
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62658137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Serdica Math. J. 26 (2000), 277-286

A CLARKE–LEDYAEV TYPE INEQUALITY

FOR CERTAIN NON–CONVEX SETS

M. Ivanov, N. Zlateva

Communicated by S. L. Troyanski

Abstract. We consider the question whether the assumption of convexity
of the set involved in Clarke-Ledyaev inequality can be relaxed. In the case
when the point is outside the convex hull of the set we show that Clarke-
Ledyaev type inequality holds if and only if there is certain geometrical
relation between the point and the set.

1. Introduction. F. Clarke and Yu. Ledyaev in their paper [2] dis-
covered a mean value inequality of new feature. Let illustrate it with a simple
partial case. Let ε > 0, a ∈ R

n and C ⊂ R
n be closed convex and bounded set.

If the function f : R
n → R is differentiable then there is ξ ∈ R

n that is almost
between a and C and such that inf f(C)−f(a)< inf〈f ′(ξ), C−a〉+ε, where 〈., .〉
denotes the inner product in R

n.
In fact the theorem proved in [2] deals with arbitrary Hilbert space, function that
is only lower semicontinuous and its smooth subdifferential. Later it has been
extended to even more general spaces. Works in this direction are for example
[1], [3], [4], [6], [5]. In the paper [5] we show that the requirement of boundedness
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below of the function is not really necessary. Further, in this paper we relax the
assumption the set C to be convex.
As it is pointed out in the original paper [2] the assumption C convex can not
easily be dropped. In the example given there a ∈ co C. In this paper we
consider the case a 6∈ co C and work with a weaker geometrical assumption on C
(see Definition 2.1).
It follows from Theorem 2.2 and Proposition 3.6 that if a /∈ co C then a Clarke-
Ledyaev type inequality is valid for a and C if and only if C seems convex from
a (Definition 2.1).
We work with smooth subdifferentials in the setting of smooth Banach spaces,
but since everything that we use is Clarke-Ledyaev inequality for convex set the
main result (Theorem 2.2) is true with appropriate changes for any subdifferential
for which the Clarke-Ledyaev inequality is satisfied. For example, the result is
true for the Clarke subdifferential of lower semicontinuous function on arbitrary
Banach space.
We always work at some Banach space denoted by (X, ‖.‖). Let us fix some
notation that will simplify the statements to follow. We denote by BX the closed
unit ball of the Banach space X, while B◦

X is the open unit ball. For arbitrary

set A ⊂ X we put sup ‖A‖ = sup
a∈A

‖a‖ and inf ‖A‖ = inf
a∈A

‖a‖; A denotes the

norm closure. For ε > 0 we set Aε = A+ εB◦
X . We denote [A,B] = co {A,B} for

A,B ⊂ X (co stands for the convex hull). For simplicity in the previous formulae
we write a instead of {a} when the set A is a singleton, i.e. [a,B] = co ({a}∪B),
[a, b] = co {a, b}, etc.
A bornology β on the Banach space X is a family of bounded subsets of X
together with the properties: {x} ∈ β for arbitrary x ∈ X; A ∈ β,B ⊂ A ⇒ B ∈
β. It is clear that the bornology G consisting of all singletons is contained in any
bornology and the bornology F of all bounded sets contains any other bornology.
The Banach space X is said to be β-smooth with respect to certain bornology
β if there exists a Lipschitz continuous bump (i.e. with non empty bounded
support) function b ∈ C1

β(X) = {f : X → R; f is Gâteaux differentiable and the
derivative is a continuous mapping from X to the dual space X∗, equipped with
the topology of uniform convergence on the members of the bornology β}.
If β is some bornology on X and f : X → R ∪ {+∞} is a proper and lower
semicontinuous function then the β–smooth subdifferential of f at x is

D−
β f(x) = {u′(x) : u ∈ C1

β(X) and f − u has a local minimum at x}

if x ∈domf and D−
β f(x) = Ø if f(x) = ∞. As usual, dom f = {x ∈ X; f(x) ∈ R}.

