
Serdica J. Computing 2 (2008), 163–180

IMPROVING THE WATERMARKING PROCESS WITH

USAGE OF BLOCK ERROR-CORRECTING CODES

Thierry Berger, Todor Todorov

Abstract. The emergence of digital imaging and of digital networks has
made duplication of original artwork easier. Watermarking techniques, also
referred to as digital signature, sign images by introducing changes that
are imperceptible to the human eye but easily recoverable by a computer
program.

Usage of error correcting codes is one of the good choices in order to
correct possible errors when extracting the signature.

In this paper, we present a scheme of error correction based on a combi-
nation of Reed-Solomon codes and another optimal linear code as inner code.
We have investigated the strength of the noise that this scheme is steady to
for a fixed capacity of the image and various lengths of the signature. Fi-
nally, we compare our results with other error correcting techniques that are
used in watermarking. We have also created a computer program for image
watermarking that uses the newly presented scheme for error correction.
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1. Introduction. The proliferation of digitized media is creating a

pressing need for copyright enforcement schemes that protect copyright owner-

ship. Conventional cryptographic systems permit only valid key holders to access

encrypted data, but once such data is decrypted there is no way to track its re-

production or retransmission. A digital watermark is intended to complement

cryptographic processes. It is a visible, or preferably invisible, identification code

that is permanently embedded in the data, that is, it remains present within the

data after any decryption process [5].

In order to be effective, a watermark should be:

• Unobtrusive

The watermark should be perceptually invisible, or its presence should not

interfere with the work being protected.

• Robust

The watermark must be difficult to remove. In particular it should be

robust to:

– Common signal processing

These include digital-to-analog and analog-to-digital conversion, re-

sembling, re-quantization, and common signal enhancement.

– Common geometric distortions

These include operations such as rotation, translation, cropping and

scaling.

– Subterfuge Attacks: Collusion and Forgery

That is, watermark should be robust to combining copies of the same

data set to destroy the watermarks.

• Unambiguous

Retrieval of the watermark should unambiguously identify the owner.

Numerous papers [2, 6, 7, 8, 9, 17] mention the possibility of using error-

correcting codes in order to improve the basic algorithms in terms of watermark

robustness. This approach appears natural if one compares the watermarking

problem with the transmission of a signal over a noisy channel. This model

considers the image as a channel and the different attacks as a noise signal.
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Error-correcting codes are widely used in channel coding, which makes them

relevant for watermarking issues. Since the signal to noise ratio under which this

particular communication system operates is very low due to imperceptibility

constraints it is natural to envision the use of error-correcting codes. In this work

we adopt a binary symmetric channel representing the watermarking process.

Such a channel is completely defined by the probability of error (denoted pbsc).

A message transmitted through this channel may have some of its bits altered.

We consider the signature to be received in error if one or more of its bits are

in error. Also we are bounded with the capacity of the image. Capacity is the

maximum amount of bits we can hide into an image without visual deterioration

in image quality. To find the watermarking capacity of an image, one can apply

the classical Shannon model for channel capacity [15]. A “watermarking channel”

is modeled as a binary symmetric channel when the embedded information is

demodulated with hard-decision to a binary code word. Expected values for the

channel error probability in case of watermarking are in a wide range. They

depend on the possible attacks and on the watermarking method. Values starts

from 5% and can reach more than 40%.

As opposed to the “classical” channel coding applications where the noise

signal can generally be efficiently modeled as a Gaussian noise, watermarking

applications must take into account several attacks representing a wide range of

noises of different natures. The Gaussian assumption is then no longer valid.

In this context, it is very difficult to design a unique code that could meet the

different requirements coming from different attacks.

That is why the use of error-correcting codes for watermarking is still a

very open problem. It requires the design of error-correcting codes which are very

compact and able to take account many different kinds of noise [11].

In this article we investigate the effectiveness of error-correcting codes in

protecting watermark message.

Section 2 presents how Reed-Solomon can be used for the creation of a

new technique for error protection in watermarking process.

Section 3 contains the results of computations of error probabilities for

different coding strategies. There we compare the results of the proposed error-

correcting scheme with other existing techniques.

Section 4 present a computer realization of a spatial domain watermark-

ing algorithm that uses the proposed error-correcting scheme and is used for

verification of theoretical results.
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2. Error-correcting scheme for watermarking. RS codes are

often used as ”outer codes” in a system that uses a simpler ”inner code”. The

inner code gets the error rate down and the RS code is then applied to correct

the rest of the errors. We denote this encoding scheme with RS/Inn.

