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ABSTRACT. The general ordinary quasi-differential expression M of n-th or-
der with complex coefficients and its formal adjoint M T are considered over
a regoin (a,b) on the real line, —oco < a < b < oo, on which the operator
may have a finite number of singular points. By considering M over various
subintervals on which singularities occur only at the ends, restrictions of the
maximal operator generated by M in L2 (a,b) which are regularly solvable
with respect to the minimal operators To(M) and To(M ™). In addition to
direct sums of regularly solvable operators defined on the separate subinter-
vals, there are other regularly solvable restrications of the maximal operator
which involve linking the various intervals together in interface like style.

1. Introductions. In [8] Everitt and Zettl considered the problem
of characterizing all self-adjoint differential operators generated by a countable
number of quasi-differential expressions on the real line, and in [2, 10] Evans and
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Ibrahim gave a characterisation of all regularly solvable operators and their ad-
joints generated by a general ordinary quasi-differential expression M in L2 (a,b).
The domains of these operators are described in terms of boundary conditions
involving the L2 (a,b)—solutions of the equation M[u] = Awu and its adjoint
M*[v] = Awv. The results include those of Sun Jiong [11].

Our objective in this paper is to extend the results in [2], [8], [9] and
[10] for finitely many singular points or perhaps finitely many disjoint intervals
on which singularities occur only at the ends by using the ideas and results
from [7], [8], [10], [11], [12], [13] and [15]. Also, we discuss the possibility of
the regularly solvable operators which are not expressible as the direct sums of
regularly solvable operators defined in the separate intervals.

The minimal operators To(M) and To(M™) are no longer symmetric,
but direct sums of those over finitely many disjoint intervals and form an ad-
joint pair of closed densely-defined operators in the underlying L?-space, that is
To(M) C [To(M™)]*, and the operators which fulfil the role that the self-ajoint
and maximal symmetric operators play in the symmetric case are those which
are regularly solvable with respect to To(M) and Tp(M™T): such an operator S
satisfies To(M) C S C [To(M™)]* and for some A € C, (S — AI) is a Fredholm
operator of zero index. In order to characterize all the operators which are regu-
larly solvable with respect to To(M) and To(M ™) in L2 -solutions of M[u] = Awu
over various subintervals, we need the results in [10] for the case when the end-
points of the underlying interval are both singular. This is a result of special
interest and extends one proved in [15] by Zai-Jiu Shang for formally symmetric
and J-symmetric differential expressions.

2. Preliminaries. We begin with a brief survey of adjoint pairs of
operators and their associated regularly solvable operators; a full treatment may
be found in [1, Chapter III] and [3].

The domain and range of a linear operator T" acting in a Hilbert space H
will be denoted by D(T"), R(T") respectively and N (T') will denote its null space.
The nullity of T', written nul(7"), is the dimension of N (7') and the deficiency of T,
def(T), is the co-dimension of R(T') in H; thus if T is densely-defined and R(T') is
closed, then def(T") = nul(T™). The Fredholm domain of T is (in the notation of
[1]) the open subset A3(T") of C consisting of those values A € C which are such
that (T'— \I) is a Fredholm operator, where [ is the identity operator in H. Thus
A € As(T) if and only if (T'— AI) has closed range and finite nullity and deficiency.
The index of (T — AI) is the number ind(T — AI) = nul(T — \I) — def (T — \I),
this being defined for A € As(T).
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Two closed densely-defined operators A, B in H are said to form an
adjoint pair if A C B* and consequently B C A*; equivalently, (Az,y) = (x, By),
for all x € D(A) and y € D(B), where (-,) denotes the inner product on H.

The joint field of requiarity I1(A, B) of A and B is the set of A € C which
are such that A\ € TI(A), the field of regularity of A, A € TI(B) and def(A — \I)
and def(B — M) are finite. An adjoint pair A, B is said to be compatible if
II(A, B) # @. Recall that A € II(A) if and only if there exists a positive constant
K (X) such that,

(A= M)z|| > KNz for all = € D(A),

or equivalently, on using the closed-Graph Theorem, nul(A — A\I) = 0 and
R(A — \I) is closed.

Definition 2.1. A closed operator S in H is said to be regularly solvable
with respect to the compatible adjoint pair A, B if A C S C B* and II(A,B) N
Ay(S) # D, where

A4(S) = {)\ A E Ag(S), ind(S — )\I) = O}

The terminology “regularly solvable” comes from Visik’s paper [16].

We now turn to the quasi-differential expressions defined in terms of a
Shin-Zettl matrices A on an interval I, where I denotes an interval with left-
end point a and the right-end point b (—oo < a < b < o0). The set Z,(I) of
Shin-Zettl matrices on I consists of (n x n)-matrices A = {a,s} whose entries are
complex-valued functions on I which satisfy the following conditions:

ars € LL(I) ae. (1<r,s<n, n>2),
(2.1) aryry1 70 ae.onl (1<r<mn-1),
ars =0 ae.onl (2<r+1<s<n).

For A € Z,(I), the quasi-derivatives associated with A are defined by,
(2.2) = (arp) ! {(y[’"”)’ - arsy[s”} (1<r<n-1),
S=
]

yh= () = 3 any

where the prime ’ denotes differentiation.
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The quasi-differential expression M associated with A is given by:
(2.3) Mly) = "y,
this being defined on the set

(2.4) V(M) = {y U € AC (D), 7 =1,... n} ,

where L (I) and ACj.c(I) denote respectively, the spaces of complex valued
Lebesgue measurable functions on I which are locally integrable and locally ab-
solutely continuous on all compact subintervals of I.

The formal adjoint M of M defined by the matrix At € Z,(I) and is
given by

(2.5) M*[y] :==i"y% for all y in
(2.6) V(MY = {y e AC (D), r =1, n}
where ykfl], the quasi-derivatives associated with the matrix AT. Note that,

(AT)" = A and so (M)t = M. We refer to [5], [9], [10] and [17] for a full
account of the above and subsequent results on quasidifferential expressions.
For u € V(M),v e V(M) and o, 8 € I, we have Green’s formula,

(2.7) / (oM {u] - —aFFRT da = fuyol(6) — [l

fu, () = i (”i(—n“”“uw (ol <x>)

see [2] and [17, Corollary 1] for more details.
Let w be a function which satisfies,

(2.9) w >0 a.e. on I,we L ().
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The equation

(2.10) Myl = wy (A€ C)

on [ is said to be regular at the left-end point a if it is finite and x € (a,b),
(2.11) a€R, w,a,s € L'Ya,X] (r,s=1,...,n).

Otherwise, (2.10) is said to be singular at a. Similarly we define the terms regular
and singular at b. If (2.10) is regular at both end-points, then it is said to be
regular, in this case we have,

(2.12) a,beR, w,aps € LYa,b] (r,s=1,...,n).

Note that: An end-point of the interval [ is regular (See [9] and [10])
for the equation (2.10) if and only if it is regular for the equation

(2.13) M*[yl = wy  (A€C).

Let H = L2 (a,b) denote, the usual weighted L2-space with inner-product

b
(2.14) (1.9) = [ f@g(e)ulods

and norm || f|| := (f, f)'/?; this is a Hilbert space on identifying functions which
differ only on null sets.

