Provided for non-commercial research and educational use.

 Not for reproduction, distribution or commercial use.
Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

PRIMITIVE IDEALS AND SYMPLECTIC LEAVES OF QUANTUM MATRICES

V. G. Mosin
Communicated by V. Kanev

Abstract

It is proved that there exists a bijection between the primitive ideals of the algebra of regular functions on quantum $m \times n$-matrices and the symplectic leaves of associated Poisson structure.

Motivation. When the noncommutative algebra A is a deformation of a commutative algebra B, one expects to find a close correspondence between the primitive ideals of A and the symplectic leaves of the associated Poisson structure on the variety $\mathrm{rm} \operatorname{Max}(B)$. It is known, for instance, that there exists a bijection between the primitive ideals of the algebra $\mathbf{C}_{q}[G]$ of regular functions on the quantum group and the symplectic leaves of G (see $[1,2,3]$). We generalize this result to the case of the quantum $m \times n$-matrixes here.

Content. Let \mathcal{V} be the set of compex $m \times n$-matrixes $(m \leq n)$ nondegenerated in the sense that all minors of maximal order are not zero, $\mathbf{C}[\mathcal{V}]$ be the

[^0]algebra of regular functions on $\mathcal{V}, \mathbf{C}_{q}[\mathcal{V}]$ be the quantum analogoue of $\mathbf{C}[\mathcal{V}]$. We decompose $\operatorname{Prim} \mathbf{C}_{q}[\mathcal{V}]$ (Theorem 2.10, Corollary 2.11) like it is done in [2]. The standard techniques of reduction modulo an ideal and localization give us the algebra $\widetilde{\mathcal{A}}_{w}$ (see section 3). We prove that $\widetilde{\mathcal{A}}_{w}$ is an algebra of twisted Lourent polynomials (Proposition 3.1) and prove the theorem about the bijection between the primitive ideals of $\mathbf{C}_{q}[\mathcal{V}]$ and the symplectic leaves of \mathcal{V} (Theorem 3.9).

Notations. Denote by \mathcal{M} the algebra of regular functions on the linear space of the complex $m \times n$-matrixes. Its quantum analoge is an algebra \mathcal{M}_{q} (see [4, Def. 1.2]) defined as the associative \mathbf{C}-algebra generated by $m n$ elements x_{i}^{j}, $1 \leq i \leq m, 1 \leq j \leq n$ with the relations:

$$
\begin{aligned}
x_{i}^{j} x_{k}^{j} & =q^{-1} x_{k}^{j} x_{i}^{j} & & \forall i<k, \\
x_{i}^{j} x_{i}^{k} & =q^{-1} x_{i}^{k} x_{i}^{j} & & \forall j<k, \\
x_{i}^{j} x_{l}^{k} & =x_{l}^{k} x_{i}^{j} & & \forall i<l, j>k, \\
{\left[x_{i}^{j}, x_{l}^{k}\right] } & =\left(q^{-1}-q\right) x_{i}^{k} x_{l}^{j} & & \forall i<l, j<k,
\end{aligned}
$$

where q is general, i.e. a nonzero complex number which is not a root of unity. Let C_{I}^{J} be the element of the algebra \mathcal{M}_{q} defined by formulas:

$$
C_{I}^{J}=\sum_{\sigma \in S_{p}}(-q)^{l(\sigma)} x_{i_{1}}^{j_{\sigma(1)}} \ldots x_{i_{p}}^{j_{\sigma(p)}}=\sum_{\sigma \in S_{p}}(-q)^{-l(\sigma)} x_{i_{\sigma(1)}}^{j_{1}} \ldots x_{i_{\sigma(p)}}^{j_{p}} .
$$

C_{I}^{J} is called the quantum minor (or q-minor for short). The algebras $\mathbf{C}[\mathcal{V}]$ and $\mathbf{C}_{q}[\mathcal{V}]$ are defined as the respective localizations of algebras \mathcal{M} and \mathcal{M}_{q} with respect to the multiplicative sets generated by all minors (q-minors in the case $\left.\mathbf{C}_{q}[\mathcal{V}]\right)$ of order m.

It is known (see $[4,1]$) that the q-minor admits an expansion with respect to rows (columns), the expansion of the q-minor with respect to another row (column) is equal to zero, the quantum analogoue of the Laplace theorem holds.

For the multiindex $I=\left\{i_{1} \ldots, i_{p}\right\}$ we define the operation $[I]_{s}=\left\{i_{1}, \ldots, i_{s}\right\}$, $s \leq p$ and denote by $\left[C_{I}^{J}\right]_{s}$ the s-th main q-minor. If $i<i_{t}$ (or $i>I$) $\forall t$ then we shall write $i<I$ (resp. $i>I$). All multiindices are ordered, $E_{p}=\{1, \ldots, p\}$.

Definitions. Let A be an associative algebra generated by a_{1}, \ldots, a_{k}. The element b of A is called normal, if there exist integer exponents φ_{i} such that $b a_{i}=q^{\varphi_{i}} a_{i} b \forall i$. The algebra A is called twisted, if all its generators are normal. It is imortant for us that all prime (and, hence, all primitive) ideals of twisted Lourent algebra are generated by their intersections with the center (see [5, 2.3]).

1. Preliminaries. Let $I=\left\{i_{1}, \ldots, i_{p}\right\}, J=\left\{j_{1}, \ldots, j_{p}\right\}$. Denote $I_{t}=I \backslash i_{t} \cup i$.

Lemma 1.1. a) If $i<I, j \in J$, then $C_{I}^{J} x_{i}^{j}-q x_{i}^{j} C_{I}^{J}=0$;
b) if $i \in I, j \in J$, then $C_{I}^{J} x_{i}^{j}-x_{i}^{j} C_{I}^{J}=0$;
c) if $i_{k}<i<i_{k+1}$ for some $k<p, j \in J$, then there exist complex numbers $c_{t} \in \mathbf{C}^{*}$ such that $C_{I}^{J} x_{i}^{j}-q x_{i}^{j} C_{I}^{J}=\sum_{t<k+1} c_{t} x_{i_{t}}^{j} C_{I_{t}}^{J}$;
d) if $i>I, j \in J$, then $C_{I}^{J} x_{i}^{j}-q^{-1} x_{i}^{j} C_{I}^{J}=0$;
e) if $i<I, j>J$, then $C_{I}^{J} x_{i}^{j}-x_{i}^{j} C_{I}^{J}=0$;
f) if $i \in I, j>J$, then $C_{I}^{J} x_{i}^{j}-q^{-1} x_{i}^{j} C_{I}^{J}=0$;
g) if $i_{k}<i<i_{k+1}$ for some $k<p, j>J$, then there exist complex numbers $g_{t} \in \mathbf{C}^{*}$ such that $C_{I}^{J} x_{i}^{j}-x_{i}^{j} C_{I}^{J}=\sum_{t<k+1} g_{t} x_{i_{t}}^{j} C_{I_{t}}^{J}$;
h) if $i>I, j>J$, then there exist complex numbers $h_{t} \in \mathbf{C}^{*}$ such that $C_{I}^{J} x_{i}^{j}-x_{i}^{j} C_{I}^{J}=\sum_{t=1}^{p} h_{t} x_{i_{t}}^{j} C_{I_{t}}^{J}$.