Fig. 1. RS/Inn encoder

In this note we apply a similar error-correcting scheme by using RS code

with proper parameters as an outer code and other optimal linear code as an

inner code.

When we have fixed capacity and payload we have to get the two codes

in a way that they are with a good dimension according to the given payload and

in the same way to fit the given capacity after the whole encoding is done.

In most of the cases the watermarking signature consists of binary sym-

bols. This is why we could use so called “binary” RS codes. Let RS(n, k) be a

code over GF (2m). Every element in this field can be represented uniquely by

a binary m-tuple, called m-bit byte. To encode binary data which such a code

a message of km bits is first divided into k m-bit bytes. Each m-bit byte is re-

garded as a symbol in GF (2m). The k-byte message is then encoded into n-byte

codewords based on the RS encoding rule. By doing this, we actually expand the

RS code with symbols from GF (2m) into a binary (nm, km) linear code, called a

“binary” RS code. Such a code is very effective in correcting bursts of bit errors,

which the inner code can produce, as long as no more than t bytes are affected.

After the RS code is selected for the given case we proceed with the

selection of the “inner code”. From a practical point of view (computer encoding

and decoding) it is more convenient to select the dimension of the inner code to

be equal to m. This code will correct errors on bit level in each of the m-bit

bytes. Also the length of the inner code depends on the parameters of the RS

code because the final length of the encoded sequence should be less than the

overall available capacity. So with fixed dimension and bounded length of the

inner code we could search for the largest possible minimum distance. This could

be done either in Brouwer’s table [4] or in other sources.

In all considered cases the payload is a multiple of 8, because in practice

we are working on byte level (8 bits). If we want to use a code which doesn’t fit

the payload we assume that necessary zero bits are added to the real signature.



Improving the watermarking process. . . 167

Example: Let the capacity be fixed to 400 bits and the payload be

64 bits. We could choose RS(17, 13, 5) code over GF (25) for outer code and

(23, 5, 11) optimal code for inner code. We divide the payload into thirteen 5-bit

bytes and encode them into seventeen 5-bit bytes. Each of these seventeen 5-bit

bytes is encoded to a 23-bit byte. So we have the overall encoding length of

17 × 23 = 391 < 400 bits.

The RS(17, 13, 5) is not a full length RS code. This is the better choice

in this case because we have a limited small capacity. Because RS codes are

MDS codes we could shorten RS(31, 27, 5) code to RS(17, 13, 5) code retaining

the minimum distance to 5 and respectively the number of errors we can correct

to 2.

What is the exact best choice for the parameter m, the length of the inner

and outer code and the number of errors that they can correct depends on the

every given case and we discuss this more in the next section.

3. A comparison of performances.

3.1. Computation of error probabilities. Here we will give formulas

for the computation of the signature error probability of different error correcting

strategies that we are comparing. For Repetition coding, BCH coding and Hybrid

coding we are using formulas deducted in [2].

Repetition coding. Let us have a signature of length w repeated r

times. The bit error probability after r repetitions is given by:

Prep =
r

∑

i= r

2
+1

(

r

i

)

pi
bsc(1 − pbsc)

r−i

where pbsc is the bit error probability in the binary symmetric channel, and C i
r is

the combinatorial expression. Consequently, the signature error probability, that

is the probability of having at least one bit in error in the w bits of the watermark

message is:

Psig,rep = 1 − (1 − Prep)w.

BCH coding. Let us consider BCH(n, k, t) code where t is the number

of errors it can correct.
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An upper bound on the signature error probability can be calculated by

computing the probability that t or more errors occur in the received word:

Psig,code =

n
∑

i=t+1

(

n

i

)

pi
bsc(1 − pbsc)

n−i.

Hybrid coding. As we have already explained it is more applicable

to use repetition code as inner code and BCH code as outer in hybrid error

correcting scheme. In this case the signature error probability is given with the

next formula:

Psig,hybrid =
n

∑

i=t+1

(

n

i

)

P i
rep(1 − Prep)n−i

where Prep is defined in the section of computation of the error probability for

repetition code.

RS coding. Here we compute the signature error probability for the

newly presented scheme. It is quite similar to the formula for hybrid coding, but

here we use different optimal linear codes as inner code and RS code as outer

code:

Psig,rs =

n
∑

i=t+1

(

n

i

)

P i
sig,inn(1 − Psig,inn)

n−i

where Psig,inn is the signature error probability, which can be computed in a way

that it is done in BCH coding section.

