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Abstract

This thesis studies the NP-hard multi-depot vehicle routing problem (MDVRP) which

is an extension of the classical VRP with the exception that vehicles based at one

of several depots should service every customer assigned to that depot. Finding the

optimal solution to MDVRP is computationally intractable for practical sized problem

sets, and various meta-heuristics including genetic algorithms have been proposed in

the literature. In this work, an efficient multi-population genetic algorithm based

on age layered population structures for the MDVRP is proposed. Three inter-layer

transfer strategies are proposed and multi-objective fitness evaluation is compared

with weighted sum approach. An empirical study comparing the proposed approach

with existing genetic algorithms and other meta-heuristics is carried out using well-

known benchmark data. The performance found in terms of solution quality is very

promising.
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Chapter 1

Introduction

Vehicle routing problem (VRP) is a well-known optimization problem introduced in

1959 by Ramser and Dantzig [17]. This NP-hard optimization problem illustrates

difficult search problems and significantly contributes to the examination of different

heuristic search strategies. Though complex, VRP is significant in resolving system-

atic distribution procedures which help to reduce operational costs. The works of [40]

and [19] present a survey on the classification and application of VRP. VRP exists in

variants, and these variants have formed the basis for major discussions in available

literature.

VRP is typically explained as a number of customers, each with demands to be

served with a fleet of vehicles at a depot. It therefore aims at finding the minimum

number of vehicles to be used to travel at a minimum distance while serving all these

geographically dispersed customers. Each customer is visited once while a vehicle

starts and ends at the same depot.

The variants of VRP are studied depending on given constraints. Some variants

focus on just a depot with several customers basically referred to as the Single Depot

VRP while others consider the time for delivery and pickup of items [12, 22, 43].

Nonetheless, this focus is less viable in recent times as most industries including soft

drink industry [27] require more than one depot for their operations. This results

in the application of the Multi-Depot VRP (MDVRP) - an extension of the VRP

which involves a number of depots and customers. The MDVRP however, requires

that any vehicle from one of many depots visits a customer exactly once. In this

regard, companies within distribution and logistics management including chemical

products [3] and newspaper delivery [26] have found the MDVRP useful.

This thesis focuses on the MDVRP. The MDVRP is classified into two basic

types namely, the non-fixed-destination and fixed-destination. When using the fixed-

1



CHAPTER 1. INTRODUCTION 2

destination MDVRP approach, a vehicle starts and ends a route at the same depot

but when applying the non-fixed-destination MDVRP approach, a vehicle starts and

ends a route at different depots.

The MDVRP is computationally intractable and various approaches have been

proposed in the literature to help solve this problem. Exact methods as recently

reported by Contardo [14] are scarce; even though useful, this approach consumes

relatively much computation time even when applied to problems with smaller sizes.

However, a number of heuristics including Tabu search [13, 47] as well as adap-

tive large neighborhood search (ALNS) [46] have tackled the MDVRP with success.

Nonetheless, in order to find a fast and near optimal solutions to the MDVRP, a

number of meta-heuristics algorithms have been implemented. Notable among them

is the genetic algorithm (GA).

GA is a population based meta-heuristics that follows the Darwinian processes

of natural evolution including selection of fitter individuals, recombination and mu-

tation. An analysis of existing research on the MDVRP with GA shows that little

research focused on minimizing both number of vehicles and total distance which is

the multi-objective optimization (MOP) approach, while the rest focused on mini-

mizing only the total distance.

A previous study given in [38] reveals that GAs performance are less optimal

compared to other meta-heuristics. That notwithstanding, these MOPs provide more

room for decision making based on preference while compromises are made. It has

also been established that “Minimizing the number of vehicles affects vehicle and

labour costs, while minimizing distance affects time and fuel resources” [44]. It is

therefore plausible to have an algorithm that helps in minimizing both objectives

simultaneously. GA is prone to settling on suboptimal solutions hence resulting in

the problem of premature convergence.

Age Layered Population Structure (ALPS) [32] is a kind of multi-population evo-

lutionary algorithm that resolves the problem of premature convergence in algorithms

which display characteristics of randomness. Some advantages associated with using

ALPS are found in[1, 32, 33, 34, 48]. Through a routine initiation of new individuals

into the population, ALPS increases the likelihood of an evolutionary algorithm which

is hardly converged on a local optimum but consistently searches various portions of

the fitness landscape with greater opportunity to find a global optimum solution. Us-

ing ALPS based GA, this thesis focuses on the fixed-destination MDVRP with both

route and capacity constraints. In this variant of MDVRP, the number and locations

of both depots and customers are known a priori.
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Our ALPS-GA employs a simple permutation of randomly clustered individuals

through the use of a route scheduler [44] with a simple mutation to reassign individuals

from one depot to the other. The proposed ALPS-GA is compared to Thangiah et

al.’s [52] genetic clustering as well as Ombuki et al.’s [44] genetic algorithms for the

MDVRP. The proposed ALPS-GA performed better than that of Ombuki et al. [44]

and Thangiah et al. [52]. Further MOP, a comparison with normalized sum of ranks

was done. This fitness evaluation strategy equally proved efficient with the ALPS-GA.

1.1 Summary of the Main Contributions

This thesis made the following main contributions;

1. Proposed an ALPS-GA for the fixed-destination MDVRP using multi-objective

approach that minimized both the number of vehicles and total distance trav-

elled.

2. Proposed three inter-layer transfer strategies and determined their effectiveness.

3. Proposed a reassigning mutation.

4. Performed an empirical study comparing the proposed ALPS-GA with existing

meta-heuristics.

1.2 Structure of Thesis

Chapter 2 gives a background study on the fundamental components of the thesis

including ALPS, GA, and multi-objective optimization with its accompanying fitness

evaluation methods and presents a literature review on related works. Chapter 3

provides the details of the proposed ALPS based GA. Chapter 4 presents experimental

results. Discussions with concluding remarks and future works given in Chapter 5.



Chapter 2

Background

This chapter provides background information on MDVRP, ALPS and its applica-

tions, and genetic algorithms and multi-objective optimisation.

2.1 Multi-Depot Vehicle Routing Problem

Within a typical distribution system, assume that the customer size, location, indi-

vidual customer demands as well as the number and location of all potential depots

are known while vehicle type and size are also given a priori. We directly employ the

MDVRP model adopted by Renaud et al [47]. Let G = (V,A) be a directed graph,

where V is the vertex set, and A is the arc set. The vertex set V is further divided

into two disjoint subsets V = Vcus ∪ Vdep where Vcus = {v0, v1, v2, . . . , vn} represents

the set of customers, and Vdep = {vn+1, . . . , vn+d}, the set of depots. We align each

customer to a non-negative demand di and a service time ρi for vi ∈ Vcus. We use the

arc set A to denote all available connections between nodes including those denoting

depots. We define a cost matrix C = (cmk) on A to represent travel times. We use

travel times to mean Euclidean distance as termed in other publications on MDVRP.

We emphasize on problems for which C is symmetric and solves the triangle inequal-

ity, i.e., ckl = clk and cmk 6 cml + clk, for all m, l, k , where ckl is the distance from

customer k to customer l.

For each depot, vk ∈ Vdep with n + 1 ≤ k ≤ n + d, tk represents the number

of identical vehicles with capacity Q at vk. This is depicted in Figure 2.1 with two

depots and nine customers.

Objectives:

4
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1. Minimize the total number of vehicles used to serve all customers.

2. Minimize the total distance travelled by all the vehicles.

Constraints to be observed:

• A fleet of same size vehicles with equal capacities Q is located at each depot.

• Each vehicle begins and terminates at the same depot. This is termed as fixed

destination problem.

• All the customers and depots with their capacities, demands and locations are

known in advance.

• The route duration spent by a vehicle does not exceed a preset limit.

• Customers of a given route have a total demand less than or equal to the total

capacity of the vehicles assigned to that route.

• No customer has a demand value more than the capacity of a vehicle.

• Lastly, each customer is visited once and only once by a vehicle.

Figure 2.1: An example of MDVRP with 9 customers and 2 depots.
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2.1.1 Previous Work on MDVRP

Cardon et al. [20] introduced a polynomial time approximation to solve both fixed

and non-fixed destination (starts a route from a depot and end at a different depot)

variants of the MDVRP. The run time of the solution was improved by eliminating

the double exponential term in the run time which was assumed to be caused by

computing the optimal tour. Contardo and Rafael [14] proposed vehicle flow and

set partitioning formulations to MDVRP. The algorithm used both cutting planes

method and the column and cut generation. Baldacci and Mingozzi [2] also proposed

an exact method based on LP relaxation and Lagrangian relaxation to reduce the

number of variables in the formulation and then applied integer linear programming

to the problem. Laporte et al. [39] also proposed a branch and bound algorithm but

tested for just some small instances of the MDVRP.

Some heuristics like savings criterion which incorporates multiphase heuristics was

used by Chao et al. [13] to solve the MDVRP to detect new best solutions. Renaud et

al. [47] introduced FIND as an improved tabu search with a post-optimization strategy

to the solution. FIND performed the fast improvement (FI) where it considered inter,

intra and 3-routes exchange. Two tabu search algorithms were proposed [15, 47]

where [15] was designed such that it used fewer user controlled parameters. Cordeau

et al. proposed another algorithm using both tabu search and Integer Programming

[16].

Thangiah et al. [52] proposed genetic algorithm with adaptive clustering methods

and post-optimization strategies for the MDVRP. Nilay et al. [56], proposed an al-

gorithm which served as an improvement on Thangiah et al.’s work by considering

other clustering methods. Ombuki et al. [44], proposed a genetic algorithm which

used a simple fast approach to assign customers to their nearest depots and applied

an efficient crossover approach with local search like properties. Surekha et al. [51]

proposed another genetic algorithm which employed the grouping of customer to their

nearest depots and a routing strategy that used Clarke and Wright saving method

[23]. A survey in [38] provides a summary of genetic algorithm strategies used in

solving MDVRP.

Liu and Yu (2013) proposed a hybrid algorithm using ant colony (ACO) and GA.

The GA optimized the parameters for the ACO [41]. Ropke et al. [46] proposed an

adaptive large neighborhood search (ALNS) which provided some of the best MDVRP

results.

A population based evolutionary search combined with aggressive improvement

capabilities of neighborhood metaheuristics approach was proposed [54]. Gilbert and
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Johnson’s sweep algorithm [24] was followed in [50] to solve MDVRP.

There have been other hybrid algorithms proposed to solve the MDVRP. Jeon et

al. [36] suggested hybrid genetic algorithm (HGA) for MDVRP, which had an im-

provement of generation for the initial solution and a float mutation rate for escaping

from the local solution. Ho et al. [2008] also proposed HGA1 and HGA2 to solve

MDVRP [29]. A comprehensive review on MDVRP can be seen in [44]. Parallel Im-

proved ACO (PIACO) [55] considered MDVRP as a single depot VRP by introducing

a virtual depot which linked all the available depots from which a route starts and

terminates. Well noted from this paper is also the fact that it considered subpopulat-

ing the individuals (pheronomes). They used the coarse-grained strategy to perform

inter subpopulation exchange of the pheronomes using the ring topology to prevent

premature convergence. One recent paper on MDVRP [11] introduced the use of

multi-population strategy for MDVRP and introduced diversity based on exchange

of individuals based on fitness.

2.2 Age Layered Population Structure

Hornby [32] proposed the Age-Layered Population Structure (ALPS) as a technique

for handling the problem of premature convergence in evolutionary algorithms (EAs).