Lemma 1.2. a) If $i<I, j<J$, then there exist complex numbers $a_{t} \in \mathbf{C}^{*}$ such that $C_{I}^{J} x_{i}^{j}-x_{i}^{j} C_{I}^{J}=\sum_{t=1}^{p} a_{t} x_{i_{t}}^{j} C_{I_{t}}^{J}$;
b) if $i \in I, j<J$, then $C_{I}^{J} x_{i}^{j}-q x_{i}^{j} C_{I}^{J}=0$;
c) if $i_{k}<i<i_{k+1}$ for some $k<p, j<J$, then there exist complex numbers $c_{t} \in \mathbf{C}^{*}$ such that $C_{I}^{J} x_{i}^{j}-x_{i}^{j} C_{I}^{J}=\sum_{t>k} c_{t} x_{i_{t}}^{j} C_{I_{t}}^{J}$;
d) if $i>I, j<J$, then $C_{I}^{J} x_{i}^{j}-x_{i}^{j} C_{I}^{J}=0$;
e) if $i<I, j \in J$, then $C_{I}^{J} x_{i}^{j}-q x_{i}^{j} C_{I}^{J}=0$;
f) if $i \in I, j \in J$, then $C_{I}^{J} x_{i}^{j}-x_{i}^{j} C_{I}^{J}=0$;
g) if $i_{k}<i<i_{k+1}$ for some $k<p, j \in J$, then there exist complex numbers $g_{t} \in \mathbf{C}^{*}$ such that $C_{I}^{J} x_{i}^{j}-q^{-1} x_{i}^{j} C_{I}^{J}=\sum_{t>k} g_{t} x_{i_{t}}^{j} C_{I_{t}}^{J}$;
h) if $i>I, j \in J$, then $C_{I}^{J} x_{i}^{j}-q^{-1} x_{i}^{j} C_{I}^{J}=0$.

One may to prove the lemma as in [4] by the expansion of q-minors.
Proposition 1.3. Let $\mathcal{P} \in \operatorname{Spec} \mathcal{M}_{q}$. If the q-minor $C_{I}^{J} \notin \mathcal{P}$ then $\left[C_{I}^{J}\right]_{s} \notin \mathcal{P} \forall s$.

Proof. Note that the exact expression for the complex coefficient h_{t} from
1.1.h) is $h_{t}=\left(q^{-1}-q\right) q^{p-t}$. Therefore

$$
\begin{aligned}
{\left[C_{I}^{J}\right]_{p-1} x_{i_{p}}^{j_{p}} } & =\left(q^{-1}-q\right) \sum_{t=1}^{p-1}(-q)^{p-1-t} x_{i_{t}}^{j_{p}} C_{[I]_{p-1} \backslash i_{t} \cup i_{p}}^{[J]_{p-1}}+x_{i_{p}}^{j_{p}}\left[C_{I}^{J}\right]_{p-1} \\
& =\left(1-q^{-2}\right) \sum_{t=1}^{p}(-q)^{p-t} x_{i_{t}}^{j_{p}} C_{[I]_{p-1} \backslash i_{t} \cup i_{p}}^{[J]_{p-1}}+q^{-2} x_{i_{p}}^{j_{p}}\left[C_{I}^{J}\right]_{p-1} \\
& =\left(1-q^{-2}\right) C_{I}^{J}+q^{-2} x_{i_{p}}^{j_{p}}\left[C_{I}^{J}\right]_{p-1}
\end{aligned}
$$

Assume that $\left[C_{I}^{J}\right]_{p-1} \in \mathcal{P}$. Then $\left[C_{I}^{J}\right]_{p-1} x_{i_{p}}^{j_{p}}-q^{-2} x_{i_{p}}^{j_{p}}\left[C_{I}^{J}\right]_{p-1} \in \mathcal{P}$, hence $C_{I}^{J} \in \mathcal{P}$ - contradiction. Thus $\left[C_{I}^{J}\right]_{p-1} \notin \mathcal{P}$. An induction with respect to p complets the proof.

Let ${ }^{ \pm} \mathcal{P}_{T}^{J}$ be the left ideals of \mathcal{M}_{q} generated by the following q-minors:

$$
{ }^{+} \mathcal{P}_{T}^{J}=\left\langle C_{I}^{J} \mid I>_{\text {lex }} T\right\rangle, \quad{ }^{-} \mathcal{P}_{T}^{J}=\left\langle C_{I}^{J} \mid I<_{\text {lex }} T\right\rangle,
$$

Proposition 1.4. The ideals $+\mathcal{P}_{T}^{E_{p}}$ and $-\mathcal{P}_{T}^{E_{n} \backslash E_{n-p}}$ are twoside ones.
Proof. Let us prove the first statement. It is suffices to show that $C_{I}^{E_{p}} x_{i}^{j} \in{ }^{+} \mathcal{P}_{T}^{E_{p}}$ for all generators $C_{I}^{E_{p}}$ of $+\mathcal{P}_{T}^{E_{p}}$ and for all generators x_{i}^{j} of \mathcal{M}_{q}. All necessary relations are in sections a),..., h) of Lemma 1.1. For instance, let i, j satisfy c). Then $C_{I}^{E_{p}} x_{i}^{j}-q x_{i}^{j} C_{I}^{E_{p}}=\sum_{t<k+1} c_{t} x_{i_{t}}^{j} C_{I_{t}}^{E_{p}}$. Note that $t<k+1$, hence $I_{t}>_{\text {lex }} I>_{\text {lex }} T$. Therefore any term of the right side lies in $+\mathcal{P}_{T}^{E_{p}}$, and hence $C_{I}^{E_{p}} x_{i}^{j} \in{ }^{+} \mathcal{P}_{T}^{E_{p}}$. All other possibilities admits the same analisis. The statement about ${ }^{-} \mathcal{P}_{T}^{E_{n} \backslash E_{n-p}}$ is proved similarly using Lemma 1.2.

2. Decomposition theorem.

Algebra \mathcal{A}. Let \mathbf{N}_{k} be the set of segments of the natural numbers with length k. Denote by $S^{0}=\left\{C_{E_{m}}^{J} \mid J \in \mathbf{N}_{m}\right\}, \mathcal{S}^{0}$ the multiplicative subset of \mathcal{M}_{q} generated by S^{0}, and let \mathcal{A} be the localization of \mathcal{M}_{q} with respect to \mathcal{S}^{0}.

Lemma 2.1. Let $\mathcal{P} \in \operatorname{Spec} \mathcal{M}_{q}$. If $\mathcal{P} \bigcap S^{0}=\emptyset$ then $\mathcal{P} \bigcap S=\emptyset$, where S is the set of all q-minors of order m.

