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ABSTRACT. In this paper we study the property of having a countable
cover by sets of small local diameter (SLD for short). We show that in the
context of Banach spaces (JNR property) it implies that the Banach space
is Cech-analytic. We also prove that to have the JNR property, to be o-
fragmentable and to have the same Borel sets for the weak and the norm
topologies, they all are topological invariants of the weak topology. Finally,
by means of “good” injections into ¢o(I'), we give a great class of Banach
spaces with the JNR property.

Introduction. Let us begin with two definitions from [13].

Definition 0.1. Let (X, 7) be a topological space and let d be a metric
on X. The space X is said to be o-fragmented by the metric d if, foreach € > 0,
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14 L. Oncina

it is possible to write
[ee]
x=Jx;,
i=1

where each set X; has the property that each non-empty subset of X; has a non-
empty relatively open subset of d-diameter less than €.

When X is a Banach space, T is the weak topology and d is the || - ||, we
shall say that X is o-fragmentable.

Definition 0.2. Let (X, 7) be a topological space and let d be a metric
on X. It is said that X has a countable cover by set of small local diameter (SLD)
if for every € > 0 there exists a decomposition

such that for each n € N every point of X; has a relatively T-neighbourhood of
d-diameter less than €.

When X is a Banach space, T is the weak topology and d is the || - ||, we
shall say that X has the JNR property.

The notion of o-fragmentable topological spaces, was introduced and stud-
ied by Jayne, Namioka and Rogers, in a series of papers [13, 14, 15], arriving at
the concept of spaces having a countable cover by sets of small local diameter,
what we call SLD property, which has been studied in [13, 18, 19, 22, 23].

A norm on a Banach space is said to be a Kadec norm if the weak and
the norm topologies agree on the unit sphere. In [3, 4], Edgar shows that in a
Banach space that admits an equivalent Kadec norm the following hold:

1. Borel(X,|| - ||) = Borel(X,weak).
2. X € Borel(X**,w*).

In [8], Hansell introduced the concept of descriptive Banach spaces as
those that the norm has a network which is o-relatively discrete with respect to
the weak topology. He shows that spaces with an equivalent Kadec norm are
descriptive and that in descriptive Banach spaces 1) and 2) above hold, hence
improving Edgar’s results.

In [13], Jayne, Namioka and Rogers show that a Banach space with an
equivalent Kadec norm has the JNR property.

In this paper we present as main results the following:
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Theorem A. Let X be a Banach space with the JNR property, then
properties 1) and 2) above hold.

Theorem B. On a Banach space X, the following properties are topo-
logical invariants of the weak topology: to be o-fragmentable, to have the JNR
property, to have the same Borel sets for the weak and the norm topologies.

For the invariance of the o-fragmentability see [8, 20].

As a result of our Proposition 1.9, it is easy to show that for a Banach
space having the JNR property and being descriptive turn out to be equivalent
[19], p. 257. It must be said that all known o-fragmentable Banach spaces have
the JNR property [2, 8].

For recent results on the relationship between the JNR property and
renormability of the space see [10, 18, 19, 23].

1. The JNR property. Let X be a topological space. As usual, we
shall denote by F the family of closed subsets of X and G the open sets, and by
F, countable unions of sets from F. Our first result shows that for two metrics,
o-fragmentability and SLD are equivalent.

Proposition 1.1. Let (X,d) be a metric space and o be another metric
defined on X. The following conditions are equivalent:

i) (X,d) is o-fragmented by o;
it) (X,d) has o-SLD.

When the sets in i) can be taken to be differences of d-closed sets (or more gen-
erally d-F,-sets), then the sets in ii) can be taken to be d-F,-sets.

Proof. ii)= i) Is clear by definition.

i)= ii) Given € > 0, let {C7 };cn be a cover of X given by the o-fragmenta-
bility of the space.

