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ON STRUCTURAL RESOURCE OF MONOTONE RECOGNITION1 

Hasmik Sahakyan, Levon Aslanyan 

Abstract: Algorithmic resources are considered for elaboration and identification of monotone functions and 
some alternate structures are brought, which are more explicit in sense of structure and quantities and which can 
serve as elements of practical identification algorithms. General monotone recognition is considered on multi-
dimensional grid structure. Particular reconstructing problem is reduced to the monotone recognition through the 
multi-dimensional grid partitioning into the set of binary cubes.  

1. Introduction 
Monotone Boolean functions have an important role in research area since they arise in various application 
models, such as design of schemes, pattern recognition, etc. 
Monotone Boolean functions are studied in different viewpoint and are known as objects of high complexity. First 
results, obtained by Mickeev [M, 1959] and Korobkov [K, 1965], characterize Sperner families in unit cube. After 
enormous investigations and overcoming difficulties, Korshunov [K, 1981] obtained the asymptotical estimate of 
the number of Monotone Boolean functions. It is characteristic that analytical formulas are not known at this point. 
Another cluster of research work solves problems of algorithmic identification of monotone Boolean functions. 
Hansel [H, 1966] constructed the best algorithm in sense of Shannon criterion, then Tonoyan [T, 1979] 
constructed a similar algorithm with minimal use of memory. Later on there obtained some generalizations for 
multi-valued cube. Alekseev [A, 1976] generalized Hansel’s result, Katerinochkina [K, 1978] gave precise 
description of structure of Sperner families. 
It is typical that for multi-valued cube there is no explicit formula not only for the number of monotone functions, 
but also for the cardinality of middle layer. It makes difficult choice of algorithms for a concrete problem and 
estimation of their complexity. 
Below in this paper some algorithmic resources are considered for elaboration and identification of grid defined 
monotone functions and some alternate structures are brought, which are more explicit in sense of structure and 
quantities and which can serve as elements of practical identification algorithms.  

2. Learning monotone functions on multi-valued cube 

Let n
m 1+Ξ  denotes the grid of vertices of n  dimensional, 1+m  valued cube, i.e. the set of all integer-valued 

vectors )s,,s,s(S nL21=  with msi ≤≤0 , n,,i L1= . For any two vertices )s,,s,s(S '
n

''' L21=  and 
)s,,s,s(S ''

n
'''''' L21=  of n

m 1+Ξ  we say that 'S  is greater than ''S , ''' SS ≥  if ''
i

'
i ss ≥ , n,,i L1= . We call pair 

of vectors 'S , ''S  comparable if ''' SS ≥ or ''' SS ≤ , otherwise these vectors are incomparable. Set of pair wise 
incomparable vectors composes a Sperner family.  
Usually vertices of n

m 1+Ξ  are placed schematically among the 1+⋅nm  layers of n
m 1+Ξ  according to their 

weights, – sums of all coordinates. Vector ),,(~ 000 L=  is located on the 0-th layer; then the i -th layer consists 
of all vectors, with the weight i . An element of i -th layer might be greater than some vector from the 1−i -th 
layer, exactly by one component and exactly by one unit of value (such vector pairs are called neighbors and are 
connected by an edge). The vector )m,,m(m~ L=  is located on the nm ⋅ -th layer. 

Consider a binary function f on n
m 1+Ξ , },{:f n

m 101 →Ξ + . We say that f  is monotone if for any two vertices 
'S , ''S  notion ''' SS ≥  implies )S(f)S(f ''' ≥ . The vector n

mS 1
1

+Ξ∈  is a lower unit of monotone function 
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f  if 11 =)S(f  and for arbitrary n
mS 1+Ξ∈ , such that 1SS <  it is true that 0=)S(f . The vector n

mS 1
0

+Ξ∈  
is an upper zero of monotone function f  if 00 =)S(f  and for arbitrary n

mS 1+Ξ∈ , such that 0SS >  it is true 
that 1=)S(f . 
Above defined monotone functions are known also as increasing monotone in contrast with a decreasing 
monotone function. A function f  is decreasing monotone if for any two vertices 'S , ''S , ''' SS ≥  implies 

)S(f)S(f ''' ≤ . For f  decreasing monotone, the vector n
mS 1

1
+Ξ∈  is an upper unit if 11 =)S(f  and for 

any n
mS 1+Ξ∈ , such that 1SS >  we get 0=)S(f . The vector n

mS 1
0

+Ξ∈  is a lower zero of function f  if 
00 =)S(f  and for any n

mS 1+Ξ∈ , such that 0SS <  we get 1=)S(f . 
In case when 1=m  the definitions above lead to ordinary monotone Boolean functions defined on binary cube 

nE . 
Let a monotone function f  be defined with the help of an oracle which, receiving any vector n

