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CAPS IN Z
2

n

Sascha Kurz

Abstract. We consider point sets in Z
2

n
where no three points are on a

line – also called caps or arcs. For the determination of caps with maximum
cardinality and complete caps with minimum cardinality we provide integer
linear programming formulations and identify some values for small n.

1. Introduction. A k-cap in F
d
q is a subset A ⊆ F

d
q of size k, where no

three points are collinear. A cap is complete if it is not contained in any larger
cap. From the combinatorial point of view there are two very natural questions:
What is the maximum or minimum size of a cap in F

d
q? If we consider caps in

projective spaces over Fq instead of affine spaces then caps are related to linear
codes of minimum distance 4, see e. g. [1].

For the maximum size m2

(
F

d
q

)
of a cap in F

d
q the following values are

known [2, 5, 6]:

(1) m2

(
F2

q

)
=

{
q + 2 for even q,

q + 1 for odd q.
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(2) m2

(
F

3
q

)
= q2 for q > 2.

(3) m2

(
F

d
2

)
= 2d.

(4) m2

(
F

4
3

)
= 20, m2

(
F

5
3

)
= 45, and m2

(
F

4
4

)
= 40.

By n2

(
F

d
q

)
we denote the minimum size of a complete cap in F

d
q . For the

projective case in [4] constructive upper bounds are given. In [3] the authors
consider permutations which they interpret as point sets over Z

2
n and ask for the

minimum number of collinear triples in such configurations. In a similar vein we
ask for the maximum cardinality σ

(
Z

2
n

)
of a cap in Z

2
n where every translation

of the two axes contains at most one point.
In this article we consider similar questions in Z

2
n instead of F

d
q . For

dimension 2 some authors use the term arcs instead of caps. For p being the
smallest prime divisor of an integer n the bounds

max

{
4,
√

2p+
1

2

}
≤ n2

(
Z

2
n

)
≤ max {4, p + 1}

were proven in [13]. For coprime integers n,m > 1 the bound

m2

(
Z

2
nm

)
≤ min

{
n ·m2

(
Z

2
m

)
,m2

(
Z

2
n

)
·m
}

can be proven. Whenever the value of n is clear from the context we use the
abbreviation a := a + Zn for integers a. By σ

(
Z

2
n

)
we denote the maximum

cardinality of a cap in Z
2
n, where each horizontal line

(
1, 0
)
·Zn and each vertical

line
(
0, 1
)
·Zn contains at most one point. The last conditions model permutations

in some sense, see e. g. [3].

1.1. Related work. The original “no-three-in-line” problem, introduced
by H. Dudeney in 1917, asks if it is possible to select 2n points on the n-by-n grid
so that no three points are collinear. Currently it is known that for ε > 0 and

a sufficiently large n at least

(
3

2
− ε

)
points can be chosen so that no triple is

collinear. Guy conjectures that choosing
π√
3
n ≈ 1.814n point is is asymptotically

the best possible. In [21] an analogous question is treated in the three-dimensional
space. The question of the minimum size of a complete cap in projective planes
over finite fields was originally posed by B. Segre in the late 1950s. In a more
general context some authors consider caps (or arcs) over so-called projective
Hjelmslev planes, see e. g. [8, 10, 11, 12, 14, 15, 18, 19]. Here we note that Z

2
pr

is the affine part for the chain ring Zpr .
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1.2. Our contribution. In this article we develop an algorithm which
can decide whether three given points in Z

2
n are collinear or not in O(n log n),

given the prime factorization of n. We model the problem of the exact deter-
mination of m2

(
Z

2
n

)
, n2

(
Z

2
n

)
, and σ

(
Z

2
n

)
as integer linear programs. Finally we

perform some computer calculations to determine some as yet unknown values,
e. g. we validate m2

(
Z2

25

)
= 20.

1.3. Organization of the paper. In Section 2 we specify when we
consider three points of Z

2
n to be collinear and develop a fast algorithm which can

check collinearity. To this end some cumbersome and technical but elementary
calculations have to be executed. In Section 3 we give integer linear programming
formulations and in Section 4 we combine them with some symmetry-breaking
techniques to determine the exact values of m2

(
Z

2
n

)
, n2

(
Z

2
n

)
, and σ

(
Z

2
n

)
for

small n.

2. Points on a line. A line in Z
2
n is a translate of a cyclic subgroup

of order n. We remark that every cyclic subgroup of Z
2
n is contained in some

subgroup of order n, see also [13]. An example is given by the line
(
3, 7
)
+
(
1, 5
)
·

Z12 in Z
2
12, see Figure 1. A point p is called incident with a line l if p ∈ l. With

this we could define r points to be collinear if they are incident with a common
line.

t

t

t

t

t

t

t

t

t

t

t

t

Fig. 1. The line
(
3, 7
)

+
(
1, 5
)
· Z12 over Z

2

12
.

