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THE NONEXISTENCE OF SOME
GRIESMER ARCS IN PG(4, 5)

Ivan Landjev, Assia Rousseva

Abstract. In this paper, we prove the nonexistence of arcs with para-
meters (232, 48) and (233, 48) in PG(4, 5). This rules out the existence of
linear codes with parameters [232, 5, 184] and [233, 5, 185] over the field with
five elements and improves two instances in the recent tables by Maruta,
Shinohara and Kikui of optimal codes of dimension 5 over F5.

1. Introduction. The problem of finding the minimum length of a
code with a prescribed dimension k and a prescribed minimum distance d over
a fixed finite field Fq has been completely solved only for small finite fields and
small dimensions. It is known that in the case of 4-dimensional codes over GF(5)
there are eight undecided cases. All they are believed to be difficult. They are
presented in the table below.
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d g5(4, d) n5(4, d)

31 41 41 – 42
32 42 42 – 43

36 47 47 – 48
37 48 48 – 49

81 103 103 –104
82 104 104 –105

161 203 203 –204
162 204 204 –205

In a recent paper Maruta et al. [9] initiated the systematic research on
the optimal length problem for 5-dimensional linear codes over F5. The problem
is still far from its final solution with more than 400 unsolved values for d. In
this paper, we improve some of the results in [9] by proving the nonexistence of
Griesmer codes with parameters [232, 5, 184]5 and [233, 5, 185]5 . In order to save
space, we refer to [4, 8] for the basic notions and facts from coding theory.

2. Preliminaries. Let PG(t, q) be the t-dimensional projective space
over the finite field of order q. We denote by P the pointset of PG(t, q). A
multiset in PG(t, q) is any mapping K : P → N0 from the points of PG(t, q) to
the nonnegative integers. This mapping is extended in a natural way to the
subsets of P. Given Q ⊆ P, we call the integer K(Q) the multiplicity of Q. In
particular, we speak of the multiplicity of a point, a line, a plane etc. The support
of a multiset is the the set of all points in P that are of nonzero multiplicity. A
multiset with K(P ) ∈ {0, 1} for every point P ∈ P is called a non-weighted or
projective multiset. Non-weighted multisets can be viewed as sets by identifying
them with their support.

A multiset in PG(t, q) is called an (n,w; t, q)-multiarc if

(a) K(P) = n;

(b) K(H) ≤ w for any hyperplane H;

(c) there exists a hyperplane H0 with K(H0) = w.

The existence of linear a [n, k, d]q code of full length, i.e., a code with no
coordinate identically zero, is equivalent to that of an (n, n − d; k − 1, q)-arc [3].
Two linear codes with the same parameters are semilinearly isomorphic if and
only if the corresponding arcs are projectively equivalent.
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Given a (n,w; k−1, q)-arc K, we denote by γi(K) the maximal multiplicity
of an i-dimensional flat in PG(k − 1, q), i.e. γi(K) = maxδ K(δ), i = 0, . . . , k − 1,
where δ runs over all i-dimensional flats in PG(k − 1, q). If K is clear from the
context we write just γi. In what follows, we repeatedly make use the following
lemma which is proved by a straightforward counting argument.

Lemma 1. Let K be an (n, n − d; k − 1, q)-arc, and let Π be an (s − 1)-
dimensional flat in PG(k − 1, q), 2 ≤ s < k, with K(Π) = w. Then, for any

(s − 2)-dimensional flat ∆ contained in Π, we have

K(∆) ≤ γs−1(K) −
n − w

qk−s + . . . + q
.

Let K be an (n, n− d; k− 1, q) arc and denote by ai the number of hyper-
planes ∆ in PG(k − 1, q) with K(∆) = i, i = 0, 1, . . . , and let λj be the number
of points P from P with K(P ) = j. The sequence (a0, a1, . . .) is called the spec-

trum of K. Simple counting arguments yield the following identities, which are
equivalent to the first three MacWilliams identities for linear codes [6]:

(1)

n−d
∑

i=0

ai =
qk − 1

q − 1
,

(2)

n−d
∑

i=1

iai = n ·
qk−1 − 1

q − 1
,

(3)

n−d
∑

i=2

(

i

2

)

ai =

(

n

2

)

qk−2 − 1

q − 1
+ qk−2 ·

γ0
∑

i=2

(

i

2

)

λi.