We will use the following version of Clarke-Ledyaev inequality that is proved
in [5].

Theorem 1.1 ([5]). Let X be a β-smooth Banach space, C ⊂ X be a
closed, convex and bounded set. Given a lower semicontinuous function f : X →
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R ∪ {+∞}, a ∈ dom f , real number r so that

r < lim
ε↓0

inf f(Cε) − f(a)

and arbitrary δ > 0, one can find x ∈ [a,C] + δBX and p ∈ D−
β f(x) such that

r < inf p(C − a) and f(x) < f(a) + 2−1(r + |r|) + δ.

2. Main result. In order to state our main theorem, we introduce the
following relation.

Definition 2.1. We say that the closed bounded set C ⊂ X seems convex
from the point a 6∈ co C if any sequence {xn}

∞
n=0 such that x0 = a, xn+1 − xn ∈

R
+co (C − a) and [xn, xn+1] ∩ C = Ø is bounded.

It is easy to see that each closed convex and bounded set C seems convex from
any point a 6∈ C.
We use few geometrical constants depending on the set and the point. Given an
arbitrary bounded set C such that 0 6∈ co C we set

J0(C, 0) = inf{k ≥ 1; kco C ∩ co C ⊂ C}.

For k large enough kco C ∩ co C = Ø hence, the above is well defined. For the
bounded set C and a 6∈ co C we put J0(C, a) = J0(C − a, 0) and

J(C, a) = lim inf
δ↓0

J0(Cδ, a).

Let C and a satisfy same requirements as above. We set

j0(C, 0) = sup{k ≤ 1; kco C ∩ co C ⊂ C};

j0(C, a) = j0(C − a, 0) and j(C, a) = lim sup
δ↓0

j0(Cδ, a).

It is clear that if C is convex then for any a 6∈ C it is true that j0(C, a) =
J0(C, a) = 1, i.e. the introduced constants measure in some sense the nonconvex-

ity of C. It is also easy to see that J(C, 0) ≤
sup ‖co C‖

inf ‖co C‖
and j(C, 0) ≥

inf ‖co C‖

sup ‖co C‖
.

Our main result is the following extension of Clarke-Ledyaev inequality.

Theorem 2.2. Let X be a β-smooth Banach space, C ⊂ X be a closed
and bounded set, D = co C, the point a 6∈ D and C seem convex from a. Given
a lower semicontinuous function f : X → R ∪ {+∞}, a ∈ dom f , real number r
so that

r < lim
ε↓0

inf f(Cε) − f(a)
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and arbitrary δ > 0, one can find x ∈ [a,D] + δBX and p ∈ D−
β f(x) such that

ϕ(r) < inf p(C − a) and f(x) < f(a) + 2−1(r + |r|) + δ, where

ϕ(r) =

{

r/J(C, a) , r ≥ 0
r/j(C, a) , r < 0.

This result contains Theorem 1.1 as a partial case (since for C convex
J(C, a) = j(C, a) = 1) and is really more general (since it is easy to construct
nonconvex sets that seem convex from some points).
It is natural to ask what happens when a 6∈ co C but the set C does not seem
convex from a. In this case Proposition 3.6 shows that for all n ∈ N there is a lower
semicontinuous function fn(x) = nf(x−a), where f is defined in Proposition 3.6,
such that for some ε > 0, that does not depend on n, inf fn(Cε) − fn(a) ≥ nε
but ∀p ∈ D−

β fn(X) ⇒ inf p(C − a) ≤ 0. So, in general one can not estimate the

infimum of the values of arbitrary function over C by the corresponding infimum
of the elements of its subdifferential. In other words, no statement like Theorem
2.2 is true for sets that does not seem convex from the point considered.
Note also that the subdifferential estimate we obtain depends on C and a via the
geometrical constants J(C, a) or j(C, a). Example 3.7 provides a case in which
the constant ϕ(r) is optimal.

3. Proof of the main result. We start with few preliminary steps. We
show at the beginning the way that we are going to use the constants J(C, a)
and j(C, a).

