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INTRODUCTION TO THE MAPLE POWER TOOL intpakX*

Walter Krämer

Abstract. The Maple Power Tool intpakX [24] defines Maple types for
real intervals and complex disc intervals. On the level of basic operations,
intpakX includes the four basic arithmetic operators, including extended
interval division as an extra function. Furthermore, there are power, square,
square root, logarithm and exponential functions, a set of standard functions,
union, and intersection. Reimplementations of the Maple construction,
conversion, and unapplication functions are available. Additionally, there
is a range of operators for complex disc arithmetic.

As applications, verified computation of zeroes (Interval Newton Me-
thod) with the possibility to find all zeroes of a function on a specified
interval, and range enclosure for real-valued functions of one or two variables
are implemented, the latter using either interval evaluation or evaluation
via the mean value form and adaptive subdivision of intervals. The user
can choose between a non-graphical and a graphical version of the above
algorithms displaying the resulting intervals of each iteration step.

The source code (about 2000 lines of Maple–code) of the extension
intpakX is freely available [23].
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1. Introduction and Acknowledgement. The Maple Power Tool
intpakX [8, 24] includes the former packages intpak [5] and intpakX [6, 7]. It
provides the new data type interval (long number intervals), the corresponding
basic arithmetic operations, basic interval functions, extended interval division,
Interval Newton Method, functions to enclose a range of functions, complex basic
interval operations (disk arithmetic), the complex exponential function for disc
arguments, and a couple of plotting functions to visualize the interval methods.
It is particularly useful for illustrating interval algorithms in the field of validating
computing. The tool has been used (and will be used) by the author with great
success when giving lectures in this field. It is planned to extend the tool by
supervising further Bachelor’s and Master’s theses.

Please note: intpakX assumes that the basic operations provided by
Maple are accurate to at least one unit in the last place (ulp) with respect to the
actual value of Maple’s environment variable Digits (number of decimal digits
Mapel uses to represent software floating-point numbers). If so, it is guaranteed
that intpakX computes enclosures for ranges of expressions built from these basic
operations. Up to now, no violation of the assumption is known to the authors
of intpakX.

A similar statement (1 ulp accuracy) about the accuracy of Maple func-
tions like exp, log, sin, Bessel, etc., is probably not correct. Therefore intpakX

uses several guard digits in its computations. Nevertheless computation of ex-
pressions involving such functions cannot be guaranteed to enclose the true range!
Despite this limitation, we are convinced that intpakX is a valuable didactical
tool for illustrating interval algorithms/methods. As soon as error bounds for
Maple funcions are available, intpakX will use the bounds to compute guaranteed
enclosures.

The author would like to thank his students/assistants for investing so
much time and effort in this package. Particularly, thanks to Ilse Geuling and
Markus Grimmer.

How to install intpakX and how to use this Maple Power Tool in your
own worksheets is described in the source files, which are publicly available on
the WEB (see [23]). From this link you get the most recent version of inpakX.
The Maplesoft link [24] may present an older version.

2. Real Interval Operations and Functions. A variable x is of
type interval if either x is an empty list or if x = [x1, x2] is a list with two
elements. The interval endpoints xi, i = 1, 2 must fulfill one of the following
requirements:
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– xi is a real number of type float

– xi is equal to 0

– xi ∈ {−infinity, infinity}.

Numbers of type integer or of type fraction or constants predefined in Maple
(to these belong Pi, gamma, Catalan, FAIL, false, true) are not allowed as
interval endpoints! However, the intpakX function construct may be used to
create valid intervals in these cases.
Basic Arithmetic Operations: The basic operations implemented are &+,
&−, &∗, &/ and inv. Their input parameters must be either of type interval

or of type num or FAIL. The output is an interval.
A variable is of type num or FAIL if its value is a number (i. e. the variable

is of type numeric ), −infinity or a constant predefined in Maple (see above).
The priorities for the so-called ‘inert’ operators &+, &−, &∗, &/ are

unfortunately set in Maple so that &+ and &− have a higher priority than &∗
and &/. Because of this, one has to use lots of brackets in terms!
Basic Interval Functions: The interval functions implemented are &sqr,
&sqrt, &ln, &exp, &∗∗, &intpower, &sin, &cos, &tan, &arcsin, &arccos,
&arctan, &sinh, &cosh und &tanh. Originally [5] it was assumed that the
corresponding mathematical functions in Maple deviate maximally by 0.6 ulp
from the exact results. This assumption is, however, confirmed nowhere in the
Maple manual. intpakX [7] uses several guard digits (concerning reliability refer
to the Introduction).

Most names are self-explaining. The operation &intpower corresponds
to the function xn, n a natural number. The operator &∗∗ corresponds to the
function xα, where α can be an interval, an integer or a number of type float.
Auxiliary Functions: The function construct generates from a number or a
pair of numbers an element of type interval. As an optional parameter may be
entered the string ‘rounded’. In this case the interval endpoints are rounded by
one ulp from above or from below.

Also contained are the functions midpoint, width, &intersect, &union

and is in. The function width calculates the diameter and midpoint an enclo-
sure (confinement) of the centre of an interval.

For converting a term into an interval term resp. into an interval function,
there are the commands ‘convert/interval‘ and inapply.