Lemma 2.1. A set of r points (ui, vi) ∈ Z
2
n is collinear if there exist

a, b, t1, t2, wi ∈ Zn with

a+ wit1 = ui and b+ wit2 = vi

for 1 ≤ i ≤ r.
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P r o o f. We can write a line L in Z
2
n as a set

{
(a+ wt1, b+ wt2) | w ∈ Zn

}
,

where a, b, t1, t2 are arbitrary elements of Zn. �

We would like to remark that one could also define a line as the set of
solutions (x, y) ∈ Z

2
n of where ax+ by = c, where a, b, c ∈ Zn with gcd

(
â, b̂, n

)
=

1, see [13].
If n = p is a prime then every two points of Z

2
p uniquely determine a line.

This does not hold in general for arbitrary n. If n = pr is a prime power then
every two points uniquely determine pk lines containing those points, where k
depends on the points, see e. g. [10, 19]. It is possible to define neighborhood
relations ∼k for points a, b by requiring that there exist at least pk lines containing
a and b. For arbitrary n two distinct points are incident with at least one line.

If n = p is a prime then Zn is a field and there is a well-known test to
check whether three points are collinear or not, which runs in time O(1):

Lemma 2.2. For a prime n three points (u1, v1) , (u2, v2) , (u3, v3) ∈ Z
2
n

are collinear if and only if

∣∣∣∣∣∣

u1 v1 1
u2 v2 1
u3 v3 1

∣∣∣∣∣∣
= 0.(1)

We note that in Z
2
8 the points

(
0, 0
)
,
(
2, 4
)
,
(
4, 4
)

fulfill Equation (1) but
are not collinear. So in general equation (1) is necessary but not sufficient for
three points to be collinear.

Lemma 2.3. If three points (u1, v1) , (u2, v2) , (u3, v3) ∈ Z
2
n are collinear,

then
∣∣∣∣∣∣

u1 v1 1
u2 v2 1
u3 v3 1

∣∣∣∣∣∣
= 0

holds.

P r o o f. Due to Lemma 2.1 we have
∣∣∣∣∣∣

u1 v1 1
u2 v2 1
u3 v3 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

a+ w1t1 b+ w1t2 1
a+ w2t1 b+ w2t2 1
a+ w3t1 b+ w3t2 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

w1t1 w1t2 1
w2t1 w2t2 1
w3t1 w3t2 1

∣∣∣∣∣∣
= 0. �
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In the following we will develop an algorithm which can decide if three

given points in Z
2
n are collinear in time O

(
l∑

i=1
µi

)
using the prime factorization

of n =
l∏

i=1
pµi

i as input. We would like to remark that also the Smith normal form

can be utilized to obtain an O(log n)-algorithm.
At first we remark that w.l.o.g. we can assume that one of three points

equals
(
0, 0
)
:

Lemma 2.4. Three points (u1, v1) , (u2, v2) , (u3, v3) ∈ Z
2
n are collinear,

if and only if there exist t1, t2, w2, w3 ∈ Zn with

w2t1 = u2 − u1,

w3t1 = u3 − u1,

w2t2 = v2 − v1, and

w3t2 = v3 − v1.

P r o o f. Since (u1, v1), (u2, v2), (u3, v3) are collinear if and only if (0, 0),
(u2 − u1, v2 − v1), (u3 − u1, v3 − v1) are collinear, there exist a′, b′, t′1, t

′
2, w

′
1, w

′
2,

w′
3 ∈ Zn with

a′ + w′
1t

′
1 = 0,

a′ + w′
2t

′
1 = u2 − u1,

a′ + w′
3t

′
1 = u3 − u1,

b′ + w′
1t

′
2 = 0,

b′ + w′
2t

′
2 = v2 − v1, and

b′ + w′
3t

′
2 = v3 − v1.

If we have a solution t1, t2, w2, w3 ∈ Zn of the first equation system then
a′ = b′ = w′

1 = 0, t′1 = t1, t
′
2 = t2, w

′
2 = w2, w

′
3 = w3 is a solution of the second

equation system.
If we have a solution a′, b′, t′1, t

′
2, w

′
1, w

′
2, w

′
3 ∈ Zn of the second equation

system then a′ = −w′
1t

′
1 and b′ = −w′

1t
′
2 holds. With this t1 = t′1, t2 = t′2,

w2 = w′
2 − w′

1, w3 = w′
3 − w′

1 is a solution of the first equation system. �

Due to the Chinese remainder theorem we have:

Lemma 2.5. If n = a · b with coprime a and b, then three points p1,

p2, p3 ∈ Z
2
n are collinear if and only if both projections into Z

2
a and Z

2
b give a

collinear point set.
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Thus it suffices to consider the case where n = pr is a prime power. For
a ∈ Zn let â ∈ {1, . . . , n} denote the integer fulfilling â+ Zn = a. If none of the
values u2, u3, v2, v3 is invertible in Zpr we can apply the following reduction:

Lemma 2.6. If for r ≥ 2 the prime p divides û2, û3, v̂2, and v̂3 then the

points
(
0, 0
)
, (u2, v2) and (u3, v3) are collinear in Z

2
pr if and only if the points

(
0, 0
)
,

(
û2

p
+ Zpr−1,

v̂2
p

+ Zpr−1

)
, and

(
û3

p
+ Zpr−1,

v̂3
p

+ Zpr−1

)

are collinear in Z
2
pr−1.

