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LOGIC BASED PATTERN RECOGNITION - ONTOLOGY CONTENT (2)1 

Levon Aslanyan, Vladimir Ryazanov 

Abstract: Logic based Pattern Recognition extends the well known similarity models, where the distance 
measure is the base instrument for recognition. Initial part (1) of current publication in iTECH-06 reduces the logic 
based recognition models to the reduced disjunctive normal forms of partially defined Boolean functions. This 
step appears as a way to alternative pattern recognition instruments through combining metric and logic 
hypotheses and features, leading to studies of logic forms, hypotheses, hierarchies of hypotheses and effective 
algorithmic solutions. Current part (2) provides probabilistic conclusions on effective recognition by logic means in 
a model environment of binary attributes.  

1. Introduction 
Pattern Recognition consists in reasonable formalization (ontology) of informal relations between object’s 
visible/measurable properties and of object classification by an automatic or a learnable procedure [1]. Similarity 
measure [1] is the basic instrument for many recognition formalisms but additional means are available such as 
logical terms discussed in part (1) of current research [2]. Huge number of recognition models follows the direct 
goal of increasing recognition speed and accuracy. Several models use control sets above ordinary learning sets, 
others use optimization and other direct forces. Besides, more alternative notions are available to describe 
algorithmic properties. In existing studies the role of these notions is underestimated and less attention is paid to 
these components. In part (1) the attention is paid to implementing the learning set through its pairs of elements 
rather than the elements separately. The following framework is considered: given a set of logical variables 
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(properties) nx,...,x,x 21  to code the studied objects, and let we have two types/classes for classification of 
objects: 1K  and 2K . Let 1K∈β , and 2K∈γ , and α  is an unknown object in sense of classification. We say, 
that γ  is separated by the information of β  for α  if αβγβ ⊕≤⊕ , where ⊕  is 2mod  summation. 
Formally, after this assumption, the reduced disjunctive normal forms of two complementary partially defined 
Boolean functions appear to describe the structure of information enlargement of the learning sets. The idea used 
is in knowledge comparison. α  is an object of interest. Relation αβγβ ⊕≤⊕  informs that the descriptive 
knowledge difference of β  and α  is larger than the same difference of β  and γ . This approach we call logic 
separation. While notion of similarity gives the measure of descriptive knowledge differences, the logic separation 
describes areas which are preferable for classes and learning set elements. In general the question is in better 
use of learning set. The learning set based knowledge, which is used by recognition procedure, at least is 
supposed to reconstruct the learning set itself. It is indeed negative when this information is not able to 
reconstruct the learning set. It is easy to check that the similarity knowledge can’t reconstruct an arbitrary learning 
set, and only special sets allow reconstructing of objects by their distances [3]. Restructuring power is high when 
comparison is used for the set of all attribute subsets. Theoretically such structures are studied in discrete 
tomography problems [4], but practically even the use of pairs draws to known hard computational area of 
disjunctive normal forms.  
Consider pairs of elements of the learning set, where each pair contains elements of different classes (the case of 
2 learning classes is supposed). It was shown [2] that the logical separators divide the object space into three 
areas, where only one of these areas needs to be treated afterward by AEA (algorithms of estimation analogies – 
voting algorithms) [1]. This set is large enough for almost all weakly defined Boolean functions, but for the 
functions with compactness property it is small. Let, for nkk ≤<≤ 100 , 

10 k,k,nF  be the set of all Boolean 

functions defined as follows: each of them has zero (false) value on the vertices of 0k -sphere centered at 0~ , 
and has one (true) value on ( 1kn − )-sphere centered at 1~ . On the remainder vertices of n -cube the 
assignment/evaluation is arbitrary. These functions (for appropriate choice of 0k  and 1k ) satisfy the 

compactness assumptions [8], and their quantity is not less than
n)n( 22ε  for an appropriate 0→)n(ε  with 

0→n . For these functions we have also, that for recovering the full classification by means of logical separators 
procedure, it is enough to consider a learning set which consists of any n)n(nn ε−2  or more arbitrary points. This 
is an example of postulations which will be considered below. It is relating the metric and logic structures and 
suppositions, although separately studies of these structures are also important. The follow up articles will 
describe the mixed hierarchy of recognition metric-logic interpretable hypotheses, which helps to allocate 
classification algorithms to the application problems. 

