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Abstract 

 In this work we propose a stochastic version of the salvo model for modern naval 

surface combat.  We derive expressions for the mean and variance of surviving force 

strengths and for the probabilities of the possible salvo outcomes in forms simple enough 

to be implemented in spreadsheet software.  Numerical comparisons of the deterministic 

and stochastic models suggest that while the two models tend to provide similar estimates 

of the average number of ships surviving a salvo, this average by itself can be highly 

misleading with respect to the likely outcomes of the battle.  Our results also suggest that 

a navy's preferences for risk (variability) and armament (offensive versus defensive) will 

depend on not only its mission objectives but also on whether it expects to fight from a 

position of strength or of weakness. 

Subject classification: Warfare models: stochastic salvo combat.  Tactics/strategy: naval 

surface tactics. 

1. INTRODUCTION 

 A variety of analytical models of naval gunfire combat have been in existence for 

over a century in the form of Lanchester or Chase-Lanchester-Osipov (CLO) differential 

equation models (see Taylor 1983 for a review).  However, since the middle of the 20th 

century warships have reduced their reliance on gunfire in favor of guided missiles such 

as the Exocets used against British warships in the 1982 Falklands campaign.  To reflect 
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this substantial change in military technology, Hughes (1995) proposed a new model of 

naval surface combat in which the primary exchange of fire was in the form of discrete 

salvos of missiles, rather than continuous streams of shells.  His work illustrated the 

interaction between modern offensive and defensive firepower, and provided examples of 

how naval combat had in some sense become more lethal than before.  

 One of the strengths of this salvo model was its simplicity: the model's concepts 

and calculations were both straightforward enough to be understood and used by serving 

naval officers without extensive training in operations research.  This transparency is 

important for military applications, as it allows the users to assess the logic of the model 

and ensure that it captures their view of the situation (Kent 2002). 

  On the other hand, a key limitation of the current salvo model is that its 

deterministic nature makes no provision for variation or uncertainty.  This is a serious 

concern for a combat model, as most warfare is so chaotic as to be inherently stochastic; 

the user of a deterministic model therefore risks being mislead by its apparent 

predictability.  As Ancker (1995, p 334) emphasized, "Any satisfactory model must, at 

the very least, yield a mean and variance of all pertinent outcome random variables.  

Anything less puts the decision maker (and the analyst) in peril of believing something 

which may have a high probability of being false."  In the case of CLO gunfire models 

this motivation lead to the development of what is sometimes called the Markov 

Stochastic Lanchester model (see Kress & Talmor 1999 for a recent example) as well as 

other stochastic extensions of CLO concepts.  For the much newer salvo model there 

have been some numerical studies using simulation (Johns, Pilnick, & Hughes, 2001; 
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Lucas & McGunnigle, 2003), but no analytical model has been produced to date for the 

stochastic case.   

 Our objective herein is to fill this gap by developing a salvo combat model in 

which random variation is incorporated into the model's main inputs and estimates are 

provided for the mean, variance, and probabilities of its key outputs.  While so doing we 

also try to preserve as much as possible the ease of use and transparency of understanding 

of the deterministic salvo model; consequently our modeling decisions often reflect a 

preference for simplicity over detail.  Note that our main focus is on battles involving 

moderately small to moderately large forces on each side.  Small ship-versus-ship duels 

would lend themselves to a more specialized and detailed modeling treatment, while 

large theatre-level campaigns would be better served by a more strategic view. 

 Our work proceeds as follows. We begin in Section 2 by reviewing the 

deterministic salvo model of Hughes (1995) where we note that the offensive and 

defensive firepower of a task force are effectively summations of the corresponding 

individual ship characteristics.  In Section 3 these per-ship firepower characteristics have 

their fixed parameters replaced by random variables; in a like manner the damage caused 

by each offensive missile also becomes a random variable.  We then adapt some concepts 

from stochastic inventory models to derive the mean and variance of the surviving forces 

on each side as well as their probability of victory.  Each of these measures is expressed 

in a form that can be implemented in user-friendly software such as a spreadsheet. 

 Section 4 uses numerical work to learn more about the model's behavior and 

implications.  A comparison of the stochastic model's results with those of the original 

deterministic model suggests that both models provide similar estimates of the average 
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surviving forces after a salvo. But because this average gives no indication of the 

variation in results the deterministic model can be quite misleading with respect to the 

potential number of survivors or the likelihood of victory.  Thus the stochastic model 

provides additional insight that would be important to operational commanders planning 

their deployments, ship designers choosing the mix of weapon systems to install, and 

policy makers committing their citizen-sailors to an impending conflict. 

 Our work indicates that a navy's preferences for "risk" (variation) and for its mix 

of armament will depend upon its mission objectives and also on whether they expect to 

fight from a position of overall strength or of weakness.  In general, a force that is 

superior in total firepower should try to balance its offensive and defensive capabilities, 

and then seek battle under conditions of greatest certainty (i.e. minimal variance) in order 

to "play the averages" that lie in its favor.  Conversely, an inferior force should 

concentrate its resources on either offensive or defensive power (but not both) according 

to its mission objectives and then look for combat opportunities where the uncertainty is 

unusually high in the hope of getting a "lucky break".  