Lemma 3.1. Let the set C ⊂ X be bounded and such that 0 6∈ co C. If
k > J0(C, 0) then kco C∩[0, co C] ⊂ C. If k ∈ (0, j0(C, 0)) then kco C∩co C ⊂ C.

P r o o f. By the definition of J0(C, 0) there is l ∈ [1, k) such that lco C ∩
co C ⊂ C. Let z ∈ kco C ∩ [0, co C]. That is k−1z ∈ co C and there is α ∈ (0, 1]
such that α−1z ∈ co C (α 6= 0 since z 6= 0). By the convexity of co C it follows
that [k−1z, α−1z] ⊂ co C. But [l−1z, z] ⊂ [k−1z, α−1z] ⊂ co C, i.e. l−1z ∈ co C
and z ∈ co C, i.e. z ∈ lco C ∩ co C ⊂ C.
Let now k ∈ (0, j0(C, 0)). By definition, there is l ∈ (k, j0(C, 0)) such that
lco C ∩ co C ⊂ C. Let z ∈ kco C ∩ co C, i.e. [z, k−1z] ⊂ co C. But [z, l−1z] ⊂
[z, k−1z] and consequently z ∈ lco C ∩ co C ⊂ C. �

The following is a key argument for our approach.

Lemma 3.2. Let the set D ⊂ X be closed, convex and bounded, 0 6∈ D;
0 < ε < 2−1δ, µ > 1. If y ∈ µDε, x ∈ [0,Dδ ] and ‖x − y‖ < ε then x ∈ Dδ.

P r o o f. Put (α, β) = {t ∈ R
+; ty ∈ Dε}. Since µ−1y ∈ Dε, we have that

α < 1.
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Assume first that β < 1. Then ‖βx − βy‖ = β‖x − y‖ < βε < ε. Since βy ∈ Dε

and 2ε < δ, there is y1 ∈ D such that ‖βy − y1‖ < δ − ε. Hence ‖βx − y1‖ < δ,
i.e. βx ∈ Dδ. So, if we let (α1, β1) = {t ∈ R

+; tx ∈ Dδ}, then β ∈ (α1, β1) i.e.
α1 < 1. If β1 < 1, then x 6∈ [0,Dδ ] which is a contradiction. Thus 1 ∈ (α1, β1)
that is x ∈ Dδ.
Assume now that β ≥ 1. Then y ∈ Dε and, since 2ε < δ, there is y1 ∈ D such
that ‖y − y1‖ < ε + δ − 2ε = δ − ε. Hence ‖x − y1‖ < δ, i.e. x ∈ Dδ. �

We always work with some neighborhood of the set instead of the set itself. This
is due to the lack of compactness in infinite dimensional case that generates some
technical problems. The following Lemma contents some of the computations we
need.

Lemma 3.3. Let X be a Banach space, C ⊂ X be a closed and bounded
set, D = co C and 0 6∈ Dδ for some δ > 0. Assume that there exist ε ∈ (0, δ) such

that ε
sup ‖Dδ‖(1 + ε)

inf ‖Dε‖
<

δ

2
and ε sup ‖Dε‖ < 4−1δ (recall that inf ‖Dε‖ > 0);

and y0 = 0, y1, . . . , yN such that yn =

n
∑

i=1

tixi, where xi ∈ Dε and ti ∈ [0, ε];

yN 6∈ [0,Dδ ], yn ∈ [0,Dδ ] for n = 0, . . . , N − 1 and yn 6∈ Cδ for n = 0, . . . , N .
Then C does not seem convex from 0.

P r o o f. Note that ‖yn‖ = ‖
n
∑

i=1

tixi‖ ≤ sup ‖xi‖
n
∑

i=1

ti ≤ sup ‖Dε‖
n
∑

i=1

ti.