3.2. Results. First we should say that the capacity and the length of the

mark values are very important for the experiments. The good results depend

not only on the choice of the payload and the capacity that we can use to encode

this payload in the possible way, but also what is the ratio between them. That

is why the next presented results should be still precise to find what are the best

choices for the inner and outer code and for what values for capacity and payload

they performed best.

Next we will present the results for two specific channel error rates: 5%

and 15%. On the following graphics one can see the performance for the known

watermarking error correcting schemes that we present here. The results on the

graphics are with averaged results for every capacity between 200 and 500 bits.
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Fig. 2. Channel error rate 5% [17]

Fig. 3. Channel error rate 15% [17]

In the next table we give the results for the signature error probabilities

for the same channel error rates but using the newly proposed technique. Up to

now the results are only for the fixed capacity of 400 bits.



170 Thierry Berger, Todor Todorov

Channel error rate

Payload 5 % 15 %

8 bits 2.10−27 2.10−8

16 bits 3.10−19 5.10−5

32 bits 4.10−14 3.10−2

40 bits 6.10−14 4.10−2

56 bits 1.10−12 7.10−2

64 bits 6.10−11 14.10−2

128 bits 4.10−4 —

256 bits 32.10−3 —

Table 1. Performance of RS/Inn. encode scheme

It is clear that the RS code is a good choice when the payload is not too

small or too near to the capacity. In the first case, when the payload is too small,

we cannot fully use the ability of the RS code to correct block errors because we

cannot split the short signature to blocks in effective way. In these cases BCH

codes have near or even better performance. When the payload increases (32

and more bits) the RS coding has the best performance among all the examined

coding schemes. When the signature’s length becomes close to the capacity we

again cannot fully use the RS coding abilities because if we do so there will

be no capacity left for the inner code. The new scheme performs better than

others in these cases but doesn’t have a low enough error probability. When the

channel error rate increases the performance of the new technique drops down

but it still performs better than others for higher payloads. The last two values

in that column of the table are omitted because they are too big and so useless

in practice.

Finally we made a comparison of the different techniques to see which

stands to much noise for different capacity, fixed 400 bits capacity and Psig 6 0, 01.

Again the same tendency can be noticed, that the RS/Inn.code technique

performs better for mid range payload values. Also important is the fact that

this scheme gives relatively good results for big payloads like 128, 256 bits where

other techniques are useless.

4. Watermarking with amplitude modulation. Embedding and

retrieving information from other information is of basic importance in water-

marking and is done by the stegosystems principles. The basic elements of a

typical stegosystem for digital watermark are:
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Fig. 4. Length to noise performance for other codings [17]

— precursory coder – structure for proper transforming of the secret message

in order to embed it in the signal container (information sequence in which

the message is put);

— stegocoder – structure for embedding the secret message in other data and

reading its specialties -structure for watermark retrieving;

— stegodetector – structure for stegomessages presence determination;

— decoder – structure for secret message s restoring.

Before watermark embedding appropriate transformations are necessary

so that it corresponds to the container. For example, if the container is an image,

then the watermark must be a two-dimensional array of bits. All transforma-

tions are done by the precursory encoder. Calculation of the general Fourier

transformations for the message and the container are done in it. That enables

embedding in the spectral area and increases the stability of the watermark. An

embedding key (K) is often used to increase the secrecy. Embedding and trans-

forming messages in the container are done by the encoder. There are different

methods for that, which depend on the containers character and will be referred
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Payload

8 bits 28 %

16 bits 21 %

32 bits 14 %

40 bits 14 %

56 bits 13 %

64 bits 12 %

128 bits 6 %

256 bits 4 %

Table 2. Length to noise performance for RS/Inn.code scheme

later. There are detectors for finding an existing watermark and for selecting it.

In the first case detectors are possible with either hard or soft resolve. Metrics as

Hamming distance and mutual correlation between the initial and delivered sig-

nal are used for choosing the proper resolve. When the initial signal is unknown,

statistic methods are used.

Next we will describe single bit embedding and retrieving using water-

marking with amplitude modulation. This could be easily generalized for multiple

bits [13].

Let s be a single bit to be embedded in an image I = (R,G,B), and

p = (i, j) a pseudo-random position within I. This position depends on a secret

key K, which is used as a seed to the pseudo-random number generator. The

bit s is embedded by modifying the blue channel B at position p by a fraction

of the luminance L = 0,299R + 0,587G + 0,114B as: Bij = Bij + (2s − 1)Lijq

where q is a constant determining the signature strength. The value q is selected

such as to offer best trade-off between robustness and invisibility. In order to

recover the embedded bit, a prediction of the original value of the pixel containing

the information is needed. This prediction is based on a linear combination of

pixel values in a neighborhood around p. The sign of the difference between the

prediction and the actual value of the pixel determines the value of the embedded

bit.

