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ABSTRACT. In this paper, we minimize the map F,(X)=||S—(AX—-XB) ||Z7
where the pair (A4, B) has the property (F'P)c,, S € Cp, X varies such that
AX — XB € C), and C, denotes the von Neumann-Schatten class.

1. Introduction. Let L£(H) be the algebra of all bounded operators
acting on a complex Hilbert space H. For A and B in L(H), let j4 p denote the
operator on L£(H) defined by d4 p(X) = AX — XB. If A= B, then 04 is called
the inner derivation induced by A. A well-known result of J. Anderson and C.
Foias [1] says that if A and B are normal operators such that, AS = SB then,
for all X € L(H),

(L.1) 15— (AX - XB)| = [|S]|.

In this paper we obtain an inequality similar to (1.1), where the operator norm is
replaced by the || - ||, norm on the von Neumann-Schatten class Cp, 1 < p < occ.
We prove that, if the pair (A4, B) has the property (F'P)c,, i.e. (AT = T B, where
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T € Cp, implies A*T'=TB*) 1 <p < oo and S € ker 4 g N C), then, the map F),
defined by Fj,(X) = ||S — (AX — XB)||} has a global minimizer at V" if, and for
1< p<ooonlyif, AV — VB = 0. In other words, we have

(1.2) 15 = (AX = XB)[l; = [T

if, and for 1 < p < oo only if, AV — VB = 0. Thus in Halmos’ terminologie [5]
the zero commutator is the commutator approximant in C), of T'. Additionally,
we show that if, the pair (A, B) has the property (F'P)c, and S € ker 64,5 N C),
1<p<oo then, the map F), has a critical point at W if, and only if, AW -W B = 0,
i.e. if Dy F}, is the Frechet derivative at W of F},, the set

(1.3) {WeL(H): DwF, =0}
coinsides with ker 4 p (the kernel of d4 p).

2. Preliminaries. For details of the von Neumann-Schatten class see [8].

Theorem 2.1 2]. If1 < p < oo, then the map F, : C,, — R defined
by X — || X |5, is differentiable at every X € C,, with derivative Dx F,, given by

(2.1) DxFy(T) = pRetr(|X[P~1U*T),

where tr denotes trace, Re z is the real part of a complex number z and X = U|X|
is the polar decomposition of X. If dimH < oo, then the same result holds for
0 < p <1 at every invertible X.

Theorem 2.2 [6]. IfU is a convex set of Cp, with 1 < p < oo, then the
map X — || X||b, where X € U has at most a global minimizer.

3. Orthogonality. The following definition generalizes the idea of or-
thogonality in Hilbert space.

Definition 3.1. Let C be a complex numbers and let E be a normed
linear space. Let F' and G be two subspaces of E. If ||z +y| > ||y|| for all z € F
and for all y € G, then F is said to be orthogonal to G.

Definition 3.2. Let A,B € L(H). The pair (A, B) has the property
(FP)rny if, AC = CB, where C € L(H) implies A*C = CB*.

Definition 3.3. Let U(A,B) = {X € L(H): AX —XB e Cp} and
Fy : U — RT be the map defined by Fp(X) = ||T — (AX — XB)|y, where
T eckeroapnCy, 1 <p<oo.
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Theorem 3.1 [7]. Let A€ L(H), if A is normal and S € Cp,1 < p < 00
such that AS = SA, then

(3.1) 1§ = (AX = XA)|I7 = [IS]7,
for every X € L(H).

Theorem 3.2. Let A,B € L(H), if A and B are normal operators and
T e Cp,1 < p<oo such that AT =TB, then

(3.2) 1T = (AX = XB)I[; = [ TIl5,

for every X € L(H).
Proof. Taking on H ® H,

A0 0T 0 X
o=[i ] s=foo) o 0]

then @ is normal on H @ H and S € C)p. Since AT = T B, then it results that
QS = 5Q. Since
0 AX-XB ]

QY —YQ = [ 0 0
then it follows from Teorem 3.1 that,
1S —(QY —=YQ)[l; = S|, VS € G,

consequently we obtain,

IT = (AX = XB)[l; = IS — (QY = YQ)|p = IS|l; = I1T'll; - a

Lemma 3.3. Let A, B € L(H). The following statements are equivalent:

(1) The pair (A, B) has the property (FP) )

(2) If AT = TB where T € L(H), then R(T) reduces A, ker(T)* reduces
B, and A ‘W and B |ker(T)J_ are normal operators, where R and ker denote the

range and the kernel, respectively.