Example 1. The data type interval

Interval endpoints of type integer are not admitted:
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> x:=[1,2];

x := [1, 2]

> type(x,interval);

false

> x:=construct(1,2); type(x,interval);

x := [1., 2.]

true

Generate confining interval:

> construct(1,rounded);

[.999999999, 1.000000001]

> y:=construct(1,infinity,rounded);

y := [.999999999, ∞]

> type(y,interval);

true

Diameter and enclosure of interval centre:

> width(x); width(y);

1.

∞
> midpoint(x);

[1.499999999, 1.500000001]

Example 2. Set-theoretic operations

> x:=[1.,3.]; y:=[2.,infinity]; z:=[4.,5.];

x := [1., 3.]

y := [2., ∞]
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z := [4., 5.]

> x &union y;

[1., ∞]

> x &union z;

[1., 3.], [4., 5.]

The resulting set consists of two intervals. Thus, &union does not
calculate the interval hull. For this the procedure &Convex Hull is available
in intpakX.

> x &intersect y;

[2., 3.]

> x[1];

1.

> is_in(x[1],y);

false

> is_in(z,y);

true

Example 3. Arithmetic operations and interval functions

> [1.,2.] &+ 3 &* 0; # Wrong priorities of operators

[0, 0]

> [1.,2.] &+ (3 &* 0);

[.999999999, 2.000000001]

> [-1.,2.] &intpower 3;

[−1.000000001, 8.000000001]

> &sqr(&cosh(1)) &- &sqr(&sinh(1));

[.9999999919, 1.000000008]
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Example 4. Transforming expressions into interval functions

> f:=inapply(0.5*t,t);

f := t → .5 ‘& ∗ ‘ t

> f(2);

[.999999999, 1.000000001]

> f:=inapply(sqrt(t),t);

f := &sqrt

> f([4.,9.]);

[1.999999999, 3.000000001]

> f:=inapply(sin(x)+x,x);

f := x → ‘&sin‘(x) ‘& + ‘ x

> f(0);

[0, 0]

Example 5. Range enclosures
Enclosure of the value domain of f(x) := x3−x2−x+1 on the interval [0, 0.5] by
evaluation with intervals, using the mean value form and taking into consideration
the monotony properties of f .

> x:=’x’; # release variable

x := x

> f:=x^3-x^2-x+1;

f := x3 − x2 − x + 1

> F:=inapply(f,x); # Transformation of f into an interval

function

F := x → (x ‘&intpower‘ 3) ‘& + ‘

(((−1) ‘& ∗ ‘ (x ‘&intpower‘ 2)) ‘& + ‘ (((−1) ‘& ∗ ‘x) ‘& + ‘ 1))
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Transformation of the derivative f ′ of f into an interval function

> dF:=inapply(diff(f,x),x);

dF := x → (3 ‘& ∗ ‘ (x ‘&intpower‘ 2)) ‘& + ‘ (((−2) ‘& ∗ ‘x) ‘& + ‘ (−1))

Enclosure (confinements) of the value domain of f on the interval [0, 0.5]

> X:=[0,0.5];

X := [0, .5]

> mid_X:=midpoint(X);

mid X := [.2499999999, .2500000002]

> r_i:=F(X); # evaluation with intervals

r i := [.2499999994, 1.125000003]

> r_m:=F(mid_X) &- ( dF(X) &* (X &- mid_X) ); # mean value form

r m := [.2031249977, 1.203125003]

The evaluation with intervals of f ′ on the interval X = [0, 0.5] shows that
f is monotone decreasing in X.

> dF([0,0.5]);

[−2.000000003, −.2499999985]

The exact value domain of f on X is the interval [0.375, 1]. A very sharp
enclosure of the value domain can be calculated in the following way:

> r_e:=construct(F(X[2])[1],F(X[1])[2]);

r e := [.3749999993, 1.000000003]

F(X[2]) calculates the evaluation with intervals of f at the point X[2]=
0.5. F(X[2])[1] gives the lower interval end of F(X[2]), thus a safe lower bound
for the minimum of f on the interval [0, 0.5].

In order to verify if the ‘exact’ enclosure of the value domain r e is
contained in the intersection of the enclosures r i and r m calculated above,
e. g. the procedure is in may be used.

> is_in(r_e, r_i &intersect r_m);

true
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The Procedure Interval power. In order to enable the evaluation of
e. g. the second derivative of f(x) :=

√
x

f ′′(x) = −1

4
x−

3

2

with intervals, the procedure Interval power (alias &∗∗) allows rational numbers
as second parameter.

Calculating f ′′(4) with floating point arithmetic

> evalf(-1/4*4^(-3/2));

−.03125000000

Evaluation of f ′′(4) with intervals

> df2:=inapply(diff(sqrt(x),x$2),x);

df2 := x →
(−1

4

)

‘& ∗ ‘

(

x ‘& ∗ ∗‘
(−3

2

))

> df2(4);

[−.03125000004, −.03124999997]

The Procedure is in. The intpak-procedure is in has two input
parameters, and verifies if the first parameter is contained in the second (in a set-
theoretical sense). As input parameters are allowed variables of type interval,
numbers of type numeric and the values FAIL, infinity and -infinity. The
procedure is in gives out a correct result even if one of the numbers is rational
or if the length of the entered numbers exceeds the value of the variable Digits.
Example:

> Digits;

10

> is_in(1.9999999999999999,[2.,2.]);

false

> is_in(1/3,[0.3333333332,0.33333333333333333]);

false
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The Procedure construct. Example
> construct(1/3);

[.3333333333, .3333333334]

> (1/3) &- 0.3333333333;

[0, .1000000001 10−9 ]

> construct(1.0000000001);

[1.000000000, 1.000000001]

> 1.0000000001 &- 1;

[0, .1000000001 10−8 ]

3. Application I: Ranges With Graphical Output.
3.1. Functions of One Variable. Two simple possibilities to confine

the range of a function f : D ⊆ IR → IR over an interval [x] ⊆ D were already
presented in Example 5, Section 2: namely, the interval-evaluation of f (if it
exists) and the mean value form (if the interval-evaluation of f ′ over [x] exists.