We can without loss of generality assume that the interval (a,b) —oo <
a < b < 00, in question is decomposed into four sets of subintervals:

(1) {L;}7*,. Considered on I;, M is singular at both end-points.

(2) {Ji},. Considered on J;, M is regular at the left end-point and singular
at the right end-point.

(3) {K;}’_,. Considered on K;, M is singular at the left end-point and regular
at the right end-point.

(4) {L;}!_,. Considered on L;, M is regular at both end-points.

Definition 2.2. We denote by D(M) the collection of those elements u
satisfying the following:
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(1) weV(M;),i=1,...,m; ueV(M;),i=1,...,n;
ueV(M;),i=1,...,p ;ueV(M;),i=1,...,q.
(2) we L2(L),i=1,...,m; we L2 (J),i=1,...,n;
uwe L3(K;),i=1,...,p; we L(L;),i=1,...,q

L2(L),i=1,...,m; wiM;u] € L2(J;),i=1,...,n;
L2(K),i=1,....,p;  w Mu]e€L?(L),i=1,...,q,
and by D(M™) the collection of those elements v satisfying, the following:
(D) veVM),i=1,....m; veV(M"),i=1,...,n;
veV(MY),i=1,....p; wveV(M'),i=1,...,q.

) veLl2(L),i=1,...,m; veL2(J),i=1,...,n;
/UEL%U(KZ'%Z.:]-:"WP; /UEL?U(LZ),’L:].,,Q

(B3) wiMt] e L2(L), i=1,...,m;  w M [v]e€L(J),i=1,...,n;

w M) € L2(K;),i=1,...,p; w M ] eL%(L),i=1,...,q.

Definition 2.3. We define the mazimal operators T(M) and T(M™)

by setting: T(M)u := wM[u] and T(M*)v := w™ M*[v], for all u € D(M),
veEDMT).

The underlying Hilbert space is, of course,

H=35 12 e Y L2 e Y LK) o 3 L2 (L),
=1 = =1 =1

1=1 i=
with the inner-product (-,-) over H,

m n

(f.9) =2 [ f@)g(@)w(z)dz + 3 [ f(z)g(a)w(z)de+

i—17; i—1J,

+ 3 [ f@a@uw@)dz + 3 [ f@)g@)w()dr.

i—1K; i—11,

Green’s formula over all of (a,b) is the sum of those over all subintervals
of (a,b) such that: for u € V(M) and v € V(M™), then

(™ M fule) — G M Hu]) = 52 (f ) (30) — [ o) +
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+ é ([, v]i(Bi) — [u, v]i()) + gpl([uav]z(ﬁz‘) — [u,v]i () +
+ ; ([ 01 (B) — [, o) () -

For the regular problem, the minimal operators To(M;) and To(M;') are
the restrications of w~M;[-] and w=tM;"[-] to the subspaces,

Do(M;) := {u € D(M;) : ul™Y(a;) = ul =) =0, i=1,... .q}
(2.15) Do(M;") := {v € D(M;"): vzfu(ai) = v&_ﬂfl](bi) =0, i=1,... ,q}
(r=1,...,n)
respectively. The subspaces Do(M;) and Do(M;") are dense in L2 (L;) and T'(M;),

T(M;") are closed operators (see [17, Section 3]). In the singular problem we first
introduce the operators Tj(M;) and Tj(M;") being the restriction of w=M;[] to

(2.16) D{(M;) := {u:u € D(M;), suppu C (a;,b;) on J; and K},

and with T3(M;") defined similarly. These operators are densely-defined and
closable in L2/(J;),i=1,...,n and L2(K;),i=1,...,p.

We define the minimal operators Ty(M;), To(M;") to be their respective
closures (cf. [17, Section 5]). We denote the domains of Ty(M;) and Ty(M;"), by
Dy(M;) and Do(M;") respectively. It can be shown that, (2.10) is regular at a;,
then

u € Do(M;) ul"Y(a)=0 onJ;, i=1,...,n
(2.17)
u € Do(M;) ul"U(a;) =0 on K;, i=1,...,p

and similarly,

(2.18) vE Dy(M) = ’UE:_H(GZ') =0 onJ;, i=1,....,n
ve Dy(M;) = vzfl](ai) =0 onK;,i=1,...,p

r=1,...,n. Moreover, in both regular and singular problems we have,

(2.19) [To(M;)]* = T(M;") and [T(M;)]* = To(M;") on J; and Kj;

see [17, Section 5] in the case when M; = M;" and compare with the treatment
in [1, Section II1.10.3] in the general case.
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In the case of two singular end-points, the problem on (a;,b;),i=1,...,m
is effectively reduced to the problems with one singular end-point on the intervals
(ai,c;]) and [¢;,b;), where ¢; € (a;,b;). We denote by T'(M;;a;) and To(M;;b;)
the maximal operators with domains D(M;;a;) and D(M;;b;) and denote by
To(M;; a;) and To(M;;b;) the closures of the operators T (M;; a;) and T} (M;; b;)
defined in (2.16) on the intervals (a;, ¢;] and [¢;, b;) respectively.

Let T} (M;) be the orthogonal sum

TY(M;) = Ty (Mss ) © Ty(My; bi) i
L2 (ai,bi) = L2 (ai, ¢) @ Liy(ciyby), i =1,2,...,m;
T4(M;) is densely-defined and closable in L2 (a;, b;) and its closure is given by
To(M;) = To(M;; a;) @ To(Mi; b)), i=1,...,m.
Also,
nul[To(M;) — M| = nul[Tp(M;; a;) — M| + nul[To(M;; b;) — M,
def[To(M;) — M| = def [To(M;; a;) — M| + def[To(M;; b;) — A,

and R[To(M;) — M is closed if, and only if, R[Ty(Mj; a;) — M| and R[To(M;; b;) —
AI] are both closed. These results imply in particular that,

[To(M;)] = T[Ty (M;; a;)) NI[To(Mi; b;)], i=1,...,m.

We refer to [1, Section II1.10.4], [3], [6] and [14] for more details.
Next, we state the following results; the proof is similar to that in [1,
Section III. 10.4].