Let K be an (n,w; t, q)-multiarc. Fix an u-dimensional flat U in PG(t, q).
Let further V be a v-dimensional flat in PG(t, q) with u+v = t−1 and U∩V = ∅.
Define the projection ϕ = ϕU,V from U onto V by

(4) ϕU,V :

{

P \ U → V

P → V ∩ 〈U,P 〉
,

where P is the pointset of PG(t, q). Note that ϕU,V maps (u + s)-dimensional
flats containing U into (s − 1)-dimensional flats contained in V . The induced

multiarc K
ϕ is defined on the points of V by

K
ϕ :

{

P(V ) → N0

P →
∑

Q : ϕ(Q)=P K(Q)
.
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If S is a t′-dimensional flat in V then K
ϕ(S) = K(〈S,U〉) − K(U). Here 〈S,U〉

denotes the projective subspace of PG(t, q) generated by S and δ. Clearly, K
ϕ

is an (n − K(U), w − K(U))-multiarc in V ∼= PG(v, q). When U and the arc K

remain fixed, we get equivalent induced multiarcs for all choices of V . Similarly,
if K is a (n,w)-minihyper then K

ϕ is an (n − K(U), w − K(U))-minihyper in V .

In this paper, we shall constantly exploit the fact that the existence of
linear codes with parameters [n, k, d]q is equivalent to the existence of (n, n− d)-
arcs in PG(k − 1, q). In fact, we prove our results for arcs and formulate as
corollaries the corresponding results for codes.

3. The (48, 11)-arcs in PG(3, 5). The problem of the existence of
(48, 11)-arcs in PG(3, 5) is still unresolved and seems to be very difficult. Nev-
ertheless, it is possible to prove some restrictions on the spectrum of such arcs
that turns out to be useful for the investigation of code parameters in higher
dimensions. In this section, we prove the nonexistence of an empty plane in
(48, 11; 3, 5)-arcs.

First, let us recall the spectra of the two (11, 3)-arcs in PG(2, 5).

Spectra of the (11, 3)-arcs in PG(2, 5)

type a0 a1 a2 a3

A1 4 4 7 16

A2 5 1 10 15

Lemma 2. Let K be a (48, 11)-arc in PG(3, 5). Then there a0 = 0.

P r o o f. Let K have spectrum (ai), i = 0, 1, . . . , 11. From identities (1–3),
we obtain

(5)

9
∑

i=0

(

11 − i

2

)

ai = 468.

Clearly, a2 = a7 = 0 since there exist no (2, 1)- and no (7, 2)-arcs in PG(2, 5).
Now assume that a0 ≥ 1. Then a0 = 1 and a3 = 0. Let us count the

number of 4-, 5- and 6-planes through the lines of an (11, 3)-arc in PG(2, 5).
Note that a 4-, 5- or 6-plane does not meet an 11-plane in a 3-line; through a
2-line in an 11-plane there is at most one i-plane, i = 4, 5, 6, through an 1-line
there are at most two such planes and through a 0-line at most three such planes.
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We must take into account that one of the 0-lines in the 11-plane is incident with
the 0-plane and hence with at most one 4-, 5- or 6-plane. Now using the spectra
of the (11, 3)-arcs, we get that a4 + a5 + a6 ≤ 25.

Suppose a4 6= 0 and π0 is an arbitrary fixed 4-plane. Each 4-plane contains
thirteen 0-lines, twelve 1-lines and six 2-lines. We fix a 2-line l in π0 and denote
by πi, i = 1, . . . , 5 the other planes through l. Consider the projection ϕ = ϕP,π

of PG(3, 5) from a 1-point P on l, onto a plane π not incident with P . Let
li = ϕ(πi), i = 0, . . . , 5. Then the type of l0 is (1, 0, 0, 0, 1, 1), the type of l1 is
(1, 0, 2, 2, 2, 2) or (1, 1, 1, 2, 2, 2) and the type of the remaining lines l2, . . . , l5 is
(1, 1, 2, 2, 2, 2).

Case 1. Let the type of l1 be (1, 0, 2, 2, 2, 2). Then the set

T = {X | X ∈ l0, µ(X) = 1}
⋃

{Y | µ(Y ) = 2}

is a (23, 5)-arc. Otherwise there exists a line s of type (1, 2, 2, 2, 2, 2), which leads
to the existence of a plane α = α(P, s) with K(α) = 12, a contradiction. The
fact that the smallest nontrivial blocking set in PG(2, 5) is of size 9 implies the
existence of a unique line m of type (0, 0, 1, 1, 1, 1). All lines different from l0
through any of the two points to T \m are of type (0, 0, 2, 2, 2, 2) and four of type
(0, 1, 2, 2, 2, 2). Hence, there are exactly four 1-lines in π0 such that through each
of them there is a 5-plane (all other planes are 11-planes). The planes through
each of the remaining 1-lines in π0 are one 9-plane and four 10-planes.

