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ABSTRACT. It is proved that there exists a bijection between the primitive
ideals of the algebra of regular functions on quantum m x n-matrices and
the symplectic leaves of associated Poisson structure.

Motivation. When the noncommutative algebra A is a deformation of a
commutative algebra B, one expects to find a close correspondence between the
primitive ideals of A and the symplectic leaves of the associated Poisson structure
on the variety rm Max (B). It is known, for instance, that there exists a bijection
between the primitive ideals of the algebra C,[G] of regular functions on the
quantum group and the symplectic leaves of G (see [1, 2, 3]). We generalize this
result to the case of the quantum m X n-matrixes here.

Content. Let V be the set of compex m X n-matrixes (m < n) nonde-
generated in the sense that all minors of maximal order are not zero, C[V]be the
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algebra of regular functions on V, C4[V] be the quantum analogoue of C[V]. We
decompose Prim C,[V] (Theorem 2.10, Corollary 2.11) like it is done in [2]. The
standard_techniques of reduction modulo an ideal and localization give us the
algebra A, (see section 3). We prove that A,, is an algebra of twisted Lourent
polynomials (Proposition 3.1) and prove the theorem about the bijection between
the primitive ideals of C,[V] and the symplectic leaves of V (Theorem 3.9).

Notations. Denote by M the algebra of regular functions on the linear
space of the complex m x n-matrixes. Its quantum analoge is an algebra M, (see
[4, Def. 1.2]) defined as the associative C - algebra generated by mn elements :z:f ,
1< <m, 1<) <n with the relations:

xzx?{ = qilmixg Vi < k,

J:fo' = q_leazg Vi <k,

xzxf = :L‘fxf Vi <l,j >k,
[xf,a:f] = (¢t- q)xf:vj Vi<l,j<k,

where ¢ is general, i.e. a nonzero complex number which is not a root of unity.
Let C}J be the element of the algebra M, defined by formulas:
J _ o), Jo(1) Jo(p) _ -1 j j
O = 3/ = St

p
o€Sp o€Sy
C{ is called the quantum minor (or g-minor for short). The algebras C[V] and
C,[V] are defined as the respective localizations of algebras M and M, with
respect to the multiplicative sets generated by all minors (¢g-minors in the case
C,[V]) of order m.

It is known (see [4, 1]) that the g-minor admits an expansion with respect
to rows (columns), the expansion of the g-minor with respect to another row
(column) is equal to zero, the quantum analogoue of the Laplace theorem holds.

For the multiindex I={i; ..., i,} we define the operation [/];={i1, ... s},
s < p and denote by [C}J]s the s-th main ¢-minor. If i < i; (or ¢ > I) V¢ then we
shall write ¢ < I (resp. 4 > I). All multiindices are ordered, £, = {1,...,p}.

Definitions. Let A be an associative algebra generated by ai,...,a.
The element b of A is called normal, if there exist integer exponents ¢; such that
ba; = ¢¥'a;b Vi. The algebra A is called twisted, if all its generators are normal.
It is imortant for us that all prime (and, hence, all primitive) ideals of twisted
Lourent algebra are generated by their intersections with the center (see [5, 2.3]).
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1. Preliminaries. Let I = {i1,...,%,}, J = {j1,...,jp}. Denote
I, = I\i; Ui.

Lemma 1.1. a) Ifi< I, j € J, then C’}]azf — qng}] = 0;
b) ifi eI, j € J, then C{mf —ngJ =0;
c) if ix < i < ipyq for some k < p, j € J then there exist complex

numbers ¢; € C* such that C’ x — qa:]C'I = > cta: CIt
t<k+1

d)ifi>1I,j€ed, thenCI:L‘ —q~ l‘JC‘]:O

e)ifi<I,j>J, then CY ! —x]CIZO

£)yifiel, j>J, thenCI:L‘ —qilmJCI =0;

g) if iy < i < ipq1 for some k < p, j > J, then there exist complex

numbers g, € C* such that CIa: — xJCJ > gt:v“
t<k-+1

h) if i > I j > J, then there exist complex numbers hy € C* such that

Clal —alc] = E htmj Cy.
t=

Lemma 1.2. a) Ifi < I J < J, then there exist complex numbers
a; € C* such that CIJJ —JJJCI = Z ay] CIt