Hornby [32] reviewed some multi-population algorithms such as the hierarchical fair

competition (HFC) and adaptive hierarchical fair competition (AHFC). He addressed

the weaknesses of these algorithms by proposing the ALPS to be an algorithm with

an age attribute for an individual. The downside of the two aforementioned algo-

rithms resulted from the transfer of individuals from one layer to the other based on

fitness. The superiority of individuals with better fitness are highly observed because

individuals with low fitness are mostly not allowed to be transferred. However, ALPS

measures the ageing of genetic material in the evolution of a population.

In ALPS, age is used as a factor to restrict competition and breeding in the pop-

ulation of individuals. In using age as a factor to restrict breeding, it decreases the

likelihood of very fit old individuals controlling the evolution process, which mostly

leads to early convergence in traditional EA. ALPS algorithm implementation is dif-

ferent from traditional EAs as it requires new parameters, such as how many solutions

to keep in each layer and how to pick cutoffs for the age layers, etc. ALPS groups

individuals into age-layers and introduces new randomly generated individuals on a

regular basis into the youngest (layer 0) layer. The individuals at each layer are al-

lowed to develop and evolve in parallel while inter layer transfer of individuals take



CHAPTER 2. BACKGROUND 8

place. A feature of ALPS is that, there is no age limit for the last layer to retain all

the best individuals. This retention of best individuals though depends on the type

of inter-layer transfer used. The outcome of introducing randomly generated individ-

uals is, an evolutionary algorithm (EA) that continuously searches new parts of the

fitness landscape. The ALPS approach in EA helps to overcome the problem of early

convergence in the algorithm as evident in [32, 33, 34]. The search behavior of ALPS

shows that, randomly generated offspring are able to change the population out of

mediocre local optima in the fit portions of the fitness landscape. This benefit is also

achieved through the breeding that happens among the layers. A clustered popula-

tion around a different fitness landscape is created with each restart of the bottom

layer in ALPS; hence the resulting ALPS population increases the exploration of the

fitness landscape. An individual moves into the next higher layer when it attains its

accepted maximum age in the layer [1]. An individual in the next higher layer is dis-

carded to give chance to a new individual for a constant population to be maintained

in all layers.

2.2.1 ALPS Algorithm

The algorithm starts with randomly initializing the first layer. Through the evolution

process, the other layers are filled. The bottom layer is replaced by newly generated

individuals and the old generation moved to the next layers or discarded [32].

Algorithm 1 Pseudocode for ALPS

1: procedure ALPS()
2: Read parameter file
3: Get number of layers, age gap, AgeingScheme
4: setLayers ⇐= InitialiseLayers(number of layers, age gap, ageingScheme)
5: while !termination criterion do
6: if (generation == 0‖generation%layer0.agelimit == 0) then
7: M ⇐= RandomlyCreateNewIndividuals()
8: Else
9: evolveIndividuals()

10: end if
11: if (generation>layer0.agelimit) then
12: evolveIndividuals()
13: end if
14: end while
15: end procedure
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1: procedure evolveIndividuals()
2: Perform elitism
3: procedure PerformSelection()
4: if (layer0) then
5: Parents ⇐= selectparents(layer0)
6: Else
7: Parents⇐= selectParents(currentLayer(C), (C-1)Layer, selection pres-

sure)
8: end if
9: end procedure

10: Perform Crossover
11: Perform mutation
12: if (individual.age==layer.ageLimit) then
13: nextLayer ⇐= moveIndividual()
14: end if
15: end procedure

2.2.2 How to measure Age

Age has been used as a factor in various EA systems to improve performance [31, 35].

The starting age for all individuals is set to 1 in all these systems. This is independent

of how they were created, that is whether through crossover, mutation or through

random creation. The difference between these systems and ALPS is, ALPS provides

age to an individual based on how long its ancestors have existed while the former

increases the age of an unchanged individual in terms of genes. Age is the degree

of how long an individuals genotypic material has existed in the population. This is

to say that an individual in ALPS attains its age from the age of the highest parent

plus one [32]. There are a number of ageing schemes that are used in ALPS namely

linear, polynomial, fibonacci, or exponential [32] as shown in Table 2.1. Based on

user decision or empirical tests, a user selects an ageing scheme for the experiments.

In setting up an ALPS run, the user sets out parameters such as the age gap for

each layer and the number of age layers. The selected ageing scheme with increasing

limits is multiplied by an age-gap parameter per layer, which helps in controlling

the population size, the age limit per layer and the number of layers since there is

normally a need to push up individuals from one layer to the other.

2.2.3 Related Works to the ALPS

Hornby in [33] revisited the idea of measuring the age of an individual and determined

that by using age to restrict competition and breeding, the population is not over-
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Table 2.1: Ageing Schemes for ALPS [32]

Aging-Scheme 0 1 2 3 4
Linear 1 2 3 4 5

Fibonacci 1 2 3 5 8
Polynomial(n2) 1 2 4 9 16
Exponential(2n) 1 2 4 8 16

taken by highly fit individuals because younger individuals are allowed to compete

with older ones and are also free to develop. Age was explained to be measured by how

long an individual’s ancestors have existed contrary to other age-based algorithms.

These other age-based algorithms rather measured age by how long an individual has

maintained the same genotypic material. Hornby showed the efficiency of ALPS with

GA on the Black-Box Optimization Benchmarking (BBOB) problems and obtained

better results. The ALPS had been used in the genetic programming (GP) context

but Hornby [33] considered it within GA and proposed that ALPS can be used for any

EA. In [34], Hornby, compared a steady state GA based on ALPS with differential

evolution (DE) and a covariance matrix adaptation evolution strategy (CMA-ES).

Hornby et al. [7] used ALPS and early stopping strategies to further increase diversity

while decreasing search time.

In [49], ALPS enhanced cartesian genetic programming (CGP) was declared better

than the traditional CGP when compared on an image operator problem.

Additionally, the applicability and efficiency of ALPS exhibited as it performed pos-

itively on a financial portfolio problem studied [45].

A comparative study on canonical GP, ALPS and feature selection ALPS (FSALPS) [1]

on a feature selection problem has been conducted.

Spatial coevolution (SCALP) [28] focused on reducing the increase of the tree size

without any improvement in fitness usually referred to as bloat.

2.3 Genetic Algorithm

John Holland introduced the genetic algorithm (GA) as a meta-heuristics which mod-

els a given problem by following the natural processes of evolution [30]. In a GA, a

population of individuals (i.e. chromosomes) representing potential solutions for the

problem at hand is transformed into a new population using the Darwinian principle

of survival of the fittest and natural selection. A new population of individuals is

constantly generated with the aim of getting the best solution to the problem until
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reaching a termination criterion. GAs do not guarantee finding an optimal solu-

tion to a given problem but often obtain good or near optimal solutions to many

problems in feasible time [38]. GAs have been considered for problems like the hub

location problems [42], multi-objective management [37] and several vehicle routing

problems [12, 43, 44, 50, 51].

Algorithm 2 shows an outline of a simple GA.

Algorithm 2 Pseudocode for GA

1: procedure SimpleGA()
2: Input dataset, parameters
3: Randomly generate initial population
4: while !(termination criterion) do
5: Compute chromosome fitness
6: Select elite population
7: Select 2 individuals as parents
8: offsprings ⇐= perform crossover(parents)
9: perform mutation(offsprings)

10: newPopulation ⇐= individuals
11: Population ⇐= newpopulation
12: end while

2.3.1 Chromosome Representation and Initial Population Genera-

tion

A chromosome represents a probable solution to a problem at hand. GA models

the chromosome in a form of an efficiently designed data structure. Floating point

numbers, integers, binary strings, order-based representations, set-based representa-

tions, among others are examples of representations existing in literature [42], [9]. A

number of these chromosomes are randomly created to form the initial population.

2.3.2 Fitness Evaluation

The fitness value of each individual in the population is calculated using a function

evaluation that measure quality of a solution for a problem at hand. The values

produced by the fitness function show the cost of the solutions of the population in

a generation and deliver a source for the identification of solutions that are fitter for

the succeeding selection process.
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2.3.3 Recombination

Through crossover, two selected individuals from the population are paired up for

reproduction to yield offspring by exchanging their genes.

2.3.4 Mutation

Mutation potentially introduces a genetic diversity from one generation of a popula-

tion to the next and helps the algorithm to avoid getting trapped in a local optimum.

The genes of the chromosomes are mutated after crossover to alter their composition.

In mutation, only one chromosome is selected and the resulting offspring is evaluated

again and added to the new population to continue the evolution process.

2.3.5 Elitism

Elitism involves introducing the best individuals in the current generation into the

next generation unchanged. Though the elite population can be denied of selection,

these individuals are allowed to be selected as parents for recombination and this

gives an assurance that the quality of the solution will not drop from one generation

to the other.

2.3.6 Selection

Selection is a stage of a GA in which an individual is chosen from a population for

a later breeding using recombination, mutation. Examples of selection mechanisms

include tournament selection , roulette wheel, scaling selection, and rank selection.

2.3.7 Termination

Below are some termination criteria in a GA algorithm.

• A termination criterion can be when the algorithm reaches a pre-fixed number

of generations.

• It can also be when a chromosome reaches a particular fitness level. .

2.4 Multi-Objective Optimization (MOP)

MOP is a problem instance which derives the optimal solution from two or more

objectives. Oftentimes some compromises are made on these objectives to reach a
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decision. Success in the use of MOP have been shown in [8, 18, 21]. An example

of such a problem could simply be realized in the field of transportation. While the

company aims at securing a big vehicle, it also considers fuel consumption to be

important. The company might end up buying something not as big as it considered

based on the fuel consumption. As this thesis aims at minimizing the number of

vehicles as well as the total distance travelled, the problem is viewed as a multi-

objective optimization hence in determining the fitness of an individual; some known

fitness evaluation strategies are implemented.

2.4.1 Weighted Sum

This fitness evaluation technique introduces a bias by requiring that some objectives

be given priority. The disadvantage of this approach is that determining the appro-

priate weights for the objectives becomes difficult and time consuming. Furthermore

this approach converts a multi-objective problem to a single objective one. For ex-

ample assuming there is an individual X with x1, x2, · · · , xn as the n objectives to

be evaluated and w1, w2, · · · , wn as the weights corresponding to each objective, the

fitness value for individual X is given by

Fitness(X) = x1 ∗ w1 + x2 ∗ w2 + · · ·+ xn ∗ wn (2.1)

2.4.2 Pareto Ranking

Pareto ranking employs the use of dominance to give ranks to individuals which will

serve as fitness [53]. It gives better ranks priority to individuals whose fitness values

per objectives can not be categorically outperformed by others.

Basically the whole idea of pareto ranking is to maintain the independence of

each of the objectives considered for a candidate solution as opposed to weighted sum

which merges the objectives together. Having maintained the individuality of the

objectives, they are used collectively to stratify the population into groups based on

dominance. This is to say that, the candidates in a stratified group can be said to

have equal advantage or strength as none of them is better than the other. Hence

the members in a stratified group are only better than members in another group

beneath them. This idea is important because, it can be difficult to compare some

objectives. For example consider the speed of a car verses the car’s safety. This

evaluation provides room for decision makers to make selection based on what they

actually are interested in. We now explain how pareto ranking is performed given a
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number of individuals in a population for our minimization problem.