Since (
n
∑

i=1

ti)
−1yn ∈ Dε we have that ‖yn‖ ≥ inf ‖Dε‖

n
∑

i=1

ti. So, we have the

estimates

inf ‖Dε‖

n
∑

i=1

ti ≤ ‖yn‖ ≤ sup ‖Dε‖

n
∑

i=1

ti.(3.1)

For arbitrary i = 1, . . . , N there is zi ∈ D such that ‖zi − xi‖ < ε (recall that

xi ∈ Dε). Put y0 = 0, yj =

j
∑

i=1

tizi, j = 1, . . . , N . Using (3.1) and the fact

that yN−1 ∈ [0,Dδ ], we compute inf ‖Dε‖

N
∑

i=1

ti ≤ ‖yN‖ ≤ ‖yN−1‖ + ‖yN−1 −

yN‖ = ‖yN−1‖+ tN‖xN‖ ≤ sup ‖Dδ‖+ ε sup ‖Dε‖ ≤ sup ‖Dδ‖(1 + ε). Moreover,

for j = 1, . . . , N it is fulfilled that ‖yj − yj‖ ≤

j
∑

i=1

ti‖zi − xi‖ < ε
N
∑

i=1

ti ≤

ε
sup ‖Dδ‖(1 + ε)

inf ‖Dε‖
<

δ

2
by the assumption. That is yj 6∈ C2−1δ for j = 1, . . . , N .



282 M. Ivanov, N. Zlateva

For α ∈ [0, 1], z ∈ C and j = 1, . . . , N −1 we have that ‖αyj +(1−α)yj+1−z‖ ≥

‖yj+1−z‖−αtj+1‖zj+1‖ ≥
δ

2
−

δ

4
=

δ

4
, since tj+1‖zj+1‖ ≤ ε sup ‖D‖ < 4−1δ. We

see now that [yj , yj+1]∩C = Ø for j = 1, . . . , N−1. Also, since, as we have already

proved, ‖yN − yN‖ < 2−1δ and yN 6∈ [0,Dδ ], the point yN is outside the closed

and convex set [0,D]. Let q ∈ X∗ be such that q(yN ) > sup q([0,D]) ≥ 0. Put

d = (

N
∑

i=1

ti)
−1yN ∈ D. Note that q(d) > 0 and hence q(yN + td) > sup q([0,D])

for t > 0, i.e. yN + td 6∈ D. Now we can construct the sequence

y′n =

{

yn , n = 0, . . . , N
yn + (n − N)d , n > N

which shows that C does not seem convex from 0. �

As we can see from the statement of our main result the cases r ≥ 0 and r < 0
are bit different. The next two Lemmas essentially solve these two cases.

Lemma 3.4. Let X be a β-smooth Banach space, C ⊂ X be a closed
and bounded set that seems convex from 0, D = co C and 0 6∈ Dδ for some
δ > 0. Given a lower semicontinuous function f : X → R ∪ {+∞}, f(0) = 0,
real numbers r ≥ 0 such that r < lim

ε↓0
inf f(Cε) and k > J0(Cδ , 0), one can find

x ∈ [0,D]2δ and p ∈ D−
β f(x) such that inf p(C) >

r

k
and f(x) < r + 2δ.

P r o o f. Choose r1 ∈ (r, r+2−1δ) such that inf f(Cδ) > r1 > r and k1 > k

such that
r1

k1
>

r

k
. Let ε > 0 be so small that

1) ε < k1 − k, ε < δ and rε < 2−1δ;
2) ε satisfies together with the given δ the conditions of Lemma 3.3.

For y ∈ X define the set

A(y) = {(t, x) ∈ [0, ε] × Dε; f(y + tx) ≤ f(y) +
r1

k1
t}.

Observe that for every y ∈ X the set A(y) is non-empty, since (0, x) ∈ A(y)
for any x ∈ Dε. Define the function s(y) = sup{‖tx‖; (t, x) ∈ A(y)}. From the
definitions it is clear that for every y ∈ X it is fulfilled that 0 ≤ s(y) ≤ ε‖Dε‖.
Consider the sequences {yn}

∞
n=0 ⊂ X, {xn}

∞
n=1 ⊂ Dε and {tn}

∞
n=1 ⊂ [0, ε] such

that y0 = 0 and for n ≥ 1 (tn, xn) ∈ A(yn−1) and tn‖xn‖ ≥ 2−1s(yn−1); yn =
n
∑

i=1

tixi. Such sequences exist by induction.

