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ON MINIMIZING ‖S − (AX − XB)‖p

p

Salah Mecheri

Communicated by S. L. Troyanski

Abstract. In this paper, we minimize the map Fp(X)= ‖S−(AX−XB)‖
p

p,
where the pair (A, B) has the property (FP )Cp

, S ∈ Cp, X varies such that
AX − XB ∈ Cp and Cp denotes the von Neumann-Schatten class.

1. Introduction. Let L(H) be the algebra of all bounded operators
acting on a complex Hilbert space H. For A and B in L(H), let δA,B denote the
operator on L(H) defined by δA,B(X) = AX − XB. If A = B, then δA is called
the inner derivation induced by A. A well-known result of J. Anderson and C.
Foias [1] says that if A and B are normal operators such that, AS = SB then,
for all X ∈ L(H),

‖S − (AX − XB)‖ ≥ ‖S‖ .(1.1)

In this paper we obtain an inequality similar to (1.1), where the operator norm is
replaced by the ‖ · ‖p norm on the von Neumann-Schatten class Cp, 1 ≤ p < ∞.
We prove that, if the pair (A,B) has the property (FP )Cp

, i.e. (AT = TB, where
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Fuglede′s property.
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T ∈ Cp implies A∗T = TB∗) 1 ≤ p < ∞ and S ∈ ker δA,B ∩Cp then, the map Fp

defined by Fp(X) = ‖S − (AX − XB)‖p
p has a global minimizer at V if, and for

1 < p < ∞ only if, AV − V B = 0. In other words, we have

‖S − (AX − XB)‖p
p ≥ ‖T‖p

p(1.2)

if, and for 1 < p < ∞ only if, AV − V B = 0. Thus in Halmos′ terminologie [5]
the zero commutator is the commutator approximant in Cp of T . Additionally,
we show that if, the pair (A,B) has the property (FP )Cp

and S ∈ ker δA,B ∩Cp,
1<p<∞ then, the map Fp has a critical point at W if, and only if, AW−WB = 0,
i.e. if DW Fp is the Frechet derivative at W of Fp, the set

{W ∈ L(H) : DW Fp = 0}(1.3)

coinsides with ker δA,B (the kernel of δA,B).

2. Preliminaries. For details of the von Neumann-Schatten class see [8].

Theorem 2.1 [2]. If 1 < p < ∞, then the map Fp : Cp 7−→ R
+ defined

by X 7−→ ‖X‖p
p, is differentiable at every X ∈ Cp with derivative DXFp given by

DXFp(T ) = p Re tr(|X|p−1 U∗T ),(2.1)

where tr denotes trace, Re z is the real part of a complex number z and X = U |X|
is the polar decomposition of X. If dimH < ∞, then the same result holds for

0 < p ≤ 1 at every invertible X.

Theorem 2.2 [6]. If U is a convex set of Cp, with 1 < p < ∞, then the

map X 7−→ ‖X‖p
p, where X ∈ U has at most a global minimizer.

3. Orthogonality. The following definition generalizes the idea of or-
thogonality in Hilbert space.

Definition 3.1. Let C be a complex numbers and let E be a normed

linear space. Let F and G be two subspaces of E. If ‖x + y‖ ≥ ‖y‖ for all x ∈ F

and for all y ∈ G, then F is said to be orthogonal to G.

Definition 3.2. Let A,B ∈ L(H). The pair (A,B) has the property

(FP )L(H) if, AC = CB, where C ∈ L(H) implies A∗C = CB∗.

Definition 3.3. Let U(A,B) = {X ∈ L(H) : AX − XB ∈ Cp} and

Fp : U 7−→ R
+ be the map defined by Fp(X) = ‖T − (AX − XB)‖p

p, where

T ∈ ker δA,B ∩ Cp, 1 ≤ p < ∞.
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Theorem 3.1 [7]. Let A ∈ L(H), if A is normal and S ∈ Cp, 1 ≤ p < ∞
such that AS = SA, then

‖S − (AX − XA)‖p
p ≥ ‖S‖p

p ,(3.1)

for every X ∈ L(H).