b)ifiel, j<J, then CY .—qx?cgzo-
c) if ix < i < ipyq for some k < p, j < J, then there exist complex
numbers ¢; € C* such that CIa: - x]CJ = Z ctxj CJ

d) ifi>1,j<J, then C{x! _g;gcg = 0;
e) ifi<I,jeJ, then C}]J:Z —qng}.] =0;
f)ifi €I, jeJ, then Cfal —2/C{ = 0;
g) if ik < i < gy fOT‘ some k < 'p, j € J, then there exist complex

numbers g; € C* such that C{x! ]C'I > gl CIt
t>k

h) ifi > 1,5 € J, then C{mf —qilmzC}] =0.

One may to prove the lemma as in [4] by the expansion of ¢g-minors.

Proposition 1.3.  Let P € SpecM,. If the qg-minor C}] ¢ P then
[C’}]]S &P Vs.

Proof. Note that the exact expression for the complex coefficient h; from
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1.1.h) is by = (¢~ — q)gP~t. Therefore

I
—

. D .
(O], 0l =@ =) S (™ G, ol (7]

[I]p—1\itUip p—1

i
I

I
—~~
—

|
Q\

[\
S~—
=

—t ] [J]p—1 —2.J J
(=) 2 Cop i, a2 [CF]

it I p—1\étUip p—1

~~
Il
—

= (=g )] +q 2% [¢]],

Assume that [C’}]] € P. Then [C’}]] - g2 ]” [C’I] € P, hence
p—1 p—1"1p —1
ij € P — contradiction. Thus [C}] ]p_l ¢ P. An mductlon w1th respect to p
complets the proof. O
Let iP% be the left ideals of M, generated by the following g-minors:

Pl = (CY|I >100 T), P = (C|T <jex T),

En\En_p

Proposition 1.4. The ideals +775 and ~ Py are twoside ones.

~Proof. Let us prove the first statement. It is suffices to show that
C}Ep T € +P£p for all generators C}Ep of +P£p and for all generators z of M,.
All necessary relations are in sections a),..., h) of Lemma 1.1. For instance, let 1,

j satisfy ¢). Then C z] — qa:JC P= Y ctxj Cr, Er Note that t < k + 1, hence
1

Iy >iep I > T. Therefore any term of the right side lies in +77£p , and hence
Cy B ] +77£” . All other possibilities admits the same analisis. The statement

about P:f"\E”_p is proved similarly using Lemma 1.2. O

2. Decomposition theorem.

Algebra A. Let Ni be the set of segments of the natural numbers with
length k. Denote by S° = {C, |J € N,,}, S° the multiplicative subset of M,
generated by SY, and let A be the localization of M, with respect to S°.

Lemma 2.1. Let P € SpecM,. If P(S° =@ then P S = @, where
S is the set of all g-minors of order m.
Proof. We shall prove the equivalent statement: if there exists a g-minor
Cf, €SP then there exists a g-minor Célm e S'NP.
a) If J € N,, then the statement holds. If J ¢ N,, then let us denote
T ={jm—m-+1...,jm} € Ny. By expansion of ¢g-minor, one may show that
Com [CE, oy — a2 [CE, )1 O, = (1= ¢*)C,, [C,

m—1"
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where (J,T) = #{j € J|j < T}. Hence CF, [C’ém]mil € P. If C}, € P then

the lemma is proved.
b) If CL & P then [C’ém]m_l € P. We apply a) to [Cém]m_l. The

order of the ¢g-minor is lower. Hence after m steps we get what is required. O

Proposition 2.2. SpecC,[V] = Spec A.

Proof. Note that C4[V] and A are different localizations of the same
algebra, M. Therefore

SpecC,[V] = {P € Spec M, \PﬂS = 0},
Spec A = {PeSpech\PﬂSO 0}.

Now the proposition follows from Lemma 2.1. O

Decomposition of Spec A. Let w = (wy,w_) € S, X Sp,. Denote

m—1
P, = UACKK e wi (D)}, U (O b
1=
_m BB, _ _ E\En_;
= U {CK K <jey wZ ( Epn\Epm—i)}, Sy_ = U {C w= Y (Em\E )}a
=1 m\Lm—i
P, = PJr UPr, Sw =S LUs
and let P s Py be the left ideals of M, generated by Pg, and P, respectivelly;
Sifi, Sy be the multiplicative subsets of M, generated by St ., Sw- Note that
m—1
the ideals PZ,, Py, are in fact twoside. For instance Py L= +phi and

=1 Yy (Ei)’
any term of the right side is a twoside ideal by 1.4.