 We also find that the concept of combat lethality proposed by Armstrong (2004) 

is more complex when random variation is taken into account.  In place of the three 

distinct categories of lethality that exist in the deterministic model we now find a 

continuous range of lethality levels with "strict" high lethality as a limiting extreme.  Our 

discussion concludes in Section 5 with a summary of the model's contributions and 

limitations.  The derivations of our results are presented in an Appendix. 

2. THE DETERMINISTIC SALVO MODEL 
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 In this section we briefly review the basic deterministic salvo model as defined by 

Hughes (1995); the reader is directed to that earlier article for a more thorough discussion 

of the model's terminology and underlying assumptions.  Let parameter A represent the 

force strength or number of ships on side A at the beginning of a battle.  Each ship on 

side A has an offensive power rating , which is the number of well-aimed surface-to-

surface missiles (SSMs) fired by each ship per salvo at the opposing force.  Each of A's 

ships also has a staying power value w that represents the number of SSM hits needed to 

achieve a firepower kill on it (i.e., to put it out of action for the remainder of the battle, 

though not necessarily sink it).  Finally each ship has a defensive power value y, which is 

the number of incoming SSMs prevented from hitting per ship per salvo by active 

defenses such as surface-to-air missiles (SAMs).  The ships on side B are similarly 

represented by parameters B, , x, and z, respectively.  Note that while this model is 

primarily intended for missile combat, it can also be used to model salvos of torpedoes, in 

which case the defensive power values will typically be zero. 

 The battle proceeds in discrete time intervals.  In each interval side A fires a salvo 

from its offensive weapons at side B's ships while side B simultaneously fires a salvo of 

its own at side A.  Each side uses its defensive fire to intercept the incoming offensive 

missiles, with any non-intercepted missiles causing damage to the targeted ships.  The 

changes in force strengths from this exchange of salvos can be written as 

  AAwyABA  0, ;      BBxzBAB  0, . 

An equivalent form for side B in terms of the surviving force strength B1 is 

   BBxzBABB  11 0,1 .   (1) 
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From now on we describe the expressions only for side B since those for side A are 

structurally identical (exchanging parameters  for , y for z, etc.). 

 These equations highlight the interactive nature of offensive and defensive 

firepower.  The number of hits suffered by side B is equal to the aggregated offensive 

power of side A minus the aggregated defensive power of side B, if this difference is 

positive.  The resulting loss of ships is determined by the number of hits sustained in 

conjunction with the amount of damage per hit.  As an example, suppose that each side 

has A=B=6 ships with identical characteristics: ==4 SSMs per salvo, y=z=2 SAMs per 

salvo, and w=x=2 hits allowed per ship (equivalent to 1/2 ship lost per SSM hit).  

Equation (1) gives the number of surviving ships in this example as A1 = B1 =  6 - [4(6)-

2(6)](1/2) = 0, i.e. the first simultaneous exchange of missiles always results in the 

complete destruction of both forces. 

3. DEVELOPMENT OF A STOCHASTIC SALVO MODEL 

3.1 Preliminaries 

 Suppose that we have a set of independent and identically distributed (iid) random 

variables (rv) Ki, each of which has mean K and variance K
2, and that we wish to add L 

of these together to get a new random variable M.  Suppose further that L is itself an 

integer random variable, independent of the Ki and having mean L and variance L
2.  If 

all of these variables are non-negative then it is known (e.g. Ross 1993, pp 94 & 98) that 

the mean and variance of the sum M can be calculated as 

M = L K   and  M 
2 = L K 

2 + L
2K

2      .0,,where
1




LKKM i

L

i

i  
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 This relationship is often used (e.g. Chopra & Meindl 2004, ch 11; Bagchi, 

Hayya, & Chu, 1986) in stochastic inventory models when modeling the lead-time 

demand for a product.  In that context, L represents the number of days until the next 

shipment arrives while Ki represents the demand on day i for the product.  It can be 

shown (Hadley & Whitin 1963, p 153) that these same expressions hold when L is a 

continuous variable, in which case the summation is replaced by an equivalent integral.  

For our purposes we shall need L to be not only continuous but also possibly negative; 

consequently the expression for the mean of M remains the same but a new one is needed 

for the variance. 

LEMMA 1: VARIANCE OF A RANDOM SUM.  Let L be a random variable with mean 

L, variance L
2, probability density function (pdf) of g(l), and cumulative distribution 

function (cdf) of G(l).  Also define Ki to be non-negative iid rv that are independent of L 

with E[Ki]=K and Var[Ki]=K 
2.  Consider the random variable M defined as a sum of L 

of these Ki, i.e., if L is integer we have 

0if,0if
11

 




LKMLKM
L

i

i

L

i

i ; 

or more generally let L be continuous with E[K(l)|l]=lK and Var[K(l)|l]=|l|K 
2, so 

0if)(,0if)(
00

 


LdllKMLdllKM

LL

; 

 so that in either case M  0 if L > 0 and M  0 if L < 0. 

(a) The variance of M can be calculated as 

    222

LKKLEMVar   .   (2) 



20 May 2004 Stochastic Salvo Model Armstrong 

 8 

If L is always non-negative then the expression simplifies to Var[M] = LK 
2 + L

2K
2 as 

in Ross (1993).  Conversely if L is always non-positive then the expression simplifies to 

Var[M] = -LK 
2 + L

2K
2.  