Theorem 2.4. To(M;) C To(M;), T(M;) C T(M;;a;) & T(M;;b;) and

lnd[To(MZ) — )\I] =n — def[To(M, CLZ') — /\I] — def[To(MZ, bl) — /\I],
i=1,...,m, and in particular, if A € [Ty(M;)],

(2.20) def[To(Mi) — )\I] = def[To(MZ‘; ai) — )\I] + def[TZ(MZ, bz) — )\I] —-n,
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Remark. It can be shown for i =1,...,m that,

D[Ty(M, = {u:u € D[Ty(M;)] and ul () =0, r=1,... ,n}
(2.21)
D[TO(MZ*)] = {v 1V € D[TO(MZ*)] and kal](ci) =0,r=1,... ,n}

see [1, Section II1.10.4].
We now establish by [1], [7], [8] and [13] some further notation:

Do(M) = 35 Do(My) & 3 Do(Mi) + 3 Do(M;) & 3 Do(My)
(2.22) = = = = :
Do(M+) = = Do(M;") @ i; Do(M;") +i§1 Do(M;") @ i; Do(M;")
([ T F = {To (M) f, o To (M) i To (M) S, To (M)
To(M)F, - To(My) f; To (M) .. To(M,) }.
To(MH)g = {To(M)g, ... To(M)gs To (M )g .., To (M )g:
(2.23) To(Mi)g, . To(M; g To (M7 )g, .. To(M, )},
f € Do(M;), g€ Do(M;"); i=1,...,m;
f € Do(M;), g€ Do(M;"); i=1,...,m;
f € Do(M;), g€ Do(M;"); i=1,...,p;
| f € Do(M;), g€ Do(M;); i=1,...,q
Also,
TM)f = {TOL)f, ... T(M) ;TS T(My)
T(M) S, T(My) [ T(M) - T(My)f |
T(M*)g = {T(M)g,.... T(M)g; T(M g, ..., T(M})g:
(2.24) JYﬂff)gw--,TKA@ihﬁlKﬂiidgw--,TKAIJ)Q},
f e D), ge DM, i=1,...,m;
fe D), ge DM, i=1,...,n;
fe D), ge DM, i=1,....,p;
| f€D(M;), ge DM, i=1,...,q
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and

7.0 = S {1 0l0) — . alan)}
i=1

2.

1

{17:910) = £ glias) }+

1

+3
+ 2 { (1.0 ~ . glan)}.

P
+ 3 { (£ 9)i(b0) = [, glila) }
1=1
where [+, ] is the bilinear form defined in (2.12).

Note that: Ty(M) is a closed densely-defined operator in H.

We summarize a few additional properties of Tp(M) in the form of a
lemma:

Lemma 2.5. We have,
n 4 q

w[MszimMW@;mMW@zmMW@zmmw,

(b)  nul[Ty(M) — \] = inul[To(Mi) — M+ é nul[Tp(M;) — ]

3 mul[Ty(M;) — M) + 32 nul[Ty(My) — A,
=1 =1
nal[To(M*) = X = 32 nul[Ty(M;F) — M) + 32 nl[To(M;F) — ]

i=1 i=1

4y nul[Tp(M;H) — N + 5 nul(To(M;") — M|
=1 =1
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m 7
(¢) def[To(M) — M| = > def[To(M;) — M| + > def[To(M;) — M
i=1 i=1

i=1 =1
def[To(M*) — M| = 3" def[To(M:") — M] + 32 def[To (M) — M|
=1 =1

p _ q _
+ > def[To(M;Y) — M)+ 5 def[To(M;T) — M|
i=1 i=1

for all X € I[Ty(M)] and X € TI[Ty(M™)].

Proof. Part (a) follows immediately from the definition of Ty(M) and
from the general definition of an adjoint operator. The other parts are either
direct consequences of part (a) or follows immediately from the definitions. [

Lemma 2.6. Let

To(M) = iTO(Mi) o ganO(Mi) o éTO(MZ-) o iTO(MZ«)

be a closed densely-defined operator on H. Then,

(2.25)  MTy(M)] = A TT(0;)] A TTp(M;)] A TTH(M)] (1 TTy(M).

Proof. The proof follows from Lemma 2.5 and since R[To(M) — M| is
closed if, and only if R[To(M) — M|, i=1,...,m; R[To(M;) — XI),i=1,...,n;
R[Toy(M;) — M), i=1,...,pand R[To(M;) — N],i=1,...,q are closed. [

Lemma 2.7. IfS; are regularly solvable operators with respect to To(M;)
and TO(M;L) on all subintervals I;, J;, K; and L; respectively then,

is reqularly solvable with respect to To(M) and To(M™).

Proof. The proof follows from Lemmas 2.5 and 2.6.

3. The regularly solvable operators with two singular end-points.
We see from (2.19) that Tp(M;) € T(M;) = [To(M;")]* and hence Ty(M;) and
To(M;") form an adjoint pair of closed densely-defined operators in L2, (1;), i =
1,...,m.
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Lemma 3.1. For A € I[To(M;), To(M;")],
def[To(M;) — M| + def[Ty(M;") — ] is constant and

(3.1) 0 < def[To(M;) — M| + def[To(M;") = X| <2n, i=1,...,m.
In the problem with one singular end points, i.e., on J;, and K,

n < def[Tp(M;) — M| + def[To(M;") — M| < 2n.
In the regular problem, i.e., on L;, 1 =1,...,q,

def[To(M;) — M + def[Ty(M;") — NI| = 2n.

Proof. The proof is similar to that in [10] and therefore omitted. O
For )\ € H[TO(MZ-),TO(M;')], i =1,...,m, we define r;, s; and m; as
follows,
r, = ’I“Z(/\) L= def[To(MZ) — )\I]
= def[To(M;;a;) — M|+ def[To(M;;0;) — AXI] —n

= r} + 7“2-2 - n,
S; = Sz()\) L= def[To(M:r) — XI]
2 - -
(3.2) = def[Ty(M;; a;) — NI| + def[To(M;";b;) — N — n
= s} + 82 -n
and
mi: = 1T;+ ;.
Since,
ri=ri4ri—n, s;i=s +s2—n, 1=1,...,m,
then,
m; = i +8;
=rl+ri-—n)+(sl+s?—n
(33) ( 7 (2 ) ( 7 7 )

=(rl+sH)+(?+s?)—2n

_ 1 2 L
=m; +m;—2n, i=1,...,m.
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Also, since, '
n<m <2n (j=12i=1,...,m),

then by Lemma 3.1, we have that,
(3.4) 0<m; <2n, i=1,...,m.

For II[Tp(M;), To(M;")] # @ the operators which are regularly solvable
with respect to To(M;) and Tp(M;") are characterized by the following theorem.

Theorem 3.2. For X € II[To(M;), To(M;")], let r; and m; be defined by
(3.2) and let j;, (j=1,...,r;) and ¢p; (kK =ri+1,...,m;), i =1,...,m be
arbitrary functions satisfying:

(0) {oji = 4 = 1,...,r} C D(M;) is linearly independed modulo Do(M;)
and {¢ri + k =1 +1,...,m;} C Do(M;") is linearly independed modulo
Do(M;"),i=1,....,m

(44) [?/)gu(bkz] (bi) = [WjisPralias) = 0 (G = 1,...,r, k = rp +1,...,m;
i=1,...,m).

Then the set,

{u : we D(M;), [u, ¢rili(bi) — [u, ¢rili(a )
(3:5) (bt i1 )}

is the domain of an operator S; which is reqularly solvable with respect to To(M;)
and To(M;Y) and the set,

(3 6) {U HENORES D(M;—), [¢] iV ]l( ) [1/}3 »V ]l( Z) =0,
' (j=1,. i i=1,...,m)}
is the domain of S}; moreover A € Ay(S;), i=1,...,m

Conversely, if S; is reqularly solvable with respect to To(M;) and To(M;")
and X € TI[To(M;), To(M;7)] N A4(S;), then with r; and m; defined by (3.2) there
exists functions Vj; (j=1,...,15), ¢pi (k=r;+1,...,m;), i =1,...,m which
satisfy (i) and (it) and are such that (3.5) and (3.6) are the domains of S; and
S} respectively.