B′

ij =
1

4c

c
∑

k=−c

Bi+k,j +

c
∑

k=−c

Bi,j+k − 2Bij

where c is the size of the cross-shaped neighborhood. To retrieve the embedded

bit the difference δ between the prediction and the actual value of the pixel is



Improving the watermarking process. . . 173

taken: δ = Bij − B′

ij The sign of the difference δ determines the value of the

embedded bit.

Also, robustness could be improved with the use of optimal error correct-

ing codes. The method is steady to filtering, JPEG compression, geometrical

transforms [13].

We create software realization of this watermarking algorithm by improv-

ing it with our error-correcting scheme. For development we use VC++ 6.0 and

OpenSource library CxImage.

Fig. 5. Structure of the CxImage library

Next is the source code snippet for single bit embedding and retrieving:

int EmbedSingleBit(CxImage *img, int x, int y, unsigned char

bitToEmbed, double signatureStrenght)

{

int bitResult = 0; double nB = 0; int r, g, b; COLORREF clr; RG-

BQUAD rq;

rq = img->GetPixelColor(x,y);

clr = img->RGBQUADtoRGB(rq);

b = GetBValue(clr);

g = GetGValue(clr);

r = GetRValue(clr);

nB = b + (2*bitToEmbed - 1) * signatureStrenght * GetLuminance(img,

x, y);

b = (BYTE)nB;

img->SetPixelColor(x, y, RGB(r, g, (BYTE)b));

return bitResult;

}
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int RetrieveSingleBit(CxImage *img, int x, int y, int crossSize){

int bitResult = 0; int i; int bik, bjk, bij; RGBQUAD rgq; COLORREF

pixel; double nBij; double delta = 0;

bik = bjk = 0;

for (i = -crossSize; i <= crossSize; i++)

{
rgq = img->GetPixelColor(x + i, y);
pixel = img->RGBQUADtoRGB(rgq);
bik += GetBValue(pixel);
rgq = img->GetPixelColor(x, y + i);
pixel = img->RGBQUADtoRGB(rgq);
bjk += GetBValue(pixel);

}

rgq = img->GetPixelColor(x, y);

pixel = img->RGBQUADtoRGB(rgq);

bij = GetBValue(pixel);

nBij = (bik + bjk - 2*bij)/(4*crossSize);

delta = bij - nBij;

return (delta > 0) ? 1: -1; }

Before embedding we should perform encoding according to the error-

correcting scheme described in Section 2. After retrieving the data the decoding

procedure will output the signature that is embedded in the image. This software

has been used for securing the data in an information system [3].

5. Conclusion. We present a new error-correcting scheme that can be

used in conditions of watermarking systems – short payloads in small available

capacity. The technique combines Reed-Solomon codes as outer code and optimal

linear code as inner code. We are still conducting experiments and comparisons

with other error-correcting schemes but up to now we can conclude that the

RS/Inn.code scheme performs better then others when the payload is not too

small and the channel error-rate is not too high. We also create a watermarking

software that uses amplitude modulation signing and the newly created error-

correcting scheme. Experimental results produced by this computer program

confirm the theoretical results.
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Appendix

Error-correcting codes

Basics

The object of an error-correcting code is to encode the data, by adding a

certain amount of redundancy to the message, so that the original message can

be recovered if not too many errors have occurred.

Definition 1. A q-ary code is a given set of sequences of symbols where

each symbol is chosen from a set Fq = {λ1 , λ2, . . . , λq} of q distinct elements.

The set Fq is called the alphabet and is often taken to be the set Zq =

{0, 1, 2, . . . , q − 1}. If q is a prime power we often take the alphabet Fq to be the

finite field of order q.

Definition 2. A binary code is a given set of sequences of 0s and 1s

which are called codewords.

Definition 3. The (Hamming) distance between two vectors x and y of

(Fq)
n is the number of places in which they differ. It is denoted by d(x, y).

Definition 4. Let Fq be the Galois field GF (q), where q is a prime

power, and let (Fq)
n be the vector space V (n, q). A linear code C over GF (q) is

a subspace of V (n, q), for some positive integer n.

If C is a k-dimensional subspace of V (n, q), then we call it [n, k, d]-code,

where n is length, k is dimension and d is the minimum distance of the code.

Sometimes we denote it just [n, k] code.