For a problem defined by a vector of objectives ~f =(f1, ..., fn) which is subject to

appropriate problem constraints, we say ~u dominates ~v, (~u � ~v) iff ∀i ∈ (1, ..., n) :

ui ≤ vi ∧ ∃i ∈ (1, ..., n) : ui < vi. This by definition means, a vector is dominated if

and only if another existing vector is better in at least one objective and at least as

good in the remaining objectives.

For the candidates in a population, compute the fitnesses of individuals and con-

vert to ranks. Select all the non dominated individuals and assign rank 1 to them

as their fitness. These individuals are eliminated from the population and similarly

the rank 2 individuals are selected and eliminated. Subsequent selection,ranking

and elimination are performed until all the individuals are ranked. Each time indi-

viduals are selected, they all have the same rank number and this is calculated as

currentRank=previousRank +1. These ranks are now used as the fitnesses for the

individuals to undertake the other processes such as elitism, tournament selection

and evolution in general. The pseudocode for pareto ranking is given in Algorithm 3

below.

Algorithm 3 Pseudocode for Pareto Ranking [44]

procedure ParetoRank()
Input Population
procedure PerformParetoRanking()

currentRank ⇐= 1
Popsize ⇐= populationSize
N ⇐= Popsize
while (N > 1) do
for (i=1 to N) do

if ~vi is non-dominated then
rank(~vi)= currentRank

end if
end for
for (j=1 to N) do

if rank(~vj)= currentRank then
remove (~vj) from population
Popsize=Popsize-1

end if
end for
currentRank=currentRank+1
N=Popsize

end while
end procedure
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2.4.3 Sum of Ranks

Bentley and Wakefield [5] proposed this fitness evaluation method basically to solve

the problem of outliers in Pareto ranking. This method has been noted for problems

with many objectives but has also been proven by some researchers to work well for

problems with few objectives. Notable is the work by Bergen and Ross [6] which

considers three (3) attributes of a color gradient distribution. There are two types of

sum of ranks in existence. Both of them are explained below with Figure 2.2 showing

the one implemented in this thesis.

Given a set of individuals each with multiple objectives, first compute the fitness

per objective for each individual. Rank each objective per individual in the popula-

tion, sum up the ranks for all the objectives per individual and perform re-ranking

The aforementioned steps outline the first type of sum of ranks. The normalized

sum of ranks was important because often it happens that the total ranks of per

objective are less than the total for other objectives which could lead to unfair dis-

tribution of overall ranks to the individuals in the population. Hence, immediately

after the ranks for each objective is computed, one finds get the highest rank number

from the ranks of each objective. Then we divide each rank of each individual per

objective by the highest rank number per objective (n), sum the result from n for each

individual and re-rank the individuals and set the rank as the fitness. This balances

contribution of each objective to the overall score.

Figure 2.2: Normalised sum of ranks for a minimization problem with two objectives.



Chapter 3

ALPS based GA for the MDVRP

The implementation details of the proposed ALPS-GA for the MDVRP is provided

here. Generational ALPS was utilized with GA serving as the evolutionary algorithm.

An overview of the ALPS algorithm is illustrated in Chapter 2 (Algorithm 1) and an

outline of the proposed system is given in Figure 3.1.

ALPS-GA starts by designing the layers and setting the age limits for each layer.

The GA is activated at the lower layer which performs a simple clustering of cus-

tomers to their nearest depots. The assigned customers are effected upon by the

route scheduler to produce viable chromosomes randomly for initial population into

the first layer. After subsequent evolutions involving the use of tournament selection

which retain elite population [25], the use of best cost route crossover (BCRC) [44]

and re-assigning mutation, these chromosomes reach their age limit and are trans-

ferred to the next layer with the reintroduction of new individuals into the lower

layer. The process is repeated until all layers and termination criterion are reached.

16
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Figure 3.1: Processes involved in finding optimum solution.

3.1 Initial Depot-Clustering

The Euclidean distance is used to assign customers to their nearest respective depots.

In [44] some of customers were determined based on how close they were to more

than one depot. Similarly to the work in [44] these borderline customers are used for

mutation in this thesis.

3.2 Chromosome Representation and Initial Population

An indirect representation of chromosomes implemented depicts the fleet of vehicles

used and the order used to traverse the customers. A path representation which

involves the use of an intelligent route scheduler is employed to produce a n-vector

cluster of routes with n being the number of depots. Figure 3.2 depicts the chromo-

some representation. This figure illustrates an MDVRP with 10 customers and two

depots,where 6 and 4 customers are assigned to the individual depots respectively.

The initial population consists of only feasible candidates.
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Figure 3.2: Chromosome Representation with two depots and 10 customers with no
delimiter showing start and end of route per depot.

3.3 Route Scheduler

Since an indirect chromosome representation is used, the purpose of the route sched-

uler is to convert a random permutation of customers per depot into feasible routes.

3.4 Fitness Evaluation

3.4.1 Weighted Sum

Weighted sum involves associating weights to the individual objectives and comput-

ing the total fitness as a single objective problem. For the MDVRP, an aim was

to minimize the total number of vehicles and total distance. An individual ind is

mathematically represented as ind = (A, h : A → Vdep, γ : A → Vcus
∗), where

A is the set of vehicles, h assigns a home depot to each vehicle, and γ assigns a

route, i.e. a sequence of customers to each vehicle. The distance dist(d,r) of a route

r = cus1, . . . , cusn starting at depot d can be computed by dist{d, cusi, . . . , cusn}=
cd,cus1 + ccus1,cus2+, . . . ,+ccusn−1,cusn + ccusn,d. The fitness of the individual is found by

using the equation:

Fitness(ind) = α ∗ |A|+ β ∗
∑
aεA

dist(h(a), γ(a)) (3.1)

α and β are the weights associated with the number of vehicles and the total
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distance respectively with dist(h(a), γ(a)) representing total distance travelled at a

depot. Since this problem had an inverse relation, we empirically established α as

100 and β as 0.0001.

3.4.2 Pareto Ranking

First the total vehicles and distance of each individual were computed. Both scores

were collectively used to rank the individual. These ranks therefore served as the

fitness of the individual following the algorithm in Section 2.4.2.

3.4.3 Sum of Ranks

This thesis followed the explanation of normalised sum of ranks given in Section 2.2.

Both objectives were individually evaluated first and also underwent the normaliza-

tion process. The ranks were assigned as the fitness of the individuals.

3.5 Elitism

The ALPS-GA implement elitism the same way as the traditional GA. It selects all

elite population from the current layer. These selected individuals are retained in the

old population and could be reselected for recombination and mutation. Due to the

inter layer transfer process, all but the last layer retain these elite individuals until

the layer’s age limit is reached. The elite population size is set to 3 as shown in Table

4.3.

3.6 Selection

The k size tournament selection was used. K was set to 4 of the population per layer.

The individuals are selected from the current layer and the layer one level below.

There is a selection pressure empirically established such that 80% of the individuals

are selected from the current layer while the remaining 20% are selected from the

lower layer. This procedure does not affect the first layer (Layer 0) and thus all the 4

individuals are selected from layer 0. We used a condition that was aimed at reducing

the search of an individual from the lower layer. We sorted the population based on

fitness and searched through the first quarter of the sorted population. After getting

the individuals for the tournament competition, we picked the one with the least

fitness as the winner.
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3.7 Crossover

The Best-Cost Route Crossover (BCRC) [44] is employed in this thesis. It was in-

troduced in [43] as a problem specific crossover to solve the VRP with Time window

(VRPTW). BCRC has been used for variants of VRP [10, 44] and Hub Location prob-

lem [42]. In [44], the algorithm was slightly changed to solve the MDVRP problem.

Figure 3.3 depicts the implementation of BCRC and the following steps are taken to

perform BCRC.

• Randomly select two parents from a given set of viably created population as

P1 and P2.

• Randomly select a route from each parent at a selected depot. For example

route with customers 2,4 from P1 and customers 8,5 from P2.

• Remove from P2 the customers in the route from P1 (2,4) and from P2 the

customers 8,5.

• Re-insert the customers removed from each parent to form the offspring.

– Pick a removed customer from a parent (eg. customer 8 from P1) and

insert at each index in an unremoved route in the parent at the selected

depot.

– Compute the cost of insertion at the index, track its feasibility status, and

create an ascending ordered list of (index, feasibility and cost) based on the

cost. If it exceeds the constraint and breaks a route into two, infeasibility

is true.

– At a given probability (0.8 used in this thesis), randomly generate a number

r between 0 and 1.

– If r ≤ given probability, insert at the first feasible index, or create new

route with only the customer if no feasible index exist.

– If r > given probability, select the index at the first position in the order

list for insertion irrespective of the feasibility status.

3.8 Mutation

The re-assigning mutation used in this thesis was inspired by the single cus-

tomer rerouting and the adaptive inter depot mutation in [44].
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Figure 3.3: Best Cost Route Crossover.

Single customer rerouting: Select a customer randomly from a depot and rein-

sert the customer at a random position within the same depot. For example:

Given 2,7,8,9,10 as customers at depot 1 of a chromosome, if customer 8 is

selected, it could be reinserted with the resulting order of customers at depot1

as 2,7,9,10,8

Inter depot mutation: During initial clustering of customers to the depots,

a list of pairs of customer and depots referred to as candidate swappable cus-

tomer list is built where the following inequality holds:

(ccu,d)−min
min

≤ bound (3.2)
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The euclidean distance from a customer to a depot is given by ccu,d and min is

the distance from a customer to its closest depot and bound is a value empirically

determined as 3. These customers are termed as borderline customers and are

regarded as having the ability to reassign to other depots than the currently

assigned depot during the evolutionary process.

Re-assigning Mutation: Create the swappable customer list from a customer

with its allowed depots (the initial assigned depot inclusive).

– Select a customer and a depot from the swappable customer list for reas-

signment.

∗ We achieve single customer rerouting if the depot selected is the cur-

rently assigned depot.

∗ It is inter depot if it selects a different depot from the current one.

3.9 Replacement Strategy

The ALPS-GA used the generational replacement strategy for evolution which

replaces the entire current population with a new one containing the offspring

and elite population.

3.10 Inter Layer Migration/ Transfer

During the evolutionary process, the allowable age of the individuals at the

layers except the last layer must be checked. Whenever the individuals reach

their age limit layer, these individuals are to be migrated to the layer imme-

diately above this current layer. How these individuals are being transferred/

migrated affect the result of the algorithm. Three replacement techniques were

implemented are as follows:

3.10.1 Reverse Tournament Worst (RTW)

Individuals to the tournament size given are selected from the immediate higher

layer (layerh) to the current layer (layerc) for competition [1]. The worst indi-

vidual in terms of fitness is selected and replaced. This replacement technique

keeps the best individual in (layerh).
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3.10.2 Best Tournament Replacement (BTR)

We selected some individuals and performed tournament selection. The best in-

dividual was replaced by the aged individual from the lower layer. The problem

with this approach was, because the very best individual from (layerh) was not

exempted from the tournament selection, this individual could be replaced. Re-

placing this best individual dragged the search back to either starting or stuck

on a different result which could be worse.

3.10.3 Best Individual Replacement(BIR)

The aged individuals are added to the individuals in (layerh). The combined

individuals are sorted based on fitness. Individuals to the layer’s population

size are selected in ascending order from the sorted individuals. The unselected

individuals are eliminated from the (layerh). This technique ensures that the

best individual in (layerh) is always kept.



Chapter 4

Experimental Results

This chapter provides the experimental details and results of the performance

of the proposed ALPS-GA on the well known MDVRP datasets [57].

