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Abstract 

 

 This paper develops a version of the stochastic salvo combat model in which the 

exchange of fire is sequential, rather than simultaneous.  This sequential-fire version is built by 

modifying the equations in the original simultaneous-fire version.  The performance of the 

sequential model is tested by comparing its outputs to those of a Monte Carlo simulation.  The fit 

between the model and the simulation is very close, especially for the mean and standard 

deviation of losses.  The model is then applied to the Battle of the Coral Sea.  The results suggest 

that attacking first would have given the American force a larger advantage than that provided by 

an extra aircraft carrier. 
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Introduction 
 

 One way for a military force to seek an advantage over its opponent is to attack first.  

Historically, navies have achieved first strikes via strategic surprise (Pearl Harbour in 1941), 

superior scouting (Midway in 1942), tactical positioning (Philippine Sea in 1944), or longer-

ranged weapons (Latakia in 1973).  The potential benefits of striking first, and the potential costs 

of suffering such an attack, are of on-going interest to naval analysts (see, e.g., Lucas and 

McGunnigle, 2003; Tiah, 2007; Edmiston, 2011).  It even has been argued that “attacking 

effectively first” should be a primary goal of naval tactics (Hughes, 2000: xxv). 

 

 The possibility of striking first has also been studied in other types of conflict, such as 

terrorist attacks.  For example, some researchers have analysed game-theory models where 

terrorists choose which targets to attack, while government forces choose which targets to 

defend; see, for example, Zhuang and Bier (2007), He and Zhuang (2012), or Hausken and 

Zhuang (2012).  In some of these attacker-defender games the attacking terrorists move first, 

while in other cases they move at the same time or after the defending government forces.  

 

 Given the importance of this factor in warfare past and present, it would be useful for 

analysts and historians to have a simple way to model missile combat where the two sides attack 

sequentially, instead of simultaneously.  The salvo equations of Hughes (1995) already provide a 

simple way to represent combat involving missiles or airstrikes, much as the Lanchester models 

do for gunfire combat (see, e.g., MacKay, 2009; Johnson and MacKay, 2011; Atkinson et al, 
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2012).  However, both the original deterministic salvo model and the later stochastic one 

(Armstrong, 2005) assume that the exchange of fire is simultaneous. 

 

 This paper modifies the salvo combat model to handle a sequential exchange of fire.  In 

this version, one force executes its attack first while the opponent defends; subsequently, the 

opponent’s survivors (if any) return fire while the original attacker defends. 

 

 The research begins with the deterministic salvo model (Hughes, 1995).  Since this model 

is easily modified to handle sequential attacks, it allows an initial assessment of the value of 

attacking first, and of how that value is influenced by the combat units’ characteristics. 

 

 The study then derives a sequential version of the stochastic salvo model (Armstrong, 

2005).  Since the salvo model is a highly simplified representation of combat, the modifications 

are chosen to maintain that simplicity as much as possible.  The sequential version is tested by 

comparing its results to those of a Monte Carlo simulation, as in Armstrong (2011).  The 

numerical results show that the model outputs fit very closely with the simulation outputs, 

especially for summary statistics such as the mean and variance of the losses.  

 

 The last part of the paper applies the sequential stochastic model to the 1942 Battle of the 

Coral Sea between American and Japanese aircraft carriers, as in Armstrong and Powell (2005).  

This counterfactual analysis suggests that the Americans could potentially have gained a large 

advantage if they had been able to attack before the Japanese, rather than at the same time.  This 

first-strike advantage would have been more valuable than having an additional aircraft carrier.  

Conversely, being forced to attack second would likely have been fatal to the American task 

force and resulted in the loss of Port Moresby to the Japanese. 

 

The Basic Salvo Combat Model 

 

 Consider a battle between two forces, Red and Blue.  Let A represent the number of 

combat units (e.g., warships) in the Red force at the beginning of the battle.  Each one has 

offensive firepower α, which is the number of missiles (or airstrikes, etc.) accurately fired per 

salvo at the enemy.  Blue has B units, each with defensive firepower z, which is the number of 

incoming enemy missiles intercepted per salvo by active defences.  Each missile that is not 

intercepted causes the loss of portion v of a Blue ship, so that the staying power x = 1/v is the 

number of hits needed to incapacitate one Blue ship.  Similar symbols represent Red’s defensive 

firepower y, staying power w, and loss per hit u, along with Blue’s offensive firepower β.  See 

Table 1 for a summary of this notation. 

 

 The battle consists of Red firing a salvo of missiles that Blue tries to intercept, while Blue 

simultaneously launches a salvo that Red tries to intercept.  Hughes (1995) developed the salvo 

equations to calculate the change in strength ΔB for Blue and ΔA for Red; the particular notation 

shown below is that of Armstrong (2005). 