Theorem 3.2. Let A,B ∈ L(H), if A and B are normal operators and

T ∈ Cp, 1 ≤ p < ∞ such that AT = TB, then

‖T − (AX − XB)‖p
p ≥ ‖T‖p

p ,(3.2)

for every X ∈ L(H).

P r o o f. Taking on H⊕H,

Q =

[

A 0
0 B

]

, S =

[

0 T

0 0

]

, Y =

[

0 X

0 0

]

,

then Q is normal on H ⊕ H and S ∈ Cp. Since AT = TB, then it results that
QS = SQ. Since

QY − Y Q =

[

0 AX − XB

0 0

]

,

then it follows from Teorem 3.1 that,

‖S − (QY − Y Q)‖p
p ≥ ‖S‖p

p , ∀S ∈ Cp

consequently we obtain,

‖T − (AX − XB)‖p
p = ‖S − (QY − Y Q)‖p

p ≥ ‖S‖p
p = ‖T‖p

p . �

Lemma 3.3. Let A,B ∈ L(H). The following statements are equivalent:

(1) The pair (A,B) has the property (FP )L(H)

(2) If AT = TB where T ∈ L(H), then R(T ) reduces A, ker(T )⊥ reduces

B, and A |
R(T ) and B |ker(T )⊥ are normal operators, where R and ker denote the

range and the kernel, respectively.

P r o o f. (1) ⇒ (2): Since AT = TB and the pair (A,B) has the property
(FP )L(H), A∗T = TB∗ and so R(T ) and ker(T )⊥ are reducing subspaces for A

and B, respectively. Since A(AT ) = (AT )B, we obtain A∗(AT ) = (AT )B∗ by
(FP )L(H), and the identity A∗T = TB∗ implies that A∗AT = AA∗T . Thus we see
that A |

R(T )
is normal. Clearly (B∗, A∗) satisfies (FP )L(H), and B∗T ∗ = T ∗A∗.
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Therefore it follows from the above argument that B∗ |
R(T ∗)= (B |ker(T )⊥)∗ is

normal.
(2) ⇒ (1): Let T ∈ L(H) such that AT = TB. Taking the two decom-

positions of H, H1 = H = R(T ) ⊕ R(T )
⊥
, H2 = H = ker T ⊕ ker(T )⊥. Then we

can write A and B on H1 into H2 respectively,

A =

[

A1 0
0 A2

]

, B =

[

B1 0
0 B2

]

,

where A1, B1 are normal operators. Also we can write T and X on H2 into H1

T =

[

T1 0
0 0

]

,X =

[

X1 X2

X3 X4

]

.

It follows from AT = TB that A1T1 = T1B1. Since A1 and B1 are normal
operators, then by applying the Putnam Fuglede′s theorem, we obtain A∗

1T1 =
T1B

∗
1 , that is, A∗T = TB∗. �

Theorem 3.4. Let A,B ∈ L(H). If the pair (A,B) has the property

(FP )L(H), then

‖C − (AX − XB)‖ ≥ ‖C‖ ,(3.3)

for every operator C ∈ ker δA,B and for every X ∈ L(H).

P r o o f. Since the pair (A,B) has the property (FP )L(H), it follows from

Lemma 3.3 that, R(C) reduces A, ker(C)⊥ reduces B, and A |
R(C)

and B |ker(C)⊥

are normal operators. Let,

A =

[

A1 0
0 A2

]

, B =

[

B1 0
0 B2

]

, C =

[

C1 0
0 0

]

, X =

[

X1 X2

X3 X4

]

.

It follows from

AC − CB =

[

A1C1 − C1B1 0
0 0

]

= 0,

that A1C1 = C1A1 and we have

‖C − (AX − XB)‖ =

∥

∥

∥

∥

[

C1 − (A1X1 − X1B1) ∗
∗ ∗

]
∥

∥

∥

∥

.