Fix ¢ € N. Because of the o-fragmentability, there exists a family of
d-open sets, {U% : 0 < o < p;}, covering C¢ such that for 0 < o < p; we have

C;nUL\ |J Us#0, and g-diam(C; nUL\ | Up) <e.
<8<« <8<«

For each n,i € N and a € [0, ;), let F}; = {x € X : d(z, X \ Ui) > 1}
and Hy ; = (CF N EY,; \ Up<peq Up)- It is clear that o-diam(Hy ;) < e. Now for
a # 3 the sets Hp ; and Hgﬂ., when non-empty, are separated by a d-distance at
least . So for each n € N the family {Hpy ;0 <a<ptis discrete in (X, d).
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Set H' = U{H},: 0 < a < p;}. We have

UHzn:U U HZ’L:U U (C;NEY N\ U Ué):
n=1

n=10<a<p; n=10<a<p; 0<B<a

= |J @nuiN |J Uh=c,

0<a<p; 0<p<a

00

i=1n=1

and therefore

Let us see that for each n,7 € N the set H]* has local p-diameter less than . Take
x € H}'. So for some o € [0, ;) z € Hy ;.

Since the family {Hy; : 0 < o < y;} is discrete in (X, d) there must be a
d-open neighbourhood V' of x such that VN Hj, = @ for B # a. So

o-diam(V N H]") = o-diam(V N H ;) <e¢

Now if the C; are differences of d-closed sets, and since the F}; are d-
closed, we have that the H ”Z- are differences of d-closed sets. So each H;' is the
discrete union of sets which are differences of d-closed sets. Since d-open sets are

F,-sets, it follows that the H}'’s are also Fy-sets. [

Our first example of a Banach space with the JNR property can be used
to prove the JNR property in several cases. If (X, 7,) is a family of topological
spaces we denote by 7., the product topology of these spaces.

Proposition 1.2.  Let (X,,| - |l,) be a family of normed spaces (not
necessarily complete) and ., topologies defined on them. If for each v € T' the
space (X, 7y) is || - [[y-SLD, then (Eeo{Xy : v € T}, Tpro) s || - ||oo-SLD.

Proof. Set X =X, {X,:veTl}.

Given € > 0, let (AY")22, be countable covers of X, by sets of local
|| - [|,-diameter less than % <e.

For each m, k € N with % < %, let us define

1
X,Q”:{:L‘EX:WEI’:||$7||7>%\:k:}.

Given z € X" define A, x(z) = {y € T;[|z4|y > =}. Now for all p € N
with %D < g, set

11
Xp? = e € Xslloyll, = > o for % € Am(@)}
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Amokp L=z e X"z, € AP, for all y; € App(z)}

(P}

By the definition of X, it is easy to see that
[e.e]
= U U U a
m,p;%,%<§ k=1 (n1,...,ny)enM

Let us see now that it is a cover by sets of local || ||s-diameter less than e.

So, take any m,k,p,n,...,n;, with %,% < g and x € Alekpnk By
definition, there exist v1,...,7; € Ay k(x) and 7,,-open neighbourhoods of z.,,

say Uy, C Xy, with || - [|o;-diam (U, 0 ATP) < .
If we denote by P, the canonical projection onto the space X, the set
V =P (Uy)N... P, Y(Usy,) is Tyro-open and || - [|so-diameter(V N A2, ) < e.
To show the last claim take z,y € V N A7, . For 4 € Ay, 1(z) we have

1
gy lly > Ml Iy = 2y =gyl [ > —

which implies that A, (y) = Am k(). So for v € Ay, 1(z) we have

9

1
|2y —yylly <= <
P 2

and if v ¢ A, 1(z) we obtain

+—=<

Hx'y - ywH'y < ||x7||7 + HZMHW <

N ™

1 1
m m

as we wanted. 0O

In [13], the authors showed that if a Banach space has an equivalent Kadec
norm, then it has the JNR property by sets that are differences of weakly closed
sets. As a corollary of our next result we can see that it always happens whenever
the space has the JNR property. Also, Theorem 1.3 will be needed when proving
the third assertion in Theorem B.

Theorem 1.3. Let (X, 7) be a topological space and o be a lower semi-
continuous metric on X. If (X, 7) has the o-SLD property, then (X,T) has the
0-SLD property by differences of T-closed sets. Moreover, if the p-topology is finer
than T, then the sets can be taken to be p-closed.

Proof. Given € > 0, there exists a sequence of sets X covering the
space, having local p-diameter less than €. Let us define the following sets

Ve ={r e X5 : exists U € 7,x € U with 9 — diam(Xz NU) < ¢}
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We claim that the sequence (Y;5)22, is a countable cover of X by differ-
ences of T-closed sets of local diameter less than ¢.