Proof. We shall prove the equivalent statement: if there exists a q-minor $C_{E_{m}}^{J} \in S \bigcap \mathcal{P}$ then there exists a q-minor $C_{E_{m}}^{J^{\prime}} \in S^{0} \bigcap \mathcal{P}$.
a) If $J \in \mathbf{N}_{m}$ then the statement holds. If $J \notin \mathbf{N}_{m}$ then let us denote $T=\left\{j_{m}-m+1, \ldots, j_{m}\right\} \in \mathbf{N}_{m}$. By expansion of q-minor, one may show that

$$
C_{E m}^{J}\left[C_{E_{m}}^{T}\right]_{m-1}-q^{-\langle J, T\rangle+2}\left[C_{E_{m}}^{T}\right]_{m-1} C_{E_{m}}^{J}=q^{-\langle J, T\rangle}\left(1-q^{2}\right) C_{E_{m}}\left[C_{E_{m}}^{J}\right]_{m-1},
$$

where $\langle J, T\rangle=\sharp\{j \in J \mid j<T\}$. Hence $C_{E_{m}}^{T}\left[C_{E_{m}}^{J}\right]_{m-1} \in \mathcal{P}$. If $C_{E_{m}}^{T} \in \mathcal{P}$ then the lemma is proved.
b) If $C_{E_{m}}^{T} \notin \mathcal{P}$ then $\left[C_{E_{m}}^{J}\right]_{m-1} \in \mathcal{P}$. We apply a) to $\left[C_{E_{m}}^{J}\right]_{m-1}$. The order of the q-minor is lower. Hence after m steps we get what is required.

Proposition 2.2. $\quad \operatorname{Spec} \mathbf{C}_{q}[\mathcal{V}] \cong \operatorname{Spec} \mathcal{A}$.
Proof. Note that $\mathbf{C}_{q}[\mathcal{V}]$ and \mathcal{A} are different localizations of the same algebra \mathcal{M}_{q}. Therefore

$$
\begin{aligned}
\operatorname{Spec} \mathbf{C}_{q}[\mathcal{V}] & =\left\{\mathcal{P} \in \operatorname{Spec} \mathcal{M}_{q} \mid \mathcal{P} \bigcap S=\emptyset\right\} \\
\operatorname{Spec} \mathcal{A} & =\left\{\mathcal{P} \in \operatorname{Spec} \mathcal{M}_{q} \mid \mathcal{P} \bigcap S^{0}=\emptyset\right\}
\end{aligned}
$$

Now the proposition follows from Lemma 2.1.
Decomposition of $\operatorname{Spec} \mathcal{A}$. Let $w=\left(w_{+}, w_{-}\right) \in S_{m} \times S_{m}$. Denote

$$
\begin{gathered}
P_{w_{+}}^{+}=\bigcup_{i=1}^{m-1}\left\{C_{K}^{E_{i}} \mid K>_{l e x} w_{+}^{-1}\left(E_{i}\right)\right\}, \quad S_{w_{+}}^{+}=\bigcup_{i=1}^{m-1}\left\{C_{w_{+}^{-1}\left(E_{i}\right)}^{E_{i}}\right\} \\
P_{w_{-}}^{-}=\bigcup_{i=1}^{m-1}\left\{C_{K}^{E_{n} \backslash E_{n-i}} \mid K<_{l e x} w_{-}^{-1}\left(E_{m} \backslash E_{m-i}\right)\right\}, S_{w_{-}}^{-}=\bigcup_{i=1}^{m-1}\left\{C_{w_{-}^{-1}\left(E_{m} \backslash E_{m-i}\right)}^{E_{n} \backslash E_{n-i}}\right\}, \\
P_{w}=P_{w_{+}}^{+} \cup P_{w_{-}}^{-}, \quad S_{w}=S_{w_{+}}^{+} \cup S_{w_{-}}^{-}
\end{gathered}
$$

and let $\mathcal{P}_{w_{ \pm}}^{ \pm}, \mathcal{P}_{w}$ be the left ideals of \mathcal{M}_{q} generated by $P_{w_{ \pm}}^{ \pm}$and P_{w} respectivelly; $\mathcal{S}_{w_{ \pm}}^{ \pm}, \mathcal{S}_{w}$ be the multiplicative subsets of \mathcal{M}_{q} generated by $S_{w_{ \pm}}^{ \pm}, S_{w}$. Note that the ideals $\mathcal{P}_{w_{ \pm}}^{ \pm}, \mathcal{P}_{w}$ are in fact twoside. For instance $\mathcal{P}_{w_{+}}^{+}=\sum_{i=1}^{m-1}+\mathcal{P}_{w_{+}^{-1}\left(E_{i}\right)}^{E_{i}}$, and any term of the right side is a twoside ideal by 1.4.

Proposition 2.3. Let $\mathcal{P} \in \operatorname{Spec} \mathcal{A}$. Then there exists a unique $w_{+} \in S_{m}$ such that $\mathcal{P} \supseteq \mathcal{P}_{w_{+}}^{+}, \mathcal{P} \cap S_{w_{+}}^{+}=\emptyset$.

First we shall prove some lemmas.
Lemma 2.4. Let $\mathcal{P} \in \operatorname{Spec} \mathcal{A}, p \leq m-1$. Then there exists a unique multiindex T with length p such that $C_{T}^{E_{p}} \notin \mathcal{P}, C_{I}^{E_{p}} \in \mathcal{P} \forall I>_{\text {lex }} T$.

Proof. Let us assume that such T does not exist and expand the q minor $C_{E_{m}}^{E_{m}}$ with respect to the first p columns. Then by the Laplace theorem $C_{E_{m}}^{E_{m}} \equiv 0(\bmod \mathcal{P})$. But $C_{E_{m}}^{E_{m}}$ is invertable in \mathcal{A} - contradiction. Hence T exists. Now let us write the set $\left\{J \mid C_{J}^{E_{p}} \notin \mathcal{P}\right\}$ with respect to the lexicographic order and denote by T the leading term. The lemma is proved.

Lemma 2.5. Let \mathcal{P}, p, T be from 2.4, $i>T, j \in E_{p} . \quad$ Then $x_{i}^{j} \equiv$ $0(\bmod \mathcal{P})$.