(b) If L follows a normal distribution then an equivalent alternative expression is  

Var[M] = LK 
2 + L

2K
2 - 2K 

2LG(0) + 2K 
2L 

2g(0).   (3) 

3.2 Model Development 

 To develop the stochastic model we begin by rewriting Equation 1 for the 

deterministic model in an equivalent form in which each multiplication is replaced by a 

summation (if A & B are integer) or an integral (if A & B are allowed to be real). 

,0,or 1

0

1

1

1 BBdtvBBvBB

NetABNetAB

k

 


 

where v = 1/x is the number of ships lost due to each hit suffered, and 

BAAB DefOffNet        


AA

i

A dtAOff
01

       


BB

j

B dtzzBzDef
01

. 

Here OffA represents the total offensive fire from side A, DefB is the total defensive fire 

from side B, and NetAB represents the offensive missiles from side A that are not 

intercepted by side B's defenses (see Table 1 for a summary of notation). 

 The next step is to redefine the number of well-targeted missiles successfully 

launched by each ship i on side A to be a non-negative iid rv i with mean  and 

standard deviation .  Here random variation may arise from imperfect reliability of the 

ship's physical systems (e.g. the firing button is pushed but the missile doesn't launch) or 

of its crew (e.g. when human beings make split-second decisions with limited 

information).   Further variation with respect to the targeting of the missiles may be 
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caused by the actions of the launching ship (e.g. the missile functions correctly but it is 

aimed in the wrong direction) or by those of the targeted ship (e.g. some form of long 

range electronic warfare (EW) distracts the missile off-course).  Given this randomness 

on a per-ship basis, the offensive power for side A overall becomes a sum of random 

variables and thus will itself be random with mean and variance 





A

i

iAOff
1

       AOffE
A

i

A 
1

    2

1

2

  AOffVar
A

i

A 


 

where the summation is replaced by an equivalent integral if A is non-integer. 

 As to the particular form of this randomness, it is natural to think of each ship as 

having a maximum number n of offensive missiles that it can fire simultaneously.  This 

maximum may be prescribed by tactical doctrine or it may be due to a physical limit such 

as the number of missile launchers installed.  If each round independently has a 

probability p of successfully being launched and well-targeted then the number of well-

targeted rounds fired from each ship will follow a binomial distribution with mean  = 

n p and variance  
2 = n p(1- p).  The number of well-targeted rounds OffA for side 

A overall will then also have a binomial distribution with E[OffA] = A = An p and 

Var[OffA] = A
2 = An p(1- p). 

 For our purposes it will prove convenient to substitute a continuous normal 

distribution (with the same mean and variance) in place of the discrete binomial one.  

This is a well-established approximation whose accuracy can be improved through use of 

a continuity correction (Johnson & Kotz 1969, pp 62-65); see the appendix for a 

comment on this issue. 
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 Next let the defensive power of each ship j on side B be a non-negative iid rv zj.  

The effective defensive firepower on a given salvo may vary for many of the same 

reasons as offensive power (i.e., reliability, targeting, and EW) but also due to the 

inherent difficulty of successfully intercepting a rapidly moving target.  A binomial 

distribution with firing limit nz and probability of successful intercept pz is a likely 

candidate for this variable and implies mean z = nzpz and variance z 
2 = nzpz(1-pz) for 

each ship.  As with offensive power, we approximate the total defensive fire DefB with a 

normal distribution having E[DefA] = Bz = Bnzpz and Var[DefA] = Bz
2 = Bnzpz(1-pz).   

 The number of non-intercepted offensive missiles from side A that will hit side B 

is determined by subtraction: NetAB = OffA - DefB.  We shall refer to NetAB as the nominal 

number of missiles because this value can be negative if there is an excess of defensive 

power, whereas in such a case the actual number of remaining SSMs would be zero.  

Since NetAB is the difference between two normal variables it follows a normal 

distribution itself, with mean and variance (A - Bz) and (A
2+Bz

2), respectively.  As 

an illustration let us revisit the numerical example from the deterministic section.  Choose 

n=8 and p=0.5 so that =4 SSMs per ship, and likewise choose nz=4 and pz =0.5 so 

that z=2 SAMs per ship.  Then the nominal number of hits NetAB will follow a normal 

distribution with E[NetAB] = 24-12 = 12 missiles and Var[NetAB] = 12+6 = 18 (or 

equivalently a standard deviation of 4.24 missiles). 

 The other random factor we wish to include is the damage caused by each non-

intercepted offensive missile against its target.  Hughes (2000, ch 6) describes some of 

the historical data on the variation seen in the damage per hit for various weaponry.  On 

the one hand a single missile can sometimes be devastating: for example, the frigate HMS 
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Sheffield was sunk by a single SSM during the Falklands War (Eddy, Linklater, & 

Gillman, 1982, pp 171-175).  On the other hand an otherwise well-aimed missile might 

cause no damage whatsoever if it survives defensive fire but misses the target at the last 

moment due to e.g. an imperfect guidance system, evasive maneuvers by the target, or 

short range EW such as seduction chaff.  To reflect this variation we let the loss (damage) 

suffered by side B due to missile i be a non-negative iid rv vi with mean v and variance 

v
2.  The default choice for the mean loss would naturally be v = 1/x ships lost per hit 

inflicted, so that on average it would take a number of non-intercepted missiles equal to 

the ship's staying power to knock it out of action. 