 

   ΔA = -(βB - yA)u subject to 0 ≤ -ΔA ≤ A    (1) 

 

   ΔB = -(αA - zB)v   subject to 0 ≤ -ΔB ≤ B    (2) 
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 For example, Equation 1 first calculates Blue’s total number of offensive missiles fired as 

βB, and then subtracts Red’s total number of defensive interceptions as yA.  If this difference is 

zero or less, i.e., if (βB - yA) ≤ 0, this indicates that all of the missiles have been intercepted, and 

Red suffers no loss; hence ΔA = 0.  If the difference instead is positive, (βB - yA) > 0, this 

indicates the number of missiles that survive interception and hit Red ships; Red suffers loss u 

for each such hit.  Of course Red cannot lose more ships than it actually has, so its loss is capped 

at -ΔA = A.  The interested reader should see Hughes (1995) for further details about these 

equations, or Armstrong (2004) for an analysis of their mathematical properties.  

 

A Sequential Deterministic Model 

 

 It is straightforward to modify the deterministic version (Hughes, 1995) of the salvo 

model to depict sequential fire.  Several numerical studies have already used it that way (Lucas 

and McGunnigle, 2003; Tiah, 2007; Edmiston, 2011).  Suppose that Blue attacks first while Red 

defends, and then the Red survivors (if any) return fire while Blue defends.  With this sequence, 

Red suffers losses according to Equation 1 and is left with A1 survivors as follows. 

 

 A1 = A + ΔA = A - (βB - yA)u = A - βuB + yuA subject to 0 ≤ A1 ≤ A  (3) 

 

 If (βB - yA)u ≥ A, then A1 = 0 and there is no Red return fire.  Aside from that trivial case, 

the change in Blue’s strength ΔB and its surviving force B1 can be calculated as follows: 

 

(a) If α(A - βuB + yuA) ≤  zB, then Red’s return fire is all intercepted; thus ΔB = 0 and B1 = B.     

 

(b) If α(A - βuB + yuA) ≥ B(x + z), or equivalently (αyu + α)/(αβu + z + x) ≥ B/A, then Red’s 

return fire completely eliminates Blue; thus ΔB = -B and B1 = 0.   

 

(c) Otherwise, Red’s return fire eliminates part of Blue’s force according to Equation 4.  

 ΔB = -(αA1 - zB)v = -(α(A - βuB + yuA) - zB)v = -(αA - αβuB + αyuA - zB)v   (4) 

 

 For example, suppose that Blue initially has B = 4 ships while Red has A = 5 ships.  Let 

all ships be identical with offensive firepower α = β = 4 missiles per salvo, defensive firepower y 

= z = 2 interceptions per salvo, and loss per hit of u = v = 1/3 ships.  Blue’s attack will eliminate 

(4x4 – 2x5)/3 = 2 ships, leaving 5 – 2 = 3 Red survivors.  Those survivors will then return fire 

and cause Blue to lose (4x5 – 4x2 – 4x4x4/3 + 4x2x5/3)/3 = 1.33 ships.   

 

 If Red could instead attack simultaneously, then Blue’s losses would be (4x5 – 2x4)/3 = 4 

ships.  Thus in this numerical example, shooting first greatly aids Blue by reducing its losses, 

while shooting second leaves Red relatively worse off for that same reason.   

 

 Not surprisingly, the desirability of shooting first and the corresponding undesirability of 

shooting second hold more generally in the salvo model.  To be precise, shooting first is always 

at least as good as shooting simultaneously; and shooting simultaneously is always at least as 

good as shooting second.  However, there are some special cases where different attack 

sequences provide the same outcomes, and thus are equally desirable.   
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 One such case occurs whenever either side is too weak to penetrate their opponent’s 

defences; i.e., if (βB - yA) ≤ 0 or (αA - zB) ≤ 0.  In this case, the weaker side suffers the same loss 

regardless of the attack sequence, while the stronger side suffers no loss regardless of the attack 

sequence.  For instance, this will always be true in low lethality battles (defined as having /z  

y/), because then at least one side is unable to hit the other (Armstrong, 2004).  It can also be 

true in some high lethality battles (where /(z+x)  (y+w)/) and moderate lethality battles 

(where /z > y/ but /(z+x) < (y+w)/), if one side outnumbers the other by such a wide margin 

that its defensive firepower can intercept all incoming fire. 

 

 Another partial special case can occur in moderate or high lethality battles if one side’s 

offensive firepower is sufficient to eliminate its opponent even when shooting second.  For 

example, this would apply for Red if α(A - βuB + yuA) ≥ B(x + z).  Red would then prefer to 

attack first and thereby avoid any losses itself; but it would be indifferent between attacking 

simultaneously and attacking second, because ΔB = -B and ΔA = -(βB - yA)u either way.  