Proposition 2.3. Let P € Spec A. Then there exists a unique wy € Sy,
such that P O Pt . PN S+ = 0.

Wy’

First we shall prove some lemmas.

Lemma 2.4. Let P € Spec A, p < m — 1. Then there exists a unique
multiindex T with length p such that CTE” g P, CIE” eEPVI >, T.

Proof. Let us assume that such 7T does not exist and expand the g¢-
minor Cg;” with respect to the first p columns. Then by the Laplace theorem
Cg:: = 0(mod P). But Cg:’nl is invertable in A — contradiction. Hence T exists.

Now let us write the set {J |C}Ep ¢ P} with respect to the lexicographic order
and denote by T the leading term. The lemma is proved. O
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Lemma 2.5. Let P, p, T be from 2.4, i > T, j € E,. Then xf =
O0(mod P).

Proof. Let T, = T\t Ui. Then T} >, T and C’TE}:’ = 0(mod P). Let us
expand CTE: with respect to the j-th column:
k—1
Ep ! Ep\j cF \j Ep\j
CTkp - Z( )J ] CTkp\tl + Z tl+1 Tkp\tl+1 + ( q)J p ]CT:\Z

=1

If 27 # 0(mod P) then

. k—1
E PR N E E
CT:\\z‘] = _(_q)P J($Z) 1 {l;( q)] l J CT:\\t]l + Z( ) tz+1CT:\\t]l+1}
= (-0 2 sk D=0y JCTP\Y (mod P);
where s(k, 1) = { _q1—1 igi z i ;’ Let us expand CJTEP with respect to the j-th

column using the fact that T\t = T} \i:

p p
CZI:JP — Z( q)] k J CEP\J — Z( q)] k J CEP\J

k=1 T\ty = T\
= = (— ) l‘tk {_(_Q)P J(Q;Z) ll;C s(k,1)(—q )] —lgd CT:\\t]l}
L .
- Cop ! ot

(=)~ 51 k) (—aV ~Fal, Ot}

Ti\tk
B - E
(—q)P~ 3+ (a) lk:£<:l{( q)¥~*= lxththT:\\t]z

- Ep\j
—g N (—)¥ ] a] Ot}

= (o) S (e Kl af (CpRY — Cpr ) (mod P).

As above Ti\t; = T;\tx. Therefore Cgp = 0(mod P) — contradiction. Hence
z] =0(mod P). O
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Lemma 2.6. Let P, p, T be from 2.4. Then for all i, j

0 forkéeJ,

Cgpxg = q‘SEM*‘ST’inggp (modP) where dy1 = { 1 forkeJ

Proof. If i, j are as in sections a), b), ¢), e), f), g) or h) of Lemma 1.1,
then we obtain the statement as in 1.4. If i > T', j € E,, then we use that fact
that by the Lemma 2.5 ] = 0(modP). O

Lemma 2.7. Let P, p, T be from 2.4. Then for oll K, L

Cpreh = ¢ -HINKY L PP (mod P)

Proof. Let the order of the g-minor C’[L( is equal to r. Then by Lemma 2.6
E E lO‘ lo‘ T
Cr'Cg =Cr” Zaesr(—qy(a)%fl) A
= Ao (_)0) o o) o Bp ) o
_ZUESTq (—9) Ty, oo xy Op (mod P).
We shall show that A, does not depend on ¢. Indeed, by Lemma 2.6, Cgp x;:_(j ) =

) =0T k. lo(i) ~E
g Pt i) TOT ks Q;kj@)CTp(mod P). Therefore

As = 3 (0B, 0, — 0T k) = D0 OB, lpy — 2o OTk;
Jj=1 Jj=1 Jj=1
= '21 OB, l; — 21 org; = H{E,N LY —{T N K} O
J: p:

