Serdica J. Computing 2 (2008), 313–320

Serdica Journal of Computing

Bulgarian Academy of Sciences Institute of Mathematics and Informatics

ON SOME GENERALIZATIONS OF A CLASS OF DISCRETE FUNCTIONS

Dimiter Stoichkov Kovachev

ABSTRACT. In this paper we examine discrete functions that depend on their variables in a particular way, namely the H -functions. The results obtained in this work make the "construction" of these functions possible. H-functions are generalized, as well as their matrix representation by Latin hypercubes.

1. Introduction, definitions and notation. Some of the major results regarding H-functions were obtained in the works [2, 4, 6].

We will denote the set of all functions of n variables of the k -valued logic by

 $P_n^k = \{f : E_k^n \to E_k / E_k = \{0, 1, \dots, k - 1\}, \quad k \ge 2\}.$

It is proved that the matrix form of every *H*-function from P_n^k is a Latin hypercube and vice versa, every Latin hypercube is the matrix form of an Hfunction from P_n^k . Latin squares and hypercubes have their applications in coding

ACM Computing Classification System (1998): G.2.0.

Key words: k-valued logic, H-function, subfunction, range, spectrum, Latin hypercubes and hyperparallelepipeds.

theory [5, §13.1], error correcting codes [5, §13.2 \div 13.5], information security, decision making, statistics $[5, \S1.4, \S12.1 \div 12.3]$, cryptography $[5, \S14.1 \div 14.5]$, conflict-free access to parallel memory systems [5, §16.3], experiment planning, tournament design [5, §1.6, §16.5], etc.

Definition 1 [3]. The number $Rnq(f)$ of different values of the function f is called the range of f.

We denote the set of variables of the function $f(x_1, x_2, \ldots, x_n)$ by X_f .

Definition 2. Every function obtained from $f(x_1, x_2, \ldots, x_n)$ by replacing the variables of M, $M \subseteq X_f$, $0 \leq |M| \leq n$, with constants is called a subfunction of f with respect to M.

The notation $g \longrightarrow f$ $(g \stackrel{M}{\longrightarrow} f)$ means that g is a subfunction of f (with respect to M).

Definition 3 [3]. If M is the set of variables of the function f and $G=\{g: g$ $X_f \backslash M$ \rightarrow f} is the set of all subfunctions of f with respect to $X_f\backslash M$, then the set $Spr(M, f) = \bigcup$ g∈G ${Rng(g)}$ is called the spectrum of the set M for the function f.

Definition 4 [2]. We say that $f(x_1, x_2, \ldots, x_n)$ is an H-function if for every variable x_i , $1 \leq i \leq n$, $n \geq 2$ and for every $n+1$ constants $\alpha_1, \ldots, \alpha_{i-1}$, $\alpha', \, \alpha'', \, \alpha_{i+1}, \, \ldots, \, \alpha_n \in E_k \text{ with } \alpha' \neq \alpha'' \text{ we have}$

 $f(\alpha_1,\ldots,\alpha_{i-1},\alpha',\alpha_{i+1},\ldots,\alpha_n) \neq f(\alpha_1,\ldots,\alpha_{i-1},\alpha'',\alpha i+1,\ldots,\alpha_n).$

In [4], it is proven that a function $f(x_1, x_2, \ldots, x_n) \in P_n^k$ is an H-function if and only if for every variable x_i , $i = 1, 2, ..., n$ the following equality holds: $Spr(x_i, f) = \{k\}.$

The examined class of $H[m; q]$ -functions is a generalization of the H-functions in P_n^k .

Definition 5 [4]. We say that the function $f(x_1, x_2, \ldots, x_n) \in P_n^k$ is an $H[m; q]$ -function if for every set M of m elements, $M \subseteq X_f$, of variables of the function f we have $Spr(M, f) = \{q\}.$

When $m = 1$ and $q = k$, the set of $H[1; k]$ -functions of P_n^k is equal to the set of *H*-functions of P_n^k .

One of the results for H -functions in $[7]$ is expanded with the proof that a function $f \in P_n^k$ is an $H[m; q]$ -function if and only if each of its subfunctions that depends on at least m variables is an $H[m; q]$ -function [4].