2. Structuring by Logic Separation 
Let f be a Boolean function (it might be partially or completely defined). Let fN  denotes the reduced 
disjunctive normal form of f  and sets fN 0 ,…, fN3  [2] define areas, in which fN  and 

f
N  take values {0,1}, 

{1,0}, {0,0} and {1,1} correspondingly. Identical to fN0 ,…, fN3 , similar areas are defined by logic separation - 
fM 0 ,…, fM 3 . 

Let )(20 nPf ∈  (a completely defined Boolean function of n  variables) and 1)~(0 =αf . Denote by )~,( 0 αft  
the number of k-subcubes included in 

0f
N  and covering the vertex α~ . Let km  is the average number of 

)~,( 0 αft  calculated for all )(20 nPf ∈  and 
0

~
fN∈α . It is easy to check that 

1212

22

222
22

−−

−

== kn

kn k
n

n

k
n

n

k

CCm . 

Dispersion kd  of the same value )~,( 0 αft  is expressed as 
2

12
0

122

2
2

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
=

++−−
−∑ +

k

jk
k
n

k

j

jk
kn

j
k

k
nk

CCCCd . 



International Journal "Information Theories & Applications" Vol.15 / 2008 
 

 

316

Applying the Chebishev inequality to above measures )~,( 0 αft , km , kd  leads to the conclusion: 

Proposition 1(8). 
120 2

~)~,(
−k

k
nCft α  for almost all pairs )(20 nPf ∈  and 

0

~
fN∈α , when ∞→n  and 

∞→k

k
nC

22
. 

 

Taking into account that for almost all Boolean functions the number of 1-vertices is equivalent to ∞→− nn ,2 1 , 
we obtain that for almost all functions )(20 nPf ∈ , almost all 1-vertices are covered by the number of k-intervals 

from 
0f

N , which is equivalent to 
122 −k

k
nC

, when ∞→n and ∞→k

k
nC

22
. Particularly, this fact might be used to 

adjust the postulation in Proposition 7, [2]. Indeed, the 
122 −k

k
nC

 intervals, coming from a common fixed vertex, 

cover not less than 
122 −k

k
nC

 vertices of an n-cube. 

Now consider arbitrary placement of any l  points into the vertices of an n-cube M . Estimate for almost all 
functions )(20 nPf ∈  (see Proposition 1(8)) the main value of the number of vertices

0

~
fN∈α , which are not 

covered by any of the k-intervals included in 
0f

N  which is pricked by our l  vertices: 
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Proposition 2(9). If ∞→k

k
nC

22
 and 

k
n

n

C
nl

k222)(ϕ≥ , where ∞→)(nϕ as ∞→n , then random l  vertices 

for almost all functions )(20 nPf ∈  prick such sets of k-subcubes included in 
0f

N , which cover almost all 
0f

N . 
 

In case of ]log[log nk =  we conclude that the minimal number l  satisfying the above proposition, is not greater 
than ]log[log2 /2 n

n
n Cn .  

Notice, that in conditions of Proposition 7 [2] and Proposition 2(9) only the usability of condition 0F  (logic 
separation) is mentioned, so that these are the conditions, when usage of 0F , as a rule, doesn’t imply to 
significant errors. Also, it is important, that we applied the condition 0F  to the whole class )(2 nP , although it was 
supposed for problems, satisfying compactness suppositions. So, it is interesting to know how completely the 
class )(2 nP  satisfies to these suppositions. 
 

Let us bring now a particular justification of compactness conception [8]. Let )(20 nPf ∈ . We call the vertex 
M∈α~  boundary vertex for function 0f , if the sphere )1,~(αS  of radius 1 centered at α~ , contains a vertex for 

which 0f  has the opposite value to )~(0 αf . Denote by )( 0fΓ  the set of all boundary vertices of 0f . We will say 
that the function hipping (completion) procedure obeys the compactness conditions, if .),2()( 0 ∞→=Γ nof n  
It is easy to calculate that the average number of boundary vertices of functions )(20 nPf ∈  is almost n2 . This 
shows that )(2 nP  contradicts the compactness conditions. The same time we proved that the use of the 0F  rule 
in a very wide area )(2 nP  doesn’t move to a sensitive error. Below we consider an example problem, which 
obeys the compactness assumptions, and will follow the action of the rule 0F  on that class. Before that we justify 
some estimates for the set fM 3 . 
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Consider the class ))(),(,(2 nlnknΦ  of all of partial Boolean functions, for which )(0 nlM =  and 

