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ON FINITE ELEMENT METHODS FOR 2ND ORDER
(SEMI–)PERIODIC EIGENVALUE PROBLEMS

H. De Schepper

Communicated by I. D. Iliev

Abstract. We deal with a class of elliptic eigenvalue problems (EVPs)
on a rectangle Ω ⊂ R2, with periodic or semi–periodic boundary conditions
(BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational
formulation which is shown to fit into the general framework of abstract
EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert
spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs)
without and with numerical quadrature. The aim of the paper is to show
that well–known error estimates, established for the finite element approx-
imation of elliptic EVPs with classical BCs, hold for the present types of
EVPs too. Some attention is also paid to the computational aspects of the
resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial
numerical examples, the exact eigenpairs of which can be determined.

1. Introduction. In this paper we consider a class of elliptic EVPs on

a rectangle Ω ⊂ R
2,with periodic or semi-periodic BCs on ∂Ω. Such EVPs may
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arise in the mathematical model of various physical problems. In particular, note

that (semi–)periodic EVPs on a rectangle are basic to the study of EVPs in R
2

with periodic coefficient functions, see, e.g., [9, §2.2] and [14, §7.1]. An example

of the latter is the 2D-Schrödinger equation for an electron in a crystalline solid,

cf. [6, §III.2.1]. By Fourier’s expansion method, they may also be related to linear

transient boundary value problems (BVPs) with (semi-)periodic BCs. A recent

example of such a transient BVP is considered in [10]. A classical reference where

EVPs and BVPs with periodic BCs play an important role is [15].

Without loss of generality, the rectangle Ω may be taken to be the unit

square in R
2. Let Γ1,Γ2,Γ3,Γ4 be its sides, numbered as in Fig. 1.1.

x1
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Fig. 1.1 The domain Ω

To fix the ideas, we consider the following model problem:

(P ) : Find a pair [λ, u] ∈ R ×H2(Ω) which obeys, in a weak sense, the differ-

ential equation

−

2
∑

i,j=1

∂

∂xi
(aij

∂u

∂xj
) + a0u = λu in Ω,(1.1)

together with the BCs

u|Γ1
= αu|Γ3

,
∂u

∂νa
|Γ1

= −α
∂u

∂νa
|Γ3
,(1.2)

u|Γ2
= αu|Γ4

,
∂u

∂νa
|Γ2

= −α
∂u

∂νa
|Γ4
,(1.3)

where

∂u

∂νa

=
2

∑

i,j=1

aij
∂u

∂xj

ni,
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is the conormal derivative associated to the matrix (aij), ni being the i-th com-

ponent of the outward unit normal vector n to ∂Ω. Here, α = 1 or α = −1,

corresponding to periodic and semi–periodic BCs respectively. The data aij, a0

obey the following conditions:

aij(x) ∈ L∞(Ω); ∃β > 0,∀ξ ∈ R
2 :

2
∑

i,j=1

aij(x)ξiξj ≥ β|ξ|2 a.e. in Ω,(1.4)

a12(x) = a21(x) a.e. in Ω,(1.5)

a0(x) ∈ L∞(Ω); ∃a > 0 : a0(x) ≥ a a.e. in Ω.(1.6)

In the next section, we bring the EVP stated above into a suitable vari-

ational form, choosing a proper subspace V α of the first order Sobolev space

H1(Ω) as the space of trial– and test functions. The variational EVP is shown

to be formally equivalent to the underlying differential one and, moreover, to fit

into the general framework of EVPs for coercive, symmetric and bounded bilinear

forms in Hilbert spaces, see, e.g., [13, §6.2] and [3, §5.1].

In Section 3 we prove the density of H2(Ω)∩ V α in V α, a result which is

crucial for the convergence of the FEMs considered.

In Section 4 we introduce suitable finite element approximation spaces

V α
h of the respective V α. For the approximate eigenpairs, either obtained by the

standard consistent mass FEM or by a numerical quadrature FEM, well–known

error estimates obtained for EVPs with classical BCs (see, e.g., [13, §6.5], [3, §5.3-

5.4], [2, Ch.II] and [16]) are shown to remain valid for the present type of EVP and

of approximation space. Moreover, by a proper choice of the canonical basis of

V α
h , the stiffness and mass matrices, which appear in the resulting algebraic EVP,

can be constructed in a transparent way starting from the respective matrices for

an EVP with Neumann BCs.