P r o o f. We have the following equivalence: If and only if the points(
0, 0
)
, (u2, v2) and (u3, v3) are collinear in Z

2
pr then due to Lemma 2.4 there exist

integers t̃1, t̃2, w̃2, w̃3 ∈ {1, . . . , pr} fulfilling

pr | û2 − w̃2t̃1, pr | û3 − w̃3t̃1, pr | v̂2 − w̃2t̃2, and pr | v̂3 − w̃3t̃2.

Similar we conclude: If and only if the points

(
0, 0
)
,

(
û2

p
+ Zpr−1,

v̂2
p

+ Zpr−1

)
, and

(
û3

p
+ Zpr−1,

v̂3
p

+ Zpr−1

)

are collinear in Z
2
pr−1 then there exist integers ṫ1, ṫ2, ẇ2, ẇ3 ∈ {1, . . . , pr−1} fulfill-

ing

pr−1
∣∣∣
û2

p
− ẇ2ṫ1, pr−1

∣∣∣
û3

p
− ẇ3ṫ1, pr−1

∣∣∣
v̂2
p

− ẇ2ṫ2, and pr−1
∣∣∣
v̂3
p

− ẇ3ṫ2.

If the tuple ṫ1, ṫ2, ẇ2, ẇ3 ∈ {1, . . . , pr−1} is a solution of the second system,
then t̃1 = ṫ1 · p, t̃2 = ṫ2 · p, w̃2 = ẇ2, w̃3 = ẇ3 is a solution with t̃1, t̃2, w̃2, w̃3 ∈
{1, . . . , pr} of the first system.

If the tuple t̃1, t̃2, w̃2, w̃3 ∈ {1, . . . , pr} is a solution of the first system then

ṫ1 =
et1
p
, ṫ2 =

t̃2
p

, ẇ2 = w̃2, ẇ3 = w̃3 is a solution with ṫ1, ṫ2, ẇ2, ẇ3 ∈ {1, . . . , pr−1}
of the second system. �

Thus in the following we can confine ourselves to the case where r ≥ 2
(for r = 1 we can utilize Lemma 2.2) and at least one of u2, u3, v2, or v3 is
invertible in Zpr . We claim that in such a situation the criterion of Lemma 2.3
is also sufficient for

(
0, 0
)
, (u2, v2), and (u3, v3) being collinear:

Lemma 2.7. If at least one of the elements u2, u3, v2, v3 ∈ Zpr is invert-

ible and Equation (1) is fulfilled then the three points
(
0, 0
)
, (u2, v2), (u3, v3) in

Z
2
pr are collinear.
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P r o o f. Due to symmetry we can assume that u2 is invertible. Setting
t1 = 1, w2 = u2, t2 = v2u

−1
2 , and w3 = u3, using the notation of Lemma 2.4, we

obtain v3 = u3v2u
−1
2 . Since this equation is equivalent to Equation (1) we can

use Lemma 2.4 to conclude that
(
0, 0
)
, (u2, v2), and (u3, v3) are collinear. �

Using the previous lemmas we can design an efficient algorithm, with
some subroutines, to decide whether r ≥ 3 points (ui, vi) ∈ Z

2
n are collinear or

not. We assume that the prime factorization

n =

l∏

i=1

pµi

i

is known in advance. For practical purposes our algorithm deals with integers
instead of residue classes.

Algorithm 2.8. is collinear
(
û1, v̂1, . . . , ûr, v̂r,p1, µ1, . . . ,pl, µl

)

n =
l∏

i=1
pµi

i

u2 = û2 − û1, v2 = v̂2 − v̂1
if u2 ≤ 0 then u2 = u2 + n
if v2 ≤ 0 then v2 = u2 + n
for i from 3 to r

u3 = ûi − û1, v2 = v̂i − v̂1
if u3 ≤ 0 then u3 = u3 + n
if v3 ≤ 0 then v3 = u3 + n
if is collinear fix zero(u2,v2,u3,v3,p1, µ1, . . . ,pl, µl) == false
then return false

return true

Algorithm 2.9. is collinear fix zero(u2,v2,u3,v3,p1, µ1, . . . ,pl, µl)
for i from 1 to l

k = pµi

i

u′2 = u2 −
⌊u2

k

⌋
· k

u′3 = u3 −
⌊u3

k

⌋
· k

v′2 = v2 −
⌊v2
k

⌋
· k

v′3 = v3 −
⌊v3
k

⌋
· k

if is collinear prime power(u′
2
,v′

2
,u′

3
,v′

3
,pi, µi) == false
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then return false
return true

Algorithm 2.10. is collinear prime power(u2,v2,u3,v3,p, r)
if r == 1 then

if u2v3 ≡ u3v2 (mod p) then return true else return false
else

if u2 ≡ u3 ≡ v2 ≡ v3 ≡ 0 (mod p)

then return is collinear prime power

(
u2

p
,
v2

p
,
u3

p
,
v3

p
,p, r − 1

)

else

if u2v3 ≡ u3v2 (mod pr) then return true else return false

Now we want to analyze the running time of Algorithm 2.8 and Algo-
rithm 2.9:

Theorem 2.11. If n =
l∏

i=1
pµi

i then Algorithm 2.9 needs at most O

(
l∑

i=1
µi

)

time steps.