To show that they cover X, take x € X. There exists n € Nand U € 7,
open neighbourhood of x such that x € X: NU having this set diameter less than
e. Since p is T-lower semi-continuous we have ¢ — diam(Xs NU ") < e and since
U is T-open, X¢ NU C Xt NU . Therefore o —diam(X: NU) < e which implies
zeY; SoX =U,Y;.

If x € Y,S there exists U such that

0 —diam(YSNU) < o—diam(Xs NU ') < e.

Now for each z € Y7 call U, the open set given by the definition of Y.

It is easy to see that
ve=X"n {J Us
T€YS

which shows that Y7 is the difference of 7-closed sets.

If 7 < p, since Y7 = F; NG5 with F;; 7-closed (hence p-closed) and
G¢, T-open (hence p-open), and since in a metric space open sets are F, sets,
Yo =F. N (UmFﬁm,n) = Unm(F; N Fﬁzn)

So X = Umn(F; N Fy,,) being these sets o-closed and of local diameter
less than . O

In the next proof we will need some definitions on families of sets. So,
recall that a family of subsets A = {A,},cr, of a topological space: is called
discrete if every point of the space, has an open neighbourhood that meets, at
most, one element of the family; isolated if it is discrete in its union; o-discretely
(isolatedly) decomposable if each A, = U,{AT} so that each {A7},er is discrete
(isolated). In a metric space (X, d) a family A = {A,},cr is called e-discrete (or
metrically discrete with separating distance ¢) if d(x,y) > € whenever z € A,,
y € Ag, with v # .

As usual, we denote by F NG the sets which are the intersection of a
closed and an open set.

Theorem 1.4. Let X be a Banach space with the JNR property. Then
X is a (FNG)gs in (X*, weak*) and therefore X € Borel(X** w*). Moreover,
any || - ||-closed subset of X is of the same type.

Proof. For each p € N, let {Uk,, : a« € T, ,} be refinement of a cover of
X by balls of diameter less than % such that for all n € N the families {Uf,, :
a €Ty,} are | - ||-discrete. We may suppose that each {Uf, : « € [, ,} is a
metrically discrete family with separating distances 4, , > 0.
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For n,p € N, let {C},, : m € N} be a countable cover of X with the
local diameter of each C¥ ,,, < 6y, . Then for each n,m,p € N the family {U} , N
Cﬁm}aepn,p is weakly isolated, in fact it is weakly discrete in Cﬁ,m. So if we
look at X as a subset of (X**,w*), the family {U&,, N C} m}acr,,, is w*-isolated.
Thus, for each =z € Ug,nﬂCﬁ,m there exists a w*-open neighbourhood of x in X**,
n7m7p
say Uzn ™, such that

UpiPn (UL, NCP ) # O, and

urmr A (Us, NCEL) =0, for f# a.
Set
cnp= U ume
zeU8 ,NCE

Gl is clearly a w*-open set with Goi D (UL, NCE ) and for 8 # a, Gob N
(Ugn NChm) = . Set

w*
Mopmp = (Uan NChm)  NGRY.

We show that

X=NUUCU Manms}

p m n O(EFn,p

Notice that, since diam(UL ., N Ch.,) < %, we have

w*

diam (UL, N Cﬁm ) <

S

Let

** X**ﬂﬂUU U Manm,p

p m n O(Ean

For each p € N there exist n,m € N and o € I';, ;, such that

F e U NCE) " narm

a,mn?

so there exists z, € UL ,, N CY ;,, such that ||z** — z,|| < 2. Thus we have

1
>

|- lim z, = 2**
p—00

and therefore z** € X.
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Now since the family {Mqy nmp @ @ € I'y )} is isolated and it consists of
FNGsets, {Manmp:a€l'y,tisalsoa F NG set ([8, Lemma 3.3]).
If Fis a norm closed subset of X, consider the families

{F N Ug,n N Cﬁ,m}aern,p

and follow the proof. In this case the vectors z;,’s belong to F' and, since F' is
closed, the limit also belongs to F'. O

Proof of Theorem A. 2) follows from Theorem 1.4. Let us prove 1).

To do so, let A be a norm-closed subset of X. By Theorem 1.4, A €
Borel(X**, weak™), i.e. there exists B C X**, B € Borel(X*,weak*) and
A = BN X. But the weak topology on X coincides with the restriction to X of
the weak* topology on X** and therefore A is a weak-Borel subset of X. O

In fact, 1) in Theorem A follows also from the following result, from
where we will be able to specify the class of any norm open set. We would like
to mention that Proposition 1.5 will be used also in the proof of Theorem B.