Since A1 and B1 are two normal operators, then the result of J. H. An-
derson and C. Foias [1] guarentees that,

‖C1 − (A1X1 − X1B1)‖ ≥ ‖C1‖ ,
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so

‖C + AX − XB‖ ≥ ‖C1 − (A1X1 − X1B1)‖ ≥ ‖C1‖ = ‖C‖ . �

Remark 3.1. If A and B are two normal operators, then inequality
(3.3) holds for every C ∈ ker δA,B. Hence, Theorem 3.4 generalizes the result
given by J. H. Anderson and C. Foias [1]. In particular we have

R(δA,B) ∩ ker δA,B = {0} .(3.4)

Corollary 3.5. Let A,B ∈ L(H) and C ∈ ker δA,B, then

‖C + AX − XB‖ ≥ ‖C‖ ,∀X ∈ L(H).

In each of the following cases:

(1) A dominant and B∗ M−hyponormal

(2) A dominant and B∗ k−quasihyponormal

(3) A k−quasihyponormal and B∗ k−quasihyponormal injective

(4) A k−quasihyponormal and B∗ dominant.

P r o o f. Adapted from B. P. Duggal [3] if we have (1), (2), (3)and (4) the
pair (A,B) has the property (FP )L(H). �

Lemma 3.6. Let A,B ∈ L(H) and C ∈ L(H) such that the pair

(A,B) has the property (FP )L(H). If A |S|p−1 U∗ = |S|p−1 U∗B, where p > 1 and

S = U |S| is the polar decomposition of S, then A |S|U∗ = |S|U∗B.

P r o o f. If T = |S|p−1, then

ATU∗ = TU∗B.(3.5)

We prove that

AT nU∗ = T nU∗B,(3.6)

for all n ≥ 1. If S = U |S|, then ker U = ker |S| = ker |S|p−1 = ker T and
(ker U)⊥ = (ker T )⊥ = R(T ). This shows that the projection U∗U onto (ker T )⊥

satifies U∗UT = T and TU∗UT = T 2. By taking adjoints of (3.5) and since
the pair (A,B) has the property (FP )L(H), we get BUT = UTA and AT 2 =
ATU∗UT = TU∗BUT = TU∗UTA = T 2A. Since A commutes with the positive
operator T 2, then A commutes with its square roots, that is,

AT = TA(3.7)
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By (3.5) and (3.7) we obtain (3.6). Let f(t) be the map defined on σ(T ) ⊂ R
+

by f(t) = t
1

p−1 ; 1 < p < ∞. Since f is a uniform limits of a sequence (Pi) of
polynomials without constant term (since f(0) = 0), then it follows from (3.6)

that APi(T )U∗ = Pi(T )U∗B. Therefore AT
1

p−1 U∗ = U∗T
1

p−1 B. �

Theorem 3.7. Let A,B ∈ L(H). If the pair (A,B) has the property

(FP )Cp
and S ∈ Cp such that AS = SB, then

1) For 1 ≤ p < ∞, the map Fp has a global minimizer at W if, and for

1 < p < ∞ only if, AW − WB = 0.

2) For 1 < p < ∞, the map Fp has a critical point at W if, and only if,

AW − WB = 0.

3) For 0 < p ≤ 1, dimH < ∞ and S − (AW − WB) is invertible, then

Fp has a critical point at W , if AW − WB = 0.

Before proving this theorem we need the following lemma.

Lemma 3.8. Let A,B ∈ L(H). The following statements are equivalent.

(1) The pair (A,B) has the property (FP )Cp

(2) If AT = TB where T ∈ Cp, then R(T ) reduces A, ker(T )⊥ reduces B,

and A |
R(T )

and B |ker(T )⊥ are normal operators.

P r o o f. Since Cp is a bilateral ideal and T ∈ Cp, then AT ∈ Cp. It suffices
to remark that A(AT ) = (AT )B implies A∗(AT ) = (AT )B∗ by (FP )Cp

, and the
identity A∗T = TB∗ implies that A∗AT = AA∗T . By the same arguments as in
the proof of Lemma 3.3, the proof of this Lemma can be finished. �

P r o o f o f T h e o r em 3.8. Since the pair (A,B) has the property
(FP )Cp

, it follows from the above lemma that, R(S) reduces A, ker(S)⊥ reduces
B, and A |

R(S) and B |ker(S)⊥ are normal operators. Let,

A =

[

A1 0
0 A2

]

, B =

[

B1 0
0 B2

]

, S =

[

S1 0
0 0

]

, X =

[

X1 X2

X3 X4

]

.