4.1 MDVRP Dataset

The MDVRP dataset is made up of 23 instances from P01-P23. P01-P07 have

50 to 100 customers and 2 to 5 depots. P08-P11 have 249 customers and 2 to

5 depots. The last twelve have customers between 60 and 360. In all instances,

a fleet of vehicles were given with homogeneous capacity per instance. The

capacities range between 60 and 500. The 23 dataset is categorized into two.

One category has only capacity constraint and the other with both capacity and

route length constraints. The route length constraint is a preset total distance

a vehicle should not exceed when forming routes. The customers and depots

all lie on a Euclidean plane hence the preset route length is given as the total

Euclidean distance a vehicle can travel. All the MDVRP dataset instances are

shown in Table 4.1. We downloaded these instances from [57].

24
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Table 4.1: Dataset for the MDVRP Experiment

Instances Customers Capacity Depots Instances Customers Capacity Depots
P01 50 80 4 P13 80 60 2
P02 50 160 4 P14 80 60 2
P03 75 140 5 P15 160 60 4
P04 100 100 2 P16 160 60 4
P05 100 200 2 P17 160 60 4
P06 100 100 3 P18 240 60 6
P07 100 100 4 P19 240 60 6
P08 249 500 2 P20 240 60 6
P09 249 500 3 P21 360 60 9
P10 249 500 4 P22 360 60 9
P11 249 500 5 P23 360 60 9
P12 80 60 2

4.2 Experimental Setup

The proposed ALPS-GA was implemented in Java 1.7 with 30 runs per experi-

ment performed on Intel(R) Core(TM) i5.3570 cpu @ 3.30GHz with 8GB RAM

on Ubuntu 15.04 environment. A number of experiments were performed as

follows.

1. Accuracy comparison between our non-ALPS based GA and known GAs.

2. A comparative study between the proposed ALPS-GA and our non-ALPS

based GA using weighted sum.

3. A comparative study on the three inter-layer transfer strategies imple-

mented using the weighted sum.

4. A comparative study among the weighted sum and the two multi-objective

fitness evaluation strategies.

5. A comparative study among ALPS-GA and known GAs.

6. Accuracy comparison among ALPS-GA and known non-GA approaches

using weighted sum.
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4.2.1 Parameters

The empirically established parameters are given in Table 4.2 and Table 4.3.

Table 4.2: Parameter setting for non-ALPS based GA Experiment

Parameters Value
Number of runs 30

Replacement Generational
Population size 400
Generation span 3000

Selection tournament k = 4
Crossover rate 0.8
Mutation rate 0.2

Elite size 3

Table 4.3: Parameter Setting for the ALPS-GA Experiment

Parameters Value
Number of runs 30

Replacement Generational
Population size per layer 80

Generation span 3000
Selection tournament k = 4

Crossover rate 0.8
Mutation rate 0.2

Elite size 3
Number of Layers 5

Ageing Scheme Polynomial
Age Gap 50

We show how we empirically determined the given parameter settings for the

ALPS-GA in terms of ageing scheme and Age gap in the Appendix A.



CHAPTER 4. EXPERIMENTAL RESULTS 27

4.2.2 Comparison of non-ALPS based GA with known GAs

Tables 4.4 and 4.5 show the comparative results with Thangiah et al. [52] and

Ombuki et al. [44]. Comparisons are only done if the total number of vehicles

used are the same. The boldfaced values indicate the best result in 30 runs.

From Table 4.4, it is seen that both non-ALPS based GA and Thangiah et al.’s

performance is comparable.

From Table 4.5, it is seen that our GA reduced the number of vehicles by 1 in

two instances. It also reduced one more than Ombuki et al. [44] in terms of

distance.

Table 4.6 showed overall performance which looked at instances with the same

number of vehicles. It is shown that Thangiah et al. slightly outperformed the

other GAs.

Table 4.4: Comparison of the non-ALPS based GA with Thangiah et al. [52].

Difference in % difference
Instance Thangiah et al. [52] GA Vehicles in Distance

P01 591.73[10] 613.76[10] 0 3.72
P02 483.15[5] 485.73[5] 0 0.53
P03 694.49[10] 714.23[10] 0 2.84
P04 1062.38[15] 1044.50[15] 0 -1.68
P05 754.84[8] 774[8] 0 2.54
P06 976.02[15] 904.06[15] 0 -7.96
P07 976.48[15] 966.42[15] 0 -1.04

Best solution 4/7 3/7 =7/7 -3/7,+4/7

Table 4.5: Comparison of the non-ALPS based GA with Ombuki et al. [44].

Difference in % difference
Instance Ombuki et al. [44] GA Vehicle in Distance

P01 622.18[10] 613.76[10] 0 -1.37
P02 480.04[6] 485.73[5] -1
P03 706.88[10] 714.23[10] 0 1.04
P04 1024.78[15] 1044.50[15] 0 1.98
P05 785.15[8] 774[8] 0 -1.44
P06 908.88[15] 904.06[15] 0 -0.53
P07 918.05[16] 966.42[15] -1

Best solution 2/7 3/7 -2/7,=5/7 -3/7,+2/7
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Table 4.6: Comparison of the non-ALPS based GA with the two well-known GA.
Thangiah et al. [52] , Ombuki et al. [44]

Instance Thangiah et al. [52] Ombuki et al. [44] GA
P01 591.73[10] 622.18[10] 613.76[10]
P02 483.15[5] 480.04[6] 485.73[5]
P03 694.49[10] 706.88[10] 714.23[10]
P04 1062.38[15] 1024.78[15] 1044.50[15]
P05 754.84[8] 785.15[8] 774[8]
P06 976.02[15] 908.88[15] 904.06[15]
P07 976.48[15] 918.05[16] 966.42[15]

Best Solution 3/7 1/7 1/7
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4.2.3 Comparison between non-ALPS based GA and ALPS-GA

From Table 4.7 it could be deduced that the ALPS-GA performed better than

the non-ALPS based GA in 5/7 instances with the highest minimized percentage

of 3.71% and had the same results in 2 instances. Again this is considering

the best results in 30 runs. However the corresponding averages are given

by columns Avg(GA) and Avg(ALPS-GA) where it is shown that ALPS-GA

outperformed the non-ALPS based GA.

Based on this result we used the ALPS-GA for the remaining experiments

though the t-test result shown in Figure B.1 in appendix tells there is no sig-

nificant difference between the two at 5% significant level.

Table 4.7: Comparison of the non-ALPS based GA with ALPS-GA.

%Difference in
Instances GA ALPS-GA Distance Avg(GA) Avg(ALPS-GA)
P01 613.76[10] 613.76[10] 0 623.07[10.33] 618.850[10]
P02 485.73[5] 476.7[5] -1.89 496.53[5.4] 516.352[5.2]
P03 714.23[10] 695.69[10] -2.66 722.01[10.47] 717.522[10]
P04 1044.50[15] 1031.57[15] -1.25 1082.68[15] 1076.698[15]
P05 774[8] 774[8] 0 788.023[8] 799.14[8]
P06 904.05[15] 894.91[15] -1.02 934.96[15.1] 929.242[15]
P07 966.42[15] 931.85[15] -3.71 943.05[15.87] 955.837[15.47]
Best solution 2/7 7/7 -5/7,=2/7
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4.2.4 Comparison among three inter-layer transfer strategies

Tables 4.8 and 4.9 show the results attained from using the (3) inter layer

transfers. In these tables, we show the best out of (30) runs per instance.

Strategy BIR outperforms the other two with a score of 19/23 followed by

RTW with 13/23 and 2/11 for the BTR.

It is hypothesised that BTR did not perform better because, the very best

individual from the last layer at a point in time got replaced. This hypothesis

is shown in Figure 4.1.

The figure shows that the algorithm easily finds the best known result for the

P12 instance with BIR while BTR at a point increased in fitness. This con-

tributed to the little increase in the results of some instances for BTR.

A single factor Anova test at 0.05 critical value among these three inter-layer

transfer strategies is shown in Figure B.2 in Appendix B, which suggests no

significant difference among the strategies.

Table 4.8: Comparison results for the three inter-layer transfer strategies in capacity
constraint dataset.

Instances BIR RTW BTR
P01 613.76[10] 613.76[10] 613.76[10]
P02 476.7[5] 476.7[5] 490.05[10]
P03 695.69[10] 694.26[10] 710.94[10]
P04 1031.57[15] 1043.3[15] 1057.9[15]
P05 774[8] 776.51[8] 798[8]
P06 894.91[15] 905.40[15] 908.63[15]
P07 931.85[5] 936.20[15] 955.66[15]
P12 1318.95[8] 1318.95[8] 1318.95[8]
P15 2571.36[16] 2571.36[16] 2582.11[16]
P18 3859.37[24] 3863.77[24] 3874.08[24]
P21 5831.3[36] 5824.55[36] 5855.64[36]

Best Solution 9/11 6/11 2/11
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Table 4.9: Comparison results for two inter-layer transfer strategies in route and
capacity constraints datasets

Instances BIR RTW
P08 4993.50[25] 5116.61[25]
P09 4464.27[25] 4423.65[25]
P10 4080.70[25] 4072[25]
P11 3904.59[25] 3999.78[25]
P13 1318.95[8] 1318.95[8]
P14 1360.12[8] 1360.12[8]
P16 2575.33[16] 2575.33[16]
P17 2725.08[16] 2725.08[16]
P19 3867.61[24] 3877.79[24]
P20 4091.49[24] 4097.06[24]
P22 5848.55[36] 5874.38[36]
P23 6145.58[36] 6145.58[36]

Best Solution 10/12 7/12

Figure 4.1: Fitness plot of layer 4 for P12 showing BTR and BIR. This shows that
the best individual is occasionally replaced in BTR.
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4.2.5 Comparing the weighted sum and the two multi-objective

fitness evaluation strategies

We conducted the experiments on all the 23 instances using the same param-

eter settings in Table 4.3 and the different fitness evaluation strategies. We

performed 30 runs per instance and showed the best results for the instances in

Table 4.10 while the averages of the 30 runs are shown in Appendix C.

It is not so surprising to see normalised sum of ranks having the least number

of best solution which is 6/23. This evaluation strategy had been designed for

problems with more than 4 objectives where Pareto ranking happens to create

some outliers. This notwithstanding we have seen from Table 4.10 that its

results were not too worse than the best solutions determined.

Pareto ranking was second on the chart with a score of 10/23 which is 6 less than

that of weighted sum. It is also not alarming to see two results for a dataset

instance as these individuals are not better than each other. It signifies how

one objective could be made better at the expense of the other. For example,

the P10 instance recorded 4195.71 for 25 vehicles and 3920.60 for 26 vehicles as

total distance. This also means that minimizing the number of vehicles comes

with a shortfall of increasing the total cost. The weighted sum had a score of

16/23.

We show the pareto front for the P02 dataset instance in Figure 4.2. From this

figure, all individuals with the same ranks are shown in series with the same

shape and colour. The best ranks are the individuals close to the origin hence

the purple diamond shape is the rank 1 individuals representing 5 vehicles and

476.7 as total distance. This analysis suggest that the three fitness evaluation

strategies are suitable for solving the problem.
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Table 4.10: Comparison results for the weighted sum with two multi-objective fitness
evaluation strategies.