P r o o f. It suffices to prove that Algorithm 2.10 needs at most r recur-
sions, which is obvious. �

Corollary 2.12. Given the prime factorization of n Algorithm 2.9 runs

in O(log n) and Algorithm 2.8 runs in O(r · log n) time.

So let us take a (small) example to illustrate Algorithm 2.8. We choose
n = 625 = 54, u1 = 1, v1 = 2, u2 = 76, v2 = 57, u3 = 251 and v3 = 102. At
first we transform the problem to u1 = v1 = 0, u2 = 75, v2 = 55, u3 = 250, and
v3 = 100. Since n is a prime power we do not split up the problem into prime
powers. Since the largest power of 5 which divides all of ũ2, ũ3, ṽ2, and ṽ3 is 51

we reduce the problem to
(
0, 0
)
,
(
15, 11

)
,
(
50, 20

)
in Z125. Due to 15 ·20 = 11 ·50

in Z125 the three original points are collinear.
If we have to check very often whether three points are collinear or not

then it is more efficient to create a Z
2
n × Z

2
n table in order to bookmark whether(

0, 0
)
, p1, p2 are collinear or not.

3. Integer Linear Programming formulations. In this section
we formulate the problem of the exact determination of m2

(
Z

2
n

)
as an integer

linear program using the binary variables xi,j ∈ {0, 1} for 1 ≤ i, j ≤ n. Here the
variables xi,j encode a subset

C :=
{

(i+ Zn, j + Zn) | xi,j = 1, 1 ≤ i, j ≤ n
}
⊆ Z

2
n.
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To enforce C to be a cap, we require the linear inequality

(2)
∑

i,j : (i+Zn,j+Zn)∈L

xi,j ≤ 2

for all lines L of Z
2
n. It is not difficult to show that these inequalities suffice to

enforce that no three points of C are collinear. Obviously we could also write up
an inequality for every triple of collinear points, but we note that Inequality (2)
is more compact. With the above we can state

m2

(
Z

2
n

)
= max

n∑

i=1

n∑

j=1

xi,j(3)

subject to
∑

i,j : (i+Zn,j+Zn)∈L

xi,j ≤ 2 ∀ lines L of Z
2
n

xi,j ∈ {0, 1} ∀ 1 ≤ i, j ≤ n.

We note that every optimal solution of ILP (3) corresponds to a cap which
is complete.

Similarly we can state for the maximum cardinality of a cap which is a
subset of a permutation point set:

σ
(
Z

2
n

)
= max

n∑

i=1

n∑

j=1

xi,j(4)

subject to
∑

i,j : (i+Zn,j+Zn)∈L

xi,j ≤ 2 ∀ lines L of Z
2
n

n∑

i=1

xi,j ≤ 1 ∀1 ≤ j ≤ n

n∑

j=1

xi,j ≤ 1 ∀1 ≤ i ≤ n

xi,j ∈ {0, 1} ∀ 1 ≤ i, j ≤ n.

Some more work is needed to express n2

(
Z

2
n

)
as the optimal objective value of

an ILP. Simply replacing max by min in ILP (3) would yield the optimal solution



168 Sascha Kurz

xi,j = 0 for all 1 ≤ i, j ≤ n. So we have to augment ILP (3) by some additional
conditions and variables in order to enforce the set C, corresponding to xi,j to
be complete. Therefore we introduce line variables yL ∈ {0, 1} for every line L
in Z

2
n. The idea is that yL should equal 1 if C contains exactly two points of L.

This can be modeled using the linear inequality

(5) 1 + yL ≥
∑

i,j : (i+Zn,j+Zn)∈L

xi,j ≥ 2yL

for all lines L in Z
2
n.

To model the completeness of C we introduce the linear inequality

(6) xi,j +
∑

L : (i+Zn,j+Zn)∈L

yL ≥ 1

for all 1 ≤ i, j ≤ n. Here the idea is, that a cap C is complete if and only if
there does not exist a point P ∈ Z

2
n\C such that C ∪ {P} is also a cap. So let us

assume that we have a binary variable allocation xi,j, yL satisfying Inequalities
(2), (5), and (6), then for all 1 ≤ i, j ≤ n either P = (i+ Zn, j + Zn) is contained
in C or there exist two points P1, P2 in C such that P1, P2, and P are collinear.
Thus every feasible solution of the ILP

n2

(
Z

2
n

)
= min

n∑

i=1

n∑

j=1

xi,j(7)

subject to
∑

i,j : (i+Zn,j+Zn)∈L

xi,j ≤ 2 ∀ lines L of Z
2
n

∑

i,j : (i+Zn,j+Zn)∈L

xi,j − 2yL ≥ 0 ∀ lines L of Z
2
n

xi,j +
∑

L : (i+Zn,j+Zn)∈L

yL ≥ 1 ∀ 1 ≤ i, j ≤ n

xi,j ∈ {0, 1} ∀ 1 ≤ i, j ≤ n

yL ∈ {0, 1} ∀ lines L of Z
2
n

corresponds to a complete cap C. For a given complete cap C we can extend the
corresponding partial variable allocation by setting yL = 1 exactly if C contains
exactly two points of C. Since we minimize the number of points of C the target
value of ILP (7) equals n2

(
Z

2
n

)
.
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Now let us have a look at the number of variables and inequalities of the
ILPs (3), (4), and (7). A function ψ : N → N is called multiplicative if ψ(1) = 1
and ψ(nm) = ψ(n) · ψ(m) for all coprime integers n and m.