Proof. Let $T_{k}=T \backslash t_{k} \cup i$. Then $T_{k}>_{\text {lex }} T$ and $C_{T_{k}}^{E_{p}} \equiv 0(\bmod \mathcal{P})$. Let us expand $C_{T_{k}}^{E_{p}}$ with respect to the j-th column:

$$
C_{T_{k}}^{E_{p}}=\sum_{l=1}^{k-1}(-q)^{j-l} x_{t_{l}}^{j} C_{T_{k} \backslash t_{l}}^{E_{p} \backslash j}+\sum_{l=k}^{p-1}(-q)^{j-l} x_{t_{l+1}}^{j} C_{T_{k} \backslash t_{l+1}}^{E_{p} \backslash j}+(-q)^{j-p} x_{i}^{j} C_{T_{k} \backslash i}^{E_{p} \backslash j}
$$

If $x_{i}^{j} \not \equiv 0(\bmod \mathcal{P})$ then

$$
\begin{aligned}
C_{T_{k} \backslash i}^{E_{p} \backslash j} & \equiv-(-q)^{p-j}\left(x_{i}^{j}\right)^{-1}\left\{\sum_{l=1}^{k-1}(-q)^{j-l} x_{t_{l}}^{j} C_{T_{k} \backslash t_{l}}^{E_{p} \backslash j}+\sum_{l=k}^{p-1}(-q)^{j-l} x_{t_{l+1}}^{j} C_{T_{k} \backslash t_{l+1}}^{E_{p} \backslash j}\right\} \\
& \equiv-(-q)^{p-j}\left(x_{i}^{j}\right)^{-1} \sum_{l \neq k} s(k, l)(-q)^{j-l} x_{t_{l}}^{j} C_{T_{k} \backslash t_{l}}^{E_{p} \backslash j}(\bmod \mathcal{P})
\end{aligned}
$$

where $s(k, l)=\left\{\begin{array}{cc}1 & \text { for } k<l, \\ -q^{-1} & \text { for } k>l .\end{array}\right.$ Let us expand $C_{T}^{E_{p}}$ with respect to the j-th column using the fact that $T \backslash t_{k}=T_{k} \backslash i$:

$$
\begin{aligned}
& C_{T}^{E_{p}} \equiv \sum_{k=1}^{p}(-q)^{j-k} x_{t_{k}}^{j} C_{T \backslash t_{k}}^{E_{p} \backslash j}=\sum_{k=1}^{p}(-q)^{j-k} x_{t_{k}}^{j} C_{T_{k} \backslash i}^{E_{p} \backslash j} \\
& \equiv \sum_{k=1}^{p}(-q)^{j-k} x_{t_{k}}^{j}\left\{-(-q)^{p-j}\left(x_{i}^{j}\right)^{-1} \sum_{l \neq k} s(k, l)(-q)^{j-l} x_{t_{l}}^{j} C_{T_{k} \backslash t_{l}}^{E_{p} \backslash \backslash}\right\} \\
& \equiv(-q)^{p-j+1}\left(x_{i}^{j}\right)^{-1} \sum_{k<l}\left\{(-q)^{j-k} x_{t_{k}}^{j} s(k, l)(-q)^{j-l} x_{t_{l}}^{j} C_{T_{k} \backslash t_{l}}^{E_{p} \backslash j}\right. \\
&\left.\quad+(-q)^{j-l} x_{t_{l}}^{j} s(l, k)(-q)^{j-k} x_{t_{k}}^{j} C_{T_{l} \backslash t_{k}}^{E_{p} \backslash j}\right\} \\
& \equiv(-q)^{p-j+1}\left(x_{i}^{j}\right)^{-1} \sum_{k<l}\left\{(-q)^{2 j-k-l} x_{t_{k}}^{j} x_{t_{l}}^{j} C_{T_{k} \backslash t_{l}}^{E_{p} \backslash j}\right. \\
&\left.\quad-q^{-1}(-q)^{2 j-k-l} x_{t_{l}}^{j} x_{t_{k}}^{j} C_{T_{l} \backslash t_{k}}^{E_{p} \backslash j}\right\} \\
& \equiv(-q)^{p-j+1}\left(x_{i}^{j}\right)^{-1} \sum_{k<l}(-q)^{2 j-k-l} x_{t_{k}}^{j} x_{t_{l}}^{j}\left(C_{T_{k} \backslash t_{l}}^{E_{p} \backslash j}-C_{T_{l} \backslash t_{k}}^{E_{p} \backslash j}\right)(\bmod \mathcal{P}) .
\end{aligned}
$$

As above $T_{k} \backslash t_{l}=T_{l} \backslash t_{k}$. Therefore $C_{T}^{E_{p}} \equiv 0(\bmod \mathcal{P})-$ contradiction. Hence $x_{i}^{j} \equiv 0(\bmod \mathcal{P})$.

Lemma 2.6. Let \mathcal{P}, p, T be from 2.4. Then for all i, j
$C_{T}^{E_{p}} x_{i}^{j} \equiv q^{\delta_{E_{p}, j}-\delta_{T, i}} x_{i}^{j} C_{T}^{E_{p}}(\bmod \mathcal{P}) \quad$ where $\delta_{J, k}= \begin{cases}0 & \text { for } k \notin J, \\ 1 & \text { for } k \in J .\end{cases}$

Proof. If i, j are as in sections a), b), c), e), f), g) or h) of Lemma 1.1, then we obtain the statement as in 1.4. If $i>T, j \in E_{p}$, then we use that fact that by the Lemma $2.5 x_{i}^{j} \equiv 0(\bmod \mathcal{P})$.

Lemma 2.7. Let \mathcal{P}, p, T be from 2.4. Then for all K, L

$$
C_{T}^{E_{p}} C_{K}^{L} \equiv q^{\sharp\left\{E_{p} \cap L\right\}-\sharp\{T \cap K\}} C_{K}^{L} C_{T}^{E_{p}}(\bmod \mathcal{P})
$$

Proof. Let the order of the q-minor C_{K}^{L} is equal to r. Then by Lemma 2.6

$$
\begin{aligned}
C_{T}^{E_{p}} C_{K}^{L} & \equiv C_{T}^{E_{p}} \sum_{\sigma \in S_{r}}(-q)^{l(\sigma)} x_{k_{1}}^{l_{\sigma(1)}} \ldots x_{k_{r}}^{l_{\sigma(r)}} \\
& \equiv \sum_{\sigma \in S_{r}} q^{A_{\sigma}}(-q)^{l(\sigma)} x_{k_{1}}^{l_{\sigma(1)}} \ldots x_{k_{r}}^{l_{\sigma(r)}} C_{T}^{E_{p}}(\bmod \mathcal{P})
\end{aligned}
$$

We shall show that A_{σ} does not depend on σ. Indeed, by Lemma 2.6, $C_{T}^{E_{p}} x_{k_{j}}^{l_{\sigma(j)}} \equiv$ $q^{\delta_{E_{p}, l_{\sigma(j)}}-\delta_{T, k_{j}}} x_{k_{j}}^{l_{\sigma(j)}} C_{T}^{E_{p}}(\bmod \mathcal{P})$. Therefore

$$
\begin{aligned}
A_{\sigma} & =\sum_{j=1}^{r}\left(\delta_{E_{p}, l_{\sigma(j)}}-\delta_{T, k_{j}}\right)=\sum_{j=1}^{r} \delta_{E_{p}, l_{\sigma(j)}}-\sum_{j=1}^{r} \delta_{T, k_{j}} \\
& =\sum_{j=1}^{r} \delta_{E_{p}, l_{j}}-\sum_{p=1}^{r} \delta_{T, k_{j}}=\sharp\left\{E_{p} \cap L\right\}-\sharp\{T \cap K\} .
\end{aligned}
$$

Lemma 2.8. Using the Lemma 2.4 let us construct from the given ideal \mathcal{P} the collection of multiindices $T_{1}, T_{2}, \ldots T_{m-1}, T_{m}$ where p is the length of T_{p}. Then $T_{1} \subset T_{2} \subset \ldots T_{m-1} \subset T_{m}$.