2. Main results. Let $F_n^k(\mathbb{K}) = \{f : \mathbb{K} \to E_k\}$, where $\mathbb{K} = K_1 \times$ $K_2 \times \cdots \times K_n$, and $K_i = \{0, 1, \ldots, k_i - 1\}, k_i \geq 2, i = 1, 2, \ldots, n$ be finite sets. It is obvious that $P_n^k = F_n^k(E_k^n)$. Let us denote by $P_n^{k,q}(F_n^{k,q}(\mathbb{K}))$ the set of all functions belonging to $P_n^k(F_n^k(\mathbb{K}))$, which have a range q. By $A = ||a_{ij}||_{m,n}$ we denote the matrix with m rows and n columns, which is called a 2-dimensional matrix of $m \times n$ size. By $B = ||b_{i_1 i_2 \dots i_n}||_{k_1, k_2, \dots, k_n}$ we denote the *n*-dimensional matrix of size $k_1 \times k_2 \times \cdots \times k_n$. In the special case when $k_1 = k_2 = \cdots = k_n = k$, the matrix $C = ||c_{i_1 i_2 \dots i_n}||_{k_1, k_2, ..., k_n}$ is denoted by $C = ||c_{i_1 i_2 \dots i_n}||_1^k$ and is called an n-dimensional matrix of order k.

Each function $f(x_1, x_2, \ldots, x_n)$ from $P_n^k(F_n^k(\mathbb{K}))$ can be represented in matrix form $||a_{i_1i_2...i_n}||_1^k(||a_{i_1i_2...i_n}||_{k_1,k_2,...,k_n}),$ where for each element of the corresponding matrix, the equality $a_{i_1 i_2...i_n} = f(x_1 = i_1 - 1, x_2 = i_2 - 1, ..., x_n = i_n - 1)$ holds.

Definition 6. We will call a Latin n-dimensional hyperparallelepiped (hypercube when $k_1 = k_2 = \ldots = k_n = k$) of size $k_1 \times k_2 \times \cdots \times k_n$ based on the set $E_k = \{0, 1, \ldots, k-1\}$ every n-dimensional matrix $A = ||a_{i_1 i_2 \ldots i_n}||_{k_1, k_2, \ldots, k_n}$ of size $k_1 \times k_2 \times \cdots \times k_n$, the elements of which belong to E_k and for every s, $s = 1, 2, \ldots, n$, the following relation holds:

$$
\left| \bigcup_{j=1}^{k_s} \left\{ a_{i_1 \dots i_{s-1} j \, i_{s+1} \dots i_n} \right\} \right| = k_s.
$$

A function f is injective if for every α , β from $\alpha \neq \beta$ it follows that $f(\alpha) \neq f(\beta)$.

Taking into account Definition 1, Definition 4 and the properties of injective functions, we have:

Proposition 1. A function is an H-function if each of its subfunctions of one variable is injective.

The question of the existence of H-functions among the set of discrete functions $F_n^k(\mathbb{K})$ arises naturally.

If Y and Z are finite sets and the function $h: Y \to Z$ is injective, then $|Y| \leq |Z|$ and $Rnq(h) = |Y|$. In addition, taking into account Proposition 1, we have:

Proposition 2. A necessary condition for the function $f(x_1, x_2, \ldots, x_n)$ $\in F_n^k(\mathbb{K})$ to be an H-function is $|K_i|=k_i\leq k=|E_k|$ for every i, $1\leq i\leq n$.

If there exists $i, 1 \leq i \leq n$, such that $|K_i| = k_i > k = |E_k|$, then the number of H-functions of the set $F_n^k(\mathbb{K})$ is zero. For the functions of P_n^k , from $K_i = E_k$, $1 \leq i \leq n$, it follows that the necessary condition for the existence of H-functions holds.

Theorem 1. If the functions $f_j(x_j) \in F_1^k(K_j)$ are injective, i.e. $f_j(x_j) \in$ $F_1^{k,k_j}(K_j)$, $j = 1, \ldots, n$, then the function $f(x_1, x_2, \ldots, x_n) = [f_1(x_1) + f_2(x_2) +$ $\ldots + f_n(x_n)$ mod k, is an H-function belonging to the set $F_n^k(\mathbb{K})$.