Lemma 2.8. Using the Lemma 2.4 let us construct from the given ideal
P the collection of multiindices Ty, Ts,. .. Tyn—1, Ty, where p is the length of T).
ThenTy C Ty C ... Ty-1 C Tm.
Proof. Let p < s. By Lemma 2.7,
EP Es _ A Es EP Es EP —_ B EP Es
Cr Crr =q"CpCpf(mod P),  CprCrp? = q” Cp? Cp (mod P)

where A = §{E, N Es} — {1, N T}, B = t{E; N E,} — 4{Ts N T,}. It is clear
that A = —B. Therefore {{T, N T},} = 4{E; N E,} = p. Hence H{T, N T,,} = 1T},
T,CT, O
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Proof of Proposition 2.3. By Lemma 2.4 for any prime ideal P from
Spec A there exists an unique collection of multiindices Ty C 15 C ... Ty 1 C Thn.

Denote
wit(1) =T, wi'(2) = T\T, . .., wi (m) = T\ T
The proposition is proved. O

The following proposition may be proved as above.

Proposition 2.9. Let P € Spec A. Then there exist unique w_ € Sy,
such that PO P, ,PNS, =0.

Using Propositions 2.3 and 2.9 one proves the following theorem.

Theorem 2.10. Denote Spec,, A = {P € Spec A|P D Py, P()Sw =
D}. Then

Spec A = |_|

where | | denotes the disjoint union.

Spec A,

wGSm XSm

Corollary 2.11. Denote Prim,, A = {P € Prim A|P D Py, P()Sw =
D}. Then
Prim A =| | Prim A,

WESm X Sm,

where | | denotes the disjoint union.

3. Bijection theorem.
Algebras A, and A,. Let S, be the multiplicative subset of M,
generated by S,,USY. Denote A, = (My/Py) s, The analysis of Spec A reduces

§0, §w, the subset of ST , SO,

w4
Sy respectivelly, consisting of all main g-minors. Let S, be the multiplicative
subset of Mg, generated by Sy. Let A, = (Mg/Py)g, . By Proposition 1.3,

Spec A, = Spec Awp.

Proposition 3.1. The algebra "ZE}U is an algebra of twisted Lourent

to the analysis of Spec.4,. Denote by SE

w4

polinomials generated by the g-minors from Sy,.

First let us prove some lemmas.

Lemma 3.2. Let [(y) denotes the number of inversions of the permuta-
tion y.

a) For any permutation wy € Sy, there exist uj, = (jo,jo + 1) € Sy, and
vy € Sy, such that

wi = vyujy, Hwy) =1(vy) +1, U;I(Ejo) < vI_l(jo +1).
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b) For any permutation w_ € Sy, there exist u;, = (ig,io + 1) € Sy, and
v_ €Sy, such that

w_ = v iy, Ww_)=1v_)+1, v En\Em_i) > v ().

This lemma is a particular case of known properties about Wejl groups.

. 3+ G+ E;

Lemma 3.3. Let wy, vy, jo be from 3.2. Then Sy, =S, UC’w’;l(EjO).

Proof. First let us show that

) [ws (By)]; = [os (By)]; V5 # o < 3

b) [ (Ejo)) = o (Bjy- )], i < s

¢) [wi(Ejot+1)]; = [v+(Eje+1)]; Vi < Jo.

Note that w;l(j) = ’U;l(j) Vj # jo,jo+1. In addition w;l(jo) = ’U;l(jo—i—
1); wfrl(jo +1) = vfrl(jo). Therefore wjrl(Ej) = vjrl(Ej) Vj # jo. This proves
a). Let us prove b):

wi(Bjy) = wi (Bj—1) Uwi ' (jo) = vi' (Bjy—1) Uvi (Ejys1)-
In addition v (jo + 1) > v '(Ej,—1). Hence if i < jo then
[wll(Ejo)]i = [Ull(EJ'O*l) U U—?l(Ej0+1)]i = [Ull(EJO*l)]i'

Let us prove ¢): wi ' (Ej41) = wi (Ejy—1) Uw' (jo) Uw;'(jo + 1). In addition
wit(jo) > wit(jo + 1) and wi'(jo) > wi'(jo — 1). Therefore

[wit (Bjo1)];, = wi' (Bjo—1) Uwi (jo + 1) = v (Bjy—1) Uvi (jo) = v (Ejp)-
If i < jo then [wjrl(EjOH)]i = [v; 1 (E; )]; and c) is proved. Now recall that