Finally, in Section 5, we illustrate the analysis by two examples, the ex-

act eigenvalues of which can be found. The theoretical order of convergence of

the approximate eigenvalues is confirmed by the results. Moreover, in one of the

examples, leaning upon the theory of block (skew) circulant matrices, see, e.g.,

[7, §5.8], we obtain the approximate eigenpairs from the consistent mass FEM in

closed form. The resulting analytical formulae for the approximation error reveal

the precise dependence of this error on the number of the exact eigenvalues (num-

bered in increasing order of magnitude). For numerical algorithms for algebraic
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eigenproblems associated with periodic BCs (in one space dimension), we refer

to [4].

The natural norm and seminorm in the r-th order Sobolev space Hr(Ω) =

W 2,r(Ω), r ∈ N0, will be denoted as ‖ · ‖r,Ω and |.|r,Ω respectively; | · |0,Ω denotes

the L2-norm.

2. Variational EVPs.

2.1. Variational formulation. Let γ denote the usual trace–operator.

Choosing

V α = {v ∈ H1(Ω) | γv|Γ1
= αγv|Γ3

, γv|Γ2
= α γv|Γ4

},(2.1)

as the space of trial– and test functions, the variational formulation of the EVP

(P ) reads

(Pvar) : Find [λ, u] ∈ R × V α : a(u, v) = λ(u, v)L2(Ω), ∀v ∈ V α,(2.2)

where

a(u, v) =

∫

Ω





2
∑

i,j=1

aij
∂u

∂xj

∂v

∂xi

+ a0uv



 dx, ∀u, v ∈ V α.(2.3)

Notice that V 1 is the space H1
per(Ω), defined in [15, §1.3].

2.2. Formal equivalence. We aim at proving the formal equivalence

of the variational and the classical EVP. To this end, we need two successive

auxiliary lemmas. First, by a slight adaptation of a classical argument, see, e.g.,

[13, Théorème 1.4–3], we have

Lemma 2.1. Let D be a bounded domain of R
n with Lipschitz–

continuous boundary. Let Γ be a Lipschitz–continuous curve dividing D into

the subdomains D1 and D2. Let Γ = D1 ∩D2 and D = D1 ∪D2 ∪ Γ. Consider

functions w1 ∈ H1(D1) and w2 ∈ H1(D2) for which γw1|Γ = γw2|Γ. Then the

function w, defined a.e. on D by w|D1
= w1, w|D2

= w2, belongs to H1(D).

Leaning upon the lemma above, we may show

Lemma 2.2. The space W = {γv|Γ1
| v ∈ V α, γv|Γ2∪Γ4

= 0} is dense

in L2(Γ1).

P r o o f. We start from the density of the space W ′ = {γv|Γ1
| v ∈ H1(Ω),

γv|Γ2∪Γ4
= 0} in L2(Γ1), see, e.g., [18, P94], and we show that W ′ ⊂W . Let w ∈
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W ′, then, by definition, w = γv|Γ1
, for a function v ∈ H1(Ω), with γv|Γ2∪Γ4

= 0.

Now, put

v′(x1, x2) =















v(x1, 2x2), (x1, x2) ∈]0, 1[×

]

0,
1

2

[

,

αv(x1, 2(1 − x2)), (x1, x2) ∈]0, 1[×

]

1

2
, 1

[

.

Clearly, v′ ∈ H1

(

]0, 1[×

]

0,
1

2

[)

and v′ ∈ H1

(

]0, 1[×

]

1

2
, 1

[)

. Moreover, in an

obvious notation, γv′|Γ
↑

= γv′|↓
Γ

= 0, where Γ is the midline x2 =
1

2
of Ω. Thus,

from Lemma 2.1, v′ ∈ H1(Ω). Moreover, by construction, γv′|Γ2∪Γ4
= 0 and

γv′|Γ1
= αγv′|Γ3

, while γv′|Γ1
= γv|Γ1

= w. Hence, w ∈W . �

Invoking Lemma 2.2 in order to recover the periodic BCs (1.3) from (2.2),

we arrive at

Theorem 2.1. The EVPs (P ), (1.1)–(1.3), and (Pvar), (2.2), are for-

mally equivalent.