Proof. Let x_i , $1 \leq i \leq n$, $n \geq 2$, be an arbitrary variable, α' and α'' $(\alpha' \neq \alpha'')$ be two arbitrary constants of the set K_i , and $\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_n$ be an arbitrary set of constants such that $\alpha_s \in K_s$, $s \in \{1, 2, ..., n\} \setminus \{i\}$. From $\alpha' \neq \alpha''$ and $f_i(x_i)$ being an injective function, it follows that $f_i(\alpha') \neq f_i(\alpha'')$, and therefore $Q + f_i(\alpha') \neq Q + f_i(\alpha'')$. The latter inequality, when $Q = f_1(\alpha_1) +$ $\cdots + f_{i-1}(\alpha_{i-1}) + f_{i+1}(\alpha_{i+1}) + \cdots + f_n(\alpha_n)$, allows us to conclude that

 $f(\alpha_1,\ldots,\alpha_{i-1},\alpha',\alpha_{i+1},\ldots,\alpha_n) \neq f(\alpha_1,\ldots,\alpha_{i-1},\alpha'',\alpha_{i+1},\ldots,\alpha_n).$

The variable x_i and the constants $\alpha_1, \ldots, \alpha_{i-1}, \alpha', \alpha'', \alpha_{i+1}, \ldots, \alpha_n$ were chosen arbitrarily. Therefore, the function $f(x_1, x_2, \ldots, x_n)$ is an *H*-function of the set $F_n^k(\mathbb{K})$. \Box

The following question remains open: Do injective functions $g_i(x_i) \in$ $F_1^k(K_j)$, $j = 1, \ldots, n$, exist for every *H*-function $g \in F_n^k(\mathbb{K})$, such that $g(x_1, \ldots, x_n)$ x_n = [$g_1(x_1) + g_2(x_2) + \cdots + g_n(x_n)$] mod k?

From Theorem 1, we arrive at the following corollaries:

Corollary 1. If the condition $2 \leq |K_i| = k_i \leq k = |E_k|$ holds for every i, $1 \leq i \leq n$, then for every n and k there exists an H-function which belongs to the set of functions $F_n^k(\mathbb{K})$.

Corollary 2 [4]. If the functions $f_j(x_j) \in P_1^k$ are bijective, i.e. $f_j(x_j) \in P_1^k$ $P_1^{k,k}, j = 1, 2, \ldots, n$, then the function $f(x_1, x_2, \ldots, x_n) = [f_1(x_1) + f_2(x_2) + \cdots + f_n(x_n)]$ $f_n(x_n)$ mod k, is an H-function belonging to the set P_n^k .

Corollary 3. For every n and k, $n \geq 1$, $k \geq 2$, there exists an H-function belonging to the set P_n^k , i.e., there exists an n-dimensional Latin hypercube of order k.

Theorem 1 allows us to "construct" H-functions of the set $F_n^k(\mathbb{K})$. We will show this in the following example.

Example 1. Let us "construct" the *H*-function *f* of the set $F_3^4(\mathbb{K})$, where

 $\mathbb{K} = K_1 \times K_2 \times K_3, \quad K_1 = K_2 = \{0, 1, 2\}, \quad K_3 = E_4 = \{0, 1, 2, 3\}.$

Let
$$
f(x_1, x_2, x_3) = [f_1(x_1) + f_2(x_2) + f_3(x_3)] \mod 4
$$
, where

$$
f_1 = \begin{pmatrix} 0 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}
$$
, $f_2 = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 1 & 3 \end{pmatrix}$ and $f_3 = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 3 & 0 & 2 \end{pmatrix}$

be injective functions defined in the sets K_1 , K_2 , K_3 , respectively, and taking values in E_4 .

Consequently we get:

$$
f(0,0,0) = [f1(0) + f2(0) + f3(0)] \mod 4 = [3 + 2 + 1] \mod 4 = 2;
$$

$$
f(0,0,1) = [f_1(0) + f_2(0) + f_3(1)] \mod 4 = [3+2+3] \mod 4 = 0
$$

and so on, placing the results in Table 1 to arrive at the table representation of the function $f(x_1, x_2, x_3)$.