Proposition 1.5. Let (X,7) be a topological space with the o-SLD
property by differences of T-closed sets, for some metric 9. Then every g-open set
is a (FNG), set in (X, ), that is, a countable union of differences of T-closed
sets.

Proof. Forevery n € N, let (X;, m)men be a countable cover of X by sets
of local p-diameter less than %, and with each X, ,, being the difference of two
T-closed sets. Reordering the indexes, call them (X, ),en. Now for each n € N,
define I'(n) = {r € N; X, has local o-diameter less than 1}. It is easy to see that
for each n € N, the set U{X,;r € I'(n)} covers X.

Now, let G be a norm open set. Set Gy, = {z € X; B,(x; %) C G}.

Fix n € N. For each r € I'(n), and every = € G,, N X,, since the set X,
has local p-diameter less than %, there exists a 7 relatively open subset U(z) of
X, containing z, such that, g-diam(U(z)) < . Thus z € U(z) C G. Hence, for
r € I'(n), the set

Upr=U{U(z) :z € G,NX,}

is a relatively open subset of X,.. So U, , is a (FNG) set in 7. It contains G, N X,
and is contained in G. Now the set U{U,,,;n € N, € I'(n)} coincides with G
and it isa (FNG), setin 7. O

Corollary 1.6. Let X be a Banach space with the JNR property. Then
any || - || open subset of X is a (F NG), set in the weak topolgy.
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In particular, Borel(X,|| - ||) = Borel(X,weak).

Problem 1.7. Let X be a Banach space such that any norm open set is
a (FNG), set for the weak topology. Does it have the JNR property?

The proof of Proposition 1.5 can be adapted to give the following:

Proposition 1.8. Let (X, 7) be a topological space such that any open
set is an F,-set. Let p be a metric on X and suppose that X has the SLD property
by sets of additive class «, then each p-open subset of X is of additive class a.

One way to characterize the SLD property is through discrete families.

Proposition 1.9. Let (X,7) be a topological space and d a metric on
it. Then (X,7) has d-SLD if, and only if, any d-discrete family of subsets of X
is o-isolatedly decomposable for T.

Proof. Let us assume that (X, 7) has d-SLD. For each n € N, consider
X = U{CP;i € N}, where the sets CI* have local d-diameter less than .

Let A= {As}ses be a discrete family in (X,d). Then there exist 1-
discrete families {AY'}scs such that Ay = U{A7*;m € N}, for s € S.

Write {A3™} = AT N C™, for m,i € N and s € S and fix i,m € N.
Take x € C!". There exists a 7-open neighbourhood of x, say U, such that
diam(U N C™) < 1. Therefore U meets at most one element of the family

{AY™}ses. So {AY™} s is discrete in (C™,7) and we have

[colNe o)

A, = @ AT = | UA;mCﬁ:UAgvm.

1 m=114=1

Hence A is g-isolatedly decomposable.

Let us show the converse. Given ¢ > 0, let {U} : o € I'} be a o-
discrete open refinement of an open cover of X by balls of radius less than 5. By
hypothesis, for each n € N, U? = U{By"" : m € N}, where for each n,m € N the
family {Ba"" }aer is T-isolated.

Write F" = U{Bs" : a € T'}; obviously, X = U{F" : n,m € N}.

We now show that for each n,m € N, the set F] has local diameter less
than e.

Take x € F". Then x € Bg)"" and therefore there exists a 7-open neigh-
bourhood U of z such that U N By™ = @ for a # ap. So diam(U N F) =
diam(U N By, ") < diam(Bgy ") <e. O

This characterization leads us to the following concept introduced by
Hansell [8].
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Definition 1.10. Let X be a Banach space. We shall say that X is
descriptive if the norm topology admits a network which is o-isolated for the weak
topology.

The concept of network was introduced by Arkangel’skii. By a network
for a space X we mean any collection M of subsets of X (not necessarily open)
such that each open set is a union of sets from M.

Remark 1.11. It is not difficult to show after Proposition 1.9 that on
a Banach space, the JNR property and being descriptive are equivalent notions
[19]. Hansell showed in [8], that a Banach space is descriptive if, and only if, the
weak topology has a o-isolated network. Thus showing that being descriptive
depends only on the weak topology of the space.