Instances Weighted Sum[ 3.4.1] Pareto[ 3.4.2] Normalised[ 3.4.3]
P01 613.76[10] 613.76[10] 612.14[10]
P02 476.7[5] 476.7[5] 488.50[10]
P03 695.69[10] 685.61[10] 706.07[10]
P04 1031.57[15] 1029.02[15] 1049.62[15]
P05 774[8] 770.55[8] 769.82[8]
P06 894.91[15] 908.59[15] 899.93[15]
P07 931.85[5] 935.20[15] 934.44[15]
P08 4993.50[25] 5006.46[25] 5180.29[25]
P09 4464.27[25] 4591.15[25] 4563.88[25]
P10 4080.70[25] 4195.71[25],3920.60[26] 4055.59[25]
P11 3904.59[25] 3927.97[25],3820.71[26] 4033.62[25]
P12 1318.95[8] 1318.95[8] 1318.95[8]
P13 1318.95[8] 1318.95[8] 1318.95[8]
P14 1360.12[8] 1360.12[8] 1365.69[8]
P15 2571.36[16] 2576.08[16] 2583.23[16]
P16 2575.33[16] 2575.33[16] 2586.08[16]
P17 2725.08[16] 2731.30[16] 2731.30[16]
P18 3859.37[24] 3840.35[24] 3895.28[24]
P19 3867.61[24] 3872.64[24] 3914.05
P20 4091.49[24] 4097.06[24] 4097.06[24]
P21 5831.3[36] 5820.69[36] 5821.57[36]
P22 5848.55[36] 5874.98[36] 5970.49[36]
P23 6145.58[36] 6145.58[36] 6145.58[36]

Best Solution 16/23 10/23 6/23
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Figure 4.2: Pareto front plot for the P02 instance
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4.2.6 Comparing ALPS-GA to known GAs (Weighted sum) us-

ing BIR inter-layer transfer.

We followed the comparison strategy used by both Thangiah et al. [52] and Om-

buki et al. [44]. These comparisons can be found in Tables 4.11, 4.12, and 4.13.

We compared the number of vehicles used as well as the percentage difference in

distance which can be found in Tables 4.11, and 4.12. These values indicate the

use of less, equal or more vehicles. It is simply explained as; negative(-) shows

reduction, zero(0) indicates equal values and positive(+) denotes an increase in

the vehicles used.

From Table 4.11, the proposed algorithm used the same number of vehicles

in 17/23 instances in comparison with Thangiah et al. [52] and 19/23 when

compared to Ombuki et al. [44] in Table 4.12. There were 3/23 and 4/23

reduction in vehicles compared to Thangiah et al. [52] and Ombuki et al. [44]

respectively. This implies there was no increase when compared with Ombuki et

al. [44] but increase in 3/23 instances compared to Thangiah et al. [52]. We can

therefore say that the ALPS-GA is comparable to the Thangiah et al. [52] in

terms of vehicles used. The reduction in 4/23 instances show that our algorithm

outperformed that of Ombuki et al. [44] with respect to vehicles used.

The proposed algorithm can be said to have outperformed that of Thangiah

et al. [52] since out of 17 instances with equal vehicles, ALPS-GA minimized

10/17 instances , with the highest reduction percentage of 9.06.

Out of the 19 instances compared with Ombuki et al. [44], there were reduction

in 13/19 and 4/19 increase with 2/19 being equal. We add that, in both com-

parisons from Tables 4.11 and 4.12, we realised a decrease in both vehicles and

distance for the P02 instance. This reduction in both objectives also happened

in Table 4.11 for the P20 instance. Finally, from Table 4.13 (comparing the

three (3) algotithms), ALPS-GA was in the lead with 9/23 followed by Om-

buki et al. [44] with 5/23 and Thangiah [52] with 4/23. This showed that the

proposed algorithm outperformed both algorithms.

We show the network and graphs generated from the ALPS-GA algorithm for

P02 in Figures 4.3, 4.4, 4.5 while networks for P10, P14 and P23 are shown in

the appendix C as well as their optimal routes in Figures C.3, C.4 , C.5. We

also show results of the average of thirty (30) in Table C.1 in the appendix C.
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Table 4.11: Comparison of the ALPS-GA with Thangiah et al. [52] (Weighted sum).

Difference in % difference
Instances Thangiah et al. [52] ALPS-GA Vehicle Distance

P01 591.73[10] 613.76[10] 0 3.73
P02 483.15[5] 476.7[5] 0 -1.35
P03 694.49[10] 695.69[10] 0 0.17
P04 1062.38[15] 1031.57[15] 0 -2.99
P05 754.84[8] 774[8] 0 2.54
P06 976.02[15] 894.91[15] 0 -9.06
P07 976.48[15] 931.85[15] 0 -4.79
P08 4812.52[25] 4993.50[25] 0 3.76
P09 4284.62[25] 4464.27[25] 0 4.19
P10 4291.45[25] 4080.70[25] 0 -5.16
P11 4092.68[25] 3904.59[25] 0 -3.73
P12 1421.94[8] 1318.95[8] 0 -7.81
P13 1318.95[8] 1318.95[8] 0 0
P14 1360.12[8] 1360.12[8] 0 0
P15 3059.15[15] 2571.36[16] 1
P16 2719.98[16] 2575.33[16] 0 -5.62
P17 2894.69[16] 2725.80[16] 0 -6.19
P18 5462.90[22] 3859.37[24] 2
P19 3956.61[24] 3867.61[24] 0 -2.3
P20 4344.81[27] 4091.49[24] -3
P21 6872.11[34] 5831.3[36] 2
P22 5985.32[37] 5848.55[36] -1
P23 6288.04[39] 6145.58[36] -3

Best Found 7/23 15/23 -3/23, +3/23, =17/23 -10/17, +5/17
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Table 4.12: Comparison of the ALPS-GA with known Ombuki et al. [44] (Weighted
sum)

Difference in % difference
Instances Ombuki et al. [44] ALPS-GA Vehicle Distance

P01 622.18[10] 613.76[10] 0 -1.37
P02 480.04[6] 476.7[5] -1
P03 706.88[10] 695.69[10] 0 -1.61
P04 1024.78[15] 1031.57[15] 0 0.66
P05 785.15[8] 774[8] 0 -1.44
P06 908.88[15] 894.91[15] 0 -1.56
P07 918.05[16] 931.85[15] -1
P08 4690.18[25] 4993.50[25] 0 6.47
P09 4240.08[25] 4464.27[25] 0 5.29
P10 3984.78[26] 4080.70[25] -1
P11 3880.65[25] 3904.59[25] 0 0.62
P12 1318.95[8] 1318.95[8] 0 0
P13 1318.95[8] 1318.95[8] 0 0
P14 1365.69[8] 1360.12[8] 0 -0.37
P15 2579.25[16] 2571.36[16] 0 -0.31
P16 2587.87[16] 2575.33[16] 0 -0.49
P17 2731.37[16] 2725.80[16] 0 -0.21
P18 3903.85[24] 3859.37[24] 0 -1.74
P19 3900.61[24] 3867.61[24] 0 -0.85
P20 4097.06[24] 4091.49[24] 0 -0.14
P21 5926.49[36] 5831.3[36] 0 -1.22
P22 5913.59[36] 5848.55[36] 0 -1.28
P23 6145.58[37] 6145.58[36] -1

Best Found 6/23 16/23 -4/23, =19/23 -13/19, +4/19
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Table 4.13: Comparison of the ALPS-GA with the known GAs (Weighted sum).

Instances Thangiah et al. [52] Ombuki et al. [44] ALPS-GA
P01 591.73[10] 622.18[10] 613.76[10]
P02 483.15[5] 480.04[6] 476.7[5]
P03 694.49[10] 706.88[10] 695.69[10]
P04 1062.38[15] 1024.78[15] 1031.57[15]
P05 754.84[8] 785.15[8] 774[8]
P06 976.02[15] 908.88[15] 894.91[15]
P07 976.48[15] 918.05[16] 931.85[15]
P08 4812.52[25] 4690.18[25] 4993.50[25]
P09 4284.62[25] 4240.08[25] 4464.27[25]
P10 4291.45[25] 3984.78[26] 4080.70[25]
P11 4092.68[25] 3880.65[25] 3904.59[25]
P12 1421.94[8] 1318.95[8] 1318.95[8]
P13 1318.95[8] 1318.95[8] 1318.95[8]
P14 1360.12[8] 1365.69[8] 1360.12[8]
P15 3059.15[15] 2579.25[16] 2571.36[16]
P16 2719.98[16] 2587.87[16] 2575.33[16]
P17 2894.69[16] 2731.37[16] 2725.80[16]
P18 5462.90[22] 3903.85[24] 3859.37[24]
P19 3956.61[24] 3900.61[24] 3867.61[24]
P20 4344.81[27] 4097.06[24] 4091.49[24]
P21 6872.11[34] 5926.49[36] 5831.3[36]
P22 5985.32[37] 5913.59[36] 5848.55[36]
P23 6288.04[39] 6145.58[37] 6145.58[36]

Best Found 5/23 6/23 10/23
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Figure 4.3: Generated Network for P02.

Figure 4.4: Fitness plot for P02 with 5 layers.
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Figure 4.5: Fitness plot for P02 in layer4.
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Explanation of the network and fitness plots

The network in Figure 4.3 shows 50 customers with 4 depots. This figure

shows that 3/4 depots had one vehicle (route) each to serve its customers. The

last depot however used two vehicles to serve the customers and obeyed the

constraints that each customer should be visited exactly once with the vehicle

departing from and arriving at the same depot.

In Figure 4.4, there are five layers with four showing spiky fitness curves. The

process of inter layer transfer caused the spikes in the fitness plot. Also the

consistent rapid oscillation of layer 0’s fitness curve is as a result of introducing

new individuals at regular intervals. The transfer of individual at each layer

except layer 4 seems to happen differently and it so occurs due to different age

limits at the individual layers. Figure 4.5 illustrates the last layer (in the fitness

plot).

The fitness of the best individuals is seen to have started from the 450th gener-

ation as the last layer becomes active at this generation during the evolutionary

process, it maintained the fitness value for a short while and started the min-

imization process. Though the slope was not steadily smooth, it shows that

the fitness kept improving with intermediate convergence. An example of the

intermediate convergence can be seen from the 700th to 955th generations thus,

wherever the curve flattens out.
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4.2.7 Comparing ALPS-GA to known non-GAs (Weighted sum).

Similar to the format used in comparing ALPS-GA to the known GAs, we

compare ALPS-GA to known non-GAs .

V(CGW) and V(RBL) provides the vehicle difference between ALPS-GA and

the CGW [13], RBL [47] algorithms respectively. The negative values in these

columns indicate the reduction in the number of vehicles used, while positive

denote increase, with zero(0) meaning equal number of vehicles used. The equal

numbers are highly preferred for the comparison though positive and negative

have their own analytical implications.

ALPS-GA proved to be comparable to both algorithms in terms of vehicles used

(can even be concluded that it performed better than CGW [13]) as it provided

a reduction in 15/23 instances, 8/23 equal values for the remaining instances

and no increment. In a similar way, there was only one positive value when

compared with RBL [47], and 6/23 reduction while the remaining 16 were of

equal values.

Now with the fair comparison based on equal values for vehicles, it is not sur-

prising that there was no bolded values under the CGW, which also confirm

that ALPS-GA was better than it. However on the other hand, a win could be

awarded to RBL as it has 13/23 instances with better results while ALPS-GA

had 5/23.