Proof. Let $p<s$. By Lemma 2.7,

$$
C_{T_{p}}^{E_{p}} C_{T_{s}}^{E_{s}} \equiv q^{A} C_{T_{s}}^{E_{s}} C_{T_{p}}^{E_{p}}(\bmod \mathcal{P}), \quad C_{T_{s}}^{E_{s}} C_{T_{p}}^{E_{p}} \equiv q^{B} C_{T_{p}}^{E_{p}} C_{T_{s}}^{E_{s}}(\bmod \mathcal{P})
$$

where $A=\sharp\left\{E_{p} \cap E_{s}\right\}-\sharp\left\{T_{p} \cap T_{s}\right\}, B=\sharp\left\{E_{s} \cap E_{p}\right\}-\sharp\left\{T_{s} \cap T_{p}\right\}$. It is clear that $A=-B$. Therefore $\sharp\left\{T_{s} \cap T_{p}\right\}=\sharp\left\{E_{s} \cap E_{p}\right\}=p$. Hence $\sharp\left\{T_{s} \cap T_{p}\right\}=\sharp T_{p}$, $T_{p} \subset T_{s}$.

Proof of Proposition 2.3. By Lemma 2.4 for any prime ideal \mathcal{P} from $\operatorname{Spec} \mathcal{A}$ there exists an unique collection of multiindices $T_{1} \subset T_{2} \subset \ldots T_{m-1} \subset T_{m}$. Denote

$$
w_{+}^{-1}(1)=T_{1}, w_{+}^{-1}(2)=T_{2} \backslash T_{1}, \ldots, w_{+}^{-1}(m)=T_{n} \backslash T_{m-1}
$$

The proposition is proved.
The following proposition may be proved as above.
Proposition 2.9. Let $\mathcal{P} \in \operatorname{Spec} \mathcal{A}$. Then there exist unique $w_{-} \in S_{m}$ such that $\mathcal{P} \supseteq \mathcal{P}_{w_{-}}^{-}, \mathcal{P} \cap S_{w_{-}}^{-}=\emptyset$.

Using Propositions 2.3 and 2.9 one proves the following theorem.
Theorem 2.10. Denote $\operatorname{Spec}_{w} \mathcal{A}=\left\{\mathcal{P} \in \operatorname{Spec} \mathcal{A} \mid \mathcal{P} \supseteq \mathcal{P}_{w}, \mathcal{P} \bigcap S_{w}=\right.$ Ø\}. Then

$$
\operatorname{Spec} \mathcal{A}=\bigsqcup_{w \in S_{m} \times S_{m}} \operatorname{Spec}_{w} \mathcal{A}
$$

where \bigsqcup denotes the disjoint union.
Corollary 2.11. Denote $\operatorname{Prim}_{w} \mathcal{A}=\left\{\mathcal{P} \in \operatorname{Prim} \mathcal{A} \mid \mathcal{P} \supseteq \mathcal{P}_{w}, \mathcal{P} \bigcap S_{w}=\right.$ Ø\}. Then

$$
\operatorname{Prim} \mathcal{A}=\bigsqcup_{w \in S_{m} \times S_{m}} \operatorname{Prim}_{w} \mathcal{A}
$$

where \bigsqcup denotes the disjoint union.

3. Bijection theorem.

Algebras \mathcal{A}_{w} and $\widetilde{\mathcal{A}}_{w}$. Let \mathcal{S}_{w} be the multiplicative subset of \mathcal{M}_{q} generated by $S_{w} \cup S^{0}$. Denote $\mathcal{A}_{w}=\left(\mathcal{M}_{q} / \mathcal{P}_{w}\right)_{\mathcal{S}_{w}}$. The analysis of $\operatorname{Spec} \mathcal{A}$ reduces to the analysis of $\operatorname{Spec} \mathcal{A}_{w}$. Denote by $\widetilde{S}_{w_{ \pm}}^{ \pm}, \widetilde{S}^{0}, \widetilde{S}_{w}$, the subset of $S_{w_{ \pm}}^{ \pm}, S^{0}$, S_{w} respectivelly, consisting of all main q-minors. Let $\widetilde{\mathcal{S}}_{w}$ be the multiplicative subset of \mathcal{M}_{q}, generated by \widetilde{S}_{w}. Let $\widetilde{\mathcal{A}}_{w}=\left(\mathcal{M}_{q} / \mathcal{P}_{w}\right)_{\tilde{\mathcal{S}}_{w}}$. By Proposition 1.3, $\operatorname{Spec} \mathcal{A}_{w}=\operatorname{Spec} \widetilde{\mathcal{A}}_{w}$.

Proposition 3.1. The algebra $\widetilde{\mathcal{A}}_{w}$ is an algebra of twisted Lourent polinomials generated by the q-minors from \widetilde{S}_{w}.

First let us prove some lemmas.
Lemma 3.2. Let $l(y)$ denotes the number of inversions of the permutation y.
a) For any permutation $w_{+} \in S_{m}$ there exist $u_{j_{0}}=\left(j_{0}, j_{0}+1\right) \in S_{m}$ and $v_{+} \in S_{m}$ such that

$$
w_{+}=v_{+} u_{j_{0}}, \quad l\left(w_{+}\right)=l\left(v_{+}\right)+1, \quad v_{+}^{-1}\left(E_{j_{0}}\right)<v_{+}^{-1}\left(j_{0}+1\right) .
$$

b) For any permutation $w_{-} \in S_{m}$ there exist $u_{i_{0}}=\left(i_{0}, i_{0}+1\right) \in S_{m}$ and $v_{-} \in S_{m}$ such that

$$
w_{-}=v_{-} u_{i_{0}}, \quad l\left(w_{-}\right)=l\left(v_{-}\right)+1, \quad v_{-}^{-1}\left(E_{m} \backslash E_{m-i_{0}}\right)>v_{-}^{-1}\left(i_{0}\right)
$$

This lemma is a particular case of known properties about Wejl groups.
Lemma 3.3. Let w_{+}, v_{+}, j_{0} be from 3.2. Then $\widetilde{S}_{w_{+}}^{+}=\widetilde{S}_{v_{+}}^{+} \cup C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}$.
Proof. First let us show that
a) $\left[w_{+}\left(E_{j}\right)\right]_{i}=\left[v_{+}\left(E_{j}\right)\right]_{i} \forall j \neq j_{0}, i \leq j$;
b) $\left[w_{+}\left(E_{j_{0}}\right)\right]_{i}=\left[v_{+}\left(E_{j_{0}-1}\right)\right]_{i} \forall i<j_{0}$;
c) $\left[w_{+}\left(E_{j_{0}+1}\right)\right]_{i}=\left[v_{+}\left(E_{j_{0}+1}\right)\right]_{i} \forall i \leq j_{0}$.