2. SLD maps. That characterization of the SLD property in terms of
discrete decompositions of families leads us to the study the following class of
maps.

Definition 2.1. Let (X, ) and (Y,d) be metric spaces. We shall say
that a one-to-one map T : X — Y is a (0,d)-SLD map if it maps o-discrete
families of subsets of X into d-o-discretely decomposable families of subsets of Y.

Under the conditions of Definition 2.1, if we denote by T, the topology
(metric) on X generated by the sets T~!(U) with U C Y d-open, we can prove:

Proposition 2.2. Let T : (X, 0) — (Y,d) be a one-to-one map between
metric spaces. T is SLD if, and only if (X,Ty) has o-SLD.

Proof. The proof follows the same line as in Proposition 1.9 and the
fact that in any metric space o-isolatedly decomposable families are o-discretely
decomposable (Hansell [6], Remark 1.3).

Theorem 2.3. Let X,Y be two Banach spaces and f: X — Y be a
continuous linear injection. Define ¢ = f~1 : f(X) — X. Then the following
conditions are equivalent:

i) @ is of Borel class a and f is SLD;

ii) (X, fi.|ly) has the || - ||x-SLD by sets of additive class o (for the topology
fity = LX) s - Iy —open in Y}).
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Proof. ii)= i) By Proposition 2.2 we have that f is SLD.

Now let G be a norm open subset of X. Since the topology f., in X
verifies that any open set is an F, set, we apply Proposition 1.8 and obtain that
G is of additive class a in (X, f.,.). Hence the set ¢~ !(G) is of additive class
in (f(X),|l-]ly) and therefore ¢ is of Borel class a.

i)= ii) Let us assume o > 0 (for & = 0 is obvious). Given ¢ > 0, let
{Ul] : v € A} be an open refinement of an open cover of X by balls of radius
less than §, such that for all n € N, the family {U} : v € A} is norm discrete.
Consider B} = f(UY). Then for each n € N the family {B}},ca is o-discretely
decomposable, so for every n,i € N there exist discrete families {B5"},ca such
that

o0
n __ i\n
By =B
i=1
Note that since the sets U} are open in X and ¢ is of Borel class «, the
sets BI' = ¢~ 1(U7') are of additive class .

Now fix i,n € N. The family {B%" N Bl }oea is discrete in f(X) and its
sets are of additive class «.
Set

Ei,n = U (B’Z;/’n n Bzyl)
vyEA
Then E;,, is a discrete union of sets of additive class a and therefore is itself of
additive class a. (For a proof of this fact see [17], page 358, Theorem 1). It is
obvious that

50 = Ui

Define C; ,, = f_l(Em). The sets C;,,’s are of additive class a and they
form a countable cover of (X, f|.|, )-

Now take z € C;,, and f(z) =y € Ejn. Soy € B%" N BY, for only
one 79 € A. Thus there exists an open neighbourhood U of y in Y such that
U N (BY" N BY) =0 for v # .

Write V = f~1(U). Vis a fi|-|y-open neighbourhood of x and

diam(V N Cj,) = diam(f (U N Z;,)) = diam(f (U N By N BL)) <

< diam(ffl(B,’Yl)) = diam(U}) < e.

Therefore C;,, has local diameter less than e. O
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Let us see that SLD maps are what we need to transfer the SLD property.

Theorem 2.4. Let (X, 1) and (Y, T2) be topological spaces and let o1, 02
be metrics defined on X and Y, respectively, with 7o = 02. Suppose that there
exists a one-to-one map T : X — Y and that (Y, 72) has the p2-SLD property.
Then the following conditions are equivalent:

i) T is (01, 02)-SLD;
iii) (X’ TTz) is o-fragmented by o1.

When (Y, 12) is o-fragmented by o2, 1)< iii) holds.
Proof. i)= ii) Given ¢ > 0, let A = {A"} = {A%;y € I'(n)} be

a o-discrete open refinement of an open cover by balls of radius less than 5.
Since T' is a SLD map, for each n € N, the family T(A") is g9-o-discretely de-
composable, i.e., for each B = T(AZ), B = U,,By"™, and for fixed n,m €
N, {Bff’m}vep(n) is po-discrete. Now, since (Y, 72) has go-SLD, by Proposition
1.9, each {B}"™} cp(, is o-isolatedly decomposable (for 75), hence By™ =
Up{ By}, with {BY"™"}, cp(n) To-isolated.