The highest depreciation percentage in favour of ALPS-GA was -3.33 from CGW

and -0.41 from RBL.
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Table 4.14: Comparison of ALPS-GA with known non GAs

Instances CGW RBL ALPS-GA V(CGW ) V(RBL) D(CGW ) DRBL

P01 582.3[11] 576.86[11] 613.76[10] -1 -1
P02 476.7[5] 473.53[5] 476.7[5] 0 0 0.67
P03 641.2[11] 641.2[11] 695.69[10] -1 -1
P04 1026.9[16] 1003.87[15] 1031.57[15] -1 0
P05 756.6[8] 750.26[8] 774[8] 0 0 3.16 3.23
P06 883.6[16] 876.50[16] 894.91[15] -1 -1
P07 898.5[17] 892.58[15] 931.85[15] -2 0 4.4
P08 4511.6[27] 4485.09[25] 4993.50[25] -2 0 11.3
P09 3950.9[26] 3937.82[26] 4464.27[25] -1 -1
P10 3815.6[28] 3669.38[26] 4080.70[25] -3 -1
P11 3733.0[27] 3648.95[26] 3904.59[25] -2 -1
P12 1327.3[8] 1318.95[8] 1318.95[8] 0 0 -0.63 0
P13 1345.9[8] 1318.95[8] 1318.95[8] 0 0 0 0
P14 1372.5[8] 1365.69[8] 1360.12[8] 0 0 -0.91 -0.41
P15 2610.3[16] 2551.46[16] 2571.36[16] 0 0 -1.51 0.78
P16 2605.7[16] 2572.23[16] 2575.33[16] 0 0 -1.18 0.12
P17 2816.6[18] 2731.37[16] 2725.80[16] -2 0 -3.33 -0.20
P18 3877.4[25] 3781.04[23] 3859.37[24] -1 1
P19 3864.0[24] 3827.06[24] 3867.61[24] 0 0 0.09 1.06
P20 4272.0[28] 4097.06[24] 4091.49[24] -4 0 -0.14
P21 5791.5[37] 5656.47[36] 5831.3[36] -1 0 3.49
P22 5857.4[37] 5718.00[36] 5848.55[36] -1 0 2.3
P23 6494.6[41] 6145.8[36] 6145.8[36] -5 0 0

Best Solution 0/23 13/23 5/23 -15/23 -6/23 0
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4.2.8 Comparison of ALPS-GA to known GAs using Normalised

Sum of Ranks

We compare our results to Thangiah et al. [52] and Ombuki et al. [44] where

Ombuki et al. [44] used pareto ranking.

From Table 4.17, the ALPS-GA had the same number of vehicles compared to

Thangiah et al. [52] but proved more superior when compared to Ombuki et

al. [44]. It had reduction in 9 instances and the same number of vehicles in 17

instances. Two solutions can be observed under Ombuki et al.’s [44] column

which resulted from the fact that none of the two solutions dominated the other.

From Tables 4.15 and 4.16, ALPS-GA performs better than the two algorithms

with 11/23 and 12/23 respectively while recording the reduction percentages of

8.49 and 4.81. When all three algorithms are compared together, we can see

from the Table 4.17 that they are comparable although the proposed algorithm

had 9/23 followed by Ombuki et al. [44] with 7/23 and lastly 5/23 for the

Thangiah et al. [52]. The averages of 30 runs for each instance is given in

Appendix C ( C.2)
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Table 4.15: Comparison of ALPS-GA to known Thangiah [52] using normalised sum
of ranks

Difference in % difference
Inst. Thangiah et al. [52] ALPS-GA Vehicle Distance

P01 591.73[10] 612.14[10] 0 3.45
P02 483.15[5] 488.50[5] 0 1.11
P03 694.49[10] 706.07[10] 0 1.67
P04 1062.38[15] 1049.62[15] 0 -1.22
P05 754.58[8] 769.82[8] 0 2.02
P06 976.02[15] 899.63[15] 0 -8.49
P07 976.48[15] 934.44[15] 0 -5.81
P08 4812.52[25] 5180.29[25] 0 7.64
P09 4284.62[25] 4563.88[25] 0 6.52
P10 4291.45[25] 4055.59[25] 0 -5.82
P11 4092.68[25] 4033.62[25] 0 -1.46
P12 1421.94[8] 1318.95[8] 0 -7.81
P13 1318.95[8] 1318.95[8] 0
P14 1360.12[8] 1365.69[8] 0 0.41
P15 3059.15[15] 2583.23[16] 1
P16 2719.98[16] 2586.08[16] 0 -5.12
P17 2894.69[16] 2731.37[16] 0 -5.98
P18 5462.90[22] 3895.28[24] 2
P19 3956.61[24] 3914.05[24] 0 -1.09
P20 4344.81[27] 4097.06[24] -3
P21 6872.11[34] 5821.57[36] 2
P22 5985.33[37] 5970.49[36] -1
P23 6288.04[39] 6145.58[36] -3

Best Solution 8/23 11/23 -3/23,+3/23,=17/23 -9/17,7/17,=1/17
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Table 4.16: Comparison of ALPS-GA to known Ombuki et al. [44] using normalised
sum of ranks.

Difference in % difference
Inst. Ombuki et al. [44] ALPS-GA Vehicle Distance

P01 600.63[11] 612.14[10] -1 -
P02 480.04[6] 488.50[5] -1
P03 683.15[11] 706.07[10] -1
P04 1034.59[15] 1049.62[15] 0 1.45
P05 778.01[8] 769.82[8] 0 -1.06
P06 916.71[15],900.44[16] 899.63[15] 0,-1 -1.90
P07 922.83[16] 934.44[15] -1
P08 4672.56[25] 5180.29[25] 0 10.87
P09 4332.32[25],4243.74[26] 4563.88[25] 0,-1 5.34
P10 3953.24[26] 4055.59[25] -1
P11 3962.17[25],3876.26[26] 4033.62[25] 0,-1 1.80
P12 1318.95[8] 1318.95[8] 0
P13 1318.95[8] 1318.95[8] 0
P14 1365.69[8] 1365.69[8] 0
P15 2579.25[16] 2583.23[16] 0
P16 2596.83[16] 2586.08[16] 0 -0.42
P17 2731.37[16] 2731.37[16] 0
P18 3897.22[24] 3895.28[24] 0 -0.05
P19 3972.80[24] 3914.05[24] 0 -1.50
P20 4097.06[24] 4097.06[24] 0
P21 6101.68[36] 5821.57[36] 0 -4.81
P22 5984.87[36] 5970.49[36] 0 -0.24
P23 6145.35[37] 6145.58[36] -1

Best Solution 10/23 12/23 -9/23,=17/23 -7/17,+5/17,=5/17
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Table 4.17: Comparison of ALPS-GA to known GAs using normalised sum of ranks.

Inst. Thangiah et al. [52] Ombuki et al. [44] ALPS-GA

P01 591.73[10] 600.63[11] 612.14[10]
P02 483.15[5] 480.04[6] 488.50[5]
P03 694.49[10] 683.15[11] 706.07[10]
P04 1062.38[15] 1034.59[15] 1049.62[15]
P05 754.58[8] 778.01[8] 769.82[8]
P06 976.02[15] 916.71[15],900.44[16] 899.63[15]
P07 976.48[15] 922.83[16] 934.44[15]
P08 4812.52[25] 4672.56[25] 5180.29[25]
P09 4284.62[25] 4332.32[25],4243.74[26] 4563.88[25]
P10 4291.45[25] 3953.24[26] 4055.59[25]
P11 4092.68[25] 3962.17[25],3876.26[26] 4033.62[25]
P12 1421.94[8] 1318.95[8] 1318.95[8]
P13 1318.95[8] 1318.95[8] 1318.95[8]
P14 1360.12[8] 1365.69[8] 1365.69[8]
P15 3059.15[15] 2579.25[16] 2583.23[16]
P16 2719.98[16] 2596.83[16] 2586.08[16]
P17 2894.69[16] 2731.37[16] 2731.37[16]
P18 5462.90[22] 3897.22[24] 3895.28[24]
P19 3956.61[24] 3972.80[24] 3914.05[24]
P20 4344.81[27] 4097.06[24] 4097.06[24]
P21 6872.11[34] 6101.68[36] 5821.57[36]
P22 5985.33[37] 5984.87[36] 5970.49[36]
P23 6288.04[39] 6145.35[37] 6145.58[36]

Best Solution 5/23 7/23 9/23
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4.2.9 Comparing ALPS-GA using Pareto ranking with that of

Ombuki et al. [44].

ALPS-GA has once again shown its efficiency as it reduces 17/23 compared to

6/23 for the Ombuki et al. [44]. The reduction percentage ranges from 0.12 to

4.83. These details can be viewed from Table 4.18.

Table 4.18: Comparison of ALPS-GA to Ombuki et al. [44] with both using Pareto
Ranking.

Difference in % difference
Inst. Ombuki et al. [44] ALPS-GA Vehicle Distance

P01 600.63[11] 613.76[10] -1 -
P02 480.04[6] 476.7[5] -1
P03 683.15[11] 685.61[10] -1
P04 1034.59[15] 1029.02[15] 0 -0.54
P05 778.01[8] 770.55[8] 0 -0.97
P06 916.71[15],900.44[16] 908.59[15] 0,-1 -0.89
P07 922.83[16] 935.20[15] -1
P08 4672.56[25] 5006.46[25] 0 7.15
P09 4332.32[25],4243.74[26] 4591.15[25] 0,-1 5.97
P10 3953.24[26] 4195.71[26],3920.60[25] -1
P11 3962.17[25],3876.26[26] 3927.97[25],3820.71[26] 0 -0.87,-1.45
P12 1318.95[8] 1318.95[8] 0
P13 1318.95[8] 1318.95[8] 0
P14 1365.69[8] 1360.12[8] 0
P15 2579.25[16] 2576.08[16] 0 -0.12
P16 2596.83[16] 2575.33[16] 0 -0.42
P17 2731.37[16] 2731.37[16] 0
P18 3897.22[24] 3840.35[24] 0 -1.48
P19 3972.80[24] 3872.64[24] 0 -2.57
P20 4097.06[24] 4097.06[24] 0
P21 6101.68[36] 5820.69[36] 0 -4.83
P22 5984.87[36] 5874.98[36] 0 -1.87
P23 6145.35[37] 6145.58[36] -1

Best Solution 6/23 17/23 -9/23,=17/23 -7/17,+5/17,=5/17
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4.2.10 Comparison of the ALPS-GA to known Algorithms com-

pared in [38] in addition to the nomadic algorithm from [11].

This comparison is performed following Equation 4.1 which calculates the total

distance covered by the available routes.

Fitness =
D∑

d=1

Dist (4.1)

where D is the number of depots, Dist is the total distance travelled at a depot

d.