 Combining the random number of nominal hits with the random amount of 

damage for each hit gives the total nominal loss suffered by side B from the salvo.  This 

compound value is the sum of a random quantity NetAB of random numbers vi, so using 

Lemma 1 the mean and variance of this nominal loss can be calculated.  We prefer 

instead to pass directly to the corresponding nominal surviving force strength B1*, 

obtained by subtracting the random nominal loss from the known starting strength B. 

PROPOSITION 1: NOMINAL SURVIVING FORCE STRENGTH.  Let gNetAB(t) and 

GNetAB(t) be the pdf and cdf respectively for the normal distribution describing the 

nominal number NetAB of non-intercepted offensive rounds.  

(a) The mean nominal surviving force strength E[B1*] will be 

B1* = B - E[NetAB] E[v]  = B - (A - Bz)v ;   (3) 

(b) The variance of the nominal surviving force strength Var[B1*] will be 

B1* 
2 = (A - Bz)v

2 + (A
2+ Bz

2)v
 2 - 2v

2(A - Bz)GNetAB(0)    (4) 

+ 2v
2(A

2+ Bz
2)gNetAB(0). 
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 Note that Equation 3 for the mean mirrors the deterministic structure in Equation 

1 in which fixed parameters have been replaced by averages.  To see this in our ongoing 

numerical example set the average loss v = 1/x = 0.5 ships per hit suffered as previously 

suggested and choose v = 1/2.5x = 0.2 ships.  The nominal surviving forces on side B 

will average B1* = 6-(12/2) = 0 ships, which matches our earlier deterministic 

calculation, and will have standard deviation B1* = 2.23 ships. 

 At this point we again draw inspiration from basic stochastic inventory models 

where it is often assumed (e.g. Chopra & Meindl 2004, p 340; Nahmias 1993, p 266) that 

if the length of the lead time and the demand per day are each normal and statistically 

independent, then the compound distribution for the total lead-time demand will also be 

normal.  While not quite correct, this normality assumption is convenient because it 

makes inventory concepts and calculations both much easier to handle, especially for 

practitioners (e.g. logistics managers and business students), while still retaining the key 

concept of variation in both underlying components.  This assumption has however been 

criticized (Bagchi, Hayya, & Chu, 1986) as being unrealistic for some applications.  One 

potential problem arises if the lead-time and demand per period are not statistically 

independent; for example, products that are temporarily in high demand at the retailer are 

often out of stock at the manufacturer and thus have a long lead-time precisely because of 

this high consumer demand.  Another potential problem can occur if the lead-time 

distribution is discontinuous, as with a supplier who only delivers on a certain day each 

week.  In the former case the actual shape of the compound distribution may be heavily 

skewed, while in the latter it will be multi-modal.  
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 We do not believe that either of these issues (statistical dependence or multi-

modality) is likely to be relevant in our context.  Furthermore, with the salvo model 

already being a greatly simplified and aggregated model of combat we would argue that a 

simplifying assumption for the particular shape of a distribution is not only tolerable but 

actually preferable.  Since we have already determined that the nominal number of hits is 

approximately normal, in the spirit of these basic stochastic inventory models we now 

assume that the compound distribution for the nominal loss on each side is also 

approximately normal, and so consequently is the nominal surviving force strength. 

3.3 Model Outputs 

 Let us now consider how the nominal surviving force strength B1* can be used to 

derive the actual surviving force strength B1.  The actual figure is obviously limited to the 

range [0, B] by the number of ships present, i.e., B1 = min{B, max{0, B1*}}.  When 

calculating the actual figure we also account for the fact that the number of missile hits is 

really an integer that is being approximated by a continuous distribution; thus we insert a 

continuity correction equal to one half the average damage caused by one missile, i.e. 

v/2.  Alternative correction factors exist (Johnson & Kotz, 1969, pp 62-65), but in the 

spirit of our modeling effort we choose the simplest one possible. 

PROPOSITION 2: ACTUAL SURVIVING FORCE STRENGTH.  Let B1*, B1*
2, gB1*(t), 

and GB1*(t) be the mean, variance, pdf and cdf, respectively, for the normal distribution 

that describes the nominal surviving force strength B1*. 

(a) The mean actual surviving force strength is 

   )2/(1)( *1

2/

2/0

*11 vB

B

B BGBdttgtBE
v

v







 




   (5) 
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which can alternatively be expressed for calculation purposes as 

         

 )2/(1

2/02/2/02/

*1

*1*1

2

*1*1*1*1

vB

vBvBBvBvBB

BGB

gBgGBG









 (6) 

(b) The variance of the actual surviving force strength is 

      2

1*1

2

2/

2/0

*1

2

1 )2/(1)( BEBGBdttgtBVar vB

B

B

v

v

 










  (7) 

which can also be expressed as follows.                                                                         (8) 

       

    )2/0(2/0)2/(2/

)2/(1)2/0()2/(

*1*1*1*1

2

*1

2

1*1

2

*1*1

2

*1

2

*1

vBBvvBBvB

vBvBvBBB

gBgB

BEBGBGBG









  

 The reason for the alternative expressions in our results above and elsewhere is 

that they allow for calculations without the need for explicit integration.  These equations 

can thus be implemented in e.g. Microsoft Excel spreadsheet software using the built-in 

function NORMDIST to evaluate both the pdf g() and the cdf G(). 

