
Serdica J. Computing 1 (2007), 45–72

ON THE VERTEX SEPARATION OF CACTUS GRAPHS

Minko Markov

Abstract. This paper is part of a work in progress whose goal is to
construct a fast, practical algorithm for the vertex separation (VS) of cactus
graphs. We prove a “main theorem for cacti”, a necessary and sufficient
condition for the VS of a cactus graph being k. Further, we investigate the
ensuing ramifications that prevent the construction of an algorithm based
on that theorem only.

1. Introduction. Vertex Separation is an NP-complete problem
on undirected graphs with numerous practical applications in diverse areas such
as natural language processing, VLSI design, network reliability, computational
biology and others. It is equivalent to other, seemingly unrelated, graph problems
such as Node Search Number, Interval Thickness and the famous Path-

width. For a brief survey of some theoretical and practical applications of
Vertex Separation and its relation to other problems, see [6].

The NP-completeness of a computational problem is a strong evidence
that it is intractable in general. There are polynomial time algorithms for

ACM Computing Classification System (1998): G.2.2.
Key words: algorithmic graph theory, computational complexity, vertex separation, linear

layout, layout extensibility, layout stretchability, cactus graph

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62657976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

46 Minko Markov

Vertex Separation on classes of graphs. However, often those algorithms have
only theoretical importance because the polynomial upper bound on the running
time has a high degree, e.g. the algorithm of Bodlaender and Kloks on graphs of
treewidth k runs in time Ω(n4k+3) ([1]), and because they are extremely difficult
to implement in practice.

In the context of partial k-trees with fixed k, till recently the only fast,
practical algorithm was the linear-time algorithm for Vertex Separation on
trees (i.e. 1-trees) due to Ellis, Sudborough, and Turner [3]. There is anecdotal
evidence of other researchers trying unsuccessfully to discover a fast, practical
algorithm for the VS of unicyclic graphs, a unicyclic graph being a tree plus
an extra edge. Such an algorithm is discovered by Ellis and Markov in [2] and
although it lacks the elegance of the algorithm on trees it is still a first step in
dealing with the VS of graphs beyond trees.

Cactus graphs are a natural extension of unicyclic graphs since a cactus
graph is, informally, a collection of unicyclic graphs, joined together in a tree-like
way. Therefore, it is natural to try developing an algorithm for the VS of cactus
graphs, having the knowledge how to deal with VS on unicyclic graphs.

We approach VS on cactus graphs in a way similar to the approach of
[3] on trees: discover and verify a so called “main theorem” for the VS of the
class of graphs under consideration, that is, an if-and-only-if condition for the
VS of a graph from that class being k, the condition being in terms of the VS of
subgraphs. The “main theorem” in [3, Theorem 3.1] says that the VS of a tree is
k if and only if k is the smallest number, such that for any vertex of that tree, the
deletion of that vertex leaves us with at most two subtrees of VS = k. Having
proved the theorem, Ellis, Sudborough, and Turner derive an elegant, linear-
time, divide-and-conquer algorithm based solely on it and the obvious fact that
the VS of a single vertex is zero. That approach is quite different from the ad hoc
approach of [2] on unicyclic graphs that boils down to running the algorithm from
[3] on the trees around the cycle and then considering a complicated case-subcase
hierarchy of possibilities.

The work on unicyclic graphs has one important and valuable concept,
however: the idea of k-conforming layout (see [2, Definition 3.3]), which is
renamed to k-stretchable layout in [6, Definition 5]. In the current paper, we
stick to the term “stretchable”. That concept, we believe, is crucial for the
solution of VS on cacti just as it is crucial for the solution of VS on unicyclic
graphs.

The “main theorem” for the VS of cactus graphs that we propose here
reduces the VS of the whole cactus to both the VS and the stretchability of
subgraphs of its. It is not surprising that theorem does not lead immediately to an

On the vertex separation of cactus graphs 47

algorithm (in contrast to the “main theorem” for trees) because of the reduction
of one parameter, the vertex separation, to another one, the stretchability. It is
obvious that we need more theoretical results that clarify how the stretchability
is related to the VS and stretchabilities of subgraphs.

That ramification, namely the introduction of a second parameter in the
main theorem, seems unavoidable and inherent in the nature of cactus graphs.
The knowledge accumulated in the solution of VS on unicyclic graphs, namely
the way we deal with stretchability of unicyclic graphs, is very helpful when
one begins to tackle stretchability of cactus graphs. Unfortunately, one quickly
discovers that stretchability with respect to a single pair of vertices from some
cycle—and that is what we call simply “stretchability” in the current paper—can
in some cases be reduced to stretchability with respect to two pairs of vertices
from two cycles, which in its turn can be reduced to stretchability with respect
to three pairs of vertices from three cycles, and so on. In the case of unicyclic
graphs that ramification does not show up simply because they have only one
cycle.

Having discovered that, it seems futile to try to develop an algorithm
for the VS of cactus graphs based on the said main theorem: dealing with
the stretchability with respect to a single pair of vertices in unicyclic graphs
is rather complicated and “convoluted” in the sense of the case-subcase hierarchy
of possibilities that has to be considered, so one imagines that dealing with
stretchability with respect to two pairs of vertices would be much more complica-
ted. And that pales when one considers there is no a priori fixed bound on the
number of vertex pairs we have to deal with: for any positive integer m, the
stretchability with respect to m vertex pairs from m cycles may be reduced to
stretchablity with respect to m + 1 vertex pairs from m + 1 cycles.

We believe we found a way out of the “morass of growing numbers of
vertex pairs we have to stretch relative to” but that is still work in progress,
very extensive at that. In this paper we only prove the main theorem for cactus
graphs and we show that the stretchability with respect to one pair of vertices
may reduce to the stretchability with respect to two pairs of vertices, etc. We
believe that the mentioned way out—the real solution of VS on cactus graphs—
uses a generalisation of the current main theorem, so the results of this paper are
an important first step towards constructing a fast, practical algorithm for the
VS of cactus graphs.

2. Background.
2.1. Basic definitions. We assume the reader is familiar with the basic

definitions of Graph Theory (see, for example, [4]). Our standard notation for

48 Minko Markov

a graph is “G = (V, E)”, where V is the vertex set and E is the edge set. The
graphs that we consider are undirected graphs without multiple edges or loops.
If G is a graph and we write “u ∈ G”, we mean that u is a vertex in G. For any
vertex v that is adjacent to a vertex u, we say that u and v are neighbours. If
p = u1, u2, . . . , uk is a path, we say that u1 and uk are the endpoints of p. The
notation “u1

p uk” is an abbreviation for “there is a path p with endpoints u1

and uk”.
If = (V1, E1) and G2 = (V2, E2) are graphs, by “G1∩G2” we denote V1∩V2.

Furthermore, if V1 ∩ V2 = {u} for some u ∈ V1, V2, we write “G1 ∩ G2 = u”.
To delete a vertex u from G = (V, E) means to transform G into (V \

{u}, E\Eu), where Eu is the set of edges in G incident with u. To remove an edge
e from G = (V, E) means to tranform G into (V, E \ {e}). To delete a subgraph G1

from G means to delete all the vertices of G1 from G.
Suppose that G1 and G2 are distinct graphs both having a vertex named

x and that all the other vertices in G1 and G2 have distinct names. Then “G1 ⊕
G2” denotes the graph, obtained from G1 and G2 by identifying x in one graph
with x in the other one. Formally, that means: suppose that u1, u2, . . . , uk are
all the neighbours of x in G1 and v1, v2, . . . , vt are all the neighbours of x in G2;
delete x from G1 and x from G2, add a new vertex z, connect z to each of u1, u2,
. . . , uk, v1, v2, . . . , vt, by an edge, and rename z to x. The new graph is said
to be obtained by welding G1 and G2. We generalise the welding operation to
arbitrarily many graphs G1, G2, . . . , Gt as follows. Suppose that all the vertices
in them have distinct names, except that Gi and Gi+1 have a common name
vertex xi, for 1 ≤ i ≤ t − 1. Then the welding of G1, G2, . . . , Gt is the graph
((G1 ⊕ G2) . . .) ⊕ Gt. The welding operation is clearly associative so we write
simply “G1 ⊕ G2 ⊕ . . . ⊕ Gt”.