S; s self-adjoint if and only if M:r = M;, r; = s; and ¢p; = Yp_r, ;i
(k=mri+1,...,m;,i=1,...,m), S; is J-self-adjoint if and only if M; = JMZ-JFJ
(J is a complex conjugate), r; = s; and ¢p,; = Ek,rm, (k=mri+1...,my,
i=1,...,m).
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Proof. The proof is entirely similar to that in [2, 9] and therefore omit-
ted. O

For A € H[Ty(M;), To(M;)], define 7;, s; and my, i = 1,...,m as in
(3.2) and (3.3). Let {¢f%,j=1,... csit {oyi k =st+1,...,m!} be bases for
N[T(M;;a;) = M| and N[T(M;"; a;) — M| respectively, thus 5%, ¢if; € L2, (ai, i)
(j=1,...,s5 k=sl+1...,m}) and
(3.7) M;[55] = dwibs, Mf[(bifz] = XwgbeZ on [a;,¢i), i=1,...,m.
Similarly, let {¢?ZZ cj=1,...,8}, {qbzii . k=s?41,...,m?} be bases for
N[T(M;;b;) — M) and N[T(M;";b;.) — M| respectively; thus w?,iw qbzii € L2 (ci, by)
and

(3.8) M%) = wypti, Mg ] = Mwep, on e, bi),i=1,...,m.

Since, [To(M;";a;) — M| and [To(M;;b;) — A have closed ranges, so do their
adjoints [T'(M;; a;) — M| and [T'(M;; b;) — M| and moreover R[T(M;;a;) — M|+ =
N[To(M;;a;) — M) = {0} and R[T(M;";b;) — M|+ = N[To(M;";b;) — M| = {0}
Hence R[T(M;;a;) — M| = L2 (ai,¢;) and R[T(M;";b;) — M| = Ly(ci, b;), i =
1,...,m. Similarly, R[T(M;;a;) — M| = L% (a;,¢;) and R[T(M;";b;) — N =
L2 (ci;b;), i =1,...,m. We can therefore define the following:

s =gy (j=1,...,8 i=1,...,m),
39) [T (M;;a;) — i]]x(;fl = qb?fl (G=sl+1,...,m}),
[T(M; 5 ai) = Mlygi =05 (G=1,....5}),
k Y= g (= st L. mb)
af =0 G=1...s% i=1...,m),
a0 [T(M;; b;) — i]]x?fi =0l (j=s2+1,...,md),
[T(Mi+?bi) - )‘I]y?,ii = Q/J?,ii (G=1,...,87),
ys’jz = ;’jz (j=s24+1,...,m?).

Next we state the following results; the proofs are similar to those in [2,
Section 4], [9] and [10].

i 1, _ bi .

Lemma 3.3. The sets {x?z pjo=Loomiio= 1,0 mb, {ay ¢

k= 1,....m% i = 1,...,m} are bases of N([T(M;;a;) — N|[T(M;;a;) —

9 19
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17
i=1,...,m} and {yzil. ck=1,...,m%i=1,...,m} are bases of N([T(M;;a;)—
M[T(M;;a;) — M) and N([T(M;;b;) — M[T(M;T;b;) — M) respectively.

On applying [1, Theorem II1.3.1] we obtain,
Corollary 3.4. Any 2" € D(M;;a;) and (2{)* € D(M.";a;) have the
unique representations,

M) and R([T(M;";b;) — M[T(M;;b;) — M) respectively, lyjsi=1,... ,m};

(3.11) 28 =20t + E ol G (201 € Do(M;; a;), oy; € C),
m;

(3.12) ()" = (2g))" + Zl gL (2607 € Do(M;7;a;), 8; € C).
iz

Also, any z "€ D(M;;b;) and (zfi)+ € D(M;;b;) have the unique representations,

m; .
(3.13) zf = zgl + kzl 'y}mle (zgg € Do(M;;bi),v;,; € C),
b; 3
(314) (Zz )+ = (ZOz) + Z 5k2ykz ((ZOz) S DO(Mer?bz)ad;cl € C)’

(i=1,...,m).
A central role in the algorithm is played by the matrices
Lemma 3.5. Let

1<k<m]
b; bi s
(3.16) B2 = ([xj’i,ykﬂi]i(bi)) B S
1<k<m?
and
12 _ i i C_
(3.17) B = ([1:?7i,yz’i]i(ai)> et i=1l.m,

st4+1<k<m!
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1,2 b b ,

(3.18) E? = ([xj7i,yk7i]i(bi)> << i=1.m.
Y s24+1<k<m?

Then,

(3.19) RankE;’-QXTJ_- =RankE ; ;=ml-n, (j=1,2 i=1,...,m).

k3

In view of Lemma 3.5 and since rf, sg > mg —n({G=12i=1,...,m),
we may suppose, without loss of generality, that the matrices,

1,2 i i
(3-20) E(mg_n)x(mg—n) = ([ﬂ??,wy;‘i,i]z(ai)) 1<j<m}-n
nt+1<k<m]
and
1,2 — b, bi
(321) E(mffn)x(mffn) T ([xjﬂ’yk‘,z]l(bl)) 1<j<mi—n »
n+1<k<m?
satisfy
1,2 j . .
(3.22) RankE(;ﬂfn)x(mfén) =m!—-n, (j=121i=1,...,m).
If we partation £_; ., (j =1,2;i=1,...,m) as
1,1 1,2
(mgfn)xn (mffn)x(mzfn)
(3.23) Bt = | e :
2.1 2,2
Enxn Enx(mgfn)
and set
1 1,1 1,2
E(mf—n)x(mf—n) o (mgfn)xn @ (mzfn)x(mzfn)
(3.24) ) ey gy
nxm’ T Tnxn nx(ml—n)’
1 _ 1,1 T 2,1
Fm{xn B E(mg—n)xn D Epxn
(3.25) 2 . — 42 . T E»?
m? x(m!—n) (m —n)x(m]—n) nx(m]—n)’
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then (3.22) yields the results,

1 B ) o
(3.26) RankE(mg—”)me N RankagX(mg—n) =m; —n,

J=12i=1,...,m).

Lemma 3.6. Let D; (Mu a;), i =1,...,m be the linear span of {z5% : j =
1,...,n; i=1,...,m} where Z - e D(M;; az) satzsfy the following condztzons for

k=1,...,n and some ¢; € (az,b), 1=1,...,m.
() (a) = 65 (25)F () =0
(3.27) o ! o
z?fi(t):O, for t>c¢;, i=1,...,m,
and let Do(M;;a;), i =1,...,m be the linear span of{%Z cj=1,...,ml-n,i=
1,...,m} with (3.22) satisﬁed. Then,
D(M;; a;) = Do(Mi; a;)+Dy(Mi; a;)+Do(Mi;ai), i=1,...,m.
Similarly,
D(M;;b;) = Do(My; b)+Dy(My; b)+Do(My; b;),  i=1,...,m.
If D1(M;";a;) and Dao(M;";a;) are the linear spaces of {(z;fz)*‘ ci=1,...,m
1=1,.. m} and {yklz, k: =n+1,...,m}; i=1,...,m} respectively, then

(3.28)  D(M;";a;) = Do(M;;a:)+D1 (M5 a:)+Do (M 5a:), i=1,....m.
Similarly,

(3.29)  D(M;";b;) = Do(M;";b;)+D1 (M, ;b)) +Do (M3 0;), i=1,....m.