Note that $w_{+}^{-1}(j)=v_{+}^{-1}(j) \forall j \neq j_{0}, j_{0}+1$. In addition $w_{+}^{-1}\left(j_{0}\right)=v_{+}^{-1}\left(j_{0}+\right.$ 1); $w_{+}^{-1}\left(j_{0}+1\right)=v_{+}^{-1}\left(j_{0}\right)$. Therefore $w_{+}^{-1}\left(E_{j}\right)=v_{+}^{-1}\left(E_{j}\right) \forall j \neq j_{0}$. This proves a). Let us prove b):

$$
w_{+}^{-1}\left(E_{j_{0}}\right)=w_{+}^{-1}\left(E_{j_{0}-1}\right) \cup w_{+}^{-1}\left(j_{0}\right)=v_{+}^{-1}\left(E_{j_{0}-1}\right) \cup v_{+}^{-1}\left(E_{j_{0}+1}\right)
$$

In addition $v_{+}^{-1}\left(j_{0}+1\right)>v_{+}^{-1}\left(E_{j_{0}-1}\right)$. Hence if $i<j_{0}$ then

$$
\left[w_{+}^{-1}\left(E_{j_{0}}\right)\right]_{i}=\left[v_{+}^{-1}\left(E_{j_{0}-1}\right) \cup v_{+}^{-1}\left(E_{j_{0}+1}\right)\right]_{i}=\left[v_{+}^{-1}\left(E_{j_{0}-1}\right)\right]_{i}
$$

Let us prove c): $w_{+}^{-1}\left(E_{j_{0}+1}\right)=w_{+}^{-1}\left(E_{j_{0}-1}\right) \cup w_{+}^{-1}\left(j_{0}\right) \cup w_{+}^{-1}\left(j_{0}+1\right)$. In addition $w_{+}^{-1}\left(j_{0}\right)>w_{+}^{-1}\left(j_{0}+1\right)$ and $w_{+}^{-1}\left(j_{0}\right)>w_{+}^{-1}\left(j_{0}-1\right)$. Therefore
$\left[w_{+}^{-1}\left(E_{j_{0}+1}\right)\right]_{j_{0}}=w_{+}^{-1}\left(E_{j_{0}-1}\right) \cup w_{+}^{-1}\left(j_{0}+1\right)=v_{+}^{-1}\left(E_{j_{0}-1}\right) \cup v_{+}^{-1}\left(j_{0}\right)=v_{+}^{-1}\left(E_{j_{0}}\right)$.
If $i \leq j_{0}$ then $\left[w_{+}^{-1}\left(E_{j_{0}+1}\right)\right]_{i}=\left[v_{+}^{-1}\left(E_{j_{0}}\right)\right]_{i}$ and c) is proved. Now recall that

$$
\left[C_{w_{+}^{-1}\left(E_{j}\right)}^{E_{j}}\right]_{i}=C_{\left[w_{+}^{-1}\left(E_{j}\right)\right]_{i}}^{E_{i}}, \quad\left[C_{v_{+}^{-1}\left(E_{j}\right)}^{E_{j}}\right]_{i}=C_{\left[v_{+}^{-1}\left(E_{j}\right)\right]_{i}}^{E_{i}}
$$

Therefore a), b) imply that $\widetilde{S}_{v_{+}}^{+} \subset \widetilde{S}_{w_{+}}^{+} \backslash C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}$, and on other hand a), c) imply that $\widetilde{S}_{v_{+}}^{+} \supset \widetilde{S}_{w_{+}}^{+} \backslash C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}$. The equality follows.

Lemma 3.4. Let w_{+}, v_{+}, j_{0} be from 3.2. Then $\mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle \subset \mathcal{P}_{v_{+}}^{+}$.

Proof. Note that $w_{+}^{-1}\left(E_{j_{0}}\right)>_{\text {lex }} v_{+}^{-1}\left(E_{j_{0}}\right)$. Indeed

$$
\begin{aligned}
w_{+}^{-1}\left(E_{j_{0}}\right) & =w_{+}^{-1}\left(E_{j_{0}-1}\right) \cup w_{+}^{-1}\left(j_{0}\right)>_{l e x} w_{+}^{-1}\left(E_{j_{0}-1}\right) \cup w_{+}^{-1}\left(j_{0}+1\right) \\
& =v_{+}^{-1}\left(E_{j_{0}-1}\right) \cup v_{+}^{-1}\left(j_{0}\right)=v_{+}^{-1}\left(E_{j_{0}}\right)
\end{aligned}
$$

In addition $w_{+}^{-1}\left(E_{j}\right)=v_{+}^{-1}\left(E_{j}\right) \forall j \neq j_{0}$. Therefore (see Section 1 for the definition of ideals $\left.{ }^{+} \mathcal{P}_{T}^{J}\right)^{+} \mathcal{P}_{w_{+}^{-1}\left(E_{j}\right)}^{E_{j}}={ }^{+} \mathcal{P}_{v_{+}^{-1}\left(E_{j}\right)}^{E_{j}} \forall j \neq j_{0},\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle \subset{ }^{+} \mathcal{P}_{v_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}$ and $+\mathcal{P}_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}} \subset+\mathcal{P}_{v_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}$. Hence

$$
\begin{aligned}
& \mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle=\sum_{j=1}^{m-1}+\mathcal{P}_{w_{+}^{-1}\left(E_{j}\right)}^{E_{j}}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle \\
& =\sum_{j \neq j_{0}}^{m-1}+\mathcal{P}_{w_{+}^{-1}\left(E_{j}\right)}^{E_{j}}+{ }^{+} \mathcal{P}_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle \subset \sum_{j \neq j_{0}}^{m-1}+\mathcal{P}_{w_{+}^{-1}\left(E_{j}\right)}^{E_{j}}+{ }^{+} \mathcal{P}_{v_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}} \\
& =\sum_{j \neq j_{0}}^{m-1}+\mathcal{P}_{v_{+}^{-1}\left(E_{j}\right)}^{E_{j}}+{ }^{+} \mathcal{P}_{v_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}=\mathcal{P}_{v_{+}}^{+} .
\end{aligned}
$$

Lemma 3.5. Let w_{+}, v_{+}, j_{0} be from 3.2. Then

$$
x_{v_{+}^{-1}\left(j_{0}+1\right)}^{j} \in \mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle \quad \forall j \leq j_{0}, \quad x_{v_{+}^{-1}\left(j_{0}+1\right)}^{j_{0}+1} \notin \mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle .
$$

Proof. Note that $v_{+}^{-1}\left(j_{0}+1\right)>v_{+}^{-1}\left(E_{j_{0}}\right) \ni v_{+}^{-1}(1)=w_{+}^{-1}(1)$. Therefore $x_{v_{+}^{-1}\left(j_{0}+1\right)}^{1} \in{ }^{+} \mathcal{P}_{w_{+}^{-1}\left(E_{1}\right)}^{E_{1}} \subset \mathcal{P}_{w_{+}}^{+} \subset \mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle$. Let us expend the q-minor $C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}$ with respect to $w_{+}^{-1}\left(j_{0}\right)$-th row and apply induction:

$$
C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}=\sum_{j=1}^{j_{0}} c_{j} x_{w_{+}^{-1}\left(j_{0}\right)}^{j} C_{w_{+}^{-1}\left(E_{j_{0}-1}\right)}^{E_{j} \backslash j}, \quad c_{j} \in \mathbf{C}^{*}
$$

The first $j_{0}-1$ terms belong to $\mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle$. Hence $x_{w_{+}^{-1}\left(j_{0}\right)}^{j_{0}} C_{w_{+}^{-1}\left(E_{\left.j_{0}-1\right)}\right.}^{E_{j_{0}-1}} \in$ $\mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle$. By definition $C_{w_{+}^{-1}\left(E_{j_{0}-1}\right)}^{E_{j_{0}-1}} \notin \mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle$. Exchanging $w_{+}^{-1}\left(j_{0}\right)$ by $v_{+}^{-1}\left(j_{0}+1\right)$ we see first statement is proved.