A linear layout of a graph G = (V, E), or simply a layout, is a bijective function
L : V → {1, 2, . . . , |V |}. For any layout L and vertex u, πL(u) is defined to be
πL(u) = {v ∈ V |L(v) ≤ L(u), and for some w ∈ V, L(w) > L(u) and (v,w) ∈
E}. The separation of u under L is |πL(u)|. For any v ∈ πL(u), we say that v

contributes to the separation of u. The vertex separation of G under L is vsL(G) =

maxu∈V (|πL(u)|) and the vertex separation of G is vs(G) = min { vsL(G) |L is a li-
near layout of G}. Any layout L such that vsL(G) = vs(G) is called optimal. If
for some u ∈ G, |πL(u)| = vsL(G), we call u heavy under L, or simply heavy in
case that it is clear which layout we mean. If p is a path in G, we say that p

contributes to the separation of u under L if at least one vertex from p is in πL(u).
For any u, v ∈ G such that L(u) < L(v), we say that under L, u is left of v,

and v is right of u. Let w be the rightmost neighbour of u, under L. The vertex
right(u) is defined as follows: if L(w) > L(u), then right(u) is w, and otherwise

On the vertex separation of cactus graphs 49

right(u) is u.
Throughout this work, we think of linear layouts as of lists of vertices,

rather than as mappings of vertices on integers. If G1 = (V1, E1) is a proper
subgraph of G, then the linear sublayout, or simply the sublayout, of G1 under L,
is the ordering of the vertices from V1 under L. Further, for a vertex u ∈ V , we
denote by “L − u” the list L with u deleted from it, and the other vertices left in
the same relative order. If L = u1, u2, . . . , un is a layout, then an interval in L is
a contiguous, possibly empty subsequence ui, ui+1, . . . , ui+j of L.

2.2. Extensibility of a layout and a graph. The following two
definitions are from [2] (see Definition 2.1 on page 126). Prior to [2], Skodinis [7]
introduces similar concepts. Suppose that G = (V, E) is a graph, L is a layout of
G, and k is a positive integer.

Definition 1 (left-extensible layout). For any u ∈ V, we say that L is
left-extensible with respect to k and u, if all vertices left of u have separation
strictly less than k, and the remaining vertices have separation less than or equal
to k. We denote that by “L is (k)-left(u)-ext”. If k = vsL(G), we say that L is
left-extensible with respect to u, denoted by “L is left(u)-ext”.

Observation 1. Suppose that G = (V, E) is a graph and L is a layout of
G. If L(u) = 1 and vsL(G) ≤ k, then L is (k)-left(u)-ext. If L is (k)-left(u)-ext
and L is modified by placing u at the leftmost position and keeping the relative
order of the other vertices, the modified layout is still (k)-left(u)-ext.

The second claim is evident, but, if in doubt, consider the vertices to
the left of u in the original L, and observe that their separation may indeed
increase by at most one after u is moved, but the resulting layout still conforms
to Definition 1. Having in mind Observation 1 and the obvious fact that if
L(u) = 1 then L is (k)-left(u)-ext, we can assume without loss of generality that
for any left-extensible with respect to u and k layout L, u is the leftmost vertex.

Definition 2 (right-extensible layout). For any u ∈ V, we say that L is
right-extensible with respect to k and u, if all vertices right of and including
right(u) are of separation strictly less than k, and the other vertices are of
separation less than or equal to k. That is denoted by “L is (k)-right(u)-ext”.
If k = vsL(G), we say that L is right-extensible with respect to u, denoted by “L

is right(u)-ext”.

Lemma 3.3 and Lemma 3.4 of [2] prove that there exists a (k)-left(u)-ext
layout of G if and only if there exists a (k)-right(u)-ext layout of G. In other
words, the extensibility property with respect to a vertex is reversible. Therefore,
we can make the following definition.

50 Minko Markov

Definition 3. If L is (k)-left(u)-ext or (k)-right(u)-ext, we say that L is
k-extensible with repsect to u, denoted by “L is (k)-(u)-ext”. When k = vsL(G),
we say that L is extensible with respect to u, denoted by “L is (u)-ext”. When k

is the minimum number such that L is (k)-(u)-ext, we write “L is](k)-(u)-ext”.
When L is not (k)-(u)-ext, we write “L is ¬(k)-(u)-ext”.

2.3. The usefulness of the concept of extensibility. Now we explain
informally why extensibility is useful and the rationale for choosing this word.
Think of layouts not as of mappings or vertex sequences but as of actual drawings
of graphs in the plane with the vertices arranged along a line and the edges being
drawn between them, possibly intersecting. Suppose that L is a layout for a
graph G such that vsL(G) = k. We want to use L in order to construct a bigger
layout, say L ′, in which L will be a sublayout. In other words, G is a subgraph
of some graph G ′ and, using L as a building block, we wish to construct a layout
for G ′. Suppose that u is a vertex in G and the only connecting edge e between
G and the remainder of G ′ is incident with u. Suppose we have some layout L ′′

for the remainder of G and construct L ′ by placing L ′′ to the left of L. Our goal
is to keep the overall separation as small as possible so, as far as L is concerned,
we want not to increase the separation of any vertex in L beyond k. However,
the placement of e may increment by one the separation of some vertices of L,
namely, the vertices that are to the left of u. Obviously, the separation of L after
e is placed will not exceed k if and only if L is (k)-left(u)-ext. Likewise for the
right-extensibility.

So, that is the importance of the extensibility concept: it allows us to
construct bigger layouts out of smaller layouts using connections to either the
left or the right while keeping the overall separation no bigger than that of the
smaller layouts. The name comes from the fact that L is extended by an edge
that is not in G.

2.4. Stretchability of a layout and a graph. The concept of stretch-
ability is crucial for the solution of Vertex Separation on cacti. The solution
of Vertex Separation on unicyclic graphs, which are one-cycle cacti, uses
stretchability, too – [2] introduces the term “k-conforming layout” with the same
intended meaning as “k-stretchable layout” in this work. Namely, that a layout
can be simultaneously extended both to the left and to the right, while the
separation of all vertices layout stays at most k.

Definition 4 ([2], Definition 3.3 on page 140). Let U be a unicyclic graph
and let ri and rj be cycle vertices. A layout L for U will be said to be k-conforming
with respect to ri and rj if either vsL(U) = k and L is left extensible with respect
to ri and k, and right extensible with respect to rj and k, or vsL(U) ≤ k − 1.

On the vertex separation of cactus graphs 51

Unfortunately, there is an “error” in this definition, in the sense that
it does not necessarily provide the intended meaning as stated above when the
separation of the graph under L is k. Suppose that the separation under L is k

and L is left extensible with respect to ri and k and L is right-extensible with
respect to rj and k. We want to extend simultaneously from ri in the left direction
and from ri in the right direction. If L(ri) < L(rj) (typically, one would imagine
ri is left of rj when ri is associated with the left direction and rj with the right
one), the separation after the two extendings does not exceed k, so the definition
“works”:

However, when L(rj) < L(ri), the simultaneous extending from ri to the left and
from rj to the right can cause the separation of some vertex u that is between rj

and ri to become k + 1:

To see that is true, imagine the separation of u is k−1 before the extendings and
u is to the right of, or coinciding with, right(rj).

So, indeed, L being left-extensible with respect to ri and k and right-
extensible with respect to rj and k does not guarantee that the separation stays
at most k if we extend simultaneously from ri to the left and from rj to the
right. We remedy the situation by using the following definition instead, which is
from [6].