2.3. Existence of exact eigenpairs. We first state some important,

but direct properties of the bilinear form a(·, ·) and the space of trial and test

functions V α.

Proposition 2.1.

1. Under the assumptions (1.4)–(1.6), the bilinear form a(·, ·), (2.3), is bounded,

symmetric and strongly coercive on H1(Ω) ×H1(Ω).

2. V α, (2.1), is densily and compactly embedded in L2(Ω). Moreover, V α is a

closed subspace of H1(Ω).

Proposition 2.1 allows us to recast the problems (Pvar) into the framework

of abstract elliptic EVPs in Hilbert spaces, considered, e.g., in [13, §6.2], from

which it directly follows that

Theorem 2.2.

1. The problem (Pvar), (2.2), has an infinite number of eigenvalues, all being

strictly positive, with finite multiplicity and without a finite accumulation

point,

0 < λ1 ≤ λ2 ≤ · · · → +∞ .

Here, each eigenvalue occurs as many times as given by its multiplicity.
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2. The corresponding eigenfunctions u1, u2, . . . , can be chosen to be ortho-

normal in L2(Ω). They constitute a Hilbert basis for V α as well as for

L2(Ω).

3. A density property in the space V
α. In this section we deal

with a density property in V α. In view of the convergence of the finite element

methods for the EVP (2.2), such a property is crucial, cf. [13, §6.5].

Theorem 3.1. H2(Ω) ∩ V α is dense in V α (α = −1 or α = 1).

P r o o f. Let u ∈ V α be arbitrary. We will construct a sequence of func-

tions (ũδ)δ→0 in C∞(Ω) ∩ V α such that

‖u− ũδ‖1,Ω → 0 as δ → 0 .(3.1)

Step 1. Consider the square Ω̃ =]− a, 1 + a[×]− a, 1 + a[⊃ Ω. We want

to construct a function ũ ∈ H1(Ω̃), with ũ|Ω = u. To this end, we first put

ũ(x1, x2) =

{

u(x1, x2), (x1, x2) ∈ Ω ,

α u(x1 − 1, x2), (x1, x2) ∈ ]1, 1 + a[×]0, 1[≡ S̃ .

As u ∈ H1(S), S ≡]0, a[×]0, 1[, we have ũ ∈ H1(S̃). From the periodicity of u, we

get γũ|→Γ2
= γũ|Γ2←. Hence, Lemma 2.1 assures that ũ ∈ H1(]0, 1 + a[×]0, 1[).

Proceeding in an analogous way for the other 3 strips which may be ‘glued’ to

Ω, we construct a function ũ ∈ H1(Ω̃1), with ũ|Ω = u, where Ω̃1 is indicated in

Fig. 3.1(a). We still need to define ũ in the four remaining squares at the corners

of Ω̃. First, take

ũ(x1, x2) = u(x1 − 1, x2 − 1), (x1, x2) ∈]1, 1 + a[×]1, 1 + a[≡ Q̃.(3.2)

Then ũ ∈ H1(Q̃). Moreover, by the construction of ũ and by the periodicity of

u, we get, with Γ′2 and Γ′3 being the open segments shown in Fig 3.1(b),

γũ|→Γ′
2

= γũ|Γ′
2
←, γũ|Γ′

3

↑

= γũ| ↓

Γ′
3

.

Hence, from Lemma 2.1, we get that ũ ∈ H1(Ω̃2), where Ω̃2 ⊃ Ω̃1 is

indicated in Fig. 3.1(c). Repeating this procedure for the 3 remaining corner

squares of Ω̃, i.e. taking

ũ(x1, x2) =















u(x1 + 1, x2 + 1), (x1, x2) ∈] − a, 0[×] − a, 0[ ,

u(x1 − 1, x2 + 1), (x1, x2) ∈]1, 1 + a[×] − a, 0[ ,

u(x1 + 1, x2 − 1), (x1, x2) ∈] − a, 0[×]1, 1 + a[ ,
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x1

x2

Ω̃1

(a)

x2

x1

Q
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Γ′3

Γ′2 x2

x1

Ω̃2

(b) (c)

Fig. 3.1 (a) The domain Ω̃1 (enclosed by the dotted line);
(b) The ‘diagonal translation’ (3.2); (c) The domain Ω̃2 (enclosed by the dotted line)

we arrive at a function ũ ∈ H1(Ω̃), with ũ|Ω = u, by Lemma 2.1.