Counting the maximal possible contributions of the planes through the
lines of π0 to the left-hand side of (5) and taking into account that a4 +a5 +a6 ≤
25, we get

1.21 + 1.55 + 8.25 + 4.24 + 4.15 + 8.1 = 440 ≥ 468,

a contradiction.

Case 2. Let the type of l1 be (1, 1, 1, 2, 2, 2). It is easy to check that if a
1-line through P in π0 is incident with a 6-plane then each of the other 1-lines
through P in π0 is incident with one 9-plane and four 10-planes. If none of 1-lines
through P in π0 lie in a 6-plane then each of of them is incident with at most
two 8-planes.

Counting once again the maximal possible contributions of the planes
through the lines of π0 to the left side of (5), recalling that a4 + a5 + a6 ≤ 25:

1.21 + 1.55 + 12.25 + 12.6 = 448 ≥ 468,

a contradiction. Hence a4 = 0.



202 Ivan Landjev, Assia Rousseva

Now that we know that 4-planes are impossible, we count once again the
maximal possible contribution of the planes through the lines of the empty plane
to the left side of (5), which gives

55 + 25.15 + 6.6 = 466 ≥ 468,

a contradiction. Hence a0 = 0. �

4. The nonexistence of (232, 48)- and (233, 48)-arcs in
PG(3, 5). In this section, we prove the nonexistence of (232, 48)- and (233, 48)-
arcs in PG(3, 5), and equivalently, the nonexistence of Griesmer [232, 5, 184]5 -
and [233, 5, 185]5 -codes. The proof relies on two classical results by Ward [10]
and Hill and Lizak [5] from coding theory that are given here in their geometric
form [7].

Theorem 3. (H.N. Ward) Let K be a Griesmer (n,w)-arc in PG(k−1, p),
with n−w ≡ 0 mod pe, e ≥ 1. Then K(H) ≡ n mod pe for every hyperplane H.

Theorem 4. (R. Hill, P. Lizak) Let K be an (n,w; k − 1, q)-arc with

gcd(n−w, q) = 1. Assume that the multiplicities of all hyperplanes are congruent

to n or w modulo q. Then K can be extended to an (n + 1, w)-arc.

Lemma 5. Let K be a (233, 48)-arc in PG(4, 5). Then ai = 0 for all

i 6= 23, 38, 48.

P r o o f. By Theorem 3, all multiplicities w of hyperplanes are congruent
to 3 modulo 5. By Lemma 1, w 6= 3, 8, 13, 18, 23, 28, 33, 43, hence the result. �

Theorem 6. There is no (233, 48)-arc in PG(4, 5).

P r o o f. Assume otherwise. A 48-hyperplane in PG(4, 5) cannot have a
10-plane (since all hyperplanes through the 10-planes are 48-hyperplanes). Sim-
ilarly, a 48-hyperplane cannot have an 8-plane.

Now consider a 48-hyperplane H and a fixed 3-line l in it. All the planes
in H through l are 9- or 11-planes. Denote the number of 11-planes in H through
l by t. Then 3 + 8t + 6(6 − t) = 48, which is impossible since t is an integer. �

Now we turn to the proof of the nonexistence of (232, 48)-arcs in PG(4, 5).

Lemma 7. Let K be a (232, 48)-arc in PG(4, 5). Then ai = 0 for all

i 6= 12, 22, . . . , 26, 32, 37, 38, 39, 42, 47, 48.

P r o o f. This result follows by Lemma 1 and the fact that a (48, 11)-arc
does not have a 0-plane (Lemma 2). �
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Let K be a (232, 48)-arc in PG(4, 5) with spectrum (ai)i≥0. By (1)–(3),
one gets

(6)

46
∑

i=0

(

48 − i

2

)

ai = 10620.

Theorem 8. There is no (232, 48)-arc in PG(4, 5).

P r o o f. The idea of this proof is to rule out the existence of solids of
multiplicity 12, 22, . . . , 26, 39. Then a (232, 48)-arc has to be extendable by Hill
and Lizak’s extendability lemma [5], a contradiction to Theorem 6.