Definition 5 ([6], Definition 5 on page 19: stretchable layout with
respect to two vertices). Let u and v be two vertices from L, not necessarily
distinct. Let Iu be the possibly empty interval

[

L−1(1), . . . , L−1(L(u)−1)
]

and Iv

be the non-empty interval
[

right(v), . . . , L−1(|V |)
]

. Let Jv be the possibly empty
interval

[

L−1(1), . . . , L−1(L(v) − 1)
]

and Ju be the non-empty interval
[

right(u),

. . . , L−1(|V |)
]

. We say that L is k-stretchable with respect to u and v if at least
one of the following holds:

• the separation of any vertex in L is at most k minus the number of intervals
from Iu, Iv that it is in;

52 Minko Markov

• the separation of any vertex in L is at most k minus the number of intervals
from Ju,Jv that it is in.

In the former case, we say also that u is associated with the left direction and v

with the right direction, and in the latter case we say the opposite.

Theorem 2 from [6] proves that there is a k-stretchable with respect to
u and v layout where u is associated with the left direction and v is associated
with the right direction, if and only if there exists a k-stretchable with respect to
u and v layout where v is associated with the left direction and u, with the right
direction. Therefore, when we talk about a k-stretchable graph with respect to
two vertices, we do not associate the vertices with directions, since there exist
layouts for either case.

Having in mind Observation 1, we assume without loss of generality that
for any layout L that is k-stretchable with respect to u and v, and u is associated
with the left direction, L(u) = 1 and L is (k)-right(v)-ext. The fact that L is
k-stretchable with respect to u and v is denoted by “L is (k)-(u, v)-stretchable”.

The definition of stretchability does not require that the two vertices u

and v are distinct. In case that the vertices coincide, we make the following
observation.

Observation 2. Suppose that G is a graph, u is a vertex in it, and L

is a layout for G. L being (k)-(u, u)-stretchable is equivalent to L − u being of
separation ≤ k − 1.

If G has a layout L that is stretchable in a certain way, we say that G is
stretchable in that way, too. When we say that G is not stretchable in a certain
way, we mean that there is no layout of G, stretchable in this way.

2.5. Definitions on cacti.

Definition 6 (cactus graph).

• A tree is a cactus graph.

• If G1, G2, . . . , Gk are cactus graphs for some k such that k ≥ 3, and for
1 ≤ i ≤ k, ui is a vertex in Gi, then the graph, obtained from G1, G2,
. . . , Gk by adding the edges (u1, u2), (u2, u3), . . . , (uk−1, uk), (u1, uk), is
a cactus graph.

• Nothing else is a cactus graph.

On the vertex separation of cactus graphs 53

It is easy to see this definition is equivalent to the conventional one: a cactus
graph is a connected graph whose blocks are either cycles or single edges. In this
work, we use the short name cactus, plural cacti.

Let G = (V, E) be a cactus. An edge e ∈ E is a cycle edge if it is in some
cycle of G, and tree edge, otherwise. A subcactus of G is a subgraph of G that is
a cactus. If u is a vertex in G then G − u is a collection of subcacti G1, G2, . . . ,
Gt and we say that u begets G1, G2, . . . , Gt.

Definition 7 (constituents of a cycle). Let G be a cactus and s be a
cycle in G that has k vertices. If we remove the edges of s, we obtain k connected
components that are called the constituents of s. For each vertex u ∈ s, the
u-constituent of s is the constituent that u belongs to.

Let u be a vertex in s. We say that we collapse the u-constituent of s

when we delete all the vertices of the u-constituent except u. The result of the
collapsing is denoted by “G�u” when s is understood and by “G[s]�u” otherwise.

For any two vertices u, v from s, adjacent or not, if we collapse both the
u- and the v-constituent, we denote that by “G�[u, v]” when s is understood and
by “G[s]�[u, v]1” otherwise.

Clearly, if u is a vertex in several cycles s1 . . . st, all G[si]�u are distinct graphs.
We emphasise that u is vertex of degree two in G�u and u, v are vertices of
degree two in G�[u, v].

Definition 8 (archs of a cycle). Let G be a cactus and s be a cycle in it.
Let v1, v2, . . . , vt be a proper subset of the vertex set of s, for some t ≥ 1. If we
delete every vi-constituent of s, for 1 ≤ i ≤ t, we obtain k connected components
for some k, 1 ≤ k ≤ t. These k connected components are called the archs of s

relative to v1, v2, . . . , vt.

Definition 9 (rooted cactus). Any cactus becomes a rooted cactus when
we choose one vertex in it to be the root vertex, or simply the root. Assume that
u is the root of G. The subcacti begotten by u are the children of u. The children
of u are partitioned into tree children and cycle children. The former ones are
those children that are connected to u by a (single) tree edge, and the latter ones
are those children that are connected to u by (two) cycle edges. For each cycle
child, its parental cycle is the cycle in G that contains the two said cycle edges.
See Figure 1 for illustration.

Any tree child of the root is in its turn a rooted cactus. If Gi is a tree
child of u, its root is vi, where (u, vi) is the tree edge connecting u to Gi, as

1The notation “G[s]� [u, v]” contains redundancy since there can be at most one cycle
containing two vertices and therefore u and v determine s uniquely, but we find it convenient
to remind which cycle we have in mind.

54 Minko Markov

Fig. 1. The cactus is rooted at u. The children of u are G1, G2, . . . , Gd, H1,
. . . , Ht. Further, G1, G2, . . . , Gd are the tree children, and H1, . . . , Ht are
the cycle children. Each Gi is rooted at the respective vi. For each Hi, si is
its parental cycle, and each constituent of si that is in Hi is a rooted cactus

with root vertex the vertex from si that is in it

shown on Figure 1. The cycle children of u are not considered to be rooted.
However, assuming that Hi is a cycle child of u, (u, xi) and (u, yi) are the two
cycle edges connecting u to Hi, and si is the cycle containing (u, xi) and (u, yi)

(see Figure 1), we say that si is the parental cycle of Hi, and every constituent
of si except for the constituent containing u is considered to be a rooted cactus
with root vertex the corresponding vertex from si. That is, the cycle children of
u are not rooted cacti but each one of them is a collection of rooted cacti whose
roots lie on a path.

For any cycle child of u, we say that u is the root of its parental cycle.
For any child, be it a tree or cycle child, G ′ of u, by “G ′ + u” we denote the
graph that consists of G ′ plus vertex u plus the one or two edges that connect G ′

to u. If G ′ is a cycle child with parental cycle s, then “G[u|s]” is an alternative
notation for G ′ + u.

Clearly, if G is a rooted cactus with root u, the number of children of u is equal to
the number of subcacti begotten by u. For any other vertex v in G, the number
of children of v is equal to the number of subcacti begotten by v minus one.

Definition 10 (c-path). Suppose that G is a cactus, u and v are vertices
in it, and p is any path in G with endpoints u and v. Think of p as an alternating
sequence of vertices and edges. For any maximal subpath q = w1, e1, w2, e2,

. . . , et−1, wt of p where t ≥ 2, w1, . . . , wt are vertices, and e1, . . . , et−1 are
edges, such that e1, . . . , et−1 are cycle edges from some cycle s, substitute q with
w1, s,wt. The obtained sequence C of vertices and cycles is called a c-path.

We say that C connects u and v, and that u and v are the endpoints of

On the vertex separation of cactus graphs 55

C. Any vertex in a c-path that is not an endpoint is an internal vertex. The said
vertices w1 and wt are the attachment vertices of s in C. The vertices and cycles
in C are the elements of C. The maximal vertex subsequences in C are the paths
in C.

It follows from Definition 10 that any vertex in C, be it an attachment
vertex or not, can possibly be a vertex in arbitrarily many cycles from G that are
not elements of C, and that in any c-path, there is at least one vertex between
any two cycles – so, we can think of a c-path as of an alternating sequence of
paths and cycles, the paths being one more than the cycles.

It is easy to see that there is a unique c-path C that connects any two
vertices in a cactus. Thus, c-paths in cacti are analogous to paths in trees: in a
tree there is a unique path between any two vertices, in a cactus there is a unique
c-path between any two vertices.