mS 1+Ξ∈ , gives 
the value )S(f . The problem is in identification of arbitrary monotone function f  by as far as possible small 
number of accesses to the oracle. Similar problems are interested in finding all or the maximal/minimal upper 
zeros or alternatively the minimal/maximal lower 1’s of the given Boolean function. Consider an example. Let, it is 
given a set of n  linear inequalities. A consistent subset of inequalities is coded by a vertex of nE , where we 
define f  as 0. The problem of finding the maximal consistent subset of inequalities is a known hard problem and 
the use of oracle reduces the problem to solving several subsystems of inequalities, which is just an alternative 
way of solving the main problem. The monotone binary function recognition on n

m 1+Ξ  is the weighted inequalities 
version of the above given example model. 
In [A, 1976] an algorithm of complexity ⎣ ⎦ NmlogM ⋅+≤ 2  is constructed to learn the binary monotone 
functions above the multi-valued discrete grid, which generalizes the Hansel’s method ([H, ]) for the case of 
monotone Boolean functions, here M and N  denote the sets of vertices of middle layers of multi-valued 
grid/cube, i.e. layers which contain vectors with sums of coordinates equal to ⎣ ⎦2/)nm( ⋅  and ⎣ ⎦ 12 +⋅ /)nm(  
respectively. It is also proven that the complexity of the algorithm is approximately n  time less than the whole 
number of vertices of the grid. 

3. n
m 1+Ξ  partitioning through binary cubes 

In this section an alternate approach to traditional means is considered for identification of monotone functions 
defined on n

m 1+Ξ . First n
m 1+Ξ  is partitioned into binary cube like structures and then Hansel’s method is applied 

for identification of monotone Boolean functions. This approach may serve as a separate element of practical 
identification algorithms.  
In n

m 1+Ξ  we distinguish several classes of vectors. 

Upper and lower homogeneous vectors. A vector of n
m 1+Ξ  is called an upper h -vector (upper homogeneous) 

if the values of all its coordinates are at least 2/m  for even m , and are at least 21 /)m( +  for odd m . 
Similarly, a vector of n

m 1+Ξ  is called a lower h -vector (lower homogeneous) if the values of all its coordinates are 
at most 2/m  for even m , and are at most 21 /)m( −  for odd m .  

We denote by H
)

 the set of all upper h -vectors and by H
(

 the set of all lower h -vectors. The cardinalities of 
sets H

)
 and H

(
 are equal to ( )n/)m( 21+  for odd m  and to ( )n/m 12 + - for m  even. 
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Middle vectors +midm~  and −midm~  
)/)m(,,/)m((m~mid 2121 ++=+ L  and )/)m(,,/)m((m~mid 2121 −−=− L  for odd m  and 

)/m,,/m(m~m~ midmid 22 L== −+  for even m . +midm~  is located on the 21 /)m(n +⋅ -th layer of n
m 1+Ξ  (the 

lowest layer that contains vector from H
)

) and −midm~  is located on the 21 /)m(n −⋅ -th layer of n
m 1+Ξ  (the 

highest layer that contains vector from H
(

) for odd m ; for even m  the vector −+ = midmid m~m~  is located on the 
layer 2/mn ⋅  and this is the only common vector of H

)
 and H

(
.  

 

Vertical equivalent vectors. Let n
m

''' S,S 1+Ξ∈ . 'S  and ''S are called v -equivalent (vertically equivalent) if one 
of them is obtained from the other by inverting some coordinates (that is replacing some coordinates by their 
complements up to the m ). 
For a given vector S  denote by )S(V  the class of all v -equivalent vectors to S  and call it the v -equivalency 
class of S . This structure )S(V  is congruent to a cube kE , where k  is the number of coordinates of S  not 
equal to 2/m  (this is valid for even m ). For odd m  nk = . It is also evident, that )S(V)S(V ' =  for an 
arbitrary )S(VS' ∈ . 

In )S(V  we distinguish two vectors )s,,s(S n
)

L
))
1=  and )s,,s(S n

(
L

((
1=  - upper and lower vectors, which 

coordinates are defined as follows: 

⎩
⎨
⎧

−<−
−≥

=
iii

iii
i sms,sm

sms,s
s)  and 

⎩
⎨
⎧

−<
−≥−

=
iii

iii
i sms,s

sms,sm
s( , n,i 1∈ . 

These are the only vectors of )S(V  that belong to sets H
)

 and H
(

 respectively. 

Consequently, for any S  the class of its v -equivalency can be constructed by the upper vector S
)

 and/or by the 
lower vector S

(
 of that class by coordinate inversions. v -equivalency classes of different upper homogeneous 

vectors are none intersecting.  
This proves partitioning of the whole structure n

m 1+Ξ  through binary cube like vertical extensions of elements of 
H
)

 or H
(

. The following formula shows the picture of factorization of structure of n
m 1+Ξ  through these cubical 

elements: ( ) ( )( ) ( )∑∑
==

⋅=⋅⋅=+
n

k

kk
n

n

k

kkk
n

n mC/mCm
00

221  for even m  and ( ) ( ) nnn /)m(m 2211 ⋅+=+  for 

odd m . 
Thus, we get H

)
 disjoint subsets, congruent to binary cubes, which cover n

m 1+Ξ . Notice that if we construct the 

corresponding binary cubes, then a pair of vertices, comparable in a binary cube, is comparable also in n
m 1+Ξ . 