Conversely, Blue would want to avoid attacking second, because it would be eliminated before it 

could fire; but it would be indifferent between attacking simultaneously and attacking first. 

 

 Returning to the previous numerical example, suppose that Red now has A = 8 warships.  

Their defence could completely absorb any attack from Blue, as (4x4 – 2x8)/3 = 0, and their 

offence would eliminate all the Blue ships.  The outcome therefore would be the same regardless 

of who attacks first, making Red and Blue indifferent about the sequence.  

 

 In situations where none of these special cases holds, it can be informative to compare 

Blue’s losses when firing first to those it suffers when firing simultaneously or second.   

 

  ΔB1st / ΔBOther  = ( -(αA - zB - αuβB + αuyA)v ) / ( -(αA - zB)v )   (5) 

    = 1 - (α(βB - yA))/(w(αA - zB))     

 

 The ratio on the right of this expression represents the relative reduction in Blue’s losses 

due to attacking first.  It can be shown that this benefit is increasing in Blue’s strength B, 

offensive firepower β, and defensive firepower z.  Conversely, the advantage is decreasing in 

Red’s strength A, offense α, defence y, and staying power w.  For example, the effect of Red’s 

offensive fire is found by taking the derivative of the ratio with respect to α. 

 

 ∂/∂α (α(βB - yA)) / (w(αA - zB))        (6) 

 = ( (βB - yA)w(αA - zB) – (α(βB - yA))(wA) ) / (w2(αA - zB)2)  

 = ( w(βB - yA)(αA - zB – αA) ) / (w2(αA - zB)2) = - ( zB(βB - yA) ) / (w(αA - zB)2)  

 

This derivative is negative when (βB - yA) > 0 and (αA - zB) > 0, i.e., each side can hit the other.   

 

 Another way to assess the effect of attacking sequentially rather than simultaneously is 

via the fractional exchange ratio (FER).  This ratio compares the fraction of Blue forces lost to 

the fraction of Red forces lost, as in FER = (ΔB/B) / (ΔA/A).  FER = 1 indicates that both sides 

are losing the same proportion of their forces, so that the battle is a “tie” in some sense.  The 
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force ratio B/A where this happens is what Armstrong (2004) called the “parity point”, and it 

provides one measure of the relative combat “worth” of the warships on each side. 

 

 To see this, consider again the previous numerical example.  The Red and Blue ships 

have identical characteristics, so when attacking simultaneously they are clearly of equal value.  

FER = 1 whenever both sides have the same number of ships, i.e., whenever B/A = 1.   

 

 However, if Blue attacks first instead of simultaneously, then solving Equations 3 and 4 

shows that FER = 1 only when B/A = 0.573.  That is, each Red ship firing second is degraded to 

the equivalent of only 0.573 Blue ships firing first; or conversely, each first-firing ship becomes 

the equal of 1/0.573 = 1.74 second-firing ships.  This particular number is scenario-specific, but 

it provides a clear illustration of the “force multiplier” benefit of striking first. 

 

A Sequential Stochastic Model 
 

 When modifying the stochastic version of the salvo model for sequential attacks, the 

main challenge is that the number of survivors who return fire is a random variable.  This section 

describes one relatively straightforward way to handle that complication.   

 

 In the original stochastic salvo model (Armstrong, 2005), the number of accurate missiles 

αi fired by each Red ship is treated as an independent and identically distributed random variable 

that follows a binomial distribution with mean  = n p  and variance σ2 = n p(1- p).  Here, 

n represents the number of missiles fired per ship, and p represents each one’s probability of 

success.  The number of interceptions zj by each Blue ship is likewise assumed to be binomial 

with parameters z = nz pz and σz
2 = nz pz(1- pz).   

 

 The total number of Blue’s defensive interceptions DefB is subtracted from the total 

number of Red’s offensive missiles OffB to get the net number of non-intercepted missiles NetAB 

= OffA - DefB.  This is assumed to follow a normal distribution with cumulative distribution 

function (cdf) FNetAB and probability density function (pdf) fNetAB.  Each of these missiles hits a 

Blue ship and causes a random amount of damage vk with mean v and variance σv
2.   The 

nominal number of Blue survivors B1* (i.e., before truncating the distribution’s tails to account 

for 0 ≤ -ΔB ≤ B) follows a normal distribution with cdf GB1* and pdf gB1*.  Similar symbols 

represent Blue’s attack and Red’s defence.  Table 2 contains a summary of this notation. 

 

 Suppose now that Blue attacks first.  Equations 7 and 9 in Armstrong (2005) provide 

expressions for the mean μA1 and variance σA1
2 of the number of Red survivors A1; they are 

reproduced below.  (The ± uv/2 terms represent a continuity correction.) The interested reader 

should refer to that paper for the derivation of these equations. 