An improved range enclosure is obtained if the interval [x] is partitioned
and a range enclosure is calculated over each subinterval. The interval hull of
these subrange enclosures is then an enclosure of the range of f over [x]. If
the partition is continued successively, then the initial range enclosure can be
improved successively.

This is realized by the procedure compute range. The procedure demands
three input parameters

– a function f,

– the start interval xstart (may be entered either as interval or as range)

– the number of iterationsteps to be performed. It is used as an interrupt
criterion.

The order of the three parameters mentioned above is compulsory. In
addition, the entering of four optional parameters (in any order) is possible:

– Remitting a parameter Nx = n, n an integer greater than or equal to 1,
effects the partitioning of the start interval into n intervals before all.
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– The optional parameter linear (quadratic) effects the linear (quadratic)
convergence of the procedure. On entering linear, the ‘naive’ interval
evaluation is used for determining the subrange enclosures. If quadratic is
remitted as parameter, the procedure compute combined range is used for
determining the subrange enclosures, combining interval-evaluation, mean-
value form and monotony-test. If none of these two parameters is entered,
then in the first three iteration steps interval-evaluation is used for deter-
mining the range enclosures, and from step 4 on, the procedure
compute combined range is used.

– The optional parameter adaptive effects the adaptive partitioning of the
current interval list, and therefore generally leads to a calculation-time
reduction.

– The optional parameter colorlist = [color1,color2,...] determines
the colours used for the graphical illustration of each iteration step. color1,
color2, etc. must be colours predefined in Maple, e. g. blue, red, green,

magenta, coral, brown etc. This does not, however, influence the illus-
tration of the last iteration step which is always illustrated in yellow.

For reasons of clarity, only the graphical illustration of the last three
iteration steps and the function f are given out. The graphical illustration of all
iteration steps is, however, stored in the global variable q. The variable q is a
table. If 3 iteration steps were performed, then the entries q[1], q[2] and q[3]

would contain the illustrations of each iteration step, however, not the graph of
the function. This is stored in the table entry q[4].

Also the calculated range enclosures are stored — in the global variable r.
It is also a table and r[i] contains the range enclosure calculated in the i-th step.

The current partition of the start interval is stored in the global variable
list of intervals. The corresponding subrange enclosures are stored in the
variable list of ranges.

Examples. Enclosure of the range of the function

> f:=x->exp(-x^2)*sin(Pi*x^3);

f := x → e(−x2) sin(π x3)
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over the interval X := [0.5, 2.] using the procedure compute range

> X:=[0.5,2.];

X := [.5, 2.]

> compute_range(f,X,4);

initial range confinement = [-.7788007834, .7788007834]

range confinement after iteration step 4 =
[-.3233867682,.6103317518]

The initial range confinement is ≈ [−0.78, 0.78]. The range confinement
after 4 iteration steps, that is after partitioning into 24 = 16 subintervals, is
≈ [−0.32, 0.61]. The graphical output can be found in Figure 1.
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0.4

0.6
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0.6 0.8 1 1.2 1.4 1.6 1.8 2x

Fig. 1. Refining a range confinement by partitioning

the argument domain into subintervals

The same range confinement is obtained already after 1 iteration step
if the start interval is partitioned before all into 23 intervals and the optional
parameter quadratic is given:

> compute_range(f,X,1,Nx = 2^3,quadratic);
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initial range confinement = [-.7788007834, .7788007834]

range confinement after partitioning into 8 subintervals =

[-.3233867682,.6639743998]

range confinement after iteration step 1 =
[-.3233867682,.6103317518]

Using the parameter adaptive can generally reduce the number of sub-
intervals considerably:

> compute_range(f,[0.5,2.],6,adaptive);

initial range confinement = [-.7788007834, .7788007834]

range confinement after iteration step 6 =
[-.2834388814,.5563221618]

The current partitioning of the start interval is stored in the variable
list of intervals. Therefore, the total number of subintervals can be deter-
mined simply at any time. In the example above it is determined in the following
way (after 6 iteration steps):

> nops(list_of_intervals);

24

Without the parameter adaptive the number of subintervals after 6
iteration steps would be 26 = 64.

In order to illustrate only the last iteration step and the function f , the
plots-command display can be used. The result of the following call-up is found
in Figure 2.

> display([q[7],q[6]],title=‘Adaptive partitioning after

6 iterationsteps‘,titlefont=[TIMES,BOLD,12]);

3.2. Functions of Two Variables. The Procedure compute range3d

calculates range confinements for real-valued functions of two real variables over
a two-dimensional interval X × Y .

Its input parameters are (analogous to compute range, however, without
the optional parameters linear/quadratic and adaptive)

– the function f,
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Fig. 2. Adaptive partitioning

– a real interval, or a domain X,

– a real interval, or a domain Y,

– the number of iteration steps to be performed.