 Applying Proposition 2 to our numerical example yields an average of E[B1] = 

0.88 ships surviving the salvo, or about 15% of the starting force.  This is slightly higher 

than the deterministic model's estimate of zero survivors.  More complete information 

can be obtained by calculating an approximate prediction interval for the surviving force 

strengths using the nominal survivor mean and standard deviation, since it is the nominal 

distribution that is assumed to be normal.  Here we interpret interval end points below 

zero as zero (no survivors) and above B as B (no losses).  For example, a 90% prediction 

interval for B1 is 0  (1.65)(2.23) or from 0 to 3.67 ships.  The deterministic model's point 
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estimate of course gives no hint of this wide range of probable results, the equivalent of 

0% to 61% of the starting force strength. 

 It might also be of interest to know the conditional surviving force strength, i.e. 

given that at least some ships survive, how many of them will there be? 

PROPOSITION 3: CONDITIONAL SURVIVING FORCE STRENGTH.  Let B1*, B1*
2, 

gB1*(t), and GB1*(t) be the mean, variance, pdf and cdf respectively for the normal 

distribution that describes the nominal surviving force strength B1*.  The actual quantity 

of ships on side B that survive after one salvo, conditional on the knowledge that at least 

some survive, can be described as follows. 

(a) The conditional mean surviving force strength will be  

 
 

)2/0(1
0|

*1

1
111

vBG

BE
BBEECB


 ;    (9) 

(b) The conditional variance of surviving force strength will be  

 
    

 2

1

*1

2

11
111

)2/0(1
0| ECB

G

BEBVar
BBVarVCB

vB








  (10) 

Using this proposition in our example shows that on those occasions where side B has at 

least some surviving forces, those survivors will average ECB1 = 1.91 ships. 

 Another way to view the variety of potential outcomes is through the calculation 

of probabilities.  We can for example look at the likelihood of various survival events 

after an exchange of salvos, again using the nominal cdf GB1*() as follows. 

(a) The probability of side B having no survivors is P[B1*  0] = [GB1*(0+v/2)] = 54%; 

(b) The probability of side B having some but not all of their force survive is P[0<B1*<B] 

= [GB1*(B-v/2)-GB1*(0+v/2)] = 45%; 

(c) The probability of side B suffering no losses is P[BB1*] = [1-GB1*(B-v/2)] = 1%. 
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Thus whereas the deterministic model predicted 100% elimination in our example, in the 

stochastic model side B has a good chance of having some forces survive the exchange of 

fire and even a slim possibility of emerging completely unscathed. 

 In our numerical example the random variation affects both sides in the same way 

because their forces are identical; but this is not always true, especially if one force 

significantly outclasses the other. 

PROPOSITION 4: PREFERENCES FOR VARIABILITY.  The probability of side B 

having at least some surviving force strength P[B1*>0] behaves as follows:  

(a) P[B1*>0] is decreasing in B1*  if B1 > (0+v/2), i.e., if "on average" side B would 

have survivors anyway; but, 

(a) P[B1*>0] is increasing in B1*  if B1 < (0+v/2), i.e., if "on average" side B would 

not have any survivors. 

 This proposition indicates that a superior force (i.e. one that is likely to come out 

ahead in a salvo exchange) will tend to prefer situations where the variation (or 

uncertainty) in results is relatively low.  They would presumably try to fight their battles 

in calm weather using tried-and-true weapon systems and established tactical doctrine.  

Conversely, an inferior force will tend to prefer situations where the variation in results is 

relatively high, ideally an all-or-nothing "coin toss", and so they might try to fight their 

battles in rough weather using experimental technology and unorthodox tactics. 

 The last measure that we consider in this section is the likelihood of winning.  

Defining FA1*() to be the cdf of the nominal number of survivors on side A (in direct 

parallel to GB1*() for side B), we can calculate the probabilities of the four possible 

outcomes of one exchange of salvos for our ongoing example as follows. 
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(a) The probability of side A winning control is [1-FA1*(0+u/2)] [GB1*(0+v/2)] = 25%; 

(b) The probability of side B winning control is [FA1*(0+u/2)] [1-GB1*(0+v/2)] = 25%; 

(c) The probability that both sides have ships left after the salvo is 

[1-FA1*(0+u/2)] [1-GB1*(0+v/2)] = 21%; and, 

(d) The probability of both sides being destroyed is [FA1*(0+u/2)] [GB1*(0+v/2)] = 29%. 

 These figures assume that each side is seeking control of the sea area (i.e. they 

want to end up with some friendly survivors but no enemy survivors); equivalent 

calculations could also be done for a force that only desires sea denial (i.e. to destroy the 

enemy) or that wants to simply survive.  Clearly these numbers give a very different 

representation of the salvo's outcomes than the simpler results of the deterministic model, 

which gave mutual destruction (case (d) above) as the only indicated result. 