Let us prove the second statement. Note that $\mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle \subset \mathcal{P}_{v_{+}}^{+}$. Hence by the above $x_{v_{+}^{-1}\left(j_{0}+1\right)}^{j} \in \mathcal{P}_{v_{+}}^{+} \forall j \leq j_{0}$. Let us expand the q-minor
$C_{v_{+}^{-1}\left(E_{j_{0}+1}\right)}^{E_{j_{0}+1}} \notin \mathcal{P}_{v_{+}}^{+}$with respect to $v_{+}^{-1}\left(j_{0}+1\right)$-th row.

$$
C_{v_{+}^{-1}\left(E_{j_{0}+1}\right)}^{E_{j_{0}+1}}=\sum_{j=1}^{j_{0}+1} c_{j} x_{v_{+}^{-1}\left(j_{0}+1\right)}^{j} C_{v_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}+1} \backslash j}, \quad c_{j} \in \mathbf{C}^{*} .
$$

The first j_{0} terms lie in $\mathcal{P}_{v_{+}}^{+}$. Therefore $x_{v_{+}^{-1}\left(j_{0}+1\right)}^{j} C_{v_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}+1} \backslash j} \notin \mathcal{P}_{v_{+}}^{+}$. This implies that $x_{v_{+}^{-1}\left(j_{0}+1\right)}^{j_{0}+1} \notin \mathcal{P}_{v_{+}}^{+}$. Now we obtain what is required from the inclusion $\mathcal{P}_{w_{+}}^{+}+$ $\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle \subset \mathcal{P}_{v_{+}}^{+}$.

Lemma 3.6. Let w_{+}, v_{+}, j_{0} be from 3.2. Then $\mathcal{P}_{w_{+}}^{+}=\mathcal{P}_{v_{+}}^{+} \backslash\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle$. Proof. Let us prove the inclusion $\mathcal{P}_{v_{+}}^{+} \subset \mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle$. Note that

$$
+\mathcal{P}_{v_{+}^{-1}\left(E_{j}\right)}^{E_{j}}={ }^{+} \mathcal{P}_{w_{+}^{-1}\left(E_{j}\right)}^{E_{j}} \subset \mathcal{P}_{w_{+}}^{+} \subset \mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle \quad \forall j \neq j_{0}
$$

Hence it suffices to show that $C_{I}^{E_{j_{0}}} \in \mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle \quad \forall C_{I}^{E_{j_{0}}} \in{ }^{+} \mathcal{P}_{v_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}$. If $v_{+}^{-1}\left(j_{0}+1\right) \in I$ let us expand the q-minor $C_{I}^{E_{j_{0}}}$ with respect to $v_{+}^{-1}\left(j_{0}+1\right)$-th row. We get what is required by applying of Lemma 3.5. If $v_{+}^{-1}\left(j_{0}+1\right) \notin I$ let us denote $I^{\prime}=I \cup v_{+}^{-1}\left(j_{0}+1\right)$. Note that

$$
I^{\prime}=I \cup v_{+}^{-1}\left(j_{0}+1\right)>_{l e x} v_{+}^{-1}\left(E_{j_{0}}\right) \cup v_{+}^{-1}\left(j_{0}+1\right)=v_{+}^{-1}\left(E_{j_{0}+1}\right)=w_{+}^{-1}\left(E_{j_{0}+1}\right)
$$

Therefore $C_{I^{\prime}}^{E_{j_{0}+1}} \in \mathcal{P}_{w_{+}}^{+} \subset \mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle$ We expand $C_{I^{\prime}}^{E_{j_{0}+1}}$ with respect to $v_{+}^{-1}\left(j_{0}+1\right)$-th row:

$$
C_{I^{\prime}}^{E_{j_{0}+1}}=\sum_{j=1}^{j_{0}+1} c_{j} x_{v_{+}^{-1}\left(j_{0}+1\right)}^{j} C_{I^{\prime} \backslash v_{+}^{-1}\left(j_{0}+1\right)}^{E_{j_{0}+1} \backslash j}, \quad c_{j} \in \mathbf{C}^{*}
$$

The first j_{0} terms lie in $\mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle$ by Lemma 3.5. Therefore $x_{v_{+}^{-1}\left(j_{0}+1\right)}^{j_{0}+1} C_{I^{\prime}}^{E_{j_{0}+1} \backslash j_{0}+1} \in \mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle$. By Lemma $3.5 x_{v_{+}^{-1}\left(j_{0}+1\right)}^{j_{0}+1} \notin \mathcal{P}_{w_{+}}^{+}+$ $\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle$, therefore $C_{I^{\prime}}^{E_{j_{0}+1} \backslash j_{0}+1} \in \mathcal{P}_{w_{+}}^{+}+\left\langle C_{w_{+}^{-1}\left(E_{j_{0}}\right)}^{E_{j_{0}}}\right\rangle$. The inclusion is proved. According to Lemma 3.4 this implies the equality.

The following lemmas may be proved by same method.

Lemma 3.7. Let w_{-}, v_{-}, i_{0} be from 3.2. Then

$$
\widetilde{S}_{w_{-}}^{-}=\widetilde{S}_{v_{-}}^{-} \cup C_{w_{-}^{-1}\left(E_{n} \backslash E_{n-i_{0}}\right)}^{E_{n} \backslash E_{n-0_{0}}}
$$

Lemma 3.8. Let w_{-}, v_{-}, i_{0} be from 3.2. Then

$$
\mathcal{P}_{w_{-}}^{-}=\mathcal{P}_{v_{-}}^{-} \backslash\left\langle C_{w_{-}^{-1}\left(E_{n} \backslash E_{n-i_{0}}\right)}^{E_{n} \backslash E_{n-i_{0}}}\right\rangle
$$

Proof of Proposition 3.1. Let $e=(e, e) \in S_{m} \times S_{m}$ be the pair of the unit perturbations. As in [4, Theorem 1.24] one can show that $\widetilde{\mathcal{A}}_{e}$ is twisted Lourent algebra generated by q-minor from \widetilde{S}_{e}. Applying Lemma $3.2 l\left(w_{+}\right)$times (resp., $l\left(w_{-}\right)$times), we get the unit perturbation from w_{+}(resp., from w_{-}). In the chane of algebras $\widetilde{\mathcal{A}}_{e}, \ldots, \widetilde{\mathcal{A}}_{w}$ any algebra is constructed from the previous one by addition of the single element (see Lemmas 3.3, 3.6 and 3.7, 3.8). Lemma 2.7 implies that the added element is normal for all steps. The proposition is proved.