E; _ E; E; _ E;
[Cw;(Ej)L = e, [Cvﬁ(Ej)L = e,

Therefore a), b) imply that S, c S \C Efol , and on other hand a), ¢) imply
+ + wy (Ejo)

~ ~ E.: .

that S D St . \ij,ro1 (Bi) The equality follows. [

Lemma 3.4. Letw,, vy, jo be from 3.2. Then P:ng—i—(Cffol(Ev )> CPf.
+ Ei
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Proof. Note that wi'(Ejy) >ex v5' (Ej,). Indeed
wi'(Ejy) = wi (Ej—1) Uwi' (jo) >ies 0y (Ejy—1) Uwy ' (jo + 1)
= v (Ejy-1) Uvy (o) = vi ' (E)y).

In addition wi'(E;) = vi'(E}) Vj # jo. Therefore (see Section 1 for the defi-
nition of ideals *P7) +PF, = P yjo o oty o +pli
wy vy (Ej)

(Ej) w (Ejo) U+1(Ej0)
+pEio +pEio
and Pwll (B, C Puj (Byg)’ Hence
—1
+ E; _ " B Ej
Pue 700 @m0 = 25 Puren T e,
m—1 m—1
_ +pE; + o Ej +pEj +pFio
J%O Pw;I(E]-)—’_ ngl(Ej)+<Cw;1(Ejo)>Cj%O Pwll(Ej)Jr PU;I(E]-)
m—1
_ +pli +plio — pt
2 Py TP g, = P
O
Lemma 3.5. Let wy, vy, jo be from 3.2. Then
J + Ejg ; : Jo+1 + E;
ity € Por O, W Sdo T # Pe TR,

Proof. Note that vi'(jo + 1) > vi'(Ej,) > vi'(1) = wi'(1). Therefore

1 +pE1 + + Ejg i
Ty o+ 1) € ow(&) C Py, CPy, + <Ow;1(EjO)>' Let us expend the g-minor
E; ) 1. : .
c with respect to w +1(j0)—th row and apply induction:

w; ! (Ej() )

Jo
c :Ec-;r],,CiO c; € C*.
wil(Bjy) 4 < wit(Go) wil(Bjp-1)’

]:

o + Ej jo Ejp—1
The first jo — 1 terms belong to Py, + <Ow;1(EjO)>' Hence mwf(jo) wi (B ) €
+ Ej .. Ejo—l + EjO .
Pu, + <Cw;1(Ej )>. By definition Cwll(EjO—l) ¢ Py, + <ijrl(Ej )>. Exchanging

wi'(jo) by vi'(jo + 1) we see first statement is proved.
Let us prove the second statement. Note that P,;, + (Cfiol (&, )> C P
+ (Eig

Hence by the above 2’ 1
v

Got1) € PJ: Vj < jo. Let us expand the g-minor
+ 0
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CEj‘fH ¢ P with respect to v7!(jo 4 1)-th row.
vi (Ejg+1) U+ +

jo+1 \
J0+1 jO+1 J *
E c;ix _ c; € C*.
Ejo+1) J l(JoJrl E)

The first jo terms lie in 77+ Therefore :1: JOH\] € P;F . This implies
vy (JO+1) 'U+ Ejq) +
that xﬂojz 1) ¢ P, . Now we obtain what is required from the inclusion P, +
vy o
Ejy +
<Cw;1(EjO)> CP,. O
Lemma 3.6. Letwy, vy, jo be from 3.2. Then Pl =Pf \(C’ 0 ).
wy (Ejo)
Proof. Let us prove the inclusion P,;; c Pt + (C Efol ). Note that
+ + wy (Ejo)
+pLi _ +pLi + + Ejg A
PUII(E]') - Pwll(E]) - Pw+ C Pw+ + <Cwll(EJ0)> vj # Jo-

Hence it suffices to show that C7™ € Pf, + <wa;01(EjO)> vC; Pio ¢ +77 = (EJO)
If Ufrl(jo + 1) € I let us expand the g-minor ijo with respect to v, '(jo + 1)-th
row. We get what is required by applying of Lemma 3.5. If vll(jo +1) &1 let

us denote I’ = T Uv ' (jo + 1). Note that

I'=TUv (o + 1) >te vy (Ejy) Uvy ' (o +1) = v (Bjor1) = w (Ejos).