4. MODEL EXPLORATION AND INSIGHTS 

 In this section we explore the behavior of the stochastic salvo model using some 

numerical studies.  Throughout this section we set all missile success probabilities at p = 

p = py = pz = 68%, which is a figure taken from an empirical study by Schulte described 

by Hughes (2000, pp 275-276).  Average damage is set at u = v = 1/3 ships lost per 

missile, which corresponds to the estimated staying power of 3 hits to put out of action a 

ship about 500 feet long (like an Arleigh Burke DDG) according to a study by the 

Brookings Institution that was also described by Hughes (2000, p 161).  Along with this 

we choose standard deviation u = v = 1/(3)(2.5) ships so that the interval v  2.5v 

corresponds to a range of 0/3 to 2/3 ships lost per hit.  The other parameters in the model 

are varied according to the objectives of each set of calculations described below. 
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 Our first observations concern the results of the stochastic model as compared to 

those of the deterministic model.  Throughout our exploratory calculations we found that 

the two models tended to yield values for the average surviving force strength after a 

salvo that were reasonably similar.  These values differed most when the two sides were 

closely matched (as in the illustrative example of the previous section), whereas there 

were no differences at all whenever either side had a large advantage. 

 On the other hand we did see some important differences in the other outputs of 

the two models.  For example, Figure 1 shows the probabilities of victory for each side 

after one salvo as the initial force strength B is gradually increased from 1 to 15 ships 

while the opponent is fixed at A = 6 ships.  By “victory” here we mean sea control; i.e., 

the enemy is eliminated while some friendly forces survive.  We used identical ships for 

each side and set n = n = 8 SSMs per ship and ny = nz = 3 SAMs per ship to give a 

relatively high level of lethality (Armstrong, 2004).  We can see that the two models give 

similar results as long as either side has a large advantage, but not when the odds are 

fairly close.  The deterministic model of course only allows for one possible result of any 

battle, and so has abrupt shifts as the force strengths change; it predicts e.g. 100% mutual 

destruction when each side has 6 ships, but a 100% chance of victory by side B if it 

employs 7 ships.  In contrast the stochastic model shows somewhat smoother transitions; 

under the same conditions it gives B a 19% chance of victory when the forces are even 

and a 67% chance of victory when they have a one-ship advantage. 

 It is of course the random variation in the stochastic model that accounts for these 

differences, and Figure 2 illustrates this by plotting the standard deviation of the actual 

surviving force strengths for each side under the same conditions as in Figure 1.  Neither 
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side experiences much variability when the odds are extreme, as the results are nearly 

certain when one side is overwhelming (no losses) and the other overwhelmed (no 

survivors).  Notice that in this high lethality example the total uncertainty actually drops 

when the forces are equal because it is likely that both sides will be eliminated. 

 Figures 3 shows a different view of the results of a salvo by graphing the 

probability of side A having survivors P[A1>0], shown along the horizontal axis, together 

with the probability of side B having survivors P[B1>0], shown along the vertical axis. 

For this figure we fix A = 6 ships and then vary the opposing strength B from 3 ships up 

to 10 ships.  Both sides are assumed to have n = n = 8 SSMs per ship in all cases but the 

number of SAMs per ship is set at a different value for each curve (ny = nz = 3, 4, or 5).  

For example, the curve running roughly across the diagonal of the diagram (marked with 

triangular dots and labeled SAM = 4) represents the case where each ship carries 4 

SAMs.  The triangle located at approximately the (61%, 61%) point represents the results 

of the particular case where B = 6 ships; i.e. each side has a 61% chance of surviving the 

salvo.  Movement along this curve towards the upper left occurs when we add ships to 

side B, while movement along the curve to the lower right occurs when we take away 

ships from side B.  

 Thus we may think of each curve in Figure 3 as representing the decision facing 

side B's operational commander: given the ship types on each side, how many friendly 

ships should be committed to an impending battle?  The implications of this decision vary 

according to the curve's shape: convex curves (e.g. SAM = 3) passing through the lower 

left quadrant indicate that additions to force strength first decrease the enemy's chance of 

survival and only later serve to increase the friendly survival probability.  Conversely, 
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concave curves (e.g. SAM = 5) passing through the upper right quadrant show that 

additional ships first increase friendly survival chances and only subsequently serve to 

decrease the enemy's chances. 

 Figure 4 uses the same kind of plot to examine the effect of changing the weapon 

mix for a fleet.  We begin by again fixing A = 6 ships, each of which fires n = 8 SSMs 

and ny = 5 SAMs per salvo.  Each curve shown corresponds to a different number of 

ships on side B, either 5, 6, or 7.  For each of B's ships the total firepower (SSMs plus 

SAMs) is kept constant at n + nz = 13 missiles but the mix of offensive and defensive 

missiles is varied over a range of SSM values from n = 5 up to 13.  Thus movement 

along any one curve from upper right to lower left occurs as we take away one SAM and 

add one SSM per side B ship. 