Now for each n,m,p € N, set AY"™P =T~ B)"™P). Tt is easy to see that
the family {AY™"} cp, is Tr,-isolated.

Define X™™P = U{A}"P;y € T'(n)}. Since it is a isolated union and
each AT is contained in an open ball of radius less than §, it is clear that each
X™"P has local gj-diameter less than . It is also easy to see by construction
that X = U{X™™P : n,m,p € N}. Since this can be done for every ¢ > 0, we
conclude with (X, T%,) has p;-SLD.

ii)= iii) It is obvious.

iii)= i) Since 7 =< g2, the hypothesis implies that (X,T,,) is pi-0-
fragmented, and that, by Proposition 1.1, is equivalent to T" being (o1, 02)-SLD.

In the case (Y, 72) is ps-o-fragmented, iii)=-i) follows the same line as
above.

Now let us show that i)=- iii). Given ¢ > 0, let {U};a € I',n € N} be an
open refinement of an open cover of X by balls of p;-radius less than § such that
for all n € N the family {U;a € I'} is p;-discrete.

For each n € N, T(U?) = U{Ba";n,m € N}, with {Ba"™"}aer be-
ing po-discrete. Then there exist %—discrete families {BZ’m’k}aep with Ba'™ =
U{BL™* k € N}.
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Now for each k € N there is a cover of X = U{C¥;r € N} given by the
o-fragmentability such that each set CF is fragmented down to l

Set Dk = CF 0 B™F and take AR = T‘l(D”Mk) c U™ If we
define CJ"™* = U{Anmk a € '} then X = U{C”mk n,m,r, k € N}. We are

n,m,k

going to show that if n,m,r, k € N are fixed, any nonempty subset of C,”""" has
a nonempty relatively T7,-open subset of gj-diameter less than e.
So take any @ # A C C™™F. We have

@+ T(A) c | J{Dam*} c Cf.

ael

By the o-fragmentability there exists a m-open set U, such that go-
diam(T(A) NU) < . So T(A)NU C BY™F for only one a € T. Hence,
T(A)NU C D2 for only one a € T'. Therefore, ANT*(U) C U" and that
makes g1-diam(ANT-HU)) <e. O

When T in Theorem 2.4, is 71 — 7o continuous, i) implies (X, 7;) has
01-SLD (or o-fragmented), so as a corollary we can obtain the following result:

Proposition 2.5. Let X and Y be Banach spaces. Let T : X — Y be
a weakly continuous SLD map. Then:

i) If Y has the JNR property, then so has X.

it) If Y is o-fragmentable, then so is X.
The following result is from [18] and it is very useful when trying to
construct SLD maps.

Proposition 2.6. Let (X, | - ||x) be a Banach space and (Y, ¢) a metric
space. Let T : X — Y be a one-to-one map. If, for every x € X there exists

a separable subspace Z, of X with x € span {Z;,;n € N}”.”X, whenever () s
a bounded sequence in X with T(xy,) converging to T(x) in o (in particular when
(xn) converges weakly to x, or pointwise when X=C(K)), then T is a (|| - ||x,0)-
SLD map.

The part i) in the following result is due to Kenderov and Moors [16].
Corollary 2.7. Let X be a Banach space.

i) X is o-fragmentable if, and only if, there exists a metric o finer than the
weak topology such that (X, weak) is o-fragmented by o.
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it) X has the JNR property if, and only if, there exists a metric o finer than
the weak topology such that (X,weak) has o-SLD.

Proof. We only have to prove the if part. Let us consider the identity
map Id : (X,] - [|x) — (X,0). If z,, converges to = in the ¢ metric, z, must
converge to x in the weak topology. Proposition 2.6 says, Id is an SLD map,
therefore Theorem 2.4 gives the conclusion. O

These maps have been used by several authors: Spahn in [24] constructed
a SLD map from a WCG Banach space into a ¢o(I'), Hansell [7] called them
co-o-discrete maps, and Moltd, Orihuela and Troyanski [18] gave as a definition
the equivalence in Proposition 2.2.

Proof of Theorem B. Let ¢: X — Y be a weak-homeomorphism.

Let (x,,) be a bounded sequence in X and x € X such that ¢(x,) — ¢(x)
in || - |ly, hence ¢(z,) — ¢(x) weakly. Thus, x, — x weakly and Proposition
2.6 applies. So our map ¢ and its inverse are SLD. Moreover, since there is weak
to weak continuity, by Proposition 2.5, i) and ii) hold. To prove iii) assume that
Borel(Y,weak) = Borel(Y,| - |ly).