We shall now characterize all the operators which are regularly solvable
with respect to Tp(M;) and To(M;") in terms of boundary conditions featuring
L2 (I)-solutions of the equations M;[u] = Awu and M;[v] = Awv (A € C),
i=1,...,m by the following two theorems with a brief sketch of the proof.

Theorem 3.7. Let A\ € H[TO(M) To(M;D)), let v, s; and m;, i =
1,...,m deffined by (3.2) and let xﬂ, y” (j=1,....m};i=1,...,m) and

x%i, yzii (k =1,....,m2; i = 1,...,m) be defined by (3.9) and (3.10) respec-
tively and armnged to satisfy (3.22). Let M; < (ml—n)? Nsix(m?_n), Kiix(m}—n)
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and Liix(mf_n), i =1,...,m be numerical matrices which satisfy the following
conditions:
(7) Rank{ 55 (ml— )@N x(m? n)}:si i=1,...,m,
Rank {K! 0 @Li o = i=1...m.
T
. 1,2
(i) {Kilx(m n)E(mzlfn)x(mzlfn) ( ) } N
i X8
L EN? T
rix(m?—n)" (m2—n)x(m2—n) slx(m -n) N RS
TiX8;

Then the set of all w € D[T'(M;)] such that

i b
Bi(u7 I) MSZlX(m —’l’l) " - N;ix(m?—n) . =
0% ) (00 .95 ] ()
(3.30) = Oux1,  i=1,....m,

is the domain of an operator S;, i = 1,...,m which is reqularly solvable with
respect to To(M;) and To(M;T) and D(S}) is the set of all v € D[T(M;")] which
are such that

i b;
(@3, 0], (a) 2,0l (b)
Bl L) =Ky | “hrxmiem | =
[x(:nl n)7zvv]z(ai) [x(;%?_n)ﬂ’v]i(bl)
(3.31) =051, i=1,...,m.
Proof. Let,
(3.32) Mﬁlx(m oy = (@) rerr<i<m, Nsiix(m?fn) = (Bk) ri+1<i<m, »
n+1<k<m; n+1<k<m?
and set
ml

i . i b __ -
(3.33) 9}11' = > ksyk i 95 = E 5Jkyk o J=rit 1l mg
k=n+1 k=n+1
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Then g;; € D[T(M;")] where

By [17, Theorem 8], we may choose ¢;;, (j =r; +1,..

4%
752
It

in
in
such that for a € (a;,¢;) and k=1,...,n,

(3.34) (@) (er)
@b?fi -

and for b € (¢;,b;),

0,

iy[k—1 i [k—1
(9505 ah) = (gt @),
g5 on (aai), j=ri+1,...,m; i

(3.35) (P (@) = (b)),

gt on [).bi), j=ri+ 1, mii=1,...

(¢h ) ()

a;
i =

0,

,m.

This gives,

3
+M~»>—A

i U at ai‘] a
4., @) o X @i (@)

;i x(ml—n) . =
@
[u? yr,;l 72‘] (al) m; ) w
Ll [0, > i, ] (@)
k=n+1 i

(s ¢ 41,4l (ai)

| w6, ) ()
Similarly,
[t 1,41, (bi) [, 6% 4 1), (bi)
[’LL, y%f,z]i( Z) [uv ¢%Z,z]z(b2)

225
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The boundary conditions (3.30) therefore coincides with that in (3.5). Similarly,
(3.31) coincides with (3.6) on making the following choices,

i (i ) i (A )
(336) Knx(m}—n) - (Tjk) 1<j<r; > Lsix(m?—n) - (6jk) 1<j<ri >
1<k<ml-n 1<k<m2-n
m%*n b mffn
a; __ i Qi i t Qi S
(3.37) ki, = kzl Tl R = kzl €, t=1...,m.

Then h;; € D[T(M;)], where

a; .
Gioin (a, ¢l
hji = ,
hyy in [eby), j=1,....mi=1...,m,

and ¥;; (j=1,...,r;) € D[T(M;)],

w;lfl n (ai,cz-]

Vi =

by - )
1/}j7i in [e,bi), i=1,...,m,

such that for a; € (a;,¢;) and k=1,...,n

(3.38) (W) E N e) =0, () Fa)) = (n5)F 1 (ah),
Y3 = hion (a,a), j=1,...,r; i=1,...,m,

and for b € (¢;,b;),

(3.39) @) F () =0, ()@ = (R2)F ),
Pl = Ry on (b bi], =1,...,1m; i=1,...,m.

The functions ¢y ;, k=7 +1,...,m;and ¢;;, j=1,...,m,i=1,...,m
satisfy conditions (7) and (i¢) in Theorem 3.2 and the last part of the theorem is
immediate, see [2, Theorem 5.1] and [10].

The converse of Theorem 3.7 is

Theorem 3.8. Let S;, i = 1,...,m be reqularly solvable with respect
to T(M;) and To(M;'), let A € T[To(M;), To(M;")] N A4(S;), let 7i, si and m;
be defined by (3.2) and (3.3) and suppose that (3.22) is satisfied. Then there
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and Nt

exist numerical matrices K* L 2_.3s
i six(m7—n)

Mi
rix(ml—n)’ i x(m2—n)’ “Tsix(ml—n)
i =1,...,m such that conditions (i) and (i) in Theorem 3.7 are satisfied and
D(S;) is the set of w € D(M;) satisfying (3.30) while D(S}) is the set of
v € D(M;") satisfying (3.31).
Proof. Let {¢;;,j = 1,...,7} C D(M;), {brik =mri +1,...,m;} C
D(M;"),i=1,...,m, and set

Q/)?,ii in (ai> ci] (b;lfz in (ai7 Cz‘]
1/13',1' - b . and ¢j,i = e ]
Q/)j,li n [Ci, b;) (b]fz m [Ci7 b;)

are satisfying the second part of Theorem 3.2. From (3.28) and (3.29) we have
that

ml

(3.40) Dt = Yok T 22 Sy () T+ 20 o (05%),

Jj=1 Jj=n+1
k=r+ 1?"",mi; i = 1,...,m for some ygfg’i € D[TO(M;F;ai)] and complex
constants C,ij, o and

n m?
by _ b i (b - i (2/bi

(3.41) ¢k,i = Yok, T Zl gilgj(zj,i)Jr + > lﬁllgj(yj,i)a

Jj= j=n+

k=ri+l...,mgi=1..,m for some y8§” € D[Ty(M;";b;)] and complex
constants §,ij, ﬂ,ij. Since yé‘}“ € D[TO(MZ.*;aZ-)] and ygz}” e D[TO(M;F;bi)] then
Yor,i € D[To(M;")], where

yg;ﬂ,i in (ai,ci],

b

Yok,i = ) )
Yo, 1 [ci, bi).