The order of these parameters is compulsory. With this procedure, too,
a series of optional parameters can be set:

– the parameters Nx = n and Ny = m effect a corresponding partitioning of
the start interval (axe-parallel right-angle) in the x-y-direction,

– the parameter colorlist has the same meaning as in compute range,

– the parameter cutout = r determines the strength of the lines in the
illustration of the calculated confinements. Here, r should be 0, 1 or a
fraction with 0 < r < 1.

In addition, any options of the plot3d–command can be used.

For determining the subrange confinements in compute range3d the
‘naive’ interval-evaluation is used. In each iteration step the subintervals are
partitioned only in one direction. If e. g. two iteration steps are performed, then
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in the first step a partitioning in x-direction and in the second step a partitioning
in y-direction are carried out.

Example. Determining a range confinement for the function
> f:=(x,y)->exp(-x*y)*sin(Pi*x^2*y^2);

f := (x, y) → e(−x y) sin(π x2 y2)

over the interval X × Y = [π/8, π/2] × [π/8, π/2].

> X:=[evalf(Pi)/8,evalf(Pi)/2]; Y:=X;

X := [.3926990818, 1.570796327]

Y := [.3926990818, 1.570796327]

> compute_range3d(f,X,Y,4);

initial range confinement = [-.8570898115, .8570898115]

range confinement after iteration step 1 =
[-.8570898115, .8570898115]

range confinement after iteration step 2 =
[-.6800891261, .8570898115]

range confinement after iteration step 3 =
[-.6800891261, .8486122905]

range confinement after iteration step 4 =
[-.5093193828, .7559256232]

After each iteration step the calculated range confinement is given out.
Only the illustration of the last iteration step and the graphical illustration of
the function f are given out. Also in this case, the graphical illustrations of the
other iteration steps are stored in the global variable q.

The graphical output of the procedure can, as in any other 3d-graphics
in Maple, be edited thereafter with the commands from the graphics-menu. The
desired graphic-options can, however, also be called up directly as parameters.
E. g. the command

> compute_range3d(f,X,Y,3,cutout=9/10,color=yellow,
> lightmodel=light2,axes=framed,titlefont=[TIMES,BOLD,12],

title=‘range confinement by partitioning into
subintervals‘,);

generates the graphics in Figure 3.
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Fig. 3. Range confinement of a function in two variables

4. Application II: Verified Calculation of Zeroes With Gra-
phical Illustration. The extension intpakX contains a realization of the
extended interval-Newton-iteration

{

[x]0 , real start interval
[x]k+1 := N([x]k) ∩ [x]k, k = 0, 1, 2, . . . ,

where

N([x]) := m([x]) − f(m([x]))

f ′([x])

denotes the interval-Newton-operator and m([x]) usually the centre of the interval
[x].

If f : D ⊂ IR → IR is a continuously differentiable function on D and
[x]0 ⊂ D a real interval for which the interval-evaluation f ′([x]0) exists, then the
interval-Newton-iteration calculates confinements of all zeroes of f contained in
[x]0. In addition, using this procedure the existence and uniqueness of simple
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zeroes of f in the given start interval can be proved. A more detailed description
of this procedure can be found in [10].

The case 0 ∈ f ′([x]0) is permitted! Therefore, for performing this proce-
dure one needs the extended interval division and the subtraction of an extended
interval of a real number (extended interval subtraction, see page 485).

4.1.Extended Interval Division and Extended Interval Subtrac-
tion. Let IIR be the set of real intervals and

IIR∗ := IIR ∪ {[−∞, r] | r ∈ IR} ∪ {[l,+∞] | l ∈ IR} ∪ {[−∞,+∞]}

the set of extended intervals.

The definitions of extended interval division and extended interval sub-
traction used in intpak resp. intpakX correspond to the definitions used in [19].
The interval operations defined in this way are inclusion-isotonic.

For two real intervals [x] = [x, x] and [y] = [y, y], the extended interval
division is defined as follows

[x]/[y] :=



























































[x] · [1/y, 1/y], if 0 /∈ [y]

[ −∞,+∞], if 0 ∈ [x] and 0 ∈ [y]
[x/y,+∞], if x < 0 and y < y = 0

[ −∞, x/y] ∪ [x/y,+∞], if x < 0 and y < 0 < y

[ −∞, x/y], if x < 0 and 0 = y < y

[ −∞, x/y], if 0 < x and y < y = 0

[ −∞, x/y] ∪ [x/y,+∞], if 0 < x and y < 0 < y

[x/y,+∞], if 0 < x and 0 = y < y

[ ], if 0 /∈ [x] and 0 = [y].

As the data type interval admits the points −infinity and infinity

as interval endpoints, the extended interval division can be included without
difficulty in the interval package. The corresponding command in intpakX is
called ext int div. Examples:

> ext_int_div([1.,2.],[-1.,1.]);

[−∞, −.999999999], [.999999999, ∞]

> ext_int_div([-2.,-1.],[0,2.]);

[−∞, −.4999999999]
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For r ∈ IR and an interval [y] ∈ IIR∗ ∪ {[ ]} the extended interval subtrac-
tion is defined by

r − [y] :=























[r − y, r − y], if [y] = [y, y] ∈ IIR

[ −∞,+∞], if [y] = [−∞,+∞]
[r − y,+∞], if [y] = [−∞, y]
[ −∞, r − y], if [y] = [y,+∞]

[ ], if [y] = [ ].