 

         

 )2/(1

2/02/2/02/

*1

*1*1

2

*1*1*1*11

uA

uAuAAuAuAAA

AFA

fAfFAF









            (7) 

 



19 August 2013 Salvo Combat with Sequential Fire To appear in JORS 

 6 

       

    )2/0(2/0)2/(2/

)2/(1)2/0()2/(

*1*1*1*1

2

*1

2

1*1

2

*1*1

2

*1

2

*1

2

1

uAAuuAAuA

uAuAuAAAA

fAfA

AEAFAFAF









      (8) 

 In the sequential model, Red’s return fire OffA1 consists of the total number of missiles 

fired by their survivors.  It therefore is the sum of a random number A1 of random variables αi, 

with the following mean and variance (see, e.g., Ross, 1993: 94-98). 

 

    E[OffA1] = μA1      (9) 

 

   Var[OffA1] = μA1σ
2 + μ2σA1

2             (10) 

 

Equation 9 is similar to the corresponding one in Armstrong (2005).  In Equation 10, the second 

term reflects the added variation due to the randomness of Red’s strength A1.  

 

 Equations 9 and 10 for Red’s attack are combined with existing ones from Armstrong 

(2005) for Blue’s defence to get the nominal number of non-intercepted offensive missiles NetAB.   

 

   E[NetAB] = E[OffA1] - E[DefB] = μA1n p - Bnz pz        (11) 

 

   Var[NetAB] = Var[OffA1] + Var[DefB] = μA1n p(1- p) + n2p2σA1
2 + Bnz pz(1- pz)  (12) 

 

 Summing the random loss per missile v over the random number of missiles NetAB leads 

to the following expressions for the nominal number of Blue survivors B1*.  These replace 

Equations 4 and 5 of Armstrong (2005).   

 

 B1* = B - E[NetAB] E[v]  = B - (μA1 - Bnz pz)v      (13)  

 

 B1* 
2 = (μA1n p - Bnz pz)v

2 + (μA1n p(1- p) + Bnz pz(1- pz) + A1
2n2p2)v

2  (14) 

  - 2v
2(μA1n p - Bnz pz)GNetAB(0) + 2v

2(μA1n p(1- p) + Bnz pz(1- pz) 

  + A1
2n2p2)gNetAB(0)  

 

 These expressions can be used to find the probability of various outcomes for Blue, such 

as the probability of no loss or of no survivors.  They also lead to the mean and variance of the 

actual number of Blue survivors B1, i.e., after accounting for 0 ≤ B1 ≤ B.   

 

      )2/(1 *11 vB BGBBP              (15) 
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 This approach requires relatively few changes to the original simultaneous-fire equations 

and retains their ease of software implementation.  However, it could be argued that it is overly 

simplistic, as the only information it uses about the number of Red survivors is the mean and 

variance.  The shape of A1’s distribution is ignored, including the truncation of its tails at 0 ≤ A1 

≤ A.  A more sophisticated approach could explicitly account for this truncation: e.g., if A1 = 0, 

then there is no return fire; or if A1 = A, then every Red unit returns fire.  Fortunately, the 

numerical testing in the next section suggests that such added complexity is unnecessary. 

 

 In this sequential stochastic model, the same preferences for attack sequence apply as in 

the deterministic case, but with two changes.  Firstly, the preferences now need to be expressed 

in terms of averages or probabilities: e.g., shooting first is at least as good on average as shooting 

simultaneously, and shooting simultaneously is at least as good on average as shooting second.  

But in any given instance, a force that shoots second and is “lucky” could achieve better results 

than an identical force that shoots first but is “unlucky”. 

 

 Secondly, the boundary cases for this sequence preference are gradual tendencies rather 

than distinct cut-offs.  According to the deterministic model, a fleet that is much stronger or 

weaker than its opponent should be indifferent to the sequence of attacks, as the battle’s outcome 

would be the same in any event.  In the stochastic model, however, there is always a small 

chance that an inferior force could penetrate its opponent’s defences with at least one missile.  

This suggests that even a greatly superior force should prefer to attack first, particularly if the 

leaders of the navy or its government are relatively risk-averse.  

 

Testing the Model with Monte Carlo Simulation 

 

 This section compares the performance of the sequential-fire stochastic salvo model to 

that of a Monte Carlo simulation, much as Armstrong (2011) did with the simultaneous-fire 

version.  The sequential salvo model (hereafter, “the model”) is implemented in Excel spread 

sheet software, as in Armstrong (2007, 2011).  The Monte Carlo simulation (“the simulation”) is 

also set up in Excel, using the @Risk software add-in.  The same parameter inputs (scenarios) 

are used in both cases, and then their outputs (battle outcomes) are compared to see how closely 

they match.  (The spread sheets are available from the author upon request.) 

 