Suppose that C is a c-path with one endvertex u. By “C − u” we mean
the sequence, obtained from C by deleting u. Note that the sequence C − u

may have a cycle at one end, i.e. it may not be a c-path. However, we use
that notation only in the following context: two c-paths, say C1 and C2, have
a common endpoint u and are disjoint except for u. Define that C3 = C2 − u.
Then “C1, C3” denotes a c-path.

For any two vertices u and v in a c-path C, we say that u and v are c-path
neighbours in C if either u and v occur in C next to each other, or there is a single
cycle between them.

Definition 11 (children of a vertex in a c-path). Suppose that G is a
cactus and C is a c-path in it. Suppose that a and z are the endpoints of C. For
each vertex u in C, the children of u in C are those subcacti begotten by u that
contain neither a nor z.

Note that any path is a c-path as well, so we can define children of a vertex in a
path using Definition 11.

Definition 12. Suppose that G is a cactus and C is a c-path in it. For
any cycle s in C, the s-constituent of C is G[s]� [u, v], where u and v are the
attachment vertices of s in C.

A convention we stick to is that if we discuss the stretchability of the s-constituent
of C and do not specify the vertices with respect to which that stretchability is, we
invariably have in mind stretchability with respect to the vertices of attachment
of s in C.

Definition 13. Suppose that G is a cactus and C is a c-path in it. For
any path p = u, v, . . . , w in C, the p-constituent of C is the subgraph of G,

56 Minko Markov

induced by the vertex set that consists of u, v, . . . , w, plus the vertices from all
the children of u, v, . . . , w, in C.

Definition 14. Suppose that G is a cactus and s1, s2 are two not
necessarily vertex-disjoint cycles in G. Clearly, there is a unique vertex u1 ∈ s1

and there is a unique vertex u2 ∈ s2, such that the c-path C connecting u1 and
u2 contains neither s1 nor s2. We call C, the c-path connecting s1 and s2.

Note that C in Definition 14 can be as small as a single vertex—in case that s1

and s2 are not vertex-disjoint.

Definition 15 (favourable vertex and favourable vertices). Suppose that
G is a cactus and s is a cycle in it. For any two not necessarily distinct vertices
u, v ∈ s, u and v are k-favourable in s if G[s]�[u, v] is k-stretchable. If u and
v are distinct, we say that u and v are a k-favourable pair. A vertex u from s

is k-favourable in s if there exists a vertex w from s, possibly coinciding with u,
such that u and w are k-favourable. When a vertex or two vertices from s are
not k-favourable, we use the term k-unfavourable.

Recall that our definition of stretchability with respect to vertices u and v allows
the possibility that u = v. By Observation 2 on page 80, G[s]� [u, u] being k-
stretchable is the same thing as the arch of s relative to u being of separation
< k. So, if u is k-unfavourable then the arch of s relative to u is of separation
≥ k. However, the fact that the arch of s relative to u is of separation ≥ k does
not imply that u is k-unfavourable because there can exist a vertex x ∈ s, x 6= u,
such that G[s]�[u, x] is k-stretchable. To see that the latter is true, imagine that
the x-constituent of s has separation precisely k and the other constituents have
separations ≤ k − 2.

Definition 16 (important vertex and important cycle). Suppose that G

is a non-rooted cactus. A vertex in G is k-important if it begets precisely two
subcacti of separation k and all the other begotten subcacti are of separation less
than k. A cycle s is k-important if for every vertex u ∈ s, the arch of s relative to
u has separation k. When the number k is understood, we say simply important.

Definition 17 (criticality). Suppose that G is a rooted cactus and
vs(G) = k. For any vertex u ∈ G such that precisely two children of u have
separation k, we say that u is a k-critical vertex, or simply a critical vertex when
k is understood. For any cycle s in G such that the root of s is not k-favourable
we say that s is a k-critical cycle, or simply a critical cycle when k is understood.
If vs(G) = k and G has a critical vertex or cycle then G itself is called critical.
Otherwise, G is noncritical.

On the vertex separation of cactus graphs 57

Given that vs(G) = k, by Theorem 1 no vertex in G can have more than two
separation k children, therefore a vertex v that is not k-critical may have at most
one separation k child.

Definition 18 (k-compliant c-path). Suppose that G is a cactus. A c-
path C in G is called k-compliant if for each vertex u in C, the children of u in
C are of separation less than k, and for each cycle s in C, the attachment vertices
of s in C are k-favourable in s.

3. Methods for construction of layouts and c-paths.

Method 1. We are given a cactus G, u is a vertex in it, and G1, G2,
. . . , Gt are the subcacti begotten by u. The input is a multitude of layouts Li for
Gi, for 1 ≤ i ≤ t, such that vsLi

(Gi) < k. The output is a layout L for G such
that L is (k)-(u, u)-stretchable.

Con s t r u c t i o n. L = u, L1, L2, . . . , Lt. It is immediately obvious that L

is indeed (k)-(u, u)-stretchable. �

Method 2. We are given a cactus G, p = u1, u2, . . . , uq is a path in
it such that p has no cycle edges, and Gi

1, Gi
2, . . . , Gi

ti
are the children of ui

in p, for 1 ≤ i ≤ q. The input is a set of layouts Li
j for Gi

j for 1 ≤ i ≤ q and
1 ≤ j ≤ ti, each of those layouts being of separation at most k − 1. The output is
a layout L for G such that L is (k)-(u1, uq)-stretchable.

Con s t r u c t i o n. Note that if p has no cycles edges then p is a c-path
as well, so Definition 11 holds. Using Method 1, build a (k)-(ui, ui)-stretchable
layout Li for Gi, where, for 1 ≤ i ≤ q, Gi is the subgraph of G induced by the
union of the vertices of Gi

1, Gi
2, . . . , Gi

ti
, and ui. The desired output is L = L1,

L2, . . . , Lq. The fact that L is (k)-(u1, uq)-stretchable follows immediately from
the definition of stretchable, applied to each Li in L. �

Method 3. We are given a cactus G and a k-compliant c-path C = p1,

s1, p2, s2, . . . , st−1, pt in it where p1 = u1
1, u

1
2, . . . , u

1
i1

, p2 = u2
1, u

2
2, . . . , u

2
i2

, . . . ,

pt = ut
1, u

t
2, . . . , u

t
it

are the paths in C. Clearly, the attachment vertices of sj in

C are u
j
ij

and u
j+1
1 , for 1 ≤ j ≤ t − 1. The input is layout of separation at most

k− 1 for every child of every vertex in C, and a (k)-(uj
ij
, u

j+1
1)-stretchable layout

Mj for the sj-constituent of C, for 1 ≤ j ≤ t − 1. The output is a layout L for G

such that vsL(G) ≤ k.

Con s t r u c t i o n. Using Method 2, build a (k)-(uj
1, u

j
ij
)-stretchable lay-

out Lj for the pj-constituent of C, for 1 ≤ j ≤ t. In each Lj, the vertex u
j
1 is

58 Minko Markov

the leftmost vertex by construction. As we already said, Observation 1 allows us
to consider without loss of generality that in each Mj the leftmost vertex is u

j
ij
.

Define that for 1 ≤ j ≤ t − 1, Mj = Mj − u
j
ij
, and for 2 ≤ j ≤ t, Lj = Lj − u

j
1.

Consider the following layout L for G:

L = L1,M1, L2,M2, L3, . . . , Lt−1,Mt−1, Lt

The separation of the vertices from Lt under L is the same as it was under Lt.
Each of the other layouts in L has a vertex, namely u1

i1
in L1, u

j
ij

in Lj for

2 ≤ j ≤ t − 1, and u
j+1
1 in Mj for 1 ≤ j ≤ t − 1, such that the respective layout

is right-extended with respect to that vertex under L. However, each Lj is (k)-

-right(uj
ij
)-ext and each Mj is (k)-right(uj+1

1)-ext by the premises of this method.

Therefore, each Lj is (k)-right(uj
ij
)-ext and each Mj is (k)-right(uj+1

1)-ext, so the

separation of every vertex in L is at most k. �

Method 4. The input is a noncritical rooted cactus G with root u such
that vs(G) = k. The output is a k-compliant c-path in G with one endpoint u.