Step 2. Next, we use a well–known regularisation argument for L2–

functions (see, e.g., [12, p. 58–60]), in order to construct a sequence of functions

(ũδ)δ→0 in C∞(Ω)∩V α=1, whichs shows the desired property (3.1). Consider the

function ũδ, δ < a, defined on Ω by

ũδ(x) =

∫

|x−ξ|≤δ

ωδ(|x− ξ|)ũ(ξ) dξ, x = (x1, x2) ∈ Ω, ξ = (ξ1, ξ2),(3.3)

where ωδ is a standard regularising kernel. As ũδ ∈ C∞(Ω), ∀δ < a, and ũδ → u

in H1(Ω), for δ → 0, it only remains to argue that ũδ ∈ V α. To fix the ideas,

consider two corresponding points x ∈ Γ1 and x′ ∈ Γ3. Then ũδ(x) = αũδ(x
′),

as by construction, the function ũ takes the same (resp. opposite) values in each

pair of points ξ and ξ′ of Ω̃, (including the corner regions), related to each other

by a horizontal translation over the distance 1. �

Remark 3.1. The density result, proved above, can also be read as

V α = Wα, where Wα = {v ∈ C∞(Ω) | v|Γ1
= αv|Γ3

, v|Γ2
= αv|Γ4

},

the closure being taken in H1(Ω). It is of a similar nature as the well-known

–however non-evident– density of W = {v ∈ C∞(Ω) | v = 0 on Γ1 ⊂ ∂Ω} in

V = {v ∈ H1(Ω) | γv = 0 on Γ1}, proved, e.g., in [18, pp.30–31].

4. Finite element approximations.

4.1. The approximation space V α
h . To fix the ideas, let (τh)h be a

family of triangulations of Ω with identical triangular or rectangular elements K,
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see Fig. 4.1. Fix k ∈ N0. Consider the standard function spaces

Xh =
{

v ∈ C0(Ω) | v|K ∈ P (K), ∀K ∈ τh
}

⊂ H1(Ω),(4.1)

X0h = {v ∈ Xh | v = 0 on ∂Ω} ,

where

P (K) =

{

Pk(K) for triangular elements,

Qk(K) for rectangular elements,

Pk(K) standing again for the set of polynomials on K of degree ≤ k, and Qk(K)

standing for the set of polynomials on K of degree ≤ k in each variable.

Let (ai,h), 1 ≤ i ≤ N , (N ≡ N(h)) denote the usual set of all finite

element nodes associated with Xh. In each element they are chosen identically,

according to the triangle of type k or the rectangle of type k, respectively, see [5,

§2.2]. Hence, they will form a rectangular array, with r rows and c columns, say.

The numbering of the nodes is done in the natural way, cf. Fig. 4.1 for the case

k = 2.
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Γ1

Γ3

Γ2Γ4

Fig. 4.1. Position and numbering of the finite element nodes in Ω (case k = 2)

Let (ϕi,h), 1 ≤ i ≤ N , be the canonical basis of Xh, associated to the

nodes ai,h. To construct a proper subspace of V α, we introduce some special

linear combinations of the basis functions ϕi,h. First, put

ψ
hor,α
l,h = ϕl,h + αϕl+(c−1)r,h, l = 2, . . . , r − 1.(4.2)

Likewise, introduce

ψ
vert,α
kr+1,h = ϕkr+1,h + αϕ(k+1)r,h, k = 1, . . . , c− 2,(4.3)
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and

ψ
corner,α
h = ϕ1,h + αϕr,h + αϕ(c−1)r+1,h + ϕcr,h .(4.4)

One readily obtains

Proposition 4.1. The space V α
h , defined by

V α
h = X0h ⊕ span

(

ψ
hor,α
l,h

)r−1

l=2
⊕ span

(

ψ
vert,α
kr+1,h

)c−2

k=1
⊕ span(ψcorner,α

h ),(4.5)

is a finite dimensional subspace of V α (with dimension I = (r − 1)(c − 1)).