Bijection theorem. Let us introduce the Poisson bracket in $\mathbf{C}[\mathcal{V}]$ (as in $[6, \S 6]$ for instance) by the formula:

$$
\forall f, g \in \mathbf{C}[\mathcal{V}]: \quad\{f, g\}=\lim _{q \rightarrow 1} \frac{f * g-g * f}{q-1}
$$

where $*$ denotes the multiplication in $\mathbf{C}_{q}[\mathcal{V}]$. Thus the algebra $\mathbf{C}[\mathcal{V}]$ comes the Poisson algebra associated with $\mathbf{C}_{q}[\mathcal{V}]$.

Denote by $R_{w}, Q^{0}, Q_{w}, \widetilde{Q}_{w}$ the sets of minors in \mathcal{M}, analogous to P_{w}, $S^{0}, S_{w}, \widetilde{S}_{w}$ ones in \mathcal{M}_{q}. Denote by \mathcal{U} the subset of the linear space of complex $m \times n$-matrices defined by the conditions: $D_{I}^{J} \neq 0 \forall D_{I}^{J} \in Q^{0}$. Let \mathcal{U}_{w} be the algebraic submanifold of \mathcal{U} defined by the conditions: $D_{I}^{J}=0 \forall D_{I}^{J} \in R_{w}$, $D_{I}^{J} \neq 0 \forall D_{I}^{J} \in Q_{w}$; and $\widetilde{\mathcal{U}}_{w}$ be the subset of \mathcal{U}_{w} defined by the conditions: $D_{I}^{J} \neq 0$ $\forall D_{I}^{J} \in \widetilde{Q}_{w}$. The limit $q \rightarrow 1$ shows that

$$
\operatorname{Symp} \mathcal{V}=\operatorname{Symp} \mathcal{U}, \quad \operatorname{Symp} \mathcal{U}=\bigsqcup_{w \in S_{m} \times S_{m}} \operatorname{Symp} \mathcal{U}_{w}, \quad \operatorname{Symp} \mathcal{U}_{w}=\operatorname{Symp} \tilde{\mathcal{U}}_{w}
$$

Thus the set of the symplectic leaves of \mathcal{V} decomposes into union of classes, the classes are parametrized by the pairs of permutations $w \in S_{m} \times S_{m}$, and $\operatorname{Symp}_{w} \mathcal{V}=\operatorname{Symp} \widetilde{\mathcal{U}}_{w}$.

Theorem 3.9. There exists a bijection β between Prim $\mathbf{C}_{q}[\mathcal{V}]$ and Symp \mathcal{V} such that

1. $\beta\left(\operatorname{Prim}_{w} \mathbf{C}_{q}[\mathcal{V}]\right)=\operatorname{Symp}_{w} \mathcal{V}$,
2. $\operatorname{dim} \beta(\mathcal{P})=\mathrm{GK} \operatorname{dim} \mathbf{C}_{q}[\mathcal{V}] / \mathcal{P} \quad \forall \mathcal{P} \in \operatorname{Prim} \mathbf{C}_{q}[\mathcal{V}]$,
where GKdim denotes the Gelfand-Kirillov dimention.
Proof. The algebra $\widetilde{\mathcal{A}}_{w}$ is twisted by 3.1. Hence (see [5, 2.3]), all primitive ideals of $\widetilde{\mathcal{A}}_{w}$ are generated by the maximal ideals of its center. On the other hand, the symplectic leaves of $\widetilde{\mathcal{U}}_{w}$ are defined by the collection of Kazimir functions (see $[6, \S 2]$) plaing the role of central elements in Poisson algebra $\mathbf{C}\left[\widetilde{\mathcal{U}}_{w}\right]$. If the pair of generators C_{I}^{J}, C_{K}^{L} of the algebra \mathcal{A}_{w} satisfies the relation

$$
C_{I}^{J} C_{K}^{L}=q^{\varphi_{I K}^{J L}} C_{K}^{L} C_{I}^{J}
$$

then the limit $q \rightarrow 1$ shows that

$$
\left\{D_{I}^{J}, D_{K}^{L}\right\}=\varphi_{I K}^{J L} D_{I}^{J} D_{K}^{L}
$$

for the respective generators D_{I}^{J}, D_{K}^{L} of $\mathbf{C}\left[\mathcal{U}_{w}\right]$. Therefore both the generators of Center $\widetilde{\mathcal{A}}_{w}$ and the generators of Cazimir $\mathbf{C}\left[\widetilde{\mathcal{U}}_{w}\right]$ are defined by integer solutions of the same system $\Phi \bar{t}=0$. The bijection is proved. The statement about the dimetion statement follows from the fact that

$$
\text { GKdim Center } \mathcal{A}_{w}=\operatorname{dim} \operatorname{ker} \Phi=\text { GKdim Cazimir } \mathbf{C}_{q}\left[\mathcal{U}_{w}\right]
$$

The theorem is proved.

Acknowledgement. The author expresses gratitude to the scientific supervisor Prof. Panov.

The author especially thank Prof. Levassuer and Prof. Joseph for kindly sending him their papers.

REFERENCES

[1] T. J. Hodges, T. Levassuer. Primitive ideals of $\mathbf{C}_{q}[S L(3)]$. Comm. Math. Phys. 156 (1993), 581-605.
[2] T. J. Hodges, T. Levassuer. Primitive ideals of $\mathbf{C}_{q}[S L(n)]$. J. Algebra 168 (1994),455-468.
[3] A. Joseph. On the Prime and Primitive Spectra of the Algebra of Functions on a Quantum Group. J. Algebra 169 (1994), 441-511.
[4] V. G. Mosin, A. N. Panov. Division rings of quotients and central elements of multiparameter quantizations. Matematicheski Sbornic 187, 6 (1995), 53-72.
[5] K. P. Goodearl, E. S. Letzter. Prime Idieals in Skew and q-Skew Polynomial Rings. Mem. Amer. Math. Soc. 521 (1994), 9.
[6] I. Vaisman. Lectures on the Geometry of Poisson Manifolds. Progr. in Math., vol. 118, Birkhauser Verlag, Basel, Boston, Berlin, 1994.

Samara State University
Department of Mathematics
Chair of Algebra and Geometry
Akad. Pavlova Str., 1
443011 Samara
Russia
e-mail: bacha11@mail.ru

[^0]: 2000 Mathematics Subject Classification: 17B37.
 Key words: twisted algebra, Poisson algebra, primitive ideals, symplectic leaves.