Con s t r u c t i o n. Consider the following procedure on G, which uses a
variable z of type vertex and a variable C of type c-path.

Initialise C← u and z← u. While z has a child H of

separation k, do:

1. If H is a tree child of z with root v, set C← C, v

and z← v.

2. Otherwise, let s be the parental cycle of H. Choose

arbitrarily any vertex v from s, such that v 6= z and

G[s]�[z, v] is k-stretchable. Set C← C, s, v and z← v.

As G is noncritical, vertex z can have at most one separation k child at
any iteration, so cases 1 and 2 are exhaustive.

In case 2, a vertex v as specified there exists, because z is the root of s and
by the premises the root is k-favourable in s. Furthermore, v has to be distinct
from z because, if z = v then G[s]�[z, z] is k-stretchable, so, by Observation 2,
the arch of s relative to z is of separation ≤ k − 1; however, that arch is in fact
H and vs(H) = k by construction.

The iteration can be executed at most a number of times that is less than
the number of vertices in G because the variable z is set to a new vertex at every

On the vertex separation of cactus graphs 59

iteration, i.e. a vertex that has not been considered before. So, the procedure
halts, since G is finite.

We prove that the constructed C is k-compliant by induction on the
number of times the loop is executed. Our loop invariant is the following claim:
either the hitherto built C is k-compliant, or z, which is one endpoint of C, has
a separation k child H—vertex-disjoint with C—and C is k-compliant in G − H.
Clearly, this assertion holds before the iterations start, and it holds after each
iteration given it holds before it. �

4. Lemmas and Theorems.

4.1. Lemmas. The following lemma is from [6, Lemma 7, pp. 40].
However, there is a small “typo” error in its proof there: in the second sentence
of the proof it says “|πLi

(ui)| ≤ k”. That must rather be “|πLi
(ui)| ≥ k”. So we

do the proof here again.

Lemma 1 ([6]). Let G be a connected graph of vertex separation k > 1.
Let G1, G2, G3 be connected, pairwise vertex-disjoint subgraphs of G, each one
of them of vertex separation at least k, such that between any two Gi, Gj there is
a path that is vertex-disjoint with the third one Gk. Then the vertex separation
of G is at least k + 1.

P r o o f. Suppose that L is an optimal layout for G and Li is the sublayout
for Gi under L, for i = 1, 2, 3. By the premises, there is a vertex ui ∈ Gi such that
|πLi

(ui)| ≥ k. Without loss of generality, suppose that L(u1) < L(u2) < L(u3).
By the premises, there is a path p between u1 and u3 that is vertex-disjoint with
G2. No vertex from p is in πL2

(u2) but a vertex from p is in πL(u2). Therefore,
πL2

(u2) ⊂ πL(u2). By the premises, |πL2
(u2)| ≥ k, so |πL(u2)| ≥ k + 1. �

Lemma 2. Suppose that G is a connected graph and L is a layout for
G such that vsL(G) ≤ k. Suppose that a is the leftmost vertex of L and z is the
rightmost vertex. Suppose that H is a connected subgraph of G and u and v are
two not necessarily distinct vertices in H. Suppose that a p u, v q z, H∩p = u,
and H ∩ q = v. Further, p ∩ q = ∅, in case that u 6= v, and p ∩ q = u, in case
that u = v. Under these assumptions, H is (k)-(u, v)-stretchable.

P r o o f. We prove that LH, the sublayout of H under L, is (k)-(u, v)-
-stretchable. First assume that u and v are distinct. Now assume that LH(u) <

LH(v). Let α and ω be the leftmost and the rightmost, respectively, vertex
under LH. Let LH be broken into the following three intervals: I1 = α, L−1

H (2),

. . . , L−1
H (LH(u) − 1), I2 = u, L−1

H (LH(u) + 1), . . . , L−1
H (LH(right(v)) − 1), and

60 Minko Markov

I3 = right(v), L−1
H (LH(right(v)) + 1), . . . ,ω, as illustrated here:

LH = α,
︸ ︷︷ ︸

I1

, u, . . . , v,
︸ ︷︷ ︸

I2

, right(v) ,ω
︸ ︷︷ ︸

I3

Vertex v is shown to be distinct from right(v) but that does not have to be the
case; if v = right(v) then I3 = v, . . . ,ω. Of course, by “right(v)” we mean
“right(v) in LH”. Consider any vertex y ∈ H.

• If y ∈ I1, then |πLH
(y)| < k because for some vertex x ∈ p such that x 6∈ H,

x ∈ πL(y) and x 6∈ πLH
(y). Note that I1 is non-empty since y is in it,

therefore u cannot be the leftmost vertex under L, therefore u 6= a and so
p has more than one vertex. All the vertices from p that are left of y under
L are not from H and there is at least one such vertex, namely a.

• If y ∈ I2, then |πLH
(y)| ≤ k by the premises of this lemma—it must be the

case that vsLH
(H) ≤ k as vsL(G) ≤ k.

• Suppose that y ∈ I3. If πL(y) = ∅2, certainly |πLH
(y)| < k.

Suppose that πL(y) 6= ∅. Consider any vertex x ∈ q that is in πL(y);
such a one clearly exists. If x = v, i.e. x ∈ H, note that v 6∈ πLH

(y)

by the definition of right(v). If x 6= v, then x 6∈ πLH
(y) because x 6∈ H.

In any event, x 6∈ πLH
(y) and x ∈ πL(w), therefore |πLH

(w)| < k. This
result remains valid even in case that v = right(v), because then v does
not contribute to its own separation under LH but contributes to its own
separation under L.

So, the separation of any vertex from I1 and I3 under LH is at most k − 1,
and the separation of any vertex from I2 under LH is at most k. According to
Definition 5, LH is (k)-(u, v)-stretchable.

Now assume that LH(v) < LH(u). Suppose that LH is broken into three intervals
I1, I2, and I3 in the same way as above. However, now v is left of u. If u is left
of right(v):

LH = α, . . . , v, . . .
︸ ︷︷ ︸

I1

, u,
︸ ︷︷ ︸

I2

, right(v), . . . ,ω
︸ ︷︷ ︸

I3

2It is possible πL(y) to be empty. The only way this can happen is y to be the rightmost
vertex of L, i.e. y = z. But y is in H and the only common vertex between the path q and H

is v, so it has to be the case that q consists of a single vertex. Then v is the rightmost vertex
of L, and v coincides with right(v).

On the vertex separation of cactus graphs 61

we deduce that LH is (k)-(u, v)-stretchable in exactly the same way as above,
because v being between a and u changes nothing in this case.

If u = right(v), the interval I2 is empty (since I3 = u, . . . , z), but our
proof remains valid because the vertices from I1 and I3 have separation at most
k − 1, just as before.

Now suppose that LH(v) < LH(u) and right(v) is left of u. Let LH be broken into
the following three intervals: I1 = α, L−1

H (2), . . . , L−1
H (LH(right(v)) − 1), I2 =

right(v), L−1
H (LH(right(v)) + 1), . . . , L−1

H (LH(u) − 1), and I3 = u, L−1
H (LH(u) + 1),

. . . ,ω, as illustrated here:

LH = α, . . . , v, . . .
︸ ︷︷ ︸

I1

, right(v),
︸ ︷︷ ︸

I2

, u, ,ω
︸ ︷︷ ︸

I3

Again, vertex v is shown to be distinct from right(v) but that does not have to
be the case; if v = right(v) then I1 has its rightmost vertex just to the left of v.
And again, by “right(v)” we mean “right(v) in LH”. Consider any vertex y ∈ H.

• If y ∈ I1 or y ∈ I2, then |πLH
(y)| < k because for some vertex x ∈ p such

that x 6∈ H, x ∈ πL(y) and x 6∈ πLH
(y).

• If y ∈ I2 or y ∈ I3, then |πLH
(y)| < k because for some vertex x ∈ q,

x ∈ πL(y) and x 6∈ πLH
(y). That remains true even if x = v because v does

not contribute to the vertices from I2 and I3 in LH.