Denote by Bx . ) the closed unit ball of (X, || - ||x). B(x,|.|x) 18 & w-
closed subset of X and, since ¢ is a homeomorphism, ¢(Bx,|.|y)) is a w-closed
subset of Y. Thus the norm || - ||x is lower semi-continuous on (X, ¢y, ). Since
¢ is SLD, by Theorem 1.3, (X, ¢.,,) has the || - || x-SLD property by differences
of ¢.|-closed sets. So if G is a || - ||x-open subset of X, then, by Proposition
1.5, G = U{Cy;i € N}, where C; is the difference of two ¢).||,,-closed sets for every
ieN.

Set B; = ¢(C;). Then the B;’s are differences of || - ||y-closed sets and
therefore they are w-Borel sets. Thus ¢~1(B;) = C; are w-Borel in X. We
conclude that G is a countable union of weak-Borel sets and therefore is itself a
weak-Borel subset of X. O

The o-fragmentability counterpart of our next result is due to Kenderov
and Moors, [16]. For the JNR property it answers a question of Haydon in [11].
See [21].

Corollary 2.8. Let (K,)>2, be a sequence of closed subsets of a compact
Hausdorff space K such that K = UK,. Then: if for each n € N the space
(C(Ky),ptwise), (resp. (C(K,),weak)) has the JNR property, then so has the
space (C(K), ptwise), (resp. (C(K),weak)).
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Proof. Define the map
T:C(K) — Ee(C(Kn), || - lloc)

by the formula
1 o0
T(f) = (Ef|Kn)TL=1'

Since T is clearly pointwise to pointwise continuous, we only have to show
that T SLD.

So take a bounded sequence (f,)°_; € C(K), and f € C(K) and suppose
that (T'(fm)) converges to T'(f) in the norm of ¥.,. We need to show that f,,
converges pointwise to f.

So take x € K. There must be ng € N such that z € K,,,. Given ¢ > 0
there exists m € N such that for all £ > m we have

g . 1 1 €
IT(fr) = T(loo < —» L&, [[=fumlr, = —fliulloo < — forall n € N.
no n n no

Therefore,
1

1
|— fu(z) — —f(2)| < = for all k > m.
no no no
Thus f,, converges to f in the pointwise topology and by Proposition 2.6 we

conclude that T is SLD. O

Let us present now some examples of constructions of SLD maps. The
following proposition is almost clear by the definitions.

Proposition 2.9. Let X, Y and Z be metric spaces and let f, g be SLD
maps, f: X =Y, qg:Y — Z. Then the map h=go f is SLD.

Let us give the definition of a projectional resolution of the identity and
some basic properties we shall need in our following result. They can be found
in [1].

Definition 2.10. Let X be a Banach Space. We denote by i the
smallest ordinal such that its cardinality |p| = dens(X). A projectional resolution
of identity, PRI for short, on X is a collection {P, : wy < a < u} of projections
from X into X that satisfy, for every a with wy < a < p, the following conditions:

i) [[Pall =1

i1) PyoPg = PgoP, = Py if wg <a <8< s
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i11) dens(Py(X)) < |af;
i) U{Ps+1(X) 1 wo < B < a} is norm dense in Py (X);
v) P, =1Idx.
Lemma 2.11. Let X be a Banach space and {Py : wp < a < u} be a

PRI on X. We put Poyy1 — Py =T, for wg < a < p. Then the following results
hold.

i) For every x € X, if « is a limit ordinal, wy < o < u, we have P,(x) =
|- 1| = limg<q Pp().
it) For every x € X, {||Ta(x)| : o € [wo, )} belongs to co([wo, p)).
i11) For every x € X and a € [wo, p), Po(x) belongs to norm closed linear span
of {Tp(x) : f < a} U{Py(2)}.
We shall need the following:

Lemma 2.12. Let (X,| - ||) be a normed space and (Ty)~er be a family
of bounded linear maps, Ty : X — X, satisfying:

i) Vo e X, (|[Ty(@)[))yer € co(T).

ii) Vo € X, x € span{T,(x )'yéI‘}'l |

Then there exists a SLD map ® : X — 3¢ (Ty(X), [ - [|o0)-

|
Proof. Define ® : X — Y. (T, (X), | - [lo) by ®(2) = (T5(2)) er. It is
clear that ® is a one-to-one linear map.
From i) we obtain that the set {y € I';T,(x) # 0} is countable. So for
every x € X we define a separable subspace of X, Z, as

Zy = span {T(z);y €T} "

Let us show that ® is a SLD map. Let (z,) be a bounded sequence in X
such that ®(z,) converges to ®(x) in ¥, for some z € X.