It follows from

AS − SB =

[

A1S1 − S1B1 0
0 0

]

= 0,

that A1S1 = S1B1 and we have

‖S − (AX − XB)‖p
p =

∥

∥

∥

∥

[

S1 − (A1X1 − X1B1) ∗
∗ ∗

]
∥

∥

∥

∥

p

p

.
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Since A1 and B1 are two normal operators, then it results from Theo-
rem 3.2 that,

‖S1 − (A1X1 − X1B1)‖
p
p ≥ ‖S1‖

p
p ,

hence it follows from [4, p. 82] that,

‖S − (AX − XB)‖p
p ≥ ‖S1 − (A1X1 − X1B1)‖

p
p ≥ ‖S1‖

p
p = ‖S‖p

p ,

i.e. Fp(X) ≥ Fp(W ). Conversely, if Fp has a minimum then ‖S − (AW − WB)‖p
p =

‖S‖p
p. Since U is convex then, the set V = {S − (AX − XB); X ∈ U} is also con-

vex. Thus Theorem 2.2 implies that S − (AW − WB) = S.
2) Let W,S ∈ U and φ, ϕ be two maps defined respectively by

φ : X 7−→ S − (AX − XB); ϕ : X 7−→ ‖X‖p
p .

Since the Frechet derivative of Fp is given by

DW Fp(T ) = lim
h−→0

Fp(W + hT ) − Fp(W )

h
,

it follows that DW Fp(T ) = [DS−(AW−WB)](TB −AT ). If W is a critical point of
Fp, then DW Fp(T ) = 0, ∀T ∈ U , by applyig Theorem 2.1 we get,

DW Fp(T ) = p Re tr[|S − (AW − WB)|p−1 W ∗(TB − AT ) =

p Re tr[Y (TB − AT )] = 0,

where S − (AW − WB) = W |S − (AW − WB)| is the polar decomposition of
the operator S − (AW − WB) and Y = |S − (AW − WB)|p−1 W ∗. An easy
calculation shows that BY − Y A = 0, that is,

A |S − (AW − WB)|p−1 W ∗ = |S − (AW − WB)|p−1 W ∗B.

It follows from Lemma 3.6 that

A |S − (AW − WB)|W ∗ = |S − (AW − WB)|W ∗B.

By taking adjoints and since the pair (A,B) has the property (FP )Cp
, we get

A(T−(AW−WB)) = (T−(AW−WB))B, then A(AW−WB) = (AW−WB)B.
Hence AW − WB ∈ R(δA,B) ∩ ker δA,B , by applying the equality(3.4) it results
that AW − WB = 0.

Conversely, if AW = WB, then W is a minimum and since Fp is differ-
entible, then W is a critical point.
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3) Suppose that dimH < ∞. If AW − WB = 0, then S is invertible
by hypothesis. Also |S| is invertible, hence |S|p−1 exists for 0 < p ≤ 1. Taking
Y = |S|p−1U∗, where S = U |S| is the polar decomposition of S. Since AS = SB

implies S∗A = BS∗, then S∗AS = BS∗S and this implies that |S|2B = B|S|2 and
|S|B = B|S|. Since S∗A = BS∗, i.e. |S|U∗A = B|S|U∗, then |S|(U∗A − BU∗) =
0 and since B|S|p−1 = |S|p−1B, so BY − Y A = B|S|p−1U∗ − |S|p−1U∗A =
|S|p−1(BU∗ − U∗A). So, that BY − Y A = 0 and tr[(BY − Y A)T ] = 0 for every
T ∈ L(H). Since S = S−(AW −WB), that is 0 = tr[Y TB−Y AT ] = tr[Y (TB−
AT )] = p Re tr[Y (TB − AT )] = p Re tr[|S|p−1 U∗(TB − AT )] = (DT φ)(TB −
AT ) = (DW Fp)(T ). �

Remark 3.2. In Theorem 3.7 the implication W is a critical point ⇒
AW − WB = 0, does not hold in the case 0 < p ≤ 1 because the functional

calculus argument involving the function t 7−→ t
1

p−1 , where 0 ≤ t < ∞, is only
valid for 1 < p < ∞.
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