• If y ∈ I2, the above two considerations apply independently. That is, there
is a vertex from p contributing to the separation of y under L but not
under LH and there is a vertex from q contributing to the separation of y

under L but not under LH, and those two vertices are different. Therefore,
|πLH

(y)| ≤ k − 2.

So, the separation of any vertex from I1 and I3 under LH is at most k − 1, and
the separation of any vertex from I2 under LH is at most k − 2. According to
Definition 5, LH is (k)-(u, v)-stretchable.

It remains to consider the case that u = v. It is easy to see that the separation
of any vertex from H − u under LH is at most k − 1, regardless of whether u is
distinct from a and z, or coincides with one of them. �

Lemma 3. Suppose that G is a cactus, s is a cycle in it, and u and v

are not necessarily distinct vertices in s. Suppose that H is any arch relative to
u, v and G[s]�[u, v] is (k)-(u, v)-stretchable. Then vs(H) < k.

62 Minko Markov

P r o o f. First assume that u 6= v. Assume that L is k-stretchable with
respect to u and v layout for G and, without loss of generality, assume that
L(u) = 1. Then L is (k)-right(v)-ext. Note that u p v, such that p is vertex-
disjoint with H. That is true even if H is the only arch relative to u, v, i.e. if
u and v are adjacent. Call LH the sublayout of H under L and assume that
vsLH

(H) ≥ k. Let z be any vertex from H that has separation at least k under
LH. Note that z cannot possibly be to the right of, or coincide with, right(v),
by Definition 2. Then note that z cannot be between v and right(v), because
v contributes to the separation of all vertices in that interval but v 6∈ H and
therefore v 6∈ πLH

(z); if z were between v and right(v) then |πL(z)| would be more
than k.

So, z has to be between u and v. But for at least one vertex x from p,
x ∈ πL(z) and x 6∈ πLH

(z), which implies that |πL(z)| > k. It follows that our
assumption that vsLH

(H) ≥ k must be wrong.
Now assume that u = v. Then G[s]� [u, v] is in fact G[s]� [u, u] and

so G[s]�[u, v] is (k)-(u, u)-stretchable. By Observation 2 on page 80, vs(G[s]�

[u, u] − u) ≤ k − 1. Since H is a subgraph of G[s]�[u, u] − u, it must be the case
that vs(H) ≤ k − 1. �

4.2. The Main Theorem for vertex separation on cacti. The
following theorem generalises Theorem 3.1 from [3], the main theorem for the
vertex separation of trees.

Theorem 1. Suppose that G is a cactus and k ≥ 1. Then vs(G) ≤ k if
and only if both of the following hold:

1. for every vertex u ∈ G, at most two subcacti begotten by u have separation
k, and all the other begotten subcacti have separation at most k − 1.

2. every cycle in G has a k-favourable pair.

P r o o f o f n e c e s s i t y. Assume that vs(G) ≤ k and L is a layout for
G such that vsL(G) ≤ k. Consider any vertex u ∈ G. It is obvious that no
subcactus begotten by u can be of separation > k. By Lemma 1, there cannot
be more than two subcacti begotten by u of separation k. So, condition 1 holds.

Now we prove that condition 2 holds. Consider any cycle s in G. Let v1,
v2, . . . , vt be the vertices of s. Let a be the leftmost vertex under L and z be the
rightmost one. Say, a is in the vi-constituent and z is in the vj-constituent of s.
Define that H = G�[vi, vj]. We prove that vi and vj are a k-favourable pair. It
may or may not be the case that a coincides with vi, and likewise for z and vj.
Our proof holds anyways.

On the vertex separation of cactus graphs 63

First assume that vi 6= vj. Apply Lemma 2 with the current H, vi, and
vj as H, u, and v, respectively, from the lemma. Conclude that H is (k)-(vi, vj)-
-stretchable.

Now assume that vi = vj. Suppose that a p vi and vi
q z, such that

p ∩ q = {vi}. Again, Lemma 2 implies that H is (k)-(vi, vi)-stretchable.
It remains to consider the case when vi = vj and for each two paths p

and q such that a p vi and vi
q z, |p ∩ q| ≥ 2. But then there exists a path

p ′ between a and z, such that p ′ ∩ H = ∅. It follows that p ′ contributes to the
separation of any vertex from H under L, therefore vsLH

(H) < k, and so H is
trivially (k)-(vi, vi)-stretchable.

P r o o f o f s u f f i c i e n c y. Suppose that premises 1 and 2 hold. The
crux of the proof is to construct a k-compliant c-path C in G. Using C, Method 3
constructs a separation k layout L for G.

Case I: There are important vertices or cycles in G. We choose arbitrarily one
such vertex or cycle as our “starting point”.

Case I.a: We choose some k-important vertex u and make G a rooted cactus with
root u. Then u has precisely two children, call them H1 and H2, of separation k,
and all the other children are of separation less than k. Define that G1 = H1 + u

and G2 = H2 + u. Note by Definition 9, both G1 and G2 are rooted cacti with
root u. We claim that both G1 and G2 are noncritical. Assume the opposite:
say, G1 is critical.

• Assume that some vertex v ∈ G1 has two children G ′ and G ′′ of separation
k. Think of G as a non-rooted cactus and note that v begets three separation
k subcacti in it: namely, G ′, G ′′, and the subcactus containing H2. That
contradicts premise 1 of this theorem.

• Assume that for some cycle s in G1, its root v is not k-favourable, where
v may possibly coincide with u. Think of G as a non-rooted cactus and
note that by premise 2 applied to G, there are vertices x, y in s such that
G[s]� [x, y] is (k)-(x, y)-stretchable; however, v 6∈ {x, y} because v is not
k-favourable in s. But then, in the context of G, v is in an arch of s relative
to x and y. Call that arch J and note that vs(J) ≥ k because J contains
H2 as a subcactus and vs(H2) = k. Apply the contrapositive of Lemma 3
and conclude that G[s]�[x, y] is not (k)-(x, y)-stretchable. The result holds
even when x = y.

So, none of G1, G2 is critical. Method 4 constructs a k-compliant c-path C1 in
G1 such that u is one endpoint of C1, and a k-compliant c-path C2 in G2 such

64 Minko Markov

that u is one endpoint of C2. Define that C2 = C2 − u and observe that C1, C2

is a k-compliant c-path in G.

Case I.b: We choose some important cycle s. There must exist a favourable pair
of vertices u1, u2 in s by premise 2. Define that Gi is the ui-constituent of s and
make Gi a rooted cactus with root ui, for i = 1, 2. Also, define that Hi is the
arch of s relative to ui, for i = 1, 2. By the definition of “k-important cycle”,
vs(H1), vs(H2) = k. We claim that for i = 1, 2, either vs(Gi) < k or vs(Gi) = k

and Gi is noncritical. Assume the opposite: say, G1 has separation k and is
critical.

• Assume that some vertex v ∈ G1 has two children G ′ and G ′′ of separation
k. But then v begets three separation k subcacti in G: namely, G ′, G ′′, and
the subcactus containing H2. That contradicts premise 1 of this theorem.

• Assume that for some cycle s ′ in G1, its root v is not k-favourable, where v

may possibly coincide with u1. Then by premise 2 applied to G, there are
vertices x, y in s ′ such that G[s ′]�[x, y] is (k)-(x, y)-stretchable; however,
v 6∈ {x, y} because v is not k-favourable in s. But then, in the context of
G, v is in an arch of s ′ relative to x and y. Call that arch J and note that
vs(J) ≥ k because J contains H2 as a subcactus and vs(H2) = k. Apply the
contrapositive of Lemma 3 and conclude that G[s]�[x, y] is not (k)-(x, y)-
-stretchable. The result holds even when x = y.

So, none of G1, G2 is of separation k and critical. For any Gi, i = 1, 2, if
vs(Gi) = k then Method 4 constructs a k-compliant c-path Ci in it such that ui

is one endpoint of Ci; and in vs(Gi) < k then ui is a k-compliant c-path Ci in
it. Define that C2 = C2 − u2. Further, notice that the c-path C3 = u1, s, u2 is k-
compliant in G[s]�[u1, u2] by the assumptions about s. Define that C3 = C3−u1,
i.e. C3 = s, u2. Observe that C1, C3, C2 is a k-compliant c-path in G.