This is already realized by the subtraction operator &− contained in
intpak. Examples:

> 1 &- [1.,infinity];

[−∞, 0]

> 1 &- [-infinity,1.];

[0, ∞]

> 1 &- [];

[]

> 1 &- [-infinity,infinity];

[−∞, ∞]

4.2. Extended Interval-Newton-Iteration. The procedure
compute all zeros computes confinements of all zeroes of a continuously dif-
ferentiable function in a given entered start interval using the interval-Newton-
iteration.

The input parameters of the procedure compute all zeros are

– the function f whose zeroes are supposed to be calculated,

– the start interval xstart of the iteration and

– the desired relative diameter eps of the zero-confinements to be calculated.

The relative diameter of a real interval is defined as follows

drel([x]) :=







d([x])
〈[x]〉 , if 0 /∈ [x]

d([x]), otherwise.
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Hereby, d([x]) denotes the diameter and 〈[x]〉 the minimum absolute value
of the interval [x].

The order of the parameters mentioned above is compulsory. As an
optional fourth parameter the desired accuracy, i. e. the value of the system
variable Digits within the procedure can be entered. The fourth parameter
should therefore be a positive integer greater than or equal to 10. If this fourth
parameter is missing, then the accuracy is adapted to the relative accuracy needed
and the length of the input-parameters, but in any case is greater than or equal
to the current value of the variable Digits.

Given out is the accuracy used, the computed confinements of the zeroes,
and for each confinement the information if existence and uniqueness of a zero in
the given interval was proved.

If the calculated interval was only a potential confinement of a zero, then
it may contain one, several or no zeroes of f at all.

The computed zero-confinements are stored in a global variable zeros

and can therefore be used further in any way. zeros is a table and the access to
an entry of the table is made in the usual way, e. g. using zeros[2].

Further global variables initialized in the procedure are the table infos

containing the additional informations, the number of calculated zero-confine-
ments N and the step counter iter counter.

Example 1. Calculating all zeroes of
> f:=x->2*exp(tan(cos(x))) - sin(x) + cos(2*x);

f := x → 2 etan(cos(x)) − sin(x) + cos(2x)

in the interval [0, 8].
The function has three simple zeroes in the interval [0, 8] (see Figure 4).

Two of them can be given exactly, namely π
2 und 5π

2 . An approximation of the
third zero can be determined with the command fsolve.

Testing if π/2 and 5π/2 are zeroes of f :

> f(Pi/2);

0

> f(5*Pi/2);

0
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Fig. 4. illustration of the function f(x) := 2etan(cos(x)) − sin(x) + cos(2x)

Calculating the third zero with fsolve, Digits=30:

> Digits:=30: zero3:=fsolve(f(x),x=2..2.5); Digits:=10:

zero3 := 2.26480074200004996505814286126

Calculating the zero-confinements, Digits=20 (fourth input parameter):

> compute_all_zeros(f,[0,8.],10^(-10),20);

Digits = 20

[7.8539816339705772082, 7.8539816339775304044]

contains exactly one zero

[2.2648007419999768034, 2.2648007420001249007]

contains exactly one zero

[1.5707963267948966180, 1.5707963267948966204]

contains exactly one zero
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number of zero confinements: 3

number of iteration steps: 21

Verifying if the zeroes of f are contained in the calculated zero-confine-
ments:

> is_in(evalf(Pi/2,30),zeros[3]);

true

> is_in(evalf(5*Pi/2,30),zeros[1]);

true

> is_in(zero3,zeros[2]);

true

Example 2. Confining the zero of

> f:=x->(x-1)^3;

f := x → (x − 1)3

with start interval [−3., 4]. The relative diameter of the confinement
should be ≤ 10−50. (The accuracy used is adapted automatically.)

> compute_all_zeros(f,[-3.,4.],10^(-50));

Digits = 55

[.9999999999999999999999999999999999999999999999999997208,

1.000000000000000000000000000000000000000000000000005551]

potential zero confinement

number of zero confinements: 1

number of iteration steps: 163
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Diameter and relative diameter of the calculated zero-confinement:

> Digits:=55:

> diam:=width(zeros[1]);

diam := .58302 10−50

> ‘relative_diam‘:=rel_diam(zeros[1]);

relative diam :=

.5830200000000000000000000000000000000000000000000001628 10−50

> Digits:=10:

4.3. Graphical Illustration. For graphical illustration of the interval-
Newton-iteration, the procedure compute all zeros with plot is at the user’s
disposal. It calculates analogously to the procedure compute all zeros zero-
confinements with the interval-Newton-iteration. Additionally, however, each
iteration step is illustrated graphically.

Here, too, the value of the variable Digits can be entered as an optional
fourth parameter. Further, the input of a fifth optional parameter is possible,
stating how many iteration steps may be performed at most. If this fifth para-
meter is missing, then the maximum number of iteration steps must be entered
interactively. The input must end with a colon or a semicolon.