By ii), given € > 0 there exists I'; finite subset of I' and real numbers
a; such that ||z — > o;T,,(x)|| < § for 7; € I'1. Now since im T (z,) = Ty (x)
for any v € I, it follows that lim,, Hx > ;T (x,)| < 5. Thus there must be
no € N such that ||z — > o;T, (2p,)|| < €, which means that x € UZ,, . We only
have to apply Proposition 2.6. O

Theorem 2.13. Let p be a class of Banach spaces such that the follow-
ing holds:
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i) For every X € g there exists a PRI on X, {P, :wp < a < u}.
it) (Pat1 — FPa)(X) € p.

Then for every X € p there exists a set I' and a bounded linear SLD map
T:X — co(I).

Proof. Let X € p. We proceed by induction on dens(X).

When X is separable, we have that (Bx«,w") is metrizable and separable.
So let {f, : n > 1} be a dense subset of (Bx~,w*) and define

o0

T X — ) by (o) = (+1.(0))

n=1

T is clearly a linear map, and it is one-to-one because (f,),-; is dense in Bx«.

In order to show that T"is SLD, we notice that discrete families in separa-
ble Banach spaces are countable. And it is clear that the image of any countable
family is o-discretely decomposable.

Let x be an uncountable cardinal and X € @ such that dens(X) = x.
Suppose that the result is true for every Y € p with dens(Y') < x. Let u be the
smallest ordinal with cardinality |u| = x.

Let {P, : wo < a < u} be a PRI on X. For any a € [wg, i), we set
To = Pyy1— Py and X, = T (X). Then X, € p and dens(X,) < |af < dens(X).
Thus there exist sets I', and bounded linear SLD maps J,, : Xq — ¢9(Ta)-

Since P,,(X) is separable, there is also Jy : P,,(X) — co(N) sharing
these properties. Set

I'=NU U I',, disjoint union

wo<a<y

and define T : X — £ (T) by

T(x)(n) = Jo(Py,(x))(n) for n € N, and

7)) = 5 e Ju(Tu(@))(7) for 7 € T

[Jall +1)

T is clearly a linear map and is continuous and indeed T'(X) C ¢y(T). Also, by
the properties of the PRI and the induction hypothesis 7" is an injection.
Let us define

P: X — Eco()(on H : ||oo) by (I)(J:) = (Ta(aj))a<ﬂ
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and

P Zco(Xaa || : Hoo) B CO(F> by Q/)((xa)o&,u)(’y) = (Ja(ma))('y) for vy €T

By Lemma 2.12, ® is a SLD map. By the induction hypothesis and
Theorem 2.4, the spaces (Xq, Jo,ptwise) have the SLD property and that implies,
by Proposition 1.2, that ¥ (Xq, 7Tpro) has the SLD property as well.

On the other hand, it is easy to see that the topologies ¥ptyise and Tpro
coincide on Y., (X, ), which means that the space X.,(Xq, ¥ptwise) has the SLD
property and therefore, by Theorem 2.4 and the fact that (co(T), ptwise) has
|| - []co-SLD (Proposition 1.2), ¢ is SLD.

We only have to apply Proposition 2.9 to the maps ® and v to obtain the
desired result. O

Theorem 2.13 can be applied to several classes of Banach spaces, for ex-
ample WCD spaces, duals to Asplund spaces (we would obtain the SLD property
for the weak topology, not for the weak*-topology in general) and C'(K) spaces
with K being a Valdivia compact space. See either [1, 5] for the construction of
PRI on these spaces. We can summarize as follows:

Corollary 2.14. Let X be a Banach space of one of the following
types: weakly countably determined, the dual of an Asplund space or a C(K)
space with K being a Valdivia compact space. Then there exists a bounded SLD
linear map T : X — co(I'), pointwise to pointwise continuous when X = C(K),
and therefore (X, weak), also (C(K), pointwise), has the JNR property.
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