Case II: There are no important vertices and there are no important cycles in G.
We prove that there is a k-compliant c-path that consists either of a single vertex
or of two vertices.

Let a be any vertex in G. Consider the following procedure on G. It uses variables
x and y of type vertex and a variable C of type c-path.

Initialise x← a, y← x and iterate:

1. If all subcacti begotten by x are of separation less

than k, set C← x and stop.

On the vertex separation of cactus graphs 65

2. Otherwise, let H be the separation k subcactus begotten

by x.

(a) If x is connected to H by a tree edge and that

edge is (x, y), set C← x, y and stop.

(b) If x is connected to H by a tree edge (x, z) where

z 6= y, set y← x, x← z and continue iterating.

(c) Otherwise, let s be the cycle that contains x and

vertices from H. Let w be a vertex from s such

that the arch of s relative to w is of separation

less than k. Set y← x, x← w and continue

iterating.

return C

Observe that cases 1, 2a, 2b, and 2c exhaust all possibilities: by the current
premises, any vertex begets at most one separation k subcactus, so the division
into cases 1 and 2 is exhaustive, and if x begets a separation k subcactus H, that
H can be connected to x by a tree edge (cases 2a and 2b) or by two cycle edges
(case 2c).

Now we show the procedure halts. Let us denote by Cb,c the (unique)
c-path connecting any two vertices b and c in G. Observe that y is a vertex
from Ca,x; furthermore, x and y are c-path neighbours in Ca,x after the first
iteration because then y has the former value of x. It clearly follows that Ca,x

gets incremented at its “x end” every time the procedure enters case 2b or case
2c. Consider that G is finite and conclude that the procedure halts.

If the procedure halts in case 1 it is obvious that the returned c-path
consists of the single vertex x and is k-compliant. Suppose that the procedure
halts in case 2a, i.e. after an attempt to “go back”. Then x and y are connected
by a tree edge, all the subcacti begotten by y have separation < k except for the
subcatus containing x (otherwise, the procedure would have already stopped),
and all the subcacti begotten by x have separation < k except for the subcactus
containing y (otherwise, the procedure would be in case 1). So, the c-path x, y

is k-compliant since the children of every vertex in it are of separation at most
k − 1. �

5. On the stretchability of cacti. In this section we consider a
cactus G as illustrated on Figure 2: there is a cycle s in it such that two vertices

66 Minko Markov

Fig. 2. The cactus G in Section 5

u and v from s are of degree two. We want to answer the question whether G is
k-stretchable with respect to u and v.

We assume the reader is familiar with [2]3 and especially Section 4: it
answers precisely the same question for unicyclic graphs (compare Figure 2 with
[2, Figure 9]). Our approach is to follow a line of reasoning as close as possible
to the one in [2, Section 4].

The archs of s relative to u and v are G1 and G2. We call them simply
“the archs”. Consider the general case when both archs are non-empty. Whether
or not G is (k)-(u, v)-stretchable clearly depends on, and only on, the properties
of the archs. Let us call the vertices u and v, the special vertices, and the other
vertices from G, the ordinary vertices. Consider any layout L for G in general.
Precisely one of the following two possibilities is the case for L.

p1: The leftmost and the rightmost ordinary vertex are from the same arch.

p2: The leftmost and the rightmost ordinary vertex are from different archs.

A feasible approach to compute whether G is k-stretchable is the following:
identify necessary and sufficient conditions for the existence of k-stretchable
layout for G for p1 and for p2, and then test G under both conditions. G is
k-stretchable whenever at least one of those tests gives a positive answer.

Note that [2, Section 4] takes, though implicitly, the same approach. It
considers three cases among which only Case 3 is relevant because Case 1 simply
gives a negative answer when one of the two archs of s has separation > k−1, and
Case 2 gives a trivial positive answer when the separation of both archs is ≤ k−2.
The said Case 3 subdidivides into Case 3.1 and Case 3.2. Those two subcases

3A copy is available at http://www.cs.uvic.ca/˜jellis/Publications/unicyclic.ps

On the vertex separation of cactus graphs 67

are specified by the separations and the criticalities or the noncriticalities of the
archs T1 and T2 but in fact Case 3.1 explores the possibility that the leftmost and
the rightmost ordinary vertex are from the same arch (namely T1) and Case 3.2 is
about the alternative possibility. To see why that is true, consider the following:

• in Case 3.1, if there is a layout then it is in one of the three possible forms
shown on Figures 12, 13, and 16: both the rightmost and the leftmost
ordinary vertices are (i.e., not ri or rj in the naming convention of [2,
Section 4]) from T1;

• in Case 3.2, if there is a layout then it is as shown on Figure 17: the
rightmost ordinary vertex is from T2 and the leftmost, from T1.

Let us try to generalise the results from [2, Section 4, Case 3] for the cactus G

that we currently consider.

5.1. Generalising case 3.2 for cacti. Recall that [2] uses the notation
“T [z]”, where T is a tree and z is a vertex in it, to mean T rooted at z. We can
extend that notation to cacti in the obvious way.

The said Case 3.2 in [2] considers a unicyclic graph such that vs(T1) =

k − 1, at least one of T1[a] and T1[b] is not (k − 1)-critical, and at least one of
T2[c] and T2[d] is not (k − 1)-critical. The vertices a, b, c, and d in Case 3.2 are
defined by Figure 9 of [2]. Our current Figure 2 defines them for the current G

likewise.

Case 3.2 defines4 that T1 and T2 have complementary extensibilities if
T1[a] and T2[d] are not (k − 1)-critical or T1[b] and T2[c] are not (k − 1)-critical,
and proves that:

• the unicyclic graph U has a k-stretchable layout such that the extreme
ordinary vertices are from different archs if T1 and T2 have complementary
extensibilities (see Figure 17);

• there is no k-stretchable layout for G if their extensibilities are not comple-
mentary.

So, effectively, Case 3.2 proves that there is a k-stretchable layout such that the
extreme ordinary vertices are from different archs if and only if the extensibilities
of the archs are complementary.

4Note that the definition of complementary extensibilities in Case 3.2 of [2][Section 4] has
a slight imprecision: it uses the language construct “... either ... or ...” that suggests exclusive
“or”, while in fact it should be ordinary, inclusive “or”.

68 Minko Markov

Now compare criticality of trees as defined in [3] and used in [2], on the
one hand, and criticality of cacti as defined in the current paper, on the other
hand. It is obvious that the latter is a generalisation of the former because our
Definition 17 reduces to Definition 3.1 from [3] when the cactus in consideration
is a tree. However, there is a deeper connection between them, namely that:

• a separation k rooted tree is k-extensible with respect to its root if and only
if it is not k-critical;

• a separation k rooted cactus is k-extensible with respect to its root if and
only if it is not k-critical.

The first fact is easily deducable from [2] and is proved explicitly in [6] (see
Lemma 2, pp. 35, Lemma 4, pp. 36, and Corollary 3, pp. 40). The second fact
is not difficult to prove. In one direction, it follows from Method 4. We do not
provide a proof for the other direction because that would be distracting to the
goals of this section; the reader is invited to try to make one.

Having in mind the deeper connection between criticality of trees and
criticality of cacti, we can define complementary extensibilities for our current
archs G1 and G2 just as in Case 3.2, namely that G1 and G2 have complementary
extensibilities whenever G1[a] and G2[d] are not (k−1)-critical or G1[b] and G2[c]

are not (k−1)-critical, and prove that G has a k-stretchable layout such that the
leftmost and rightmost ordinary vertex are from different archs if and only if the
archs have complementary extensibilities. The proof can be done just as in Case
3.2 from [2] precisely because criticalities are equivalent to non-extensibilities for
both trees and cacti.

