ O(1)

∫ 1

ΓMn/Γn+1

1
√

log log(2nx)
+

1

log(2nx)
+

1

x
H(x)dx

≤ O(1)

[

√

log log n+ n−(1/2−1/α)

√
log logMn

M
1/α−1/2
n

+

∫

ΓMn/Γn+1

x−1H(x)dx

]

.

The last integral is of order O((Mn/n)1/2−1/α), since the function

u 7→
1
∫

u
x−1H(x)dx is regularly varying at zero with index 1/α − 1/2. The same
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arguments produce

∫

ΓMn/Γn+1

√

x log log(2nx)d(x−1/α) ≤

≤ O(1)

[

√

log log n+ n−(1/2−1/α)

√
log logMn

M
1/α−1/2
n

]

.

Thus,

I1,n = O(n1/α)

[

Mn
∑

i=1

δiΓ
−1/α
i γ(Γi/Γn+1) +

√
log logMn

M
1/α−1/2
n

]

,

which concludes the proof. �
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