We claim that

if yn ∈ Cδ for some n ∈ N then either yn−1 ∈ Cδ or yn−1 6∈ [0,Dδ ].(3.2)
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To see this let yn ∈ Cδ. From

r1 < inf f(Cδ) ≤ f(yn) ≤ f(yn−1) + tn
r1

k1
≤ · · · ≤ f(0) +

r1

k1

n
∑

i=1

ti

it follows that

n
∑

i=1

ti > k1. So,

n−1
∑

i=1

ti > k1 − ε > k > J0(Cδ, 0) and, since yn−1 ∈

(

n−1
∑

i=1

ti

)

Dδ , from Lemma 3.1 it follows that if yn−1 ∈ [0,Dδ ] then yn−1 ∈ Cδ.

For the sequence {yn}
∞
n=0 there are exactly two possibilities.

Case 1: It is true that yn ∈ [0,Dδ ] for arbitrary n ∈ N.

Then sup
n∈N

‖yn‖ < ∞. From (3.1) it follows that

∞
∑

n=1

ti < ∞ and consequently

yn −→
n→∞

y =

∞
∑

i=1

tixi. Obviously y ∈ [0,Dδ ]. If we assume that

∞
∑

i=1

ti > k then

we can fix n ∈ N such that

n
∑

i=1

ti > k. Since by assumption yn ∈ [0,Dδ ] and

yn ∈ (
n
∑

i=1

ti)Dδ Lemma 3.1 shows that yn ∈ Cδ. From (3.2) it follows that

yn−1 ∈ Cδ. Similarly, yn−2 ∈ Cδ, . . . , y0 = 0 ∈ Cδ, which yields a contradiction.

Therefore

∞
∑

i=1

ti ≤ k.

Now, assume that we can find x ∈ Dε such that f(y+εx) < f(y)+
r1

k1
ε. Put xn =

x+ ε−1(y−yn) and note that xn −→
n→∞

x ∈ Dε. Since Dε is open set we have that

xn ∈ Dε for sufficiently large n. Observe that f(yn+εxn) = f(y+εx) < f(y)+
r1

k1
ε

and the lower semicontinuity of f at y gives f(yn + εxn) < f(yn) +
r1

k1
ε for

sufficiently large n. Thus (ε, xn) ∈ A(yn) and lim
n→∞

s(yn) ≥ lim
n→∞

ε‖xn‖ = ε‖x‖ >

0, since x ∈ Dε ⊂ Dδ 6∋ 0 and ε > 0. But from the definition of (tn, xn) we
have that s(yn−1) ≤ 2tn‖xn‖ −→

n→∞

0, which yields a contradiction. Therefore, for

arbitrary x ∈ Dε it follows that f(y+εx) ≥ f(y)+
r1

k1
ε. We will apply Theorem 1.1

to the point y and the set y + εD with δ. To this end we see that f(y) ≤

lim sup
n→∞

f(yn) ≤
r1

k1

∞
∑

i=1

ti ≤
r1

k1
k < r1. Also, lim

γ↓0
inf f(y + εD + γBX) − f(y) ≥
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inf f(y + εDε) − f(y) ≥
r1

k1
ε >

r

k
ε by our previous consideration. According to

Theorem 1.1 there are x ∈ [y, y+εD]+δBX ⊂ [0,D]2δ and p ∈ D−
β f(x) such that

inf p(εC) >
r

k
ε, i.e. inf p(C) >

r

k
and f(x) < f(y)+

r

k
ε+ δ ≤ r1 +rε+ δ < r+2δ

because of the choice of r1 and ε.