5.2. Trying to generalise Case 3.1: a failure. Let us consider how
Case 3.1 from [2] relates to cacti and in particular the subcase when there exists
one constituent tree of the cycle with a buried (k − 1)-critical vertex (the other
two subcases are easy to generalise for cacti; the reader is invited to check that,
having in mind what we discussed about how to generalise Case 3.2). Let us
define that the critical vertex in a rooted cactus is buried if it is not the root.
It is not hard to see that if there is a (k − 1)-critical vertex in, say, G1, we can
“excise” the subcactus rooted at it (within the corresponding constituent of s)
obtaining some cactus G ′ and then there exists a (k)-(u, v)-stretchable layout for
G if and only if there exists a (k − 1)-(u, v)-stretchable layout for G ′. In other
words, the results from [2, Section 4] are once again directly generalisable for
cacti.

However, the said subcase of Case 3.1 suggests a possibility for cacti that has no
analogy for unicyclic graphs. Suppose that G1 is of separation k−1 and contains

On the vertex separation of cactus graphs 69

a (k−1)-critical constituent that has a (k−1)-critical cycle. That can happen if,
for instance, G is as suggested by Figure 3: for some vertex w from s, there is a
cycle s1 in the w-constituent of s, such that—assuming that constituent is rooted
at w—the root of s1 is some vertex f and there are two vertices x and y in s1,
x, y 6= f, such that there is a separation k−1 subcactus “hanging off” both x and
y. It is clear that if vs(H1), vs(H2) = k−1 then f is indeed a (k−1)-unfavourable
vertex, thus s1 is critical. For simplicity, assume that H1 is the only child of x in
s1, and the same for H2 and y.

Fig. 3. A possibility with no analogy for unicyclics: the
two “buried” separation k − 1 subgraphs are attached to
a cycle, not a vertex, within one arch of s. Compare with

[2, Figure 11]

Before we proceed with the signicance of the example on Figure 3, we ex-
plain semi-formally what is stretchability with respect to two pairs of vertices. It
is known that the problem Vertex Separation is equivalent to Node Search

Number in the sense that vs(G) = k if and only if nsn(G) = k+ 1 for any graph
G (see [5]). The relation is in fact deeper since a linear layout determines a node
search strategy and vice versa. The stretchability property, for instance, can be
expressed in terms on node searching: G is k-stretchable with respect to some
vertices u and v if and only if there is a search with k+1 searchers that starts on
u and finishes on v (see [6]). We express our notion of stretchability with respect
to two vertex pairs in terms of node searching. Let us use the notation “{u, v}”
to designate the multiset5 of the vertices u and v. If u, v, x, and y are any four

5Note that it is not necessary the vertices to be distinct.

70 Minko Markov

vertices in some graph G then G is k-stretchable with respect to {u, v} and {x, y}

if there is a search using k+1 searchers that either starts on u and x and finishes
on v and y, or starts at u and y and finishes at v and x. Analogously to the
stretchability with respect to a single pair of vertices, it does not matter which
vertices are associated with the left and which, with the right direction.

Going back to our cactus G as shown on Figure 3, it is not difficult to
prove that G is (k)-(u, v)-stretchable if and only if J = G[s1]�[x, y] is k-stretchable
with respect to {u, v} and {x, y}. The proof in one direction is: suppose that a
k-stretchable with respect to {u, v} and {x, y} layout LJ exists and in it, u and x

are associated with the left direction and v and y, with the right one. Then the
layout L = L1, LJ, L2 for G, where L1 is a (k)-right(x1)-ext layout for H1 and L2 is
a (k)-left(y2)-ext layout for H2, is indeed (k)-(u, v)-stretchable. Such L1 and L2

exist, but we are not concerned with proving that now, and we do not provide a
proof for the other direction.

Compare the expression L = L1, LJ, L2 with the layout from [2, Figure
12]: they are completely analogous! The crucial difference is that in the unicyclic
case, the sublayout of U ′ is stretchable with respect to the original pair of special
vertices {ri, rj}, while in the current case, another pair of special vertices shows
up, namely {x, y}.

By itself, the addition of another vertex pair necessitates theoretical
results concerning stretchability with respect to two pairs of vertices. That sounds
like a daunting task, having in mind the effort it took in [2, Chapter 4] to pinpoint
the necessary and sufficient conditions for stretchability with respect to a single
pair. The worst thing is that the stretchability with respect to two pairs may
reduce to stretchability with respect to three vertex pairs.

We define stretchability with respect to three vertex pairs as a generali-
sation of the current definitions for stretchability. Suppose that u1, v1, u2, v2,
u3, v3 are not necessarily distinct vertices in some graph G with the restriction
that every two of the three pairs (ui, vi) have no vertex in common. G is k-
stretchable with respect to (u1, v1), (u2, v2), and (u3, v3) if there exist two (not
necessarily disjoint) vertex sets S1 and S2, each set having precisely one vertex
from each pair, so that there exists a search on G with k + 1 searchers starting
at the vertices from S1 and finishing at the vertices from S2. Obviously, we can
extend that definition to arbitrarily many vertex pairs.

Figure 4 gives a general idea about why we may have to add a third pair
of special vertices. Suppose that G from Figure 3 is as shown on Figure 4.1: the
arch of s1 relative to x and y that does not contain s has a cycle s2 such that
for two vertices α and β from s2, there are separation k − 2 subcacti “hanging
off” them. Figure 4.2 illustrates J = G[s1]�[x, y]. Intuitively, it is clear that J is

On the vertex separation of cactus graphs 71

k-stretchable with respect to (u, v) and (x, y) if and only if K = J[s2]�[α,β] (see
Figure 4.3) is k-stretchable with respect to (u, v), (x, y), and (α,β).

Fig. 4. G is k-stretchable with respect to (u, v) if and only if J = G[s1]�[x, y]

is k-stretchable with respect to (u, v) and (x, y). In its turn, that reduces to
whether K = J[s2]� [α, β] is k-stretchable with respect to (u, v), (x, y), and

(α, β)

It is obvious that process can go on and on: the k-stretchability of a
cactus with respect to m vertex pairs may depend on the k-stretchability with
respect to m + 1 pairs of vertices of a smaller cactus.

6. Conclusions. We have identified and verified a “main theorem for
cacti”: a necessary and sufficient condition for the separation of a cactus being
k, that condition being expressed in terms of separations and stretchabilities
of subcacti. The condition is a generalisation of the “main theorem for trees”
[3, Theorem 3.1]. Unlike the main theorem for trees, however, it does not
lead immediately to a fast, practical algorithm for the VS of cacti because the
stretchability with respect to a single vertex pair reduces in general to stretchabi-
lity with respect to two vertex pairs, which in its turn reduces in general to
stretchability with respect to three vertex pairs, and so on.

72 Minko Markov

REFERE NCES

[1] Bodlaender H. L., T. Kloks. Efficient and Constructive Algorithms for
the Pathwidth and Treewidth of Graphs. J. Algorithms 21 (1996), No. 2,
358–402.

[2] Ellis J., M. Markov. Computing the Vertex Separation of Unicyclic
Graphs. Information and Computation 192 (2004), 123–161.

[3] Ellis J. A., I. H. Sudborough, J. S. Turner. The Vertex Separation
and Search Number of a Graph. Information and Computation 113, No 1
(1994), 50–79.

[4] Gibbons A. Algorithmic Graph Theory. Cambridge University Press, 1985.

[5] Kirousis L. M., C. H. Papadimitriou. Searching and pebbling.
Theoretical Computer Science 47, No. 2 (1986), 205–218.

[6] Markov M. A Fast Practical Algorithm for the Vertex Separation of
Uncyclic Graps. Master’s thesis, University of Victoria, Dec. 2004.

[7] Skodinis K. Computing optimal strategies for trees in linear time.
Proceedings of the 8th Annual European Symposium on Algorithms, 2000,
403–414.

Department of Mathematical Linguistics

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 8

1113 Sofia, Bulgaria

e-mail: minko@cc.bas.bg

Received October 5, 2006

Final Accepted February 23, 2007