Definition 3.1. Let ψ : N → N be the multiplicative arithmetic theoretic

function defined by ψ (pr) = (p+ 1)pr−1 for prime powers pr > 1.

We note that since

lim
k→∞

ln pk

k∏

i=1

1

1 + 1
pk

=
π2

6eγ
,

and

lim
k→∞

(
k∏

i=1

pi

) 1

pk

= e

where pk denotes the kth prime and γ denotes the Euler-Mascheroni constant

with an approximate value of 0.57721566, and due to ψ
(
n2
)

= n2 · ∏
p|n

1 +
1

p
(for

primes p), we have

n2 ≤ ψ
(
n2
)
≤ 1.0828 · n2 ln lnn

for all sufficiently large n.

Lemma 3.2. There are ψ
(
n2
)

lines in Z
2
n .

P r o o f. Due to the Chinese remainder theorem the number of lines is a
multiplicative arithmetic function. The number of cyclic subgroups of order pr in
Z

2
pr is given by 2ϕ(pr) (pr − ϕ(pr))+ϕ(pr)2 = p2r−p2r−2, where ϕ(pr) = pr−1(p−1)

is Euler’s totient function. Since every cyclic subgroups of order pr contains

ϕ(pr) = pr−1(p− 1) generators, there are
p2r − p2r−2

pr−1(p− 1)
= (p+1)pr−1 lines through

each point in Z
2
pr . In total there are

(p+ 1)pr−1 · p2r

pr
= ψ

(
p2r
)

lines since every

line contains pr points. �

Thus ILP (3) consists of n2 variables and ψ
(
n2
)

inequalities, ILP (4)
consists of n2 variables and ψ

(
n2
)

+ 2n inequalities, and ILP (7) consists of
n2 +ψ

(
n2
)

variables and 2ψ
(
n2
)
+ n2 inequalities. So in all cases the number of

variables and inequalities are in O(n2 lnn). But since generally the optimization
(or also the feasibility problem) of 0-1 linear programs is NP-complete these ILP
formulations might not help too much from the theoretical point of view. On the
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other hand these ILP formulations enable us to determine some exact numbers
and bounds of m2

(
Z

2
n

)
, n2

(
Z

2
n

)
, and σ

(
Z

2
n

)
in the next section.

In contrast to ILP problems LP problems, i. e. ILP problems without
integrality constraints, can be solved in polynomial time. So in order to obtain
an LP for the ILPs (3), (4), and (7) we can relax the conditions xi,j ∈ {0, 1},
yL ∈ {0, 1} by 0 ≤ xi,j ≤ 1, 0 ≤ yL ≤ 1. To solve the original (integral) problem
several techniques, e. g. branch & bound, have to be applied. In many cases
additional inequalities will be very useful for an optimization algorithm. We will
explain this idea by considering the example

max x1 + 2x2

subject to

5x1 + 3x2 ≤ 15

x2 ≤ 2

x1, x2 ∈ N0

On the left-hand side of Figure we have depicted the feasible set of the relaxed
linear program (i. e. we have replaced x1, x2 ∈ N0 by x1, x2 ≥ 0). The integral
points are marked by filled circles. If we additionally require x1 + x2 ≤ 3 we
obtain the feasible set as depicted on the right-hand side of Figure 2.

u u u u

u u u

u u

T
T

T
T

T
T

u u u u

u u u

u u

@
@

@
@

@
@

Fig. 2. Feasible sets of linear programs

We observe that the feasible set on the right-hand side contains the same
integral points as the feasible set of the left-hand side, whereas the surface area
differs. In this case we say that x1 + x2 ≤ 3 is a valid inequality w. r. t. the
integral points. If the right-hand side of Inequality (2) in ILP (3) would be 1
instead of 2, then several classes of valid inequalities of the so-called stable set
polytope are known, e. g.. odd circuit inequalities or clique inequalities (if given
by edge inequalities).

Unfortunately we are not aware of any general (masking the geometric
properties of Z

2
n) results on valid inequalities for the polytope of ILP (3).
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4. Bounds and exact values. In this section we want do state bounds
and exact values for the three problems stated in the introduction which are either
known or derived using an ILP based approach following the ILP formulations of
Section 3.

4.1. Maximum cardinality of caps over Z
2
n. As mentioned in the

introduction we have:

Lemma 4.1. m2

(
Z

2
nm

)
≤ min

{
n ·m2

(
Z

2
m

)
,m2

(
Z

2
n

)
·m
}

for coprime

integers n,m > 1.