Case 2: We can find the smallest natural number N such that yN 6∈ [0,Dδ ].
If there was n0 ∈ {1, . . . , N − 1} such that yn0

∈ Cδ then (3.2) together with the
fact that yn ∈ [0,Dδ ] for n ∈ {1, . . . , N −1} would lead to a contradiction via the
same argument as above. So, yn 6∈ Cδ for all n = 1, . . . , N . Then by Lemma 3.3
it follows that C does not seem convex from 0 which is a contradiction. �

Lemma 3.5. Let X be a β-smooth Banach space, C ⊂ X be a closed
and bounded set that seems convex from 0, D = co C and 0 6∈ Dδ for some δ > 0.
Given a lower semicontinuous function f : X → R ∪ {+∞}, f(0) = 0, real
numbers r < 0 such that r < lim

ε↓0
inf f(Cε) and k ∈ (0, j0(Cδ, 0)), one can find

x ∈ [0,D]2δ and p ∈ D−
β f(x) such that inf p(C) >

r

k
and f(x) < 2δ.

P r o o f. Most of the steps are similar to these in the proof of Lemma 3.4,
so we just sketch them.
We choose in an appropriate way r1 < 0 such that inf f(Cδ) > r1 > r, k1 ∈ (0, k)

such that
r1

k1
>

r

k
and ε > 0 small enough.

We construct inductively in the same manner as in the proof of the previous
Lemma the sequences {yn}

∞
n=0 ⊂ X, {xn}

∞
n=1 ⊂ Dε and {tn}

∞
n=1 ⊂ [0, ε].

Case 1: It is true that yn ∈ [0,Dδ ] for arbitrary n ∈ N.

Then yn −→
n→∞

y =

∞
∑

i=1

tixi ∈ [0,Dδ ]. By the lower semicontinuity of f it follows

that f(y) ≤ 0. The same arguments as that used in the proof of Lemma 3.4 and
the Clarke-Ledyaev inequality (Theorem 1.1) complete the proof in this case.

Case 2: We can find the smallest natural number N such that yN 6∈ [0,Dδ ].
Since C seems convex from 0 we can see from Lemma 3.3 that the set {n ∈
1, . . . , N ; yn ∈ Cδ} is nonempty and we put m to be the maximum of this set.
From

r1 < inf f(Cδ) ≤ f(ym) ≤ f(ym−1) + tm
r1

k1
≤ . . . ≤ f(0) +

r1

k1

m
∑

i=1

ti

and r1 < 0 it follows that
m
∑

i=1

ti < k1. So,
m+1
∑

i=1

ti < k < 1 and in particular

ym+1 ∈ (
m+1
∑

i=1

ti)Dε ⊂ [0,Dε]. Also, since ym+1 6∈ Cδ Lemma 3.1 gives that
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ym+1 6∈ Dδ. Let (α, β) = {t ∈ R
+; tym+1 ∈ Dδ}. Since ym+1 ∈ [0,Dε] the above

set is nonempty and β > 1. Since ym+1 6∈ Dδ we have that α > 1. In other words
[0, ym+1] ∩ Dδ = Ø. Let z0 = 0, z1, . . . , zl = ym+1 be partition of the interval
[0, ym+1] such that ‖zi+1 − zi‖ < ε. Then the sequence z0, . . . , zl, ym+1, . . . , yN

satisfies the conditions of Lemma 3.3 and consequently C does not seem convex
from 0 which is a contradiction. �

We are ready now to proceed with the proof of the main theorem.

P r o o f o f T h e o r e m 2.2. We may assume that a = 0 and f(0) = 0 by
considering instead of f(x) the function f(x + a) − f(a).

Case 1: r ≥ 0. Take r1 > r such that lim
ε↓0

inf f(Cε) > r1 and k > J(C, 0)

such that
r1

k
>

r

J(C, 0)
= ϕ(r) and r1 < r+2−1δ. We can find then δ1 ∈ (0, 4−1δ)

such that inf f(Cδ1) > r1 and k > J0(Cδ1 , 0). Apply Lemma 3.4 with this k and
r = r1, δ = δ1. We obtain x ∈ [0,D]2δ1 ⊂ [0,D]δ and p ∈ D−

β f(x) such that

inf p(C) >
r1

k
> ϕ(r) and f(x) < r1 + 2δ1 < r + δ. The proof of this case is

completed.
Case 2: r < 0. We apply Lemma 3.5 instead of Lemma 3.4. �

We conclude by giving the two examples, the purpose of which has been explained
after the statement of Theorem 2.2.