Table 1

Every discrete function $h = \begin{pmatrix} 0 & 1 & \cdots & k-1 \\ k & k & \cdots & k \end{pmatrix}$ b_1 b_2 ... b_k), where $b_i \in E_k$, $i =$ $1, \ldots, k$, can be written in the analytic form $y = h(x)$ by interpolating polynomial [1] or by the following determinant form

$$
\begin{vmatrix}\n1 & x & x^2 & \dots & x^{k-2} & x^{k-1} & y \\
1 & 0 & 0 & \dots & 0 & 0 & b_1 \\
1 & 1 & 1 & \dots & 1 & 1 & b_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & k-1 & (k-1)^2 & \dots & (k-1)^{k-2} & (k-1)^{k-1} & b_k\n\end{vmatrix} = 0.
$$

Each of the functions f_1 , f_2 , f_3 could be expressed analytically by using the Newton form of the interpolating polynomial, and for the function $f(x_1, x_2, x_3)$ we have the following analytic form:

$$
f(x_1, x_2, x_3) =
$$
\n
$$
\left[2(x_1)^2 - x_1 + 3 + \frac{3(x_2)^2 - 5x_2 + 4}{2} + \frac{10(x_3)^3 - 45(x_3)^2 + 47x_3 + 6}{6}\right] \mod 4.
$$

Theorem 2. The function $f(x_1, x_2, ..., x_n) \in F_n^k(\mathbb{K})$ is an H-function if and only if for each of its variables x_i , $i = 1, 2, \ldots, n$, the following equality holds: $Spr(x_i, f) = \{k_i\}.$

Proof. (Necessity) Let $f \in F_n^k(\mathbb{K})$ be an H-function and $x_i, i \in \{1, 2, \ldots,$ n } be an arbitrary variable of f. Then each of its subfunctions g, g $X_f \backslash x_i$ $\frac{f}{f}$ is injective, i.e. $Rng(g) = k_i$ and therefore $Spr(x_i, f) = \{k_i\}$ holds for $i =$ $1, 2, \ldots, n$.

(Sufficiency) Let $Spr(x_i, f) = \{k_i\}$ hold for every variable $x_i, i \in \{1, 2, \ldots,$ n .

This would mean that every subfunction h, h $X_f \backslash x_i$ \rightarrow f, has a range equal to k_i , and therefore, h is injective. The variable x_i was chosen arbitrarily, so it follows that every subfunction of one variable of the function f is injective. Therefore f is an H-function. \square

Theorem 3. Every H-function of $F_n^k(\mathbb{K})$ can be represented in matrix form as an n-dimensional Latin hyperparallelepiped of size $k_1 \times k_2 \times \cdots \times k_n$ based on E_k .

Proof. Let $f(x_1, x_2, \ldots, x_n)$ be an arbitrary H-function of $F_n^k(\mathbb{K})$, let s be an arbitrary number, $s \in \{1, 2, \ldots, n\}$, and let $(c_1, \ldots, c_{s-1}, c_{s+1}, \ldots, c_n)$ be an arbitrary set of constants, such that $c_i \in K_i$, $i \in \{1, 2, ..., n\} \setminus \{s\}$. If B is the matrix form of the function f , then for each element of the matrix B , the following equation holds: $b_{j_1j_2...j_n} = f(x_1 = j_1 - 1, x_2 = j_2 - 1, ..., x_n = j_n - 1) \in E_k$.

From $x_t = j_t - 1 = c_t$ it follows that $j_t = c_t + 1, t \in \{1, 2, ..., n\} \setminus \{s\}.$

Since f is an H-function of $F_n^k(\mathbb{K})$, it follows that $f(c_1, \ldots, c_{s-1}, \mathbf{0}, c_{s+1},$ \ldots, c_n), $f(c_1, \ldots, c_{s-1}, \mathbf{1}, c_{s+1}, \ldots, c_n)$, $\ldots, f(c_1, \ldots, c_{s-1}, \mathbf{k}_s - 1, c_{s+1}, \ldots, c_n)$ assume different values and hence, k_s-1
U $\left|\bigcup_{r=0}^{c_s-1} \{f(c_1,\ldots,c_{s-1},\bm{r},c_{s+1},\ldots,c_n)\}\right| =$ $\begin{array}{c} \hline \end{array}$ U k_{s} $\left|\bigcup_{r=1}^{k_s} \{b_{j_1...j_{s-1}r j_{s+1}...j_n}\}\right| = k_s.$

The function f, the number s and the set of constants $(c_1, \ldots, c_{s-1}, c_{s+1},$ \dots, c_n) were chosen arbitrarily. Consequently, the matrix B is a Latin n-dimensional hyperparallelepiped of size $k_1 \times k_2 \times \cdots \times k_n$ based on E_k . \Box

In Table 1 of Example 1, the *H*-function f of the set $F_3^4(\mathbb{K})$ has been "constructed" and represented in tabular and matrix form $||a_{ii}||_{3,3,4}$, by using a Latin 3-dimensional hyperparallelepiped of size $3\times3\times4$.