Example. Calculating a zero-confinement of the function

> f:=x->exp(sin(x-1))-1;

f := x → esin(x−1) − 1

in the interval [0, 3.]:

> compute_all_zeros_with_plot(f,[0.,3.],10^(-3));

> 10;

The output of the procedure call-up is found on the pages 490 and 491.
The slopes of the dotted lines are given by the smallest resp. greatest slope
of all tangents to the graph of the function in the current argument domain
xalt. The lines intersect in the point (expansion point, f(expansion point)). The
intersection points of these lines with the x-axis are important auxiliary quantities
for determining the next iteration of the extended interval-Newton-iteration (see
page 483).
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Digits =    10
      
Iteration step    1
xOld=   [0, 3.]
xNew1=   [2.043797652, 3.]
xNew2=   [0, 1.273700327]

xNew2 xNew1

xOld

x
32.521.510.50

1.5

1

0.5

0

-0.5

Iteration step    2
xOld=   [0, 1.273700327]
xNew1=   [.8650186701, 1.273700327]

xNew1

xOld

x
1.41.210.80.60.40.20

0.2

0

-0.2

-0.4

-0.6
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Digits =    10
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xNew2=   [0, 1.273700327]
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Iteration step    2
xOld=   [0, 1.273700327]
xNew1=   [.8650186701, 1.273700327]

xNew1

xOld

x
1.41.210.80.60.40.20

0.2

0

-0.2

-0.4

-0.6



492 Walter Krämer

5. Complex Intervals and Operations (Disc Arithmetics).
Based on the real interval operations, a complex interval arithmetic for disc
intervals is defined and implemented in the extension intpakX.

A disc interval with centre z0 ∈ C and radius r > 0

Z = 〈z0, r〉 := {z ∈ C | |z − z0| ≤ r}

is stored in intpakX as a list with three entries: real part of the centre z0 of Z,
imaginary part of z0 and radius r.

The name of this new data type is complex disc. As components of this
new type numbers of type numeric are permitted, in particular numbers of type
integer and of type fraction.

The procedure complex disc plot can be used for graphical illustration
of a disc interval. It has as input parameter a variable of type complex disc. As
further optional parameters the usual illustration options of the Maple-command
plot can be entered.

5.1. Arithmetic (Disc-)Operations. The basic arithmetic operations
for disc intervals are usually defined (see e. g. [1]) as follows. Let A = 〈a, ra〉 and
B = 〈b, rb〉 be two disc intervals. Then

A + B := 〈a + b, ra + rb〉,
A − B := 〈a − b, ra + rb〉,
A · B := 〈a · b, |a|rb + |b|ra + rarb〉,

1 /B :=

〈

b

bb − r2
b

,
rb

bb − r2
b

〉

, 0 /∈ B,

A/B :=A · (1 /B), 0 /∈ B,

where |a| =
√

a2
1 + a2

2 denotes the absolute value of the complex number a =
a1 + i a2 and b = b1 − i b2 is the complex conjugate of b = b1 + i b2.

For the operations defined in this way, we have with the notations as
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above

A ± B = {a ± b | a ∈ A, b ∈ B},
A · B ⊇ {a · b | a ∈ A, b ∈ B},
1 /B = {1/b | b ∈ B},
A /B ⊇ {a/b | a ∈ A, b ∈ B},

where the inclusions are distinct from the equalities in general.

The operations for disc intervals defined above are realized in the ex-
tension intpakX by the operators &cadd, &csub, &cmult and &cdiv. For the
inversion, there is no extra operator.

Area-Optimal Multiplication and Division. The (so-called centred) multi-
plication of two disc intervals A = 〈a, ra〉 and B = 〈b, rb〉 defined above delivers,
for a given centre a · b, an optimal confinement of the resulting point complex
{α · β |α ∈ A, β ∈ B}. This confinement, however, is not area-optimal.

Determining an area-optimal confinement of the resulting set under mul-
tiplication of two disc intervals is more tedious and leads to solving an equation
of third degree (see [14]).

For A = 〈a, ra〉 and B = 〈b, rb〉, the area-optimal multiplication is
defined as

A ·opt B := 〈ab (1 + x0), (3 |ab|2x0
2

+2 (|ab|2 + |rab|2 + |rba|2)x0

+|rab|2 + |rba|2 + (rarb)
2 )

1

2 〉

where x0 is the non-negative zero of the polynomial

P (x) = 2 |ab|2x3 + (|ab|2 + |rab|2 + |rba|2)x2 − r2
ar

2
b

if grad(P ) ≥ 2 (otherwise, we set x0 = 0).

The area-optimal division of two disc intervals is then defined as

A/optB := A ·opt (1/B).
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The package intpakX contains a realization of the area-optimal multi-
plication (&cmult opt) and the area-optimal division (&cdiv opt) of two disc
intervals.

General Procedure when Implementing the Basic Operations. Let A
and B be two disc intervals, which can be displayed on the calculator exactly,
and let ∗ ∈ {+,−, ·, /}. In order to obtain a safe confinement C on the machine
of the exact result complex A ∗ B, during the implementation it was proceeded
as follows:

1. Calculate a real machine interval cx confining the real part of the centre of
the result interval, and a real machine interval cy confining the imaginary
part.

2. Calculate the radius r of the resulting circle as:

r1 := sup(formula for the radius evaluated with intervals)

r2 := 4(r1 + d(cx))

r := 4(r2 + d(cy))

where 4 denotes the rounding from above and d(cx), d(cy) the diameter of
cx resp. cy.

3. Let C = 〈m(cx) + i · m(cy), r〉. m(cx) and m(cy) denote the centre of cx
resp. cy.

In order to determine the centre of an interval, the procedure mid is
used. In contrast to the intpak-procedure midpoint, it does not calculate a
confinement of the centre of an interval, but a number (approximation of the
centre of the interval) lying certainly within the entered interval.