)(1 nkM = . We'll deal with the case )2()( nonl =  and )2()( nonk = . Estimate now the quantitative 
characteristics of sets fM 0 , fM 1  and fM 3 . 
First estimate the average number of vertices of the cube, which are achievable from set 0M : 
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Proposition 3(10). If )(nk  and )(nl  are )2( no , ∞→n  and there exists a 0j , that 02)( 0 →−njnk  and 
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n nlC , then for almost all functions of class ))(),(,(2 nlnknΦ , ∞→≈ noM nf ),2(1 . 
 

To except the trivial cases in the pattern recognition problems we have to suppose, that ∞→≅ nnlnk ),()( . 
Then it is clear that choosing appropriate values for 0j  we get )2(1

nf oM =  and )2(0
nf oM =  for almost all 

functions of class ∞→Φ nnlnkn )),(),(,(2 . 

Let us give an other estimation of 03c :  
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From here we conclude: 
Proposition 4(11). If 0)( ≥nl  and 02)(2 )(2 →− nnCn nk  as ∞→n  for )(nc∀  - restricted, then almost 
ever )2(~1

nf oM . 
So, for the small values of )(nk  and )(nl  from the each vertex of set 10 MM ∪ , almost all vertices of the n-
unite-cube almost ever are achievable. Comparing this, for example with [5] we find that for these classes 0F  
works ineffectively. 

3. Logic Separation on Compact Classes 
Consider problems, satisfying the compactness assumptions. First of all it is evident, that for 

)( 010 fMM Γ⊇∪  the continuation of function f  made on base of 0F , exactly correspond to the final result 

0f . Taking into account that by the given description of the compactness assumptions 
∞→=Γ nof n ),2()( 0 , we receive that in problems, satisfying the compactness assumptions we can point 

out learning sets of size ∞→no n ),2( , which allow to complete and exact continuation of function 0f  on base 
of condition 0F only. 

Let M∈α~  and nkk ≤≤≤ 210 . Consider functions )(20 nPf ∈ , for which ),~()( 200 knSfM −⊇ α , 
),~()( 101 knSfM −⊇ α  and which receive arbitrary values on vertices of sets ),~()1,~( 12 kSkS αα ⊇− . 

Denote the class of these functions by )(nK . It is evident, that for )2(),~(\)1,~( 12
nokSkS =− αα  all the 

constructed functions satisfy the given formalisms for the compactness assumptions, and that the quantity of 
these functions is not less than 

nn 2)(12ε , where )(1 nε  is an arbitrary function of 0)(, 1 →nn ε  with the 
∞→n . 
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Take a point 1,)~,~(,~ kkkM <=∈ βαρβ . It is evident that no more than [ ] ∞→≅ n
n

C nn
n ,222/

π
 subsets 

of any fixed size are coming out from any point of n -cube. From the other hand it is evident, that it is enough to 
take )(1 nokk =−  as ∞→n  to get the )2(),~(\),~( 1

nokSkS =αα . Suppose, that 

lfMfM =∪ )()( 0100 , and that l  points appear as the result of their appropriate placement on the vertices 
of the n -cube M , when all of these placements are equally probable. Estimate the probability of reaching of 
this point β~  from zeros of function 0f . 
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From here we conclude the 
Proposition 5(12). Let ),,( 210 kknKf ∈  and 1f  -- is the continuation of function f  on base of condition 0F . If 

)2(2 )(2 nnnn onl =≥ −ε , ∞→n  and the set )()( 10 fMfM ∪  is formed as a random collection of points 
of size l  from the set M , then almost ever the function 1f  is the continuation for f , which converges to the 

0f  by the accuracy, tending to 1 with the ∞→n . 

Conclusion 
Logic Separation is an alternative approach to pattern recognition hypotheses and formalisms, while the base 
concept uses the similarity approach. Structures appearing in this relation are based on terms of Reduced 
Disjunctive Normal Forms of Boolean Functions. Propositions 1-5(8-12) provide additional knowledge on 
quantitative properties of areas appearing in extending classification by means of compactness and logic 
separation principles.  
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