P r o o f. Let X ⊆ Z
2
nm be a cap, l be a line in Z

2
n, and q1 : Z

2
nm → Z

2
n,

q2 : Z
2
nm → Z

2
m be reduction maps. We set Y := {x ∈ X | q1(x) ∈ l}. If |Y | ≥ 2

then q1(Y ) ⊆ q1(X) is collinear in Z
2
n. Thus we must have |Y | ≤ m2

(
Z

2
m

)
since

otherwise q2(Y ) is collinear in Z
2
m, from which we could conclude the collinearity

of Y in Z
2
nm. Since we can partition Z

2
n into n lines and m2

(
Z

2
m

)
≥ 2 we have

|X| ≤ n ·m2

(
Z

2
m

)
. Due to symmetry we also have |X| ≤ m ·m2

(
Z

2
n

)
. �

Directly solving ILP (3) using the commercial solver ILOG CPLEX 11.2

yields the results given in Table 1. We would like to remark that for n ≤ 17 the
exact values of m2

(
Z

2
n

)
were also determined in [14].

n 2 3 4 5 6 7 8 9 10 11 12

m2

(
Z

2
n

)
4 4 6 6 8 8 8 9 12 12 12

time in s < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.65 0.12 48.05 5.30 126.24 56.80

Table 1. Directly solving ILP (3).

One of the main reasons why ILP solvers fail to tackle instances of ILP
(3) for larger values of n is the highly symmetric formulation of the problem,
i. e. instead of few optimal solutions there exist a whole bulk of solutions which
correspond to geometrically isomorphic caps. So we have to break symmetries
by introducing further inequalities. To this end we consider automorphisms α
of Z

2
n, i. e. mappings from Z

2
n to Z

2
n which preserve point-line incidences. This

means, in particular, that C ⊆ Z
2
n is a cap if and only if α(C) is a cap. Since

the translations x 7→ x + y for y ∈ Z
2
n are such automorphisms we can assume

w.l.o.g. that the point
(
0, 0
)

is contained in each non-empty cap C. Another
class of automorphisms arises from multiplication of invertible 2 × 2 matrices of
Zn. So let us denote the resulting group of all translations and all invertible
2 × 2 matrices by G. (All elements of G are automorphisms.)

In the following we will assume that some points ai ∈ Z
2
n are not contained

in cap C but some points bi ∈ Z
2
n are contained in C. From this we can conclude
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n cases

14 a1 =
(
0, 0
)
, b1 =

(
1, 0
)

resolved in 0.57 s.

a1 =
(
0, 0
)
, a2 =

(
1, 0
)
, b1 =

(
0, 1
)

resolved in 3.21 s.

a1 =
(
0, 0
)
, a2 =

(
1, 0
)
, a3 =

(
0, 1
)

resolved in 675.54 s.

15 a1 =
(
0, 0
)
, b1 =

(
1, 0
)

resolved in 0.04 s.

a1 =
(
0, 0
)
, a2 =

(
1, 0
)
, b1 =

(
0, 1
)

resolved in 0.67 s.

a1 =
(
0, 0
)
, a2 =

(
1, 0
)
, a3 =

(
0, 1
)

resolved in 1830.68 s.

16 a1 =
(
0, 0
)
, b1 =

(
1, 0
)

resolved in 0.17 s.

a1 =
(
0, 0
)
, a2 =

(
1, 0
)
, b1 =

(
0, 1
)

resolved in 0.54 s.

a1 =
(
0, 0
)
, a2 =

(
1, 0
)
, a3 =

(
0, 1
)

resolved in 251.93 s.

18 a1 =
(
0, 0
)
, b1 =

(
1, 0
)

resolved in 0.07 s.

a1 =
(
0, 0
)
, a2 =

(
1, 0
)
, b1 =

(
0, 1
)

resolved in 0.13 s.

a1 =
(
0, 0
)
, a2 =

(
1, 0
)
, a3 =

(
0, 1
)

resolved in 2554.91 s.

20 a1 =
(
0, 0
)
, b1 =

(
1, 0
)

resolved in less than 1 s.

a1 =
(
0, 0
)
, a2 =

(
1, 0
)
, b1 =

(
0, 1
)

resolved in less than 1 s.

a1 =
(
0, 0
)
, a2 =

(
1, 0
)
, a3 =

(
0, 1
)
, a4 =

(
4, 1
)

resolved in 1950 s.

a1 =
(
0, 0
)
, a2 =

(
1, 0
)
, a3 =

(
0, 1
)
, a4 =

(
4, 4
)
, b1 =

(
4, 1
)

resolved in 513 s.

a1 =
(
0, 0
)
, a2 =

(
1, 0
)
, a3 =

(
0, 1
)
, a4 =

(
5, 4
)
, b1 =

(
4, 1
)
,

b2 =
(
4, 4
)

resolved in 80 s.

. . . , a4 =
(
5, 3
)
, . . . resolved in less than 1 s.

. . . , a4 =
(
9, 1
)
, . . . resolved in less than 1 s.

. . . , a4 =
(
16, 9

)
, . . . resolved in 3584 s.

. . . , a4 =
(
15, 11

)
, . . . resolved in 800 s.

. . . , a4 =
(
15, 10

)
, . . . resolved in 3562 s.

. . . , a4 =
(
6, 5
)
, . . . resolved in 3725 s.

. . . , a4 =
(
5, 5
)
, . . . resolved in 5922 s.

. . . , a4 =
(
10, 1

)
, . . . resolved in less than 1 s.