The algorithms used for this comparison are well explained in [38]. As can be

seen from Table 4.19, while all the GA variants could not outperform the other

algorithms, ALPS-GA fairly performed better than all GAs but nomadic GA

algorithm (GA4) [11] as both detected 1/5 best solutions. Despite ALPS-GA

can be said to be better than known GAs, it is somehow less optimal compared

to other methods. We show the network for P01 instance along with its fitness

plot in Figures 4.6 and 4.7 . Lastly we show the customers in the various

routes with their distances travelled for the results obtained for P01 instance in

Table 4.20

Table 4.19: Comparison results for existing algorithms with ALPS-GA using Equation
4.1

Instances P01 P02 P03 P04 P06 score
EXACT 576.87 473.53 641.15 1001.04 876.5 5/5
FIND 576.86 473.53 641.18 1003.86 876.5 4/5
ACO 576.86 484.28 645.16 1020.52 878.34 1/5
ITS 576.87 473.53 641.19 1001.04 876.5 5/5
ALNS 576.87 473.53 641.19 1001.4 876.7 5/5
CGL 576.86 473.87 645.15 1006.66 877.84 2/5
PIACO 576.86 473.35 641.18 1001.49 876.5 5/5
ACO-WM 576.86 473.53 641.18 1001.49 876.5 5/5
THANGIAH et al. 591.73 483.15 694.49 1062.38 976.02 0/5
OMBUKI et al. 622.04 480.04 706.88 1024.78 908.88 0/5
GA3 598.45 478.75 699.23 1011.36 882.48 0/5
GA4 580.85 473.53 680.2 1010.25 878.88 1/5
ALPS-GA 576.87 476.7 648.76 1028 888.75 1/5
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Figure 4.6: Network for P01 with 576.87 as distance

Figure 4.7: Fitness plot for P01 using Equation 4.1
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Table 4.20: The optimised route from ALPS-GA for P01 using Equation 4.1

Routes Ordered customers in route Distance
1 51-13-41-40-19-42-51 66.552
2 51-4-18-25-51 46.9997
3 51- 17-37-15-33-45-44-51 60.064
4 52-48-8-26-31-28-22-52 77.455
5 52-46-11-32-1-27-6-52 53.439
6 52-14-24-43-7-23-52 81.397
7 52-12-47-52 23.496
8 53-9-34-30-39-10-53 50.411
9 53-38-5-49-53 25.217
10 54-29-2-16-50-21-54 41.086
11 54-20-3-36-35-54 47.673

total distance 576.87
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To end this chapter, we pictorially illustrate the processes of having the ge-

ographically dispersed customers, clustered customers to their nearest depots

and finally the optimised routes formed after the evolutionary process. We used

the P02 instance for this illustration. These are shown by Figures 4.8, 4.9, and

4.10 respectively. Table 4.21 shows the customers in a route at the individual

depots with their corresponding distances travelled in each of the routes.

Figure 4.8: Geographically dispersed customers and depots.

Figure 4.9: Customers assigned to their nearest depots
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Figure 4.10: network for p02 instance showing 4depots and 5 routes

Table 4.21: The optimised route from ALPS-GA for P02 dataset

Routes Ordered customers in route Distance
1 51-17-37-15-33-45-44-42-19-40-41-13-4-51 120.904
2 52-6-14-25-18-47-12-52 61.405
3 52-46-32-1-8-26-7-43-24-23-48-27-52 107.258
4 53-9-50-34-30-39-10-49-5-11-38-53 83.867
5 54-20-35-36-3-28-31-22-2-16-21-29-54 101.856

total distance 476.7



Chapter 5

Conclusion and Future Works

The study of vehicle routing problem (VRP) has benefited several industries like

the distribution, logistics, and supply chain. The intractability of the problem

is experienced when a customer is added to the already existing routes. This

addition increases the problem exponentially. The NP-hard MDVRP (fixed

destination) is studied in this thesis. The focus was on instances with either

capacity constraint or both capacity and route length constraints collated by

Cordeau [57]. There has been a number of GAs applied to this problem in lit-

erature and to the knowledge of the authors, there is one paper that focused on

the use of two multi-objective fitness evaluation strategies. Little research, con-

sidered the MDVRP with a multi-population approach but without the multi-

objective evaluation strategies. This thesis is the first multi-population multi-

objective approach to consider for the MDVRP.

The Age Layered Population Structure (ALPS) based GA is implemented with

three inter-layer transfer strategies. The analysis drawn was, the type of inter

layer transfer affects the overall results. The mutation employed was derived

from merging the approaches of two existing mutations in literature.

There was an additional multi-objective fitness evaluation strategy (normalized

sum of ranks) to the already used Pareto ranking from [44] to solve the MD-

VRP. The experimental results are competitive to the compared results with

improvements in some instances.

Lastly, result from computing only distance travelled suggest that the multi-

population GA approach to the problem outperforms that of the single popu-

lation approaches in literature.

Below are some considerations that can be made for future work:

54
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1. The proposed ALPS-GA could also be enhanced with local search to im-

prove the results.

2. Other fitness evaluation strategies could be tried on the problem.

3. The proposal of new inter-layer transfer for ALPS is worth consideration.

4. There are several clustering methods in literature other than the one im-

plemented he implementation of another clustering method is plausible.

5. ALPS-GA could be tried on other optimization problems especially the

MDVRP with time windows.



Bibliography

[1] Awuley, Anthony.“Feature Selection and Classification Using Age Layered

Population Structure Genetic Programming.” (2015).

[2] Baldacci, Roberto, and Aristide Mingozzi.“A unified exact method for solv-

ing different classes of vehicle routing problems.”, Mathematical Program-

ming 120, no. 2 (2009): 347-380.

[3] Ball, Michael O., B. L. Golden, A. A. Assad, and L. D. Bodin. “Planning

for truck fleet size in the presence of a commoncarrier option.” Decision

Sciences 14, no. 1 (1983): 103-120.

[4] Banzhaf, Wolfgang, Peter Nordin, Robert E. Keller, and Frank D. Fran-

cone.“Genetic programming” : an introduction. Vol. 270. San Francisco:

Morgan Kaufmann, 1998.

[5] Bentley, Peter J., and Jonathan P. Wakefield.“Finding acceptable solutions

in the pareto-optimal range using multiobjective genetic algorithms.” In Soft

computing in engineering design and manufacturing, pp. 231-240. Springer

London, 1998.

[6] Bergen, Steven, and Brian J. Ross. “Evolutionary art using summed multi-

objective ranks.” In Genetic Programming Theory and Practice VIII, pp.

227-244. Springer New York, 2011.

[7] Bongard, Josh C., and Gregory S. Hornby.“Guarding against premature

convergence while accelerating evolutionary search.” In Proceedings of the

12th annual conference on Genetic and evolutionary computation, pp. 111-

118. ACM, 2010.

[8] Branke, Jrgen, Kalyanmoy Deb, Kaisa Miettinen, and Roman

Slowiski, eds.“Multiobjective optimization: interactive and evolutionary ap-

proaches.” Vol. 5252. Springer, 2008.

56



BIBLIOGRAPHY 57

[9] Budin, Leo, Marin Golub, and Andrea Budin. ”Traditional techniques of

genetic algorithms applied to floating-point chromosome representations.”,

sign 1, no. 11 (2010): 52.

[10] Chand, Padmabati, and J. R. Mohanty. “Multi objective genetic approach

for solving vehicle routing problem.” International Journal of Computer

Theory and Engineering 5, no. 6 (2013): 846.

[11] Chandrabhushan Prasad, S. Siva Sathya.“A Nomadic Genetic Algorithm

Approach with GMOUX Crossover for Multi Depot Vehicle Routing Prob-

lem”, International Journal of Advanced Research in Computer Science

and Software Engineering Volume 4 , Issue 5,May 2014 ISSN: 2277 128X

[12] Chang, Yaw, and Lin Chen.“Solve the vehicle routing problem with time

windows via a genetic algorithm.”, Discrete Continuous Dynamical Systems

Supplement (2007): 240-249.

[13] Chao, I-Ming, Bruce L. Golden, and Edward Wasil.“A new heuristic for

the multi-depot vehicle routing problem that improves upon best-known so-

lutions.” American Journal of Mathematical and Management Sciences 13,

no. 3-4 (1993): 371-406.

[14] Contardo, Claudio, and Rafael Martinelli.“A new exact algorithm for the

multi-depot vehicle routing problem under capacity and route length con-

straints.”, Discrete Optimization 12 (2014): 129-146.

[15] Cordeau, Jean-Franois, Michel Gendreau, and Gilbert Laporte. “A tabu

search heuristic for periodic and multi-depot vehicle routing problems.” Net-

works 30, no. 2 (1997): 105-119.

[16] Crevier, Benoit, Jean-Franois Cordeau, and Gilbert Laporte.“The multi-

depot vehicle routing problem with inter-depot routes.” European Journal

of Operational Research 176, no. 2 (2007): 756-773.

[17] Dantzig, George Bernard; Ramser, John Hubert (October 1959).“The

Truck Dispatching Problem” (PDF). Management Science. 6 (1): 8091.

doi:10.1287/mnsc.6.1.80.

[18] Deb, Kalyanmoy.“Multi-objective optimization using evolutionary algo-

rithms.” Vol. 16. John Wiley & Sons, 2001.

[19] Desrosiers, Jacques, Yvan Dumas, Marius M. Solomon, and Franois

Soumis. “Time constrained routing and scheduling.”, Handbooks in op-

erations research and management science 8 (1995): 35-139.



BIBLIOGRAPHY 58

[20] Dommers, Sander, et al.“A PTAS for the multiple depot vehicle routing

problem.” TU/e, Technische Universiteit Eindhoven, Department of Math-

ematics and Computing Science, 2008.

[21] Ehrgott, Matthias.“Multicriteria optimization”. Springer Science & Busi-

ness Media, 2006.

[22] El-Sherbeny, Nasser A.“Vehicle routing with time windows: An overview

of exact, heuristic and metaheuristic methods.”, Journal of King Saud

University-Science 22, no. 3 (2010): 123-131.

[23] G. Clarke, J.W. Wright,“Scheduling of vehicles from a central depot to a

number of delivery points”, Oper. Res. 12 (4) (1964) 568581.

[24] Gillett, Billy E., and Jerry G. Johnson.“Multi-terminal vehicle-dispatch

algorithm.” Omega 4, no. 6 (1976): 711-718.

[25] Goldberg, D.E.:“Genetic Algorithms in Search, Optimization, and Machine

Learning.” Addison-Wesley, Reading (1989)

[26] Golden, Bruce L., Thomas L. Magnanti, and Hien Q.

Nguyen.“Implementing vehicle routing algorithms. Networks 7, no. 2

(1977): 113-148.

[27] Golden, Bruce L., and Edward A. Wasil. “OR PracticeComputerized Ve-

hicle Routing in the Soft Drink Industry.” Operations research 35, no. 1

(1987): 6-17.

[28] Harper, Robin.“Spatial co-evolution: quicker, fitter and less bloated.” In

Proceedings of the 14th annual conference on Genetic and evolutionary

computation, pp. 759-766. ACM, 2012.

[29] Ho, William, George TS Ho, Ping Ji, and Henry CW Lau.“A hybrid ge-

netic algorithm for the multi-depot vehicle routing problem.” Engineering

Applications of Artificial Intelligence 21, no. 4 (2008): 548-557.

[30] Holland, John H.“Adaptation in natural and artificial systems: an intro-

ductory analysis with applications to biology, control and artificial intelli-

gence.” (1992).

[31] Hornby, G. S., M. Fujita, S. Takamura, T. Yamamoto, and O. Hana-

gata.“Autonomous evolution of gaits with the sony quadruped robot.”, In-

Proceedings of the Genetic and Evolutionary Computation Conference, vol.

2, pp. 1297-1304. Morgan Kaufmann, 1999.



BIBLIOGRAPHY 59

[32] Hornby, Gregory S.“ALPS: the age-layered population structure for reduc-

ing the problem of premature convergence.” In Proceedings of the 8th an-

nual conference on Genetic and evolutionary computation, pp. 815-822.

ACM, 2006.

[33] Hornby, Gregory S.“The age-layered population structure(ALPS) evolution-

ary algorithm.”, (2009): 8-12.

[34] Hornby, Gregory S.“A steady-state version of the age-layered population

structure EA.” In Genetic Programming Theory and Practice VII, pp. 87-

102. Springer US, 2010.

[35] Huber, Andreas, and Dieter A. Mlynski.“An age-controlled evolutionary

algorithm for optimization problems in physical layout.”, In Circuits and

Systems, 1998. ISCAS’98. Proceedings of the 1998 IEEE International Sym-

posium on, vol. 6, pp. 262-265. IEEE, 1998.