Definition 5. We call an [n, k, d]-code optimal if it has the largest pos-

sible d for fixed n and k.

Definition 6. A communication channel is called q-ary symmetric chan-

nel if following assumptions are made about it:
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• Each transmitted symbol has the same probability p
(

< 1
2

)

of being received

in error.

• If a symbol is received in error, then each of the q − 1 possible errors is

equally likely.

The binary symmetric channel is shown on the next figure:

Fig. 6. Formal model for a binary symmetric channel [12]

Theorem 1. A code C can detect up to s errors in any codeword if

d(C) ≥ s+1 and can correct up to t errors in any codeword if d(C) ≥ 2t+1 [8].

Repetition Coding

The simplest way to prevent errors is to repeat the watermark signature

which is tantamount to spatial diversity reception. The signature of length w

is repeated r times such that r × w 6 c is satisfied, where c is the embedding

capacity of the image. Every bit is decided for separately using majority rule.

Repetition code is [r, 1, r] code, so according to Theorem 1 it can correct

up to

⌊

r − 1

2

⌋

errors.

BCH codes

Standard encoding with BCH codes. BCH codes are a large class

of cyclic codes that include both binary and nonbinary alphabets. Binary BCH

codes can be constructed with parameters (n, k, t), where n is the length of the

codeword, k is the length of the data bits and t is the number of bit errors

this BCH code can correct. Obviously one has d = 2t + 1, where n = 2m − 1,

n − k 6 mt, m and t being arbitrary integers.
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If the whole w bit message will be transmitted via one BCH code, than

one must satisfy the constrains w 6 k and n 6 c.

Encoding by parts with BCH codes. To obtain more flexibility in

embedding codewords in order to use all the available capacity the signature

can be split into smaller parts and a separate BCH code can be used for each

part. For example if we have 32 bits of payload and 500 bits of capacity we can

use BCH(255, 37, 45) and waste 245 of capacity. But if we divide the encoding

process to three parts we can use BCH(127, 15, 27) code for each part which also

exceeds the number of correctable errors from 45 to 3 × 27 = 81.

Encoding with shortened BCH codes. Let GF (2m) be the finite field

with 2m elements, 0, 1, . . . , n = 2m−1. A t-bit error-correcting BCH code (n, k, t)

is defined by a generating polynomial. The generating polynomial of any BCH

code is only constrained by t and m. So for a BCH code (n, k, t), it is equivalent

to (n− b, k − b, t) defined by the same generating polynomial, where b < k is any

positive integer. In this way we can create a cross-section of the original code in

order to shorten the code.

Hybrid coding. This refers to using a combination of repetition and

BCH coding. There are two possibilities: BCH after repetition or repetition after

BCH.

In practice, the first case is not useful, because the BCH decoder can only

correct up to t errors. If the received codeword has more than t errors the BCH

decoder fails and if it has less than t errors it corrects them all and there is no

need of repetition.

The second method can be useful because the bit error rate of the received

code is decreased by repetition and then BCH decoding can be applied [1, 14, 17].

Reed–Solomon codes

Reed–Solomon (RS) codes are nonbinary cyclic codes with symbols made

up of m-bit sequences, where m is any positive integer having a value greater

than 2.

Let α be a primitive element in GF (2m). This means that α is an element

of GF (2m) such that each nonzero element of the field can be represented by a

power of α. In these conditions for any positive integer t 6 2m − 1, there exists a
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t-symbol error-correcting RS code with symbols from GF (2m) and the following

parameters:
n = 2m − 1
n − k = 2t

k = 2m − 1 − 2t
d = 2t + 1 = n − k + 1

The generating polynomial for an RS code takes the following form:

g(X) = g0 + g1X + g2X
2 + . . . + g2t−1X

2t−1 + X2t

where gi ∈ GF (2m) and g(x) has α, α2, . . . , α2t as roots.

One of the most important features of RS codes is that the minimum

distance of an RS(n, k) is n − k + 1. Codes of this kind are called “maximum

distance separable codes” (MDS). RS codes achieve the largest possible code

minimum distance for any linear code with the same encoder input and output

block lengths.

Also Reed-Solomon codes have an erasure-correcting capability, ρ, which

is:

ρ = d − 1 = n − k.

Simultaneous error-correction capability can be expressed as follows:

2α + γ < d < n − k

where α in the number of symbol-error patterns that can be corrected and γ is

the number of symbol erasure patterns that can be corrected.

There are many proposed algorithms for efficient encoding and decoding

of RS codes [16].
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