. . . , a4 =
(
5, 1
)
, . . . resolved in 3080 s.

a1 =
(
0, 0
)
, a2 =

(
1, 0
)
, a3 =

(
0, 1
)
, b1 =

(
4, 1
)
, b2 =

(
4, 4
)
, b3 =

(
5, 4
)
,

b4 =
(
5, 3
)
, b5 =

(
9, 1
)
, b6 =

(
16, 9

)
, b7 =

(
15, 11

)
, b8 =

(
15, 10

)
, b9 =

(
6, 5
)
,

b10 =
(
5, 5
)
, b11 =

(
10, 1

)
, b12 =

(
5, 1
)

resolved in less than 1 s.

Table 2. Case differentiations for the determination of m2

(
Z

2

n

)
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some valid inequalities for our ILPs using the group G. If there exists an index
h, an element z ∈ Z

2
n, and an automorphism α such that

α ({z, a1, . . . }) = {bh, a1, . . . }

then we can conclude w.l.o.g. that z /∈ C. In the formulation as an integer linear
program this translates to an equation xi,j = 0 (for (i+ Zn, j + Zn) = z). If
there exists an index h, three elements z1, z2, z3 ∈ Z

2
n, and an automorphism α

such that

α ({z1, z2, a1, . . . }) = {bh, z3, a1, . . . }
then we can conclude w.l.o.g. that it is not the case that both of z1 and z2 are
contained in C. In the ILP formulation this translates to an inequality xi,j +
xi′,j′ ≤ 1 (for (i+ Zn, j + Zn) = z1 and (i′ + Zn, j′ + Zn) = z2).

With this tool at hand we are able to determine some further exact values
of m2

(
Z

2
n

)
via case differentiations and the ILOG CPLEX solver, see Table 2.

In each case we consider ILP (3) augmented by the inequalities arising

from the ai, bi as described above and by the inequality
n∑

i=1

n∑
j=1

xi,j ≥ l + 1,

where l is the cardinality of a cap C in Z
2
n. Since it is not hard to find a cap of

cardinality m2

(
Z

2
n

)
(one can use, e. g., an ILP solver), we can choose l = m2

(
Z

2
n

)
.

Thus resolved means that the ILP solver has proven that no integer solution can
exist in each of the stated subcases. In Table 3 we give the proven exact values
of m2

(
Z

2
n

)
and some bounds which can be obtained by applying the described

methods.

n 14 15 16 18 20 21 22 24

m2

(
Z

2

n

)
12 15 14 17 18 18 18–24 18–24

Table 3. Solving ILP (3) utilizing case differentions and symmetry

The starting point of our studies was the determination of m2

(
Z

2
25

)
. Is is not too

hard to find a cap of cardinality 20 in Z
2
25, see Figure 3 for an example. In the

projective case very recently, somewhat surprisingly, a cap of cardinality 21 was
found [16]. Shortly afterwards Kohnert et al., see [17], verified this constructive
result by prescribing a cyclic group of order 3 as a subgroup of the automorphism
group of a cap. For the general method of prescribing automorphisms we refer
e. g. to [15, 18].

We note that the known bounds for the maximum size of a cap in the
projective Hjelmslev plane PHG

(
Z

3
25

)
were 20 . . . 25, see e. g. [10]. Here we
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conjecture 21 to be the correct value. It is very likely that the method of M. Koch
can be continued to an exhaustive search to resolve this case.

s s

s
s s

s s
s s

s
s s

s s
s

s s
s s

s

Fig. 3. A cap of cardinality 20 over Z
2

25

To determine m2

(
Z

2
25

)
= 20 using the ILP based approach one has to

perform several case differentions, use some geometric insights and exhaustive
enumeration. At first we look at pairs a, b ∈ Z

2
25 of points which lie in the same

neighborhood ∼1, i. e. where a and b are incident with 51 common lines, see
Section 2. In Z

2
25 two points (a1, a2), (b1, b2) belong to such a class if and only

if both â1 − b̂1 and â2 − b̂2 are divisible by 5. If three pairwise different points
c1, c2, c3 ∈ Z

2
25 fulfill a ∼1 b ∼1 c then they are collinear. Thus in a cap no such

triple can exist.

Now we consider caps C which contain at least three pairs c1 ∼1 c2,
c3 ∼1 c4, and c5 ∼1 c6. Since C is a cap we have c1 6∼1 c3, c1 6∼1 c5, and c3 6∼1 c5.
Due to the symmetry group G, defined above as a subgroup of the automorphism
group, we can assume w.l.o.g. c1 =

(
0, 0
)
, c3 =

(
1, 0
)
, and c5 =

(
0, 1
)
. For

{c1, . . . , c6}G there are 104 orbits. In each of these 104 cases the augmented ILP
(3) has an optimal solution less than 21.