A Numerical Example. For A = 〈1, 1〉, B = 〈−1 + i, 1〉 we have

A + B = 〈i, 2〉
A − B = 〈2 − i, 2〉
1 /B = 〈−1 − i, 1〉

Calculation with Maple
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> A:=[1,0,1]: B:=[-1,1,1]:

> A &cadd B;

[0, 1.000000000, 2.000000005]

> A &csub B;

[2.000000000, −1.000000000, 2.000000007]

> 1 &cdiv B;

[−1.000000001, −1.000000001, 1.000000051]

Using centred multiplication (see p. 492) one obtains

A · B = 〈−1 + i, 2 +
√

2〉 ≈ 〈−1 + i, 3.414213562〉
A/B = 〈−1 − i, 2 +

√
2〉

> A &cmult B;

[−1.000000000, 1.000000000, 3.414213579]

> A &cdiv B;

[−1.000000001, −1.000000001, 3.414213685]

and using area-optimal multiplication leads to

> A &cmult_opt B;

[−1.390388204, 1.390388204, 2.969562256]

> A &cdiv_opt B;

[−1.390388219, −1.390388219, 2.969562345]

In Figure 5 are displayed simultaneously the resulting point set of the
product of A and B, the centred confinement and the area-optimal confinement
of the set.

6. Application III: Range of Complex Polynomials. A first
possible application of the disc arithmetic defined in intpakX is the determining
of safe confinements for the range of a polynomial with complex coefficients over
a disc interval.

For this, there are three procedures
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Im

Re

-2

-1

0

1

2

3

4

-4 -3 -2 -1 1 2

Fig. 5. Centred and area-optimal confinement of 〈1, 1〉 · 〈−1 + i, 1〉

1. horner eval cent (Horner-scheme using centred multiplication &cmult),

2. horner eval opt (Horner-scheme using area-optimal multiplication
&cmult opt),

3. centred form eval (centred form for complex polynomials).

The procedures horner eval opt and centred form eval generally give
certainly better confinements than the procedure horner eval cent. They have,
however, a substantially higher demand for time and memory.

The first input parameter of each procedure is a (complex) polynomial
in the variable z. The denomination of this variable is compulsory! As a second
parameter a number or variable of type complex disc must be entered.

Example 1. Confining the range of

p(z) := (0.15 − 0.1i) + (0.15 − 0.12i)z + (−0.2 − 0.2i)z2

+(0.1 + 0.3i)z3 + (0.1 − 0.2i)z4 + (0.1 − 0.2i)z5

+(0.2 − 0.2i)z6 + (0.1 − 0.2i)z7 + (0.2 − 0.1i)z8

+(0.1 − 0.1i)z9
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over the interval Z = 〈−0.1 + 0.2i, 0.9〉.

> p_H:=horner_eval_cent(p,Z);

p H := [.1590115281, −.04050517670, 3.058832329]

> p_Hopt:=horner_eval_opt(p,Z);

p Hopt := [.2219721872, .2917174855, 2.243412729]

> p_C:=centred_form_eval(p,Z);

p C := [.1590115281, −.04050517670, 1.717944237]

In this example the procedure centred form eval gives the best confi-
nement. The graphical illustration of the range of p over Z and the calculated
confinements can be found in Figure 6.

pHopt

pC

pH

–3

–2

–1

0

1

2

3

–3 –2 –1 1 2 3 4

Fig. 6. Confinement of the range of a complex polynomial

Generating the graphics:

For illustrating the range of p over Z the command complexplot from
the plots-package can be used. Each command should be ended by a colon
(otherwise very much, generally unnecessary, information is given out).

> c1:=complexplot(subs(z=Z[1]+I*Z[2]+Z[3]*(cos(t)+I*sin(t)),p),

t=0..2*Pi,color=black,thickness=3,numpoints=200):
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For graphical illustration of the computed confinements the command
complex disc plot was used.

> c2:=complex_disc_plot(p_H,color=black,thickness=2,

linestyle=4):

> c3:=complex_disc_plot(p_Hopt,color=black,thickness=2,

linestyle=3):

> c4:=complex_disc_plot(p_C,color=black,thickness=2):

The labelling of the graphic was generated with a series of plot- and
textplot-commands. textplot is a command from the plots-Package.

> s1:=plot([[2.1,2.3],[2.6,2.6]],color=black,thickness=2):

> t1:=textplot([3,2.8,pH],font=[TIMES,BOLDITALIC,12]):

> s2:=plot([[1.5,1],[3.2,1.8]],color=black,thickness=2):

> t2:=textplot([3.7,2,pC],font=[TIMES,BOLDITALIC,12]):

> s3:=plot([[2.5,0.6],[3.5,1]],color=black,thickness=2):

> t3:=textplot([4.2,1.2,pHopt],font=[TIMES,BOLDITALIC,12]):

For simultaneous display of the generated graphics the command display

from the plots-package can be used.

> display([c1,c2,c3,c4,s1,s2,s3,t1,t2,t3],scaling=constrained);

Example 2. Confinement of the value of

p(z) := (z − i)4(z − 1 − i)5

at the place z = 1. The exact value is p(1) = 4i.