Hence, for all u € D[T(M;)],
[u,y&iﬂ-]i(az‘) = [u,ygz,i]i(ci) =0 and
[u:ygfrg,i]i(bi) = [u,ygz,i]i(ci) 1=1,...,m.
Also

[, (2) 1] (a0) = [u, (27)F1.(b:) =0, G=1,...,m; i=1,...,m,
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Let
nH1<k<m] n1<k<m?

Then from (3.40),

r ml -

i u, a y ] A a;
[’I,L7 ¢?1+1,z]l(al) |: k §+ ri+1,k7ki ( l)
7 |:U, Z :ﬂivkyzjl] ( )
L k=n-+ ]

- slx(m%fn) .
0,2 ) (a)
Similarly, from (3.41)
[u, ¢22+1,i]i(bi) [u, yffﬁ,i]i(bi)
(1, &y, i1, (B1) [,z ) (0i)

Therefore, we have shown that the boundary conditions (3.30) coincides with
those in (3.5); similarly (3.31) and the conditions in (3.6) can be shown to coincide
if we choose,

(3.43) szﬂzx(mzlfn) = (T;k) 1<5<r; L;X(m —n) — (Ezk) 1<j<r;

1<k<m}-n 1<k<m?2-n

where the T;k and eé-k are the constants uniquely determined by the decomposi-
tions,

m —_n

¢]2 ]Oz+ Z C]Zkzkz—’_ Z kajk 2
b b i b mi i b
Vi =Tj0, T kzl f;kzklz + kzl Ezkxkl,w

j=1,...,r;i=1,...,m derived from Lemma 3.6.
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The conditions (¢) and (i¢) are consequences of conditions (7) and (i7) in
Theorem 3.2, see [2, Theorem 5.2] and [10].

Remark 3.9. Assume that M;, i = 1,...,m is formally J-symmetric,
that is M;’ =JM;J,i=1,...,m where J is complex conjugation. The opera-
tor Tp(M;) is then J-symmetric and Tp(M;) and To(M;") = J[To(M;)]J form
an adjoint pair with II[To(M;), To(M;")] = H[To(M;)], @ = 1,...,m. Since
M [u] = dwu if and only if M;[v] = Awwv, it follows from (3.4) that for all
/\ € U[To(M;)], def[To(M;) — M| = def[To(M;") — M| is constant ¢;, say, and so

n(32),r=s=4¢with0</¢<n,i=1,...,m.

4. The General Theorem. In this section, the domains of regularly
solvable operators on the interval (a,b) are determined in terms of “boundary
conditions”. These conditions involve the expressions on the various subintervals
I, Ji, K; and L; of (a,b). We denote by To(M) and To(M™) the maximal and
minimal operators on (a,b). We see from (2.23) and Lemma 2.4 that, To(M) C
T(M) = [To(M™)]* and hence To(M) and T, (M) form an adjoint pair of closed
densely-defined operators in L2 (a,b).

For X € II[To (M), To(M )] we define r, s and m as follows:

ro=r(\) = def[Ty(M) — M| =

m

— S def[Ty(M;) — M) + z def[Ty(M;) — M] + Z def[Ty(M;) — M|+
=1
+ édef[To(Mi) ] = erl + erl + Zln + Zm
s = s(\) == def[To(M*) — X =
— SN def[Ty(MF) — M) + 32 def[Ty(M;") — N + 3 def[Tp (M) — X+
=1 =1 =1
(4.1) + idef[To(M;r)—XI] = iSri‘ isi—kisi—i- isi,
and =1 =1 =1 =1 =1
m:=r+s=

1(rl+5) é(n—ksl) Zé(n—i—s) Zé(n—ksi):
:Zmz+zmz+§mz zq:

I
3

3T

= m1+mg +m3+ my
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where,
0 <m; <2nm, on I, i=1,...,m,
n? < mo < 2n?, on J;, 1=1,...,n,
np < mg < 2np, on K;, i=1,...,p,
my = 2qn, on L;, i=1,...,q.

By Lemma 3.1, m is constant on I1[Ty(M), To(M )] and
(4.2) (n+pn<m<2n(m+n+p+q).

For T[To(M), To(M™)] # O the operators which are regularly solvable
with respect to To(M) and Ty(M ™) are characterized by the following theorem:

Theorem 4.1. For A € U[Ty(M),To(M™1)], let r and m be defined by
(4.1) and let; (j =1,...r) and ¢y, (k =r+1,...,m) be arbitrary functions

satisfying:

(t) {Yj:9=1,...,r} C D(M) is linearly independent modulo Do(M) and
{¢pp:k=r+1,...,m} C D(M™") is linearly independent modulo Do(M™);

3

(1) [%Nbpfk} = > {[Wi Oral; (bi) — (Wi dral; (@i) } +
+ 2 Wi il (00) — (Wi, Bral(ai) } +

.
[y

@
=l 3
—

+ 2 Wi il (00) — [V, il (ai) } +

.
[y

< |l

+ Z{%mbm i) — Wi, dril, (i) }

.
[y

where Y5 = {1, Vjimi Vi1, Vjni Vi1, -+ Yips ity - - Pjq} and
¢k = {¢k17°°'7¢]€m;¢]€17"'7¢]€n;¢]€17'”7¢]€p;¢k17"°7¢kq}f j - 17°°°7T;
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k=r+1,...,m. Then the set,

NE

(43)  {urue DO fud] = 3 {lwdulib) — [ bl (a:)} +

[u, dril; (0i) — [u, dril;(as)} +

S
I
—

{
{

+
NgE]

S
I
—

_I_
M=

{lw, @il (bi) — [u, dril;(ai)} +

o drl; (00) = [, dual (i)} = 0,
(k=r+1,...,m)

-
Il
—

+
'MQ

S
I
—

is the domain of an operator S which is regularly solvable with respect to To(M)
and To(M™) and

(44)  {vive DO, ;0] = f}l{zpﬂ, — [y, o], (ai)} +
o E AW i) — Wi li(a) } +
+ Zé{%“ — [thji, vl (@) } +

3 ol ) — [l )} = 0,

G=1,...,7)

is the domain of S*, moreover A € Ay(S).

Conversely, if S is reqularly solvable with respect to To(M) and To(M™)
and X € U[Ty(M), To(MT)] N A4(S), then with r and m defined by (4.1), there
exist functions ;, (j = 1,...,r), ¢, (k =r+1,...,m) which satisfy (i) and

(ii) and are such that (4.3) and (44:) are the domains of S and S*.
S is self-adjoint if and only if M = M™*, r = s and ¢, = Vp_p, (k =

r+1,...,m); S is J-self-adjoint if and only if M = JM™J, r = s and ¢p, = Vp_,

(k=r+1,...,m).