Proof. (1) = (2): Since AT = T'B and the pair (A, B) has the property
(FP)r@), AT = TB* and so R(T) and ker(T)* are reducing subspaces for A
and B, respectively. Since A(AT) = (AT)B, we obtain A*(AT') = (AT)B* by
(FP)r(m), and the identity A*T' = T'B* implies that A*AT = AA*T. Thus we see
that A |W is normal. Clearly (B*, A*) satisfies (F'P)/ 3y, and B*T* = T*A*.
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Therefore it follows from the above argument that B* ‘W: (B [ker(ryL)* is

normal.

(2) = (1): Let T € L(H) such that AT = TB. Taking the two decom-
positions of H, Hi = H = R(T) ® R(T), Ha = H = ker T @ ker(T)*. Then we
can write A and B on H; into Hsa respectively,

A0 B 0
A‘{o Ag]’ B_[o Bg]’

where Ay, By are normal operators. Also we can write 7" and X on Hs into H;

1o [ X X
=[ota] e[x %

It follows from AT = TB that A;7T; = T1B;. Since A; and B; are normal
operators, then by applying the Putnam Fuglede’s theorem, we obtain AjT) =
T Bj, that is, A*T' =TB*. O

Theorem 3.4. Let A,B € L(H). If the pair (A, B) has the property
(FP)reny, then
(3.3) IC = (AX = XB)| = [[C]],
for every operator C € ker 64, g and for every X € L(H).

Proof. Since the pair (4, B) has the property (FP) ), it follows from
Lemma 3.3 that, R(C) reduces A, ker(C)* reduces B, and A |m and B |iep(oyL
are normal operators. Let,

(A0 [B 0 [ o [ x Xy
e E N S B P B e

It follows from

AC—CB:[AlCl_ClBl 0}:0,

0 0
that A1C7 = C1 A1 and we have

ot | -

Since A7 and B are two normal operators, then the result of J. H. An-
derson and C. Foias [1] guarentees that,

[C1 = (A1 Xy = XaBi)|| = ||,
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SO
IC+AX — XB[| = [|Cy = (A1 Xy = XuB1)|| = [|Ch| = [|C] - N

Remark 3.1. If A and B are two normal operators, then inequality
(3.3) holds for every C' € kerds p. Hence, Theorem 3.4 generalizes the result
given by J. H. Anderson and C. Foias [1]. In particular we have

(3.4) R(5ap) Nkerdap = {0}.

Corollary 3.5. Let A,B € L(H) and C € kerd g, then
|C+AX — XBJ| > ||C||,¥X € L(H).

In each of the following cases:

(1) A dominant and B* M—hyponormal

(2) A dominant and B* k—quasihyponormal

(3) A k—quasthyponormal and B* k—quasthyponormal injective
(4) A k—quasihyponormal and B* dominant.

Proof. Adapted from B. P. Duggal [3] if we have (1), (2), (3)and (4) the
pair (A, B) has the property (F'P)zy). O

Lemma 3.6. Let A,B € L(H) and C € L(H) such that the pair
(A, B) has the property (FP)ry. If A ISP~ U* = S|P U*B, where p > 1 and
S =U|S| is the polar decomposition of S, then A|S|U* = |S|U*B.

Proof. If T =|SP"!, then

(3.5) ATU* = TU*B.

We prove that

(3.6) AT"U* = T"U*B,

for all n > 1. If S = US|, then kerU = ker|S| = ker|S|”"" = kerT and
(ker U)*+ = (ker T')* = R(T). This shows that the projection U*U onto (ker T')+
satifies U*UT = T and TU*UT = T?. By taking adjoints of (3.5) and since
the pair (A, B) has the property (FP)g), we get BUT = UTA and AT? =
ATU*UT = TU*BUT = TU*UTA = T?A. Since A commutes with the positive
operator T2, then A commutes with its square roots, that is,

(3.7) AT =TA
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By (3.5) and (3.7) we obtain (3.6). Let f(¢) be the map defined on o(T) C R
by f(t) = tp_ll; 1 < p < oo. Since f is a uniform limits of a sequence (P;) of
polynomials without constant term (since f(0) = 0), then it follows from (3.6)
that AP,(T)U* = By(T)U*B. Therefore AT#1U* = U*T7-1B. O

Theorem 3.7. Let A,B € L(H). If the pair (A, B) has the property
(FP)c, and S € Gy, such that AS = SB, then

1) For 1 < p < oo, the map F, has a global minimizer at W if, and for
1< p<ooonlyif, AW —-—WB=0.

2) For 1 < p < oo, the map F, has a critical point at W if, and only if,
AW —WB=0.

3) For0 < p<1,dimH < o0 and S — (AW — W B) is invertible, then
F, has a critical point at W, if AW —WB = 0.