Proposition 3.6. If the closed bounded set C ⊂ X, such that 0 6∈ co C,
does not seem convex from 0 then there is a continuous function f : X → R such
that inf f(Cε) > 0 for some ε > 0 but for arbitrary x ∈ dom f and p ∈ D−

β f(x) it

follows that inf p(C) ≤ 0.

P r o o f. From the definition we know that there exists an unbounded
sequence {yn}

∞
n=0 such that y0 = 0, yn+1 − yn ∈ R

+co C and [yn, yn+1] ∩ C = Ø
for all n ∈ N. Estimates similar to (3.1) show that in fact lim

n→∞
‖yn‖ = ∞. Define

the function

f(x) = dist

(

x,

∞
⋃

i=0

[yi, yi+1]

)

.

Since lim
n→∞

‖yn‖ = ∞, the set C is bounded and for arbitrary n ∈ N the set
n
⋃

i=0

[yi, yi+1] is compact we have that dist
(

C,

∞
⋃

i=0

[yi, yi+1]
)

> 2ε for some ε > 0.

This means that inf f(Cε) > 0.
Fix arbitrary x ∈ X. There are at least one index i(x) ∈ N∪{0} and point P (x) ∈
[yi(x), yi(x)+1) such that ‖x−P (x)‖ = f(x). Let h = ‖yi(x)+1 − yi(x)‖

−1(yi(x)+1 −
yi(x)). For t > 0 small enough P (x)+th ∈ [yi(x), yi(x)+1), so f(x+th) ≤ ‖(x+th)−
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(P (x)+th)‖ = ‖x−P (x)‖ = f(x). Therefore, f+(x, h)= lim sup
t↓0

f(x+th)−f(x)

t
≤0.

In particular, if p ∈ D−
β f(x) then p(h) ≤ 0. Since yi(x)+1 − yi(x) ∈ R

+co C

there are z ∈ co C and s > 0 such that h = sz. Consequently p(z) ≤ 0, i.e.
0 ≥ inf p(co C) = inf p(C). �

Example 3.7. Consider X = R
2 = {(x, y);x, y ∈ R}. Let C =

[(2,−1), (2, 1)] ∪ {(1, 4−1)} ∪ {(1,−4−1)} and f(x, y) = 2−1x + 2|y|. Then C
seems convex from 0, J(C, 0) = 2 and min f(C) = 1. If p ∈ D−f(x, y) then
inf p(C) ≤ p(1, 0) ≤ f ′

x(x, y) = 2−1.
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des Antilles et de la Guyane, 1996.

[2] F. Clarke, Yu. Ledyaev. Mean value inequalities in Hilbert space. Trans.
Amer. Math. Soc. 344, 1 (1994), 307–324.

[3] J.-N. Corvellec. Constrained variational principle and mean value in-
equality in Banach spaces with a smooth bump function. Preprint.

[4] Dinh The Luc. A strong mean value theorem and its applications. Nonlin-
ear Anal. 26 (1996), 915-923.

[5] M. Ivanov, N. Zlateva. On Clarke–Ledyaev inequality. Preprint of Bulg.
Acad. Sci. 1, May 1998.

[6] Q. Zhu. Clarke-Ledyaev mean value inequalities in smooth Banach spaces.
Nonlinear Anal. 32, 3 (1998), 315–324.

Milen Ivanov

University of Sofia

Department of Mathematics and Informatics

5, James Bourchier Blvd.

1164 Sofia, BULGARIA

e-mail: milen@fmi.uni-sofia.bg

Nadia Zlateva

Bulgarian Academy of Sciences

Institute of Mathematics and Informatics

Acad. G. Bontchev Str., Bl. 8

1113 Sofia, BULGARIA

e-mail: zlateva@math.bas.bg Received July 26, 1999