Taking into account Definition 1 and Theorem 3, we have:

Proposition 3. If $f(x_1, x_2, ..., x_n)$ is an arbitrary H-function of $F_n^k(\mathbb{K})$ and the matrix A_f is its matrix form, then by fixing any n-1 indices of the matrix A_f we get a 1-dimensional matrix, which does not contain repeating elements.

Directly from Theorem 1 and Theorem 3 we get:

Corollary 4. Every matrix $A = ||a_{i_1 i_2 \dots i_n}||_{k_1, k_2, \dots, k_n}$, for which $a_{i_1 i_2 \dots i_n} =$ $\left(\frac{n}{\sum}\right)$ $j=1$ $f_j(i_j-1)$ mod k, where $f_j \in F_1^{k,k_j}(K_j)$, $j = 1, 2, ..., n$, is an n-dimensional Latin hyperparallelepiped of size $k_1 \times k_2 \times \cdots \times k_n$ based on E_k .

The function $h_2(x) = (ax+b) \mod k$, where a and b are natural numbers, $(a, k) = 1$, is injective (moreover, it is bijective). Applying Corollary 4, we get:

Corollary 5. Every matrix $B = ||b_{j_1j_2...j_n}||_{k_1,k_2,...,k_n}$, for which $b_{j_1j_2...j_n} =$ $(a_1j_1 + a_2j_2 + \cdots + a_nj_n + c) \mod k$, where c is a natural number, $(a_i, k) = 1$, $i = 1, 2, \ldots, n$, is a Latin n-dimensional hyperparallelepiped of size $k_1 \times k_2 \times \cdots \times k_n$ based on E_k .

3. Conclusions. The author is not aware of any published papers which investigate the *H*-functions from the set $F_n^k(\mathbb{K})$. The present paper shows the relationship between H -functions, spectrum of a variable with respect to a function, and Latin hyperparallelepipeds.

Since $P_n^k = F_n^k(E_k^n)$, i.e. the set of functions P_n^k is a partial case of the set $F_n^k(\mathbb{K})$, then the results arrived at in this paper are also valid in P_n^k .

In Theorem 6 [2] it is proven that if the function $f(x_1, x_2, \ldots, x_n) \in P_n^3$ is an H-function, then it is a linear function. From Theorem 1 and Example 1 we conclude that for all $n \geq 1$ and $k \geq 3$ there exist H-functions from $F_n^k(\mathbb{K})$, and therefore also from P_n^k , which are not linear and can be represented in analytic form.

he paper "On a Class of Discrete Functions" published in Acta Cybernetica [4] examines the functions from P_n^k : the *H*-functions are generalized and the class of $H[m; q]$ -functions (Definition 5) is investigated.

320 Dimiter Stoichkov Kovachev

REFERENCES

- [1] Bozhorov E. Higher Mathematics, State Publishing House TECHNICA, Sofia, Bulgaria, 1975.
- [2] CHIMEV K. On a way some functions of P_k depend on their arguments. Annuaire Des Ecoles Techniques Superieures, Mathematique, Vol. IV, livre 1, 1967, 5–12.
- [3] Kovachev D. On the Number of Discrete Functions with a Given Range. In: General Algebra and Applications, Proceedings of the 59th Workshop on General Algebra (Eds K. Denecke, H.-J. Vogel), Potsdam, 2000, 125–134.
- [4] KOVACHEV D. On a Class of Discrete Functions. Acta Cybernetica 17, No 3, (2006), 513–519.
- [5] Laywine Ch., G. Mullen. Discrete Mathematics Using Latin Squares, John Wiley & Sons, New York, 1998.
- [6] Mirchev I., B. Yurukov. Some Properties of H-functions. Acta Cybernetica 12, No 2 (1995), 137–143.
- [7] Mirchev I. Otdelimi i dominirashti mnojestva ot promenlivi na funkciite disertacija [Separable and Dominating Sets of Variables of the functions – dissertation], Sofia University – Math, 1990, (in Bulgarian).

Department of Computer Science South-West University "N. Rilski" 2700 Blagoevgrad, P.O.79, Bulgaria e-mail: dkovach@swu.bg

Received October 16, 2008 Final Accepted January 8, 2009