Proof. The proof is entirely similar to that of Theorem 3.2 and [2,
Theorem 3.2] and therefore omitted. O

The regularly solvable operators are determined by boundary conditions
imposed at the end-points of various subintervals I;, J;, K; and L;. The type of
these boundary conditions depends on the nature of the problem in the various
subintervals. We have the following cases:
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Case (i): I, = (a;,b;), i = 1,...,m, i.e., the case of two singular end-
points of I;. The boundary conditions in this case on the functions v € D(M;")
and u € D(M;) are given by (3.30) and (3.31) respectively which determine the
domains of the regularly solvable with respect to Ty(M;) and Tp(M,") for each i.
Case (ii): J; = [a;,b;), i = 1,...,n, ie., the case of the problem with
the left-hand end-point of J; assumed to be regular and the right-hand end-point

is singular. For A € II[Tp(M;), To(M;")], we define r;, s; and m; as follows:

Ty = ’I“Z(/\) = def[To(MZ) — /\I],
s; = 8;(A) = def[To(M;") — N], i =1,...,n,

4.5
(4.5) and
my :Ti+8i72_17 y 1,
where,
(4.6) n<m; <2n,i=1,...,n.

Let {ij‘ c g o= 1,...,851 = 1,...,n}, {¢k,z c k :_si—i—l,...,m'
i = 1,...,n}, be basis for N[To(M;) — AI] and N[Tp(M;") — M| respectively.

Thus ¢j,ia¢k,i S L%U(JZ), (j = 1, ey Sy k= Si + 1, . ,mi) and

M’i [wj,l] = )\ww]’,h Mz+ [¢k,2] = X/wgbk,iu 1= ]-7 sy n.

We can therefore define the following x;;, y;;, j =1,...,m;i=1,...,n,
xj; = Y (G=1,...,m;),
(4.7) o o '
[T(M;) = Mlzj; = ¢ji (G =si+1,...,mi),
Yii = ¢ji (J=si+1,....,my),

and these functions are arranged to satisfy (3.22) for each i. Let
i -1 _ (i , i _ (7 ,
Msixn‘]nxn =1 (ajk) ri+1<j<m; » Nsix(mi—n) - (ﬂ]k) ri+1<j<m;
1<k<n n+1<k<m;

and set

n i . .
9ji = ﬂ;kym, (G=ri+1,....,my; i=1,...,n).
k=n+1
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Then g;; € D(M;") and, by [17, Theorem 8] we may choose ¢;; (j=r;+1,...,m;) €
D(M;") such that for k =1,...,n and some ¢; € (a;,b;),

(@) N a) = oy, (@08 Ve = (5.0 e,

$ji=gj; onlc,b), i=1,...,n
Similarly,
Lo (i . i _ (. ,
anJan =1 (Tjk) 1<j<ri » L x(mi—mn) — (6jk) 1<j<ry
1<k<n 1<k<m;—n
m;—n

hji:= kzl 63k$k7i, J=1,....r; i=1,...,n),
and ¥;; (j=1,...,r;;i=1,...,n) € D(M;) such that,
k—1 i k—1 k—1
(i)t Na) = iy g e = mfy ),
1/13'71' = hjﬂ' on [Ci, bl)

Then the boundary conditions in this case on the function u € D(M;) are,

u(a;) [, Yn1,i];(bi)
(49) (U J) slxn - Ngzx(mzfn) = OSin’
ugnil] (az) [U, ym“z]l(bz)
and on the function v € D(M;") are
v(a;) (71,45, v],(b;)
(4'10) (U J) 7" Xn . _LZ i X (m;—n) = OTin’
@) ) (@, s V], (:)

which determine the domains of the operators which are regularly solvable with
respect to Tp(M;) and To(M;") for each i, where M N? K!

Si XN S; ><( 7n) i XN
are numerical matrices which satisfy the following conditions:

and
iix(mi—n)
(4.11) Rank{X Xn@Lr x(mi—n)} = T
’ Rank{ S @ NZ X (mi— n)} = 84,
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i 1,2 ; T
(4.12) {Lrix(mi_ )E(mi_”)x(mi—n) (NSiX(mi—n)> +
( )nKT XnJTLXTL (MSZ Xn) } :O (’L: ]_”n)’

see [2, Theorems 5.1 and 5.2] and [10] for more details.

Case (iii): K; = (a;,b;], t = 1,...,p, it is similar to case (ii) with the
right-hand end-point of K; is assumed to be regular and the left-hand end-point
is singular. The boundary conditions in this case on the function u € D(M;) are

u(bi) (U, Tyt (ai)
(413) Bz(u?K) Mszzxn NZ ix(m;—n) = OSina
() [t @y i) ()
and on the function v € D(M;") are
v(bi) [71,4,v],(a;)
(4.14) B} (v, K;)= Kf_ “n : L; X (mi—n) : =0y, x1,
@) ) (@i —ni> v);(a:)

which determine the domains of the operators which are regularly solvable with
respect to To(M;) and To(M;") for each i, where M ., N' Ki ., and

' siX(mi—n)? TITiXN
rix(my—n) Ar€ numerical matrices which satisfy (4.11) and (4.12) respectively.
Remark. All the boundary conditions in the above cases featur-
ing L2(I;), L2(J;) and L2 (K;)-solutions of the equations M;[u] = Awu and
M;"[v] = dwv respectively.
Case (iv): L; = [a;, b, i = 1,...,q, i.e., the case of two regular end-
points. In this case, we put r; =s; =n (i =1,...,q) in (4.5) then for each ¢,

def [To(M;) — M) + def[To(M;") — N| = 2n, for\ € TI[To(M;); To(M;")].

By (3.5) and (3.6), if we put,

[n—k]

; - (¢]l) (1)7 §k=(5j,i)+ (bi),
Z = — ()" M (@), 5§k:(¢j,z‘)[n*k](bz‘),

(jk=1,....,n;i=1,...,q). Then the boundary conditions in this case on the
function v € D(M;) are,

(415) Bz(uvL ) M721><n ( ) + N721><n (bl) =0, (Z =1,... 7Q)7
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where,
Mém = ((—1)ka§k) 1<j<n » Ném = ((‘Uk §k> 1<j<n »

1<k<n 1<k<n
u(-) = (u(-),...,u[”_l](-))T (T for a transposed matrix), and on the function
v € D(M;") are,
(4.16) Bf(v,L;) = K' ., v(a;) + L., 0(b;) =0,(i = 1,...,q),
where

Ky n = ((—1)"“%7;1@) 1<j<n s Lhxn = ((—1)"“7’“5;1@) 1<j<n

1<k<n 1<k<n
3() = (v(-),...,v[” 1](-)) »oand Al B, The 0 Uk = 1w
i=1,...,q) are complex numbers satisfying

i i\ T i i o\T

(4'17) Mnanan (Knxn) = NanJan (Lnxn) .

The above boundary conditions determine the domains of the operators which are
regularly solvable with respect to Tp(M;) and To(M;') for each i; see [1, Theorem
I11.10.6] and [9, Theorem I1.2.12] for more details.

Next, the characterization of all operators which are regularly solvable
with respect to To(M) and To(M™) in terms of boundary conditions featuring
L2 (a;,b;)-solutions of M;[u] = Mwu and M, [v] = Awv for various subintervals
I;, J;, K; and L; is covered by the following theorems.