 We may think of each curve in Figure 4 as characterizing the trade-off often faced 

by side B's naval planners: given the enemy forces we expect to encounter, with what 

mix of offensive and defensive abilities should our ships be equipped?  The answer here 

depends on whether we expect to fight from a position of strength or of weakness.  If our 

side will be superior overall (the B = 7 case), then the concavity of the corresponding 

curve (marked with diamonds) indicates that a relatively balanced allocation of offensive 

and defensive capabilities is best, as it puts our force on the curve's "efficient frontier" in 

the upper left quadrant where we are highly likely to survive but almost certain to 

eliminate the enemy.  On the other hand if we expect to be the inferior force (the B = 5 

case), then the convex curve (marked with triangles) represents our predicament.  If we 

want a good chance of inflicting losses we can emphasize offensive power, but it will 

cost us our own force; the alternative is to emphasize defensive power and have a chance 
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of survival, though that means the enemy is likely to escape harm as well.  A balanced 

allocation of firepower would put our force in the lower right quadrant of the diagram: 

this is the worst case for an inferior force, as it would be outclassed on both offense and 

defense simultaneously.  

 Note that these decision curves are not just artifacts of our particular parameter 

choices, but rather arise from some fundamental relationships within the stochastic salvo 

model.  If side B increases its total staying power or total defensive power, then clearly 

the likelihood of it surviving a salvo is increased; thus P[B1>0] is increasing in side B's 

number of defensive missiles nz, probability of defensive missile success pz, and staying 

power x.  Similarly, if side B increases its average offensive effectiveness then the 

likelihood of side A surviving a salvo is decreased; thus P[A1>0] is decreasing in side B's 

offensive missile capacity n, probability of offensive missile success p, and in the 

average damage u suffered per hit.  These effects are illustrated by the arrows in Figure 

5 that show the shift in plot location (i.e. combat results) caused by an increase in each 

model parameter. 

 These figures also provide a way to understand the concept of lethality 

(Armstrong, 2004) in the context of the stochastic model.  In the deterministic model 

there were three discrete levels of lethality, but Figures 3-5 instead display an infinite 

range of lethality levels.  What we might call "strict" high lethality corresponds to an L-

shaped path that runs from the lower right corner along the horizontal axis to the lower 

left corner, and then up the vertical axis to the upper left corner.  Along this extreme path 

there is always at least one force that has a 100% probability of being eliminated in one 

salvo.  Convex curves (e.g. SAM = 3) passing through the lower left quadrant approach 
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this limiting extreme and indicate "relatively high" lethality, while concave curves (e.g. 

SAM = 5) that pass through the upper right quadrant of the diagram could be thought of 

as representing "moderately low" lethality conditions. 

5. CONCLUSION 

 In this work we have proposed a relatively simple stochastic salvo model for 

naval missile combat.  Starting with the existing deterministic salvo model of Hughes 

(1995) we substituted random variables in place of the fixed parameters for individual 

ships' offensive power and defensive power.  In a like manner we replaced the fixed 

damage caused by each offensive missile by a random variable as well.  We then adapted 

some concepts from basic stochastic inventory models to derive the mean and variance of 

the surviving forces on each side as well as their probabilities of winning.  These 

measures were all provided in formulations simple enough to permit calculation using 

ordinary spreadsheet software. 

 A comparison of the stochastic model's results with those of the original 

deterministic model showed that both models provide similar estimates of the average 

number of survivors of a salvo, but because the deterministic model gives no indication 

of the possible variation it could be quite misleading.  The stochastic model's ability to 

provide range estimates and the probabilities of different outcomes provides a decision-

maker with a much richer and more complete picture of the potential outcome of a salvo.  

 It appears that the best preparations for salvo combat depend upon whether a navy 

is generally inferior or superior to its opponent.  Our results suggest that a superior force 

ought to aim for a balance of offensive and defensive capabilities, and should seek to 

engage in battle under conditions of greatest certainty (i.e. minimal variation or "risk").  
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Conversely, an inferior force should concentrate its resources on either offensive or 

defensive power (but not both) depending on its mission objectives and then seek battle 

under conditions of greatest uncertainty (maximum variation).  Finally we also 

demonstrated that the concept of combat lethality analyzed by Armstrong (2004) is more 

complex when random variation is taken into account.  In place of the three distinct 

categories of lethality that exist in the deterministic model we find a continuous range of 

lethality levels with "strict" high lethality as the limiting extreme.   

 One of the advantages of using deterministic rather than stochastic models is the 

former's simplicity.  However as noted by Lucas (2003, p 9), "The nature of combat, 

along with fundamental mathematical principles, implies that most combat simulations 

should be stochastic.  Although significant costs are associated with stochastic models, 

the resulting benefits will usually exceed the costs."  We believe that for most purposes 

the gains from including stochastic elements in the salvo model of naval combat are well 

worth the costs in extra complexity.  Nonetheless, our simplified stochastic salvo model 

itself has many limitations arising from its construction.  Like the deterministic model 

upon which it is based, our model is highly aggregated and so implicitly assumes that 

incoming fire is spread evenly over all possible targets.  In reality it is likely that some 

ships will face more fire than others, whether by accident or by design.  A future study 

might therefore use a less aggregated model to explore the effective use of tactics and 

targeting information, much as was done in Lucas & McGunnigle (2003). 

 Another potential limitation results from our assumption that the nominal losses 

and hence the nominal number of survivors of a salvo will approximately follow a normal 

distribution.  We have argued that there are good reasons for making this assumption, but 
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nevertheless it may not be appropriate in all cases.  For example, it may be that in some 

circumstances the damage inflicted per missile might be better described by a heavily 

skewed distribution like the exponential.  Future work might therefore investigate how 

this alternative could be incorporated into a salvo model's structure and whether it would 

have any significant impact on the model's outputs. 
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APPENDIX 

The use of normal approximations. 