Assume there is a 12-hyperplane in PG(4, 5). The restriction to this
hyperplane is a (12, 4)-arc, which is associated with the unique near-MDS code
with parameters [12, 4, 8]5 [2]. The spectrum of the (12, 4)-arc is

ã0 = 8, ã1 = 48, ã2 = 24, ã48 = 48, ã4 = 28, ãi = 0, i 6= 0, . . . , 4.

Counting the contribution to the left-hand side of (6) given by the hyperplanes
through the planes of the 12-hyperplane, we get the following:

• the maximal contribution of the hyperplanes through a 0-plane is 120;

• the maximal contribution of the hyperplanes through a 1-plane is 51;

• the maximal contribution of the hyperplanes through a 2-plane is 45;

• the maximal contribution of the hyperplanes through a 3-plane is 0;

• the maximal contribution of the hyperplanes through a 4-plane is 0.

Hence, by (6),

10620 =
46
∑

i=0

(

48 − i

2

)

ai ≤ 8 · 120 + 48 · 51 + 24 · 45 +

(

36

2

)

= 5118,

a contradiction.
The other multiplicities are ruled out in a similar way. It has to be noted

that the restriction of K to a hyperplane with multiplicity 22, 23, 24, 25, or 26
is a cap. A 26-cap in PG(3, 5) consists of the points of an elliptic quadric and is
known to be unique. The size of the second largest irreducible cap is known to
be 20 [1]. Hence all caps of sizes 21, . . . , 25 are obtained from the elliptic quadric
by deleting the appropriate number of points. The spectra of such caps are given
below.
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a6 a5 a4 a3 a2 a1 a0

(26, 6) 130 0 0 0 0 26 0

(25, 6) 100 30 0 0 0 25 1

(24, 6) 76 48 6 0 0 24 2

(23, 6) 57 57 15 1 0 23 3

(22, 6) 43 56 30 0 1 22 4

(22, 6) 42 60 24 4 0 24 4

The spectrum of a (39, 9)-arc in PG(3, 5) is also known to be unique, it
is ã9 = 117, ã4 = 39, ãi = 0, for i 6= 4, 9.

Now we demonstrate how to rule out the existence of hyperplanes of
multiplicity 22. Assume there is a 22-hyperplane ∆0 and for an arbitrarily fixed
line plane π in ∆0 denote by ∆i, i = 1, . . . , 5, the other five hyperplanes through
π. We have that

• the maximal contribution of the hyperplanes through a 0-plane is 241 and is
obtained for (∆1, . . . ,∆5) = (47, 47, 47, 43, 25) (note that a 48-hyperplane does
not have a 0-plane);

• the maximal contribution of the hyperplanes through a 1-plane is 300 and is
obtained for (∆1, . . . ,∆5) = (48, 48, 48, 48, 23);

• the maximal contribution of the hyperplanes through a 2-plane is 135 and is
obtained for (∆1, . . . ,∆5) = (48, 48, 48, 42, 34);

• the maximal contribution of the hyperplanes through a 3-plane is 55 and is
obtained for (∆1, . . . ,∆5) = (47, 47, 47, 47, 37);

• the maximal contribution of the hyperplanes through a 4-plane is 45 and is
obtained for (∆1, . . . ,∆5) = (48, 48, 48, 48, 38);

• the maximal contribution of the hyperplanes through a 5-plane is 10. and is
obtained for (∆1, . . . ,∆5) = (48, 48, 48, 48, 43);

• the maximal contribution of the hyperplanes through a 6-plane is 0.

Hence, by (6), we obtain the following inequalities for the two possible spectra of
(22, 6; 3, 5)-arcs:



The nonexistence of some Griesmer arcs in PG(4, 5) 205

10620 =

46
∑

i=0

(

48 − i

2

)

ai ≤

4 · 241 + 22 · 300 + 1 · 135 + 0 · 55 + 30 · 45 + 56 · 10 + 43 · 0 +

(

26

2

)

= 9934,

and

10620 =
46
∑

i=0

(

48 − i

2

)

ai ≤

4 · 241 + 24 · 300 + 0 · 135 + 4 · 55 + 24 · 45 + 60 · 10 + 42 · 0 +

(

26

2

)

= 10389,

a contradiction in both cases.
Hyperplanes of multiplicity 23, . . . , 26, 39 are ruled out in a similar way.

This completes the proof. �

Corollary 9. Linear codes with parameters [232, 5, 184]5 and [233, 5, 185]5
do no exist.
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