[36] Jeon, Geonwook, Herman R. Leep, and Jae Young Shim.“A vehicle routing

problem solved by using a hybrid genetic algorithm.” Computers & Indus-

trial Engineering 53, no. 4 (2007): 680-692.

[37] Jun, Dho H. “Multi-objective optimization for resource driven schedul-

ing in construction projects.” PhD diss., University of Illinois at Urbana-

Champaign, 2010.

[38] Karakati, Sao, and ViliPodgorelec. “A survey of genetic algorithms for

solving multi depot vehicle routing problem.” , Applied Soft Computing 27

(2015): 519-532.

[39] Laporte, Gilbert, Yves Nobert, and Serge Taillefer. “Solving a family of

multi-depot vehicle routing and location-routing problems.”, Transportation

science22, no. 3 (1988): 161-172.

[40] Laporte, Gilbert. “The vehicle routing problem: An overview of exact and

approximate algorithms.”, European Journal of Operational Research 59,

no. 3 (1992): 345-358.

[41] Liu, ChunYing, and Jijiang Yu. “Multiple depots vehicle routing based on

the ant colony with the genetic algorithm.” Journal of Industrial Engineer-

ing and Management 6, no. 4 (2013): 1013-1026.

[42] Naeem, Mohammad.“Using genetic algorithms for the single allocation hub

location problem.” (2010).



BIBLIOGRAPHY 60

[43] Ombuki, Beatrice, Brian J. Ross, and Franklin Hanshar. “Multi-objective

genetic algorithms for vehicle routing problem with time windows.”, Applied

Intelligence 24, no. 1 (2006): 17-30.

[44] Ombuki-Berman, Beatrice, and Franklin T. Hanshar.“Using genetic algo-

rithms for multi-depot vehicle routing.” In Bio-inspired algorithms for the

vehicle routing problem, pp. 77-99. Springer Berlin Heidelberg, 2009.

[45] Patel, Suneer, and Christopher D. Clack.“ALPS evaluation in financial

portfolio optimisation.” In Evolutionary Computation, 2007. CEC 2007.

IEEE Congress on, pp. 813-819. IEEE, 2007.

[46] Pisinger, David, and Stefan Ropke. “A general heuristic for vehicle routing

problems.” Computers & operations research 34, no. 8 (2007): 2403-2435.

[47] Renaud, Jacques, Gilbert Laporte, and Fayez F. Boctor. “A tabu search

heuristic for the multi-depot vehicle routing problem.”, Computers & Op-

erations Research 23, no. 3 (1996): 229-235.

[48] Schmidt, Michael, and Hod Lipson. “Age-fitness pareto optimization.” In-

Genetic Programming Theory and Practice VIII, pp. 129-146. Springer

New York, 2011.

[49] Slan, Karel. “Comparison of CGP and age-layered CGP performance in

image operator evolution.” In Genetic Programming, pp. 351-361. Springer

Berlin Heidelberg, 2009.

[50] Smink, Sjoerd.“The reality of Multi Depot Vehicle Routing models.”, En-

schede: University of Twente (2010).

[51] Surekha, P., and S. Sumathi.“Solution to multi-depot vehicle routing prob-

lem using genetic algorithms.”, World Applied Programming 1, no. 3

(2011): 118-131.

[52] Thangiah, Sam R., and Said Salhi. “Genetic clustering: an adaptive heuris-

tic for the multidepot vehicle routing problem.” Applied Artificial Intelli-

gence 15, no. 4 (2001): 361-383.

[53] Van Veldhuizen, David A., and Gary B. Lamont. “Multiobjective evolution-

ary algorithms: Analyzing the state-of-the-art.” Evolutionary computation

8, no. 2 (2000): 125-147.

[54] Vidal, Thibaut, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi,

and Walter Rei.“A hybrid genetic algorithm for multidepot and periodic

vehicle routing problems.” Operations Research 60, no. 3 (2012): 611-624.



BIBLIOGRAPHY 61

[55] Yu, Bin, Z. Z. Yang, and J. X. Xie. “A parallel improved ant colony op-

timization for multi-depot vehicle routing problem.” Journal of the Opera-

tional Research Society 62, no. 1 (2011): 183-188.

[56] Ycenur, G. Nilay, and Nihan etin Demirel.“A new geometric shape-based

genetic clustering algorithm for the multi-depot vehicle routing problem.”

Expert Systems with Applications 38, no. 9 (2011): 11859-11865.

[57] http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-instances/



Appendix A

Additional Experimental Analysis

A.1 Empirically determining the unique parameters

for the ALPS-GA

ALPS-GA differs from the traditional GA in terms of the number of layers (sub-

populations) and the age attribute given to each individual in the population

at a layer. The age attribute is effective after an ageing scheme and its corre-

sponding age gap is established. We therefore experimented with three out of

the four types of ageing schemes discussed in chapter 3. These are the Linear,

Fibonacci and the Polynomial. We tested these schemes on the P02 instance.

Table A.1 provides the results obtained after using these three schemes with an

age gap of 50 and show the fitness plots for Linear and Fibonacci schemes in

Figures A.1 and A.2. The fitness plot for the Polynomial is the same as that in

Figure 4.4.

There was a follow up analysis on what could be the best age gap for the ex-

periment. This was performed by using the age gaps of 20 and 60 to compare

with 50 on the best established ageing scheme. This results is shown in A.2.

Figures A.3 and A.4 show the graphs used for comparing the age gaps. Again

these are compared to figure 4.4.

Table A.1: Comparing three ageing schemes with an age gap of 50

Linear Polynomial Fibonacci
Best 476.7[5] 476.7[5] 488.26[5]

Average 516.01[5.4] 516.35[5.2] 506.13[5.27]
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Table A.2: Determinimg the appropriate age gap for the polynomial ageing scheme

Polynomial20 Polynomial50 Polynomial60
Best 494.85[5] 476.7[5] 481.13[5]

Average 524.03[5.1] 510.12[5.2] 508.86[5.27]

Figure A.1: Fitness plot for P02 using an age gap of 50 and a linear ageing scheme

Figure A.2: Fitness plot for P02 using an age gap of 50 and a Fibonacci ageing scheme
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Figure A.3: Fitness plot for P02 using an age gap of 20 and a Polynomial ageing
scheme

Figure A.4: Fitness plot for P02 using an age gap of 60 and a linear ageing scheme
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A.1.1 Discussion: Results for ageing scheme and age gap.

From Table A.1 , it can be seen that the Fibonacci ageing scheme was outper-

formed by the other two schemes. First we say that these three schemes come

with their independent way of setting the age limits per layer given the same age

gap. Polynomial with the age limits of 50,100,200,450 for the first four layers

and Linear with 50,100,150,200 win can be as a result of the individuals having

ample number of generations to evolve. We did not say that it resulted from the

individuals staying much longer or shorter than the other low performed scheme

because of the follow up experiment we undertook. We selected the polynomial

scheme based on author’s preference after the analysis.

The following are the observations we drew from the follow up experiment.

Most of the observations were based on the preamble that ALPS-GA allows

inter layer breeding which also contribute to diversity in the system.

– If the age gap is set too high, it delays the upper layers from being active

hence limiting the inter layer breeding.

– If set too low, the individuals at the lower layers have less time to evolve

hence even if inter layer breeding occurs, individuals with poor fitness are

considered which retards fitness improvement.

– Also if set too low, individuals at the lower layers tend to be distracted.

This disruption is easily experienced in the bottom layer which is set to be

reinitialized with different random seed number in a timely manner.



Appendix B

Further Analytical study

This chapter gives the tables for the significant difference analysis performed.

Figure B.1: T-test for comparing non-ALPS based GA and ALPS-GA

Figure B.2: Single factor Anova for comparing the three inter layer transfer strategies
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Additional Experimental Analysis

This chapter show some networks as well as the tables showing averages of 30

runs for the experiments conducted.

Figure C.1: Network for p03 using ALPS-GA
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Figure C.2: Network for p03 using non-ALPS based GA
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Tables C.1, and C.2 depict the averages of 30 runs per fitness evaluation strategy

for the instances.

Table C.3 shows the average of 30 runs for the three inter layer transfers.

In all the tables for averages, Vehicle represents the average number of vehicles

used while Distance indicate the average distance travelled.

Table C.1: Average of 30 runs for ALPS-GA using weighted sum

Instances Vehicle. Distance. Instances Vehicle. Distance.
P01 10 618.850 P13 8 1318.95
P02 5.2 516.352 P14 8 1365.06
P03 10 717.522 P15 16 2528.71
P04 15 1076.698 P16 16 2596.84
P05 8 788.023 P17 16 2730.814
P06 15 929.242 P18 24 3903.96
P07 15.47 955.837 P19 24 3918.997
P08 25 5338.061 P20 24 4096.87
P09 25.17 4733.408 P21 36 5934.6
P10 25.27 4347.742 P22 36 5938.51
P11 25 4197.205 P23 36 6147.15
P12 8 1318.95
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Table C.2: Average of 30 runs for ALPS-GA using normalised sum of ranks

Instances Vehicle. Distance. Instances Vehicle. Distance.
P01 10.77 601.856 P13 8 1318.95
P02 5.73 485.895 P14 8 1365.69
P03 10.9 664.982 P15 16 2615.103
P04 15 1076.93 P16 16 2618.23
P05 8 788.871 P17 16 2731.37
P06 15.37 922.976 P18 24 3935.904
P07 15.83 926.966 P19 24 3987.789
P08 25.03 5513.458 P20 24 4097.837
P09 25.83 4511.13 P21 36 5955.591
P10 25.67 4268.837 P22 36 6071.566
P11 25 4111.86 P23 36.03 6150.453
P12 8 1319.31

Table C.3: Average of 30 runs for the three inter layer transfers using weighted sum

Instances BIRveh BIRdis RTWveh RTWdis BTRveh BTRdis

P01 10 618.850 10 619.8 10 624.66
P02 5.2 516.352 5.27 515.63 5.17 525.095
P03 10 717.522 10 720.25 10 728.38
P04 15 1076.698 15 1077.92 15 1152.502
P05 8 788.023 8 786.754 8 818.458
P06 15 929.242 15 927.30 15.03 955.90
P07 15.47 955.837 15.6 942.76 15.63 958.21
P08 25 5338.061 25 5394.490 - -
P09 25.17 4733.408 25.2 4696.44 - -
P10 25.27 4347.742 25.2 4314.62 - -
P11 25 4197.205 25 4161.57 - -
P12 8 1318.95 8 1318.95 8 1318.95
P13 8 1318.95 8 1318.95 - -
P14 8 1365.07 8 1365.07 - -
P15 16 2585.71 16 2587.27 16 2616.76
P16 16 2596.84 16 2604.394 - -
P17 16 2730.814 16 2731.185 - -
P18 24 3903.96 24 3899.823 24 3898.84
P19 24 3918.997 24 3923.224 - -
P20 24 4096.87 24 4097.06 - -
P21 36 5934.6 36 5921.909 36 5909.48
P22 36 5938.51 36 5945.71 - -
P23 36 6147.15 36 6148.34 - -
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Figure C.3: Network for p10 using ALPS-GA with a distance of 4080.70 and 25
vehicles

Figure C.4: Network for p14 using ALPS-GA with a distance of 1360.12 and 8 vehicles
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Figure C.5: Network for p23 using ALPS-GA with a distance of 6145.58 and 36
vehicles
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