Before proving this theorem we need the following lemma.

Lemma 3.8. Let A, B € L(H). The following statements are equivalent.

(1) The pair (A, B) has the property (FP)c,

(2) If AT = TB where T € C,, then R(T) reduces A, ker(T)* reduces B,
and A ‘W and B |iep(ryr are mormal operators.

Proof. Since Cp, is a bilateral ideal and T € C),, then AT € C,,. It suffices
to remark that A(AT) = (AT)B implies A*(AT) = (AT)B* by (FP)c,, and the
identity A*T = T B* implies that A*AT = AA*T. By the same arguments as in
the proof of Lemma 3.3, the proof of this Lemma can be finished. O

Proof of Theorem 3.8. Since the pair (A, B) has the property
(FP)c,, it follows from the above lemma that, R(S) reduces A, ker(S)* reduces
B, and A \m and B [y gy are normal operators. Let,

(A0 [ B0 (S0 X X
O B I SEE S PRI R

It follows from

AS—SB:[ghSl_SlBl 8}:0,

that 4151 = S1B; and we have

IIS—(AX—XB)HPZM 51— (A1 Xy = X1 By) *} .
p *

*
p
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Since A1 and By are two normal operators, then it results from Theo-
rem 3.2 that,
181 = (A1 Xa — X1 Bl > 15111}

hence it follows from [4, p. 82] that,
IS = (AX = XB)|[y > |51 — (Ai1Xa — X1 Bi)|l, = 1Sl = [ISI}

i.e. F},(X) > F,(W). Conversely, if Fj, has a minimum then [|S — (AW — WB)|[} =
|S|5- Since U is convex then, the set V = {S — (AX — XB); X € U} is also con-
vex. Thus Theorem 2.2 implies that S — (AW — WB) = S.

2) Let W, S € U and ¢, ¢ be two maps defined respectively by

p: Xr—S—(AX —XB); p: X +— ||XHI;
Since the Frechet derivative of F}, is given by

. E,(W+hT) - F,(W
DWFp(T):hlinO p( h) p( )7

it follows that Dy F},(T) = [Dg—_aw-wn)|(T B — AT). If W is a critical point of
F,, then Dy F,(T') = 0, VT € U, by applyig Theorem 2.1 we get,

Dw F,(T) = pRetr[|S — (AW — WB)|P"'W*(TB — AT) =

pRetr[Y(TB — AT)] =0,
where S — (AW — WB) = W|S — (AW — WB)| is the polar decomposition of

the operator S — (AW — WB) and Y = |S — (AW —WB)[P"'W*. An easy
calculation shows that BY — Y A = 0, that is,

AlS — (AW —WB)P ' W* =|S — (AW — WB)[P ' W*B.
It follows from Lemma 3.6 that
A|lS — (AW —WB)|W*=|S — (AW — WB)|W*B.

By taking adjoints and since the pair (A4, B) has the property (F'P)c,, we get
A(T— (AW —W B)) = (T — (AW —W B))B, then A(AW —W B) = (AW —W B)B.
Hence AW — WB € R(04,8) Nkerda, g, by applying the equality(3.4) it results
that AW — W B =0.

Conversely, if AW = W B, then W is a minimum and since F), is differ-
entible, then W is a critical point.
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3) Suppose that dimH < oco. If AW — WB = 0, then S is invertible
by hypothesis. Also |S| is invertible, hence |S|” ~1 exists for 0 < p < 1. Taking
Y = |S|P~IU*, where S = U|S| is the polar decomposition of S. Since AS = SB
implies S*A = BS*, then S* AS = BS*S and this implies that |S|? B = B|S|? and
|S|B = BJS|. Since S*A = BS*, i.e. |S|[U*A = B|S|U*, then |S|(U*A — BU*) =
0 and since B|S|P~! = |S|P7!B, so BY — YA = B|S|P~1U* — |S|P~IU*A =
|S|P~Y(BU* — U*A). So, that BY — YA =0 and tr[(BY — Y A)T]| = 0 for every
T € L(H). Since S = S— (AW —-WB), thatis 0 = tr[YTB-Y AT] = tr[Y(TB—
AT)] = pRetr[Y(TB — AT)] = pRetr||S|P"'U*(TB — AT)] = (Dr¢)(TB —
AT) = (DwF,)(T). O

Remark 3.2. In Theorem 3.7 the implication W is a critical point =
AW — WB = 0, does not hold in the case 0 < p < 1 because the functional
calculus argument involving the function ¢ —— tril, where 0 < t < o0, is only
valid for 1 < p < o0.
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