For simplicity in the notation, from now on, we omit the subindex h when

there is no confusion possible.

Proposition 4.2. The space V α
h , (4.5), shows the standard approxima-

tion property

inf
vh∈V α

h

{|v − vh|0,Ω + h|v − vh|1,Ω} ≤ Chr+1||v||r+1,Ω,

∀v ∈ V α ∩Hr+1(Ω), 1 ≤ r ≤ k.(4.6)

P r o o f. Take v ∈ V α ∩Hr+1(Ω) and recall that, by a Sobolev embedding

theorem, Hr+1(Ω) →֒ C0(Ω). For the usual Lagrange interpolant Πhv of v in Xh,

i.e. Πhv =
c−1
∑

k=0

r
∑

l=1

v(akr+l)ϕkr+l, we have, invoking the periodic BCs incorporated

in V α, that Πhv ∈ V α
h , on account of the direct sum (4.5). Then (4.6) follows by

classical interpolation error estimates, established, e.g., in [5, §3.2]. �

Let P : V α → V α
h be the elliptic projection operator, associated with

a(·, ·), i.e.

a(v − Pv,w) = 0 ∀v ∈ V α,∀w ∈ V α
h .(4.7)

As a consequence of (4.6) this projection operator retains the properties of the

classical projection operator, established, e.g., in [13, §6.5] for the case of a tri-

angular FE–mesh and in [1], for the case of a rectangular FE–mesh.

4.2. The consistent mass EVP. The consistent mass approximation

to the EVP (2.2) reads

Find [λh, uh] ∈ R × V α
h : a(uh, vh) = λh(uh, vh)L2(Ω) ∀vh ∈ V α

h ,(4.8)

where the bilinear form a(·, ·) is given by (2.3).
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For this EVP, the discrete analogue of Theorem 2.2 holds, the number of

eigenvalues (counted with their multiplicity) of course being I = dim V α
h .

Theorem 3.1 and the properties of the elliptic projection (4.7), implied

by Proposition 4.2, ensure that the error analysis, as outlined, e.g., in [13, §6.5]

and [16] for EVPs with classical BCs, may be rephrased for the present type

of EVP and of approximation space. Hence, well-known error estimates for

the approximate eigenpairs [λh, uh], established there remain valid. Thus, op-

timally, λl,h − λl = O(h2k). When λl is simple, for the corresponding eigen-

functions, (normalised in L2(Ω)), one optimally has ‖ul,h − ul‖1,Ω = O(hk) and

|ul,h − ul|0,Ω = O(hk+1).

For the case of a multiple exact eigenvalue, similar estimates as, e.g.,

in [16] and [17] can be shown to remain valid, starting from Theorem 3.1 and

Proposition 4.2.

4.3. Computational aspects. For a transparent construction of the

algebraic version of (4.8), the basis functions of the approximation space V α
h

should be suitably renumbered. To this end, consider again the rectangular array

of Fig. 4.1, renumber the nodes not belonging to Γ2 and Γ3 in the natural way

and denote

φ1 = ψcorner,α,

φl = ψ
hor,α
l , l = 2, . . . , r − 1,

and

φk(r−1)+1 = ψ
vert,α
kr+1 ,

k = 1, . . . , c− 2,

φk(r−1)+1+j = ϕkr+1+j, j = 1, . . . , r − 2,

where the functions ψhor,α
l , ψvert,α

kr+1 and ψcorner,α are defined by (4.2)–(4.4). Then,

(φi)
I
i=1, I = (c−1)(r−1), constitutes a basis of V α

h , (4.5). Putting uh =
I
∑

i=1
cihφi,

the EVP (4.8) may be rewritten in algebraic form as:

Find [λh, ch] ∈ R × R
I : Kch = λhMch,(4.9)

where ch = [c1,h , . . . , cI,h]T and where K and M are the symmetric stiffness

and mass matrix respectively, defined in the usual way, i.e. Kij = a(φi, φj),

Mij = (φi, φj), i, j = 1, . . . , I.