Theorem 4.2. Let A € U[To(M), To(M™)] and let r, s and m be as in
(4.2). Then the set of all u € D(M) such that,
m n p q
i=1 i=1 i=1 i=1

is the domain of an operator S which is regularly solvable with respect to To(M)
and To(M™) and D(S*) is the set of all v € D(S*) which are such that,

m n p q9
(4.19) > Bi(v, L) + 32 B (v, Ji) + 32 Bi (v, Ki) + 32 B (v, Li) = 0.
i=1 i=1 i=1 i=1

In (4.18) and (4.19), B;(u,I;) and B} (v,I;), i = 1,...,m are given by (3,30)
and (3.31); Bi(u,J;) and B} (v,J;), i = 1,...,n are given by (4.9) and (4.10);
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Bi(u, K;) and B;(v,K;), i = 1,...,p are given by (4.13) and (4.14); B;(u, L;)
and B} (v,L;), i=1,...,q are given by (4.15) and (4.16) respectively.

The converse of Theorem 4.2 is

Theorem 4.3. Let S be regularly solvable with respect to To(M) and
To(M™), let X € HU[To(M), To(M™)] N Ay(S) and D(S) is the set of u € D(M)
satisfying (4.18) while D(S*) is the set of v € D(M™) satisfying (4.19).

Remark. Theorems 4.1 and 4.2 follows from the following results for
the case of a single interval: [10, Theorems 4.1 and 4.2] for the case when both
end-points are singular, [2, Theorems 5.1 and 5.2] for the case of one singular
point, [1, Theorem II1.10.6] and [9, Theorem 2.2.12] for the regular problem.

5. Discussion. In this section we discuss the possibility of the regularly
solvable operators which are not expressible as the direct sums of regularly solv-
able operators defined in the separate intervals I; = (a;,b;), i = 1,2,3,4. We will
refer to these operators as “new regularly solvable operators”. If a; is a regular
end-point and b;, singular, then by [1, Theorem II1.10.13] the sum

def[To(M;) — M| + def[To(M ™) — N| = n for A € H[Ty(M;), To(M ™))

(i =1,2,3,4) if, and only if, the term in (3.5) at the end-point b; is zero.
By Lemma 3.1, for A € II[Ty(M;), To(M™)], we get in all cases,

(5.1) 0 < def[Ty(M;) — M| + def[To(M™) — M| < 8n
while
(5.2) 4n < def[To(M;) — M| + def [T (M;") — X] < 8n,

when each interval has at least one singular end-point, and
(5.3) def [Ty (M;) — M| + def(To(M;") — M| = 8n,
for the case when all end-pints are regulae. Let,

def[To(M) — M| + def[To(M ™) — M| = d

and
def [To(M;) — M| + def[To(M;") — X| = d;, (i = 1,2,3,4).
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Then by part (¢) of Lemma 2.4, we have that,

We now consider some of the possibilities:

Example 1. d = 0. This is the minimal case in (5.1) and can only
occur when all eight end-points are singular. In this case Ty(M) is itself regularly
solvable and has no proper regularly solvable extensions; see [1, Capter III] and

[3].

Example 2. d = n with one of dy, ds, d3 and d4 is equal to n and all
the others are equal to zero. We assume that d; = n and do = d3 = dy = 0. The
other possibilities are entirely similar. In this case we must have seven singular
end-points and one regular. There are no new regularly solvable extensions and
we have that S = S1 @ To(Ms) ® To(Ms) & To(My), where S is regularly solvable
extension of Ty(My), i.e., all regularly solvahle extensions of To(M) can be ob-
tained by forming sums of regularly solvable extensions of Tp(M;), i = 1,2,3,4.
These are obtained as in the “one interval” case.

Example 3. Six singular end-points and d = 2n. We consider two
cases:

(i) One interval has two regular end-points, say, I, and each one of the
others has two singular end-points. Then, S = Sy @ To(M2) & To(Ms) ® To(My),
where S is regularly solvable extension of Ty(M;), generates all regularly solvable
extensions of Tp(M).

(7i) There are two intervals, say, I; and I each one has one regular and
one singular end-points and each one of the others has two singular end-paints.
In this case S = 51 @ Sy @ To(M3) © To(My), and S1 @ Sy generates all regularly
solvable extensions of Ty(M). The other possibilities in the cases (i) and (i) are
entirely similar.

Example 4. Five singular end-points and d = 3n. We consider two
cases:

(i) There are two intervals, say, I and I, such that I; has two regular
end-points and I has one regular and one singular end-points and each one of
the others has two singular end-points. In this case d; = 2n and dy = n, then
S=51®85,®To(Ms) @ To(My), which is similar to case (i7) in Example 3.

(7i) There are three intervals, say, I1, I and I3 each one has one regular
and one singular end-points, and the fourth has two singular end-points. In this
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case, dy = do = d3 =n and dy = 0, and § = 51 P So & S35 B T()(M4), then
S1 @ Sy @ S3 generates all regularly solvable extensions of Ty(M). The other
possibilities are entirely similar.

Example 5. Four singular end-points and d = 4n. We consider three
cases:

(i) There are two intervals, say, I; and I, each one has two regular end-
points, and each one of the others has two singular end-points. In this case
di =doy=2n and d3 = ds =0, then S =51 5y P To(Mg) D To(M4).

(ii) There are two intervals, say, I; and Iy each one has one regular
and one singular end-points, and the others I3 and I has two regular and two
singular end-points respectively. In this case dy = do = n, ds = 2n and dy = 0,
then S = 51 @ Sy @ S3 @ Th(My) as the case (ii) in Example 4.

(7i7) Each interval has one regular and one singular end-points. In this
case d; = n, 1 = 1,2,3,4. Then “mixing’ can occur and we get new regularly
solvable extensions of Ty(M). For the sake of definiteness assume that the end-
points a1, ba, az and by are singular end-points and b1, az, by and a4 are regular
end-points. The other possibilities are entirely similar.

For u € D(M), ¢; € D(MJr) with ¢; = (¢i17 di2, Gi3, ¢i4)> condition (43)

reads,
(54) 0= |usi] :é{[u,qsij]j(bj) ~ [w,dilj(az), i=1,....n}.

Also, for v € D(M™), 1y, € D(M) with v = (Y1, Vr2, Vr3, Yra), condition (5.4)
reads, - -
4 .
(5:5) 0= |vno] :jzl{[wkj],vj(bj) ~ [y ljlag), i=1,....m.
and condition (i7) in Theorem 4.1 reads,
4
(5:6) 0= [vu.0i] = 3 {[ns). 6u1,(85) = g 0]y (as), i =1, m)

J=1

By [1, Theorem II1.10.13], the terms involving the singular end-points a; b2, as
and ay4 are zero, such that (5.4), (5.5) and (5.6) reduces to,

[, @ialy (b2) — [u, ¢ir]y (a1) — [u, dis]3(as) — [u, dia]y(as) =0
[¢k27v]z(b2) - Wkl»vh(al) - [q/)k3,v]3(a3) - [wk4,v]4(a4) =0
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[Vr2, Pizly(b2) — [Yr1, di1]i (a1) — [Wr3, disls(az) — [Vra, dia]4(as) = 0,

i,k =1,...,n respectively. Thus the boundary conditions are not separated for

the four intervals and hence the regularly solvable operator cannot be expressed
as a direct sum of regularly solvable operators defined in the separate intervals
I;,v=1,2,3,4.

We refer to Everitt and Zettl’s papers [7] and [8] for more examples and

more details.
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