Therefore Cﬁj‘)“ € Pl CPh +(C Efol ) We expand C' Piot1 with respect to
wy (Ejo)

vy (jo + 1)-th row:

Jo+1 \j

]0+1 Ejo+1\J . *

Z CJ (jo+1) I'\u;l(joﬂ)’ ¢ € C".

The first jo terms lie in P, <Cfi°1 (&, )> by Lemma 3.5. Therefore
+ J0
jo+1 Ejo+1\jo+1 + Ej, ]0+1
xvjrl(joﬂ)cf’ € Pl <Cw;1(EjO)>' By Lemma 3.5 a: o ZP
Ej Ej +l\]0+1 + E;

<ijr°1 ( Ej0)>, therefore C',” € Py, + <ijr°1 ( Ej0)>. The 1nclu510n is proved.

According to Lemma 3.4 this implies the equality. O
The following lemmas may be proved by same method.
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Lemma 3.7. Let w_, v_, ig be from 3.2. Then

o— _ o— En\En—iO
S, =5, U Cwil(En\En_io)'

Lemma 3.8. Let w_, v_, ig be from 3.2. Then

Pw_ - P’U_ \<Cw:1(En\OE‘n—zo)>

Proof of Proposition 3.1. Let e = (e,e) € Sy, X Sy, be the pair of
the unit perturbations. As in [4, Theorem 1.24] one can show that A, is twisted
Lourent algebra generated by g-minor from Se. Applying Lemma 3.2 [(w ) times
(resp., l[(w-) times), we get the unit perturbation from w, (resp., from w_). In
the chane of algebras A, ..., A, any algebra is constructed from the previous
one by addition of the single element (see Lemmas 3.3, 3.6 and 3.7, 3.8). Lemma
2.7 implies that the added element is normal for all steps. The proposition is
proved. O

Bijection theorem. Let us introduce the Poisson bracket in C[V] (as in
[6, § 6] for instance) by the formula:
. frg—gxf
Vf,QEC[V] {f:g}:hm77
q~>1 q — ]_
where * denotes the multiplication in C,[V]. Thus the algebra C[V] comes the
Poisson algebra associated with C,[V].
Denote by Ry, Q°, Qu, Q. the sets of minors in M, analogous to P,,,
S0 Sy, Sy ones in M,. Denote by U the subset of the linear space of complex
m X n -matrices defined by the conditions: DIJ # 0 VD‘I] € Q. Let U, be
the algebraic submanifold of ¢ defined by the conditions: D{ = 0 VD{ € R,,
D{ #* OYD}] € Qu; and U,, be the subset of U, defined by the conditions: D{ #0
VD‘I] € Q. The limit ¢ — 1 shows that

SympV = Sympl, SympU = |_| wesS xS SympUy,, SymplU, = Sympljw.

Thus the set of the symplectic leaves of V decomposes into union of classes,
the classes are parametrized by the pairs of permutations w € Sy, x Sp, and
Symp ,,V = SympU,,.

Theorem 3.9. There exists a bijection 3 between Prim C4[V] and
SympV such that
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1. B(Prim,,C,4[V]) = Symp ,,V,
2. dim 4(P) = GKdim C,[V]/P VP € Prim C,[V],

where GKdim denotes the Gelfand-Kirillov dimention.

Proof. The algebra A, is twisted by 3.1. Hence (see [5, 2.3]), all primi-
tive ideals of A,, are generated by the maximal ideals of its center. On the other
hand, the symplectic leaves of U, are defined by the collection of Kazimir func-

tions (see [6, § 2]) plaing the role of central elements in Poisson algebra C[U,,].
If the pair of generators C}J , C{} of the algebra A, satisfies the relation

CfCk = ¢? Tk CRCY,
then the limit ¢ — 1 shows that
J L JL nJ L
{Dj, Dy} = o1 Di Di:

for the respective generators D7, Df( of C[Uy,]. Therefore both the generators of

Center A,, and the generators of Cazimir C[Z/le] are defined by integer solutions
of the same system ®¢ = 0. The bijection is proved. The statement about the
dimetion statement follows from the fact that

GKdim Center A,, = dim ker ® = GKdim Cazimir C,[U,,).

The theorem is proved. O
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