Due to the foregoing numbering of the basis functions, and due to the
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particular form of the basis functions associated to the boundary nodes, the

stiffness matrix K, may in practice be constructed out of the classical stiffness

matrix Kcl, which corresponds to an EVP with a classical Neumann BC on ∂Ω.

Dividing the rows (resp. columns) of the matrix Kcl into c blocks of r rows (resp.

columns), the l-th block is seen to correspond to the set of r nodes on the l-th

column in the rectangular array of Fig. 4.1. Then the construction of K is effected

as follows. First, add α times the last block of rows to the first one and then

omit the last block. Next, within each remaining block, add α times the last row

to the first one and omit the last row. Finally, perform the same two operations

on the columns.

A similar remark applies to the mass matrix M.

4.4. The effect of numerical quadrature. In practice, instead of

(4.8), we consider the EVP

Find [λ̃h, ũh] ∈ R × V α
h : ah(ũh, vh) = λ̃h(ũh, vh)h ∀vh ∈ V α

h ,(4.10)

where ah(·, ·) and (·, ·)h represent suitable approximations of a(·, ·) and (·, ·) re-

spectively, resulting from well chosen quadrature formulas, as described in some

detail in [16] and the references therein.

On account of Theorem 3.1 and the properties of the elliptic projection

(4.7), itselves implied by Proposition 4.2, the error analysis for numerical quadra-

ture finite element methods for EVPs with classical BCs, outlined in [16] and [17],

remains valid in the present case. Actually, the estimates for the eigenpairs of

(4.10) will be formally the same as those for the eigenpairs of (4.8). However,

to preserve the same rates of convergence, higher regularity of the data must be

imposed.

5. Numerical examples. We aim at comparing the numerical eigen-

values with the analytical ones. This requires the example to be chosen in such

a way that the analytical eigenvalues can indeed be computed. We begin with

an EVP for the Laplacian where an explicit expression of the approximate eigen-

values, and hence of the error, can be found. To this end we apply the theory of

(skew)circulant matrices. In the 2nd EVP, involving Bessel functions, we include

numerical quadrature.

5.1. A problem for the Laplacian. Let Ω be the square of Fig. 1.1

and consider the following EVP with semi–periodic BCs:
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Find [λ, u] ∈ R ×H2(Ω) :



































−
∂2u

∂x2
1

−
∂2u

∂x2
2

= λu in Ω

u|Γ1
= −u|Γ3

,
∂u

∂νa

|Γ1
=

∂u

∂νa

|Γ3

u|Γ2
= −u|Γ4

,
∂u

∂νa

|Γ2
=

∂u

∂νa

|Γ4
.

(5.1)

The exact eigenvalues of (5.1) are found to be

λm,l =
(

(2m+ 1)2 + (2l + 1)2
)

)π2 m, l ∈ N.(5.2)

where λm,m is 4–fold, and λm,l = λl,m, m 6= l, is 8–fold.

For the consistent mass FEM, we choose a bilinear mesh with N2 square

elements (i.e. c = r = N + 1 in the notations of Section 4.1). By the method

described in §4.3, the stiffness– and mass matrix are found to be skew block

circulant matrices with skew circulant blocks, cf. [7, p. 212–214]). Hence the

eigenvalues of M−1K can be found in the following closed form:

λh(m, l) = 3N2
2 − 1

2

(

cos (2m+1)π
N

+ cos (2l+1)π
N

)

− cos (2m+1)π
N

cos (2l+1)π
N

1 + 1
2

(

cos (2m+1)π
N

+ cos (2l+1)π
N

)

+ 1
4cos (2m+1)π

N
cos (2l+1)π

N

,

m, l = 0, . . . , N − 1,(5.3)

where λh(m,m) is 4–fold, and λh(m, l) = λh(l,m) is 8–fold for m 6= l, except

when m =
N − 1

2
or l =

N − 1

2
in the case that N is odd. Hence, for simplicity

of notations, let N be even.