> subs(z=1,p);

4 I

Calculation of confinements using the disc arithmetic:

> Digits:=60:

> horner_eval_cent(p,1);

[0, 4.00000000000000000000000000000000000000000000000000000000000,

.281310000000000000000000000000000000000000000000000000000045 10−55 ]
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> horner_eval_opt(p,1);

[0, 4.00000000000000000000000000000000000000000000000000000000000,

.281310000000000000000000000000000000000000000000000000000045 10−55 ]

> centred_form_eval(p,1);

[0, 4.00000000000000000000000000000000000000000000000000000000000,

.112542000000000000000000000000000000000000000000000000000010 10−54 ]

All three procedures give out as confinement of p(1) a disc interval with
centre 4i and the radii of the computed confinements are around 10−55, if one
calculates with 60 digits (Digits = 60).

7. The Exponential Function for Disc Intervals. The image of
a disc interval Z = 〈c, r〉 under the exponential function is in general not a disc.
If as centre of the resulting interval the point exp(c) is prescribed, then

exp(Z) := 〈ec, |ec|(er − 1)〉

defines an optimal confinement (under given centre exp(c) of the resulting point
complex {exp(z) | z ∈ Z}).

A detailed discussion of images of disc intervals under the exponential
function is found in [4].

The realization of the exponential function for disc intervals cexp from
the extension intpakX has as input parameter a variable of type complex disc

or a complex number and gives a safe confinement of the resulting point complex.

Example. Confinement of the image of Z = 〈0, π + 1〉 under the
exponential function

> Cexp:=cexp([0,0,evalf(Pi+1)]);

Cexp := [1.000000000, 0, 61.90292461]
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Graphical illustration of the computed disc interval confinement:

> c1:=complex_disc_plot(Cexp,color=black,thickness=3,

numpoints=400):

Image of the boundary of 〈0, π+1〉 under the exponential function (Atten-
tion: plots must be loaded beforehand with with!):

> c2:=complexplot(exp(polar(Pi+1,phi)),phi=0..2*Pi,

color=black,thickness=3,numpoints=400):

For illustrating inner points of the range, the radius r is varied from 0 to
π + 1 for fixed angle. Example:

> c2:=complexplot(exp(polar(r,0.5)),r=0..Pi+1,

color=black,thickness=3,numpoints=400):

The different graphic commands are bundled afterwards with display.
In display, an additional option scaling=constrained should be entered. In
order to display a cut-out piece, the plot-option view was used.

The graphical illustration in Figure 7 shows that the centred confinement
of the image of 〈0, π+1〉 under the exponential function is the optimal confinement

–60

–40

–20

20

40

60

–60 –40 –20 20 40 60

Fig. 7. Image of the disc interval 〈0, π + 1〉 under the exponential function

and centred disc interval confinement of exp(〈0, π + 1〉)
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for prescribed result-centre exp(0) = 1. It is far from area-optimal. Figure 8
shows a cut out piece around the origin.

–0.4

–0.2

0

0.2

0.4

–0.4 –0.2 0.2 0.4

Fig. 8. Illustration of a cut-out piece around the origin

The exponential function is 2πi-periodic, and as the diameter of the
interval Z = 〈0, π + 1〉 is greater than 2π, there is an area in the image Z of
the exponential function in which every point has exactly two preimages. This
area can be recognized by its double hatching. Besides, in the illustration of the
cut out piece the drop-like image-free area around the origin can be observed.

8. Conclusion and Outlook. Using verification algorithms it is
possible, if occasion arises, to prove with the computer automatically the existence
and uniqueness of a solution for a given problem, and also to compute a (narrow)
confinement of the exact solution. The results obtained in this way have the
same mathematical quality as results obtained e. g. by using computer algebra
systems, i. e. by automatic formula manipulations. Thereby it turns out to be a
great advantage that verification algorithms can handle safely numerical input-
data with errors within tolerance. In such cases infinitely many problems are
solved simultaneously. For an entire family of problems it is e. g. proved that
each one has a unique solution.

Whenever computer algebra packages make use of numerical routines
(e. g. when computing determined integrals), a verification algorithm should be
used if possible (e.g., [2]). The results obtained are then mathematically safe (a
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property usually expected when working with a CA-system). Pretended solutions
resp. far-off approximations are then excluded.

Also by using interval methods, the graphic abilities of computer algebra
systems can be improved resp. made secure. That this is necessary, is impressively
shown by [15, 13]. See also [3, 7, 16, 20].

Computer algebra and verification numerics complete each other ideally.
Thus the computer becomes for the mathematician, but also for the engineer,
a safe mathematical tool. Especially in view of processors which are becoming
faster and faster and more powerful, the symbiosis of symbolic calculus and safe
numerical routines [1, 17, 10] should be pushed forward massively.

intpakX is also intended to be a valuable didactical tool in teaching self-
verifying (numerical) methods. This tool allows learning by experience. Because
the source code is publicly available, it should be easy to extend the functionality
of the package by students/users. The multiple precision interval arithmetic
[9] realized in intpakX allows the implementation of algorithms as described in
[22, 21].
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[4] Börsken N. C. Komplexe Kreis-Standardfunktionen. Diplomarbeit, Univ.
Freiburg, 1978.

[5] Connell A. E., R. M. Corless. An Experimental Interval Arithmetic
Package in Maple. Tex-Document distributed with the Maple Share Library,
1993.

[6] Geulig I. Computeralgebra und Verifikationsalgorithmen. Diplomarbeit
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