 To see the effect of our use of normal approximations to the underlying binomial 

distributions, we calculated the mean number of actual hits using our model (i.e. Equation 

6 but with v
2 = 0, i.e. deterministic damage) for a number of situations.  We then 

compared these results to direct calculations using the difference of the two underlying 

binomial distributions.  We discovered that both methods gave similar results, even for 

small battles; Figure 6 shows examples of our findings.  Each row corresponds to a 

different missile match-up, and each column corresponds to a different probability of 

missile success (using the same probability for both offensive and defensive fire).  For 

example, when 3 SSMs were fired against 6 SAMs, and each missile had an 80% 

probability of success, then the model's normal calculation gave a mean number of hits 

(0.0070) that was 31% lower than the binomial calculations (0.0102).  The large % value 

occurs because in situations dominated by defensive fire a hit only occurs when both the 

offense gets lucky and the defense is unlucky, i.e. we are doing calculations using the 

tails of the respective distributions, where the fit between them is worst.  Fortunately this 

large relative difference is largely irrelevant for users of the model because the absolute 

difference between the two calculations for this case (and for all the other cases shown in 

the figure) is less than 0.01 hits. 

Table 2. Relative difference in mean actual number of hits. 

 p=0.80 p=0.68 p=0.50 p=0.32 p=0.20 

6 SSM v 3 SAM -0.4% -0.6% -0.7% -0.8% -0.8% 

6 SSM v 6 SAM -1.7% -2.0% -2.1% -2.0% -1.7% 

3 SSM v 6 SAM -31.0% -7.9% -1.9% -0.4% 1.7% 
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Transforming integrals into convenient forms. 

 In the proofs that follow we often need to transform integrals involving a normal 

pdf, so these are given below for reference.  In each case, F(t) and f(t) are the cdf and pdf, 

respectively, of a normal distribution with mean  and variance 2.  

Integral of  f(t). 
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Proof: Follows from the definition of the cdf F(t). 

Integral of  t f(t). 
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Proof: A known result in inventory theory, see e.g. Chopra & Meindl (2004, p 340).  

Integral of  t2 f(t). 
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Proof: Write out the expression in full and then divide it into three sections. 
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In the first section apply A1. 
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For the second section use A2 and A1. 
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Combine the three sections and re-group the terms to yield the desired result. 

Proof for Lemma 1: Variance of a random sum. 

The proof is presented only for the case where L is a continuous random variable.  For 

part (a) begin by noting that 
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Set up the variance definition and work with its components. 
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Part (b) is obtained using A2. 
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Proof for Proposition 1: Nominal surviving force strength. 

Part (a) for the mean is straightforward.  For part (b), note that the variance of the 

survivors is equal to the variance of the losses, which is obtained via Lemma 1. 
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Proof for Proposition 2: Actual surviving force strength. 

Part (a) needs E[min{B, max{0, B1}}]. 
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Apply A2 to the integral. 
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Part (b) obtains Var[min{B, max{0, B1}}] in a similar manner but using A3. 

Proof for Proposition 3: Conditional surviving force strength. 

In part (a) the mean is determined using the conditional distribution. 
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The conditional variance for part (b) is derived in a similar manner. 
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Proof for Proposition 4: Preferences for Variance. 

The probability of side B having survivors is 
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Take the derivative with respect to the standard deviation. 
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Transform the 1st integral with A1, and likewise the 2nd integral with A1, A2 and A3. 
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Cancel terms and simplify to get the following. 
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If B1*>(0+v/2) then this expression will be negative, indicating that P[B1>0] is 

decreasing in B1*.  Conversely, if B1*<(0+v/2) then the expression will be negative, 

indicating that P[B1>0] is increasing in B1*. 
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Table 1: Summary of Notation. 

 

The first symbol in each pair refers to side A, the second to side B. 

 

Symbol Description 

A, B Beginning force strength 

i, i Offensive power per unit 

w, x Staying power per unit 

yj, zj Defensive power per unit 

uk, vk Losses per hit 

n, n Maximum # of offensive missiles per ship per salvo 

p, p P[an offensive missile is successfully well-targeted] 

OffA, OffB Total # of well-targeted offensive missiles per salvo 

ny, nz Maximum # of defensive missiles per ship per salvo 

py, pz P[a defensive missile successfully intercepts] 

DefA, DefB Total # of accurate defensive missiles per salvo 

NetBA, NetAB Total nominal # of non-intercepted offensive missiles 

FNetBA, GNetAB  cdf of nominal # of non-intercepted offensive missiles 

fNetBA, gNetAB  pdf of nominal # of non-intercepted offensive missiles 

A1*, B1*  Nominal surviving force strength after one salvo 

FB1*, GB1*  cdf of nominal surviving force strength 

fB1*, gB1*  pdf of nominal surviving force strength 

A1, B1  Actual surviving force strength after one salvo 

 

 

Figure 5.  Effects of an increasing parameter on survival probabilities. 
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Figure 1. Probability of victory as force strength B is varied. 
 

 

 

 

Figure 2. Standard deviation of survivors as force strength B is varied. 
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Figure 3. Probabilities of survival as force strength B is varied. 

 

 

 

Figure 4. Probabilities of survival as missile load for B is varied. 
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