From (5.2)–(5.3) we easily find

λm,l − λh
m,l = −

1

24

(

(2k + 1)2 + (2l + 1)2
)

π4h2 + O(h4) −→ 0 for h→ 0,

m, l = 0, . . . ,
N

2
− 1 .(5.4)

Thus, taking into account that λm,l and λh
m,l have the same multiplicity, by a

classical argument, see, e.g., [11, p. 290], λh
m,l turns out to be the consistent mass

finite element approximation of the exact eigenvalue λm,l, m, l = 0, . . . ,
N

2
− 1.
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Moreover, (5.4) confirms the theoretical order of convergence, viz. O(h2), for the

case of a bilinear mesh, as stated in Section 4.2. Again, λh
m,l approximates λm,l

from above, as it should. Furthermore, the approximation error of the eigenvalues

is seen to increase ‘quadratically’ with the number of the eigenvalues, numbered

in increasing order of magnitude.

5.2. Consistent mass and numerical quadrature FEM for a prob-

lem with nonconstant coefficients. Let again Ω be the square of Fig. 1.1

and consider the following EVP with periodic BCs:

Find [λ, u] ∈ R ×H2(Ω) :



































−
∂

∂x1

(

4x1
∂u

∂x1

)

−
∂2u

∂x2
2

= λu in Ω

u|Γ1
= u|Γ3

,
∂u

∂νa
|Γ1

= −
∂u

∂νa
|Γ3

u|Γ2
= u|Γ4

,
∂u

∂νa
|Γ2

= −
∂u

∂νa
|Γ4

(5.5)

Table 5.1. Numerical results for the EVP (5.5).

Case of a bilinear mesh.

approximate eigenvalue relative error in %
N CM NQ CM NQ

2nd and 3rd exact eigenvalue: 39.478
4 48.000 32.000 21.59 -18.94
8 41.457 37.490 5.01 -5.03
16 39.988 38.974 1.29 -1.28
32 39.605 39.352 0.32 -0.32

4th exact eigenvalue: 67.671
4 79.663 51.500 17.72 -23.90
8 70.908 63.301 4.78 -6.46
16 68.490 66.568 1.21 -1.63
32 67.879 67.397 0.31 - 0.40

5th exact eigenvalue: 84.044
4 112.671 54.617 34.06 -35.01
8 90.304 80.420 7.45 -4.31
16 85.561 83.105 1.81 -1.12
32 84.414 83.802 0.44 -0.29

6th exact eigenvalue: 107.149
4 127.663 54.617 19.15 -49.03
8 112.454 90.525 4.95 -15.51
16 108.478 102.755 1.24 -4.10
32 107.484 106.038 0.31 -1.04
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Fig. 5.1. R versus N (logarithmic scale) for λ4. Case of a bilinear mesh.

By the method of separation of variables, the exact eigenvalues of (5.5) are found

to be

λm,l = (ξmln4)2 + 4π2l2, m ∈ N0, l ∈ N,

where ξm is the m-th positive root of the equation

ξ · [2J1(2ξ)Y0(2ξ) − 2J1(2ξ)Y0(ξ) − J1(ξ)Y0(2ξ) + J1(ξ)Y0(ξ)

−2Y1(2ξ)J0(2ξ) + 2Y1(2ξ)J0(ξ) + Y1(ξ)J0(2ξ) − Y1(ξ)J0(ξ)] = 0 ,

Jn and Yn standing for the n-th order Bessel functions of the first and the second

kind, respectively, n = 0, 1. Here, λm,l is seen to be simple when l = 0, and

two–fold when l 6= 0.

For the finite element approximations, we again choose a bilinear mesh

with N2 square elements. For the numerical quadrature FEM, according to

Theorem 4.2, we approximate (·, ·) by a 4–points formula which is exact for

bilinear polynomials and a(·, ·) by a 9–points formula which is exact for bicubic

polynomials, see, e.g., [8, §5.6]. The mass matrix of the corresponding algebraic

EVP is diagonal.

According to the theoretical O(h2)–convergence, the relative error in the

eigenvalues, both for the consistent mass and for the numerical quadrature FEM,

is expected to decrease by a factor 4, when N is doubled. This is confirmed by

the results shown in Table 5.1 below, as well as by Fig. 5.1, which reveals the

relation logR ≈ C − 2 logN , R standing for the absolute value of the relative
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error and C denoting a constant, independent on h. In Table 5.1 we omit the

first eigenvalue, viz. 0, as this eigenvalue is recovered exactly by both FEMs.
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