Thus we only have to consider caps with at most two pairs c1 ∼1 c2
and c3 ∼1 c4. So in the next step we consider all 18 orbits {c1, . . . , c5}G with
c1 =

(
0, 0
)
, c3 =

(
1, 0
)
, c1 ∼1 c4, and c2 ∼1 c5. As additional inequalities we can

use that no further pair ci ∼1 cj can exist in C. Also, here the optimal solution
of the augmented ILPs (3) is less than 21.
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In a further step we consider all 39 orbits {c1, . . . , c4}G with c1 =
(
0, 0
)
,

c3 =
(
1, 0
)
, and c1 ∼1 c4. Again the optimal solution of the augmented ILPs (3)

is less than 21. Thus in a possible cap of cardinality at least 21 in Z
2
25 no pair

ci ∼1 cj can exist.

Next we look at the orbits of {c1, . . . , c4}G with c1 =
(
0, 0
)
, c3 =

(
1, 0
)

where no pair ci ∼1 cj occurs. We pick a representative of each orbit and label
them by z1, . . . , z33. For i ≥ 4 we set a1 = c1, a2 = c2, a3 = c3, a4 = zi, b1 = z1,
. . . , bi−1 = zi−1 in order to prescribe or to forbid some points of cap C. In each
of these cases we can verify that C must contain less than 21 elements. Thus
only three possibilities for {c1, . . . , c4}G are left.

For the final step we utilize orderly generation [22] with some look ahead:
we run through all 25 equivalence classes {x ∈ Z25 | x ∼1 y}. In each equivalence
class we can pick at most one point. So either we pick one element of such an
equivalence class or we decide not to take an element of this equivalence class.
If we have fixed some elements of our cap C then it may happen that there are
equivalence classes where we have no possibility to pick an element due to the
restriction of at most 2 points on a line. So for each partial cap we can count the
number r of equivalence classes, where it is possible to select a further point for
cap C. If |C| + r < 21 then we can stop extending cap C.

4.2. Minimum cardinality of complete caps over Z
2
n. From [13] we

can cite the bounds

max

(
4,
√

2p+
1

2

)
≤ n2

(
Z

2
n

)
≤ max(4, p + 1),

where p is the smallest prime divisor of n, and

n2

(
Z

2
nm

)
≤ min

(
n2

(
Z

2
n

)
, n2

(
Z

2
m

) )

for coprime integers n and m. Additionally the author of [13] conjectures n2

(
Z

2
pa

)

≤ n2

(
Z

2
pb

)
for a ≤ b, p being a prime and n2

(
Z

2
nm

)
= min

(
n2

(
Z

2
n

)
, n2

(
Z

2
m

) )

for coprime integers n and m. If these conjectures turn out to be true then it
would suffice to determine the values n2

(
Z

2
p

)
for primes p.

If n is divisible by 2 or 3 then we can conclude n2

(
Z

2
n

)
= 4 from the above

inequalities and n2

(
Z

2
2

)
= n2

(
Z

2
3

)
= 4. For n > 1 we have n2

(
Z

2
n

)
≥ 4. So in

Table and Table we have given the exact values and bounds for n2

(
Z

2
n

)
arising

from ILP (3), where n is either a prime or coprime to 6. We would like to remark
that some of these numbers are already given in [13]. If n is a prime then we can
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assume w.l.o.g. that the points
(
0, 0
)
,
(
1, 0
)
, and

(
0, 1
)

are contained in cap C.
In this case some results from [7] can be used, e. g. we have n2

(
Z

2
n

)
≥ t(2, q)− 2,

where t(2, q) denotes the smallest size of a complete cap in PG(2, q). For the
exact values of t(2, q) for q ≤ 29 we refer to [9, 20]. In [7] there is mentioned

a construction that produces a cap of size
q − 3

2
which is complete at least for

q > 413. The exact value of n2

(
Z

2
25

)
is known to be 6 but unfortunately we were

not able to validate the lower bound using our ILP based approach.

n 2 3 5 7 11 13 17 19 23 25 29

n2

(
Z

2
n

)
4 4 5 6 7 8 8 . . . 10 8 . . . 11 8 . . . 12 4 . . . 6 11 . . .15

Table 4. Values of n2

(
Z

2

n

)
for small n which are either prime or coprime to 6

n 31 37 41 43 47

n2

(
Z

2
n

)
9 . . . 16 10 . . . 17 10 . . .20 10 . . . 21 11 . . .22

Table 5. Values of n2

(
Z

2

n

)
for small n which are either prime or coprime to 6

4.3. Maximum cardinality of caps over Z
2
n which are subsets of

permutations. Obviously we have σ
(
Z

2
n

)
≤ n since a permutation consists

of n points. Utilizing the ILP formulation (4) and the ILOG CPLEX solver we
have obtained the values and bounds of Table and Table . So e. g. for n ∈
{1, 2, 4, 6, 8, 12} there exist permutations whose graphs in Z

2
n are caps. We would

like to remark that for this problem the applicable group of automorphisms is
much smaller than for the other two problems. Here translations, changes of the
coordinate axes, and reflection at one of the axes are automorphisms.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
σ(n) 1 2 2 4 4 6 6 8 6 8 10 12 12 12 13 13 16 13 18

Table 6. Values and bounds for σ
(
Z

2

n

)

n 20 21 22 23 24 25 26 27 28 29 30
σ(n) 16 16-17 16-17 22 20-22 19-22 18-24 18-25 22-27 28 22-29

Table 7. Values and bounds for σ
(
Z

2

n

)
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