Therefore monotonicity in n
m 1+Ξ  implies monotonicity in all received binary cubes and starting by a monotone 

function in n
m 1+Ξ  and reconstructing the implied functions on cubes the initial function will be reconstructed in a 

unique way. 
We recall now the problem of identification of monotone binary functions defined on n

m 1+Ξ . 
By Hansel’s result [H, 1966] an arbitrary monotone Boolean function with k  variables can be identified by 

⎣ ⎦ ⎣ ⎦ 122 ++ /k
k

/k
k CC  accesses to the oracle.  

Hence an arbitrary monotone function defined on n
m 1+Ξ  can be identified by 

( ) ⎣ ⎦ ⎣ ⎦( )( )∑
=

++⋅⋅
n

k

/k
k

/k
k

kk
n CC/mC

0

1222  accesses for even m  and by ( ) ⎣ ⎦ ⎣ ⎦( )12221 ++⋅+ /n
n

/n
n

n CC/)m(  - for 

odd m .  
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4. Characteristic vectors of subsets partitions of nE  and  
    identification of monotone functions in H

)
 

For a given m , nm 20 ≤≤  let mψ  denote the set of all characteristic vectors of partitions of m -subsets of 
nE . A nonnegative integer-valued vector )s,,s,s(S nL21=  is called characteristic vector of partitions of a 

vertex subset M , nEM ⊆  if its coordinates are the sizes of partition-subsets of M  by coordinates 

nx,,x,x L21 , which are the Boolean variables composing nE . is  is the size of one of partition-subsets of M  in 
the i -th direction and ism −  is the complementary part of partition. For simplicity we will later assume that is  is 
the size of the partition with 1=ix .  

If 0≠m  then mψ  is not empty. It is also evident that n
mm 1+Ξ⊆ψ . As other exceptions distinguish between the 

2 boundary cases: if 1=m  then n
mm 1+Ξ=ψ  and so nn

mm 21 =Ξ= +ψ ; if nm 2=  then 1=mψ  and the 

vector with all coordinates 12 −n  indeed belongs to n
m 1+Ξ . 

In [S, 2006] the entire description of mψ  is given in terms of n
m 1+Ξ  

geometry. It is particularly proven that the main problem of describing 
characteristic vectors can be moved from the n

m 1+Ξ  to the area of H
)

 
( H
(

), where the vector set mψ  has monotonous structure, – it 
corresponds to the units of some monotone decreasing binary function 
defined on H

)
 (monotone increasing binary function defined on H

(
). 

Figure 1 illustrates the sets mH ψ∩
)

 and mH ψ∩
(

 for even and odd 
m  values, correspondingly. 
Thus for entire description of mψ  it is sufficient to consider all monotone 
functions defined on H

)
 or H

(
. We shall restrict ourselves to the 

consideration of decreasing monotone functions defined on H
)

. Let mψ)  
be the subset of mH ψ∩

)
 consisting of all upper units of corresponding 

monotone function.  
In [AS, 2001] additional resource is introduced: minL  and maxL , - 
minimal and maximal numbers of layers of H

)
, - are calculated, such 

that all vectors of mψ)  are located between them. It importantly follows 
that the entire description of mψ  is reduced to the identification of 
monotone functions with upper units between the layers minL  and 

maxL .  
Summarizing all the above consideration we come to the conclusion: 
1) Algorithmic resource of learning monotone binary functions defined 
on n

m 1+Ξ  includes structures such as: 
- generalized Hansel’s method and constructions, for monotone binary functions defined on multi-valued 

cube, 
- n

m 1+Ξ  partitioning through binary cube like vertical extensions of the elements of H
)

 together with 
applying Hansel’s result for monotone Boolean functions defined on that cubes, 

2) For the entire description of mψ  we reduce the problem to H
)

 becoming able to possess with additional 
resources: 

- learning monotone binary functions defined on H
)

 by means of generalized Hansel’s method,  

 
a) even m  values 

 
b) odd m  values 

 

Figure 1 
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- partitioning H
)

 into binary cube like vertical extensions of its upper homogeneous elements and applying 
Hansel’s method for them, 

- identifying monotone functions defined on H
)

 with use of additional information on location of their upper 
units through minL  and maxL . 

The choice of concrete resource set depends on requirements of certain applications.   

Conclusion 
Algorithmic resources are considered for elaboration and identification of monotone functions. Current research 
proposes two new components - partitioning the multi-valued cube through binary cube like vertical extensions of 
its upper homogeneous elements; and learning upper homogeneous area through the analogous partitioning. The 
choice of concrete resource depends on requirements of certain application. 
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Abstract: This paper presents the process of load balancing in simulation system Triad.Net, the architecture of 
load balancing subsystem. The main features of static and dynamic load balancing are discussed and new 
approach, controlled dynamic load balancing, needed for regular mapping of simulation model on the network of 
computers is proposed. The paper considers linguistic constructions of Triad language for different load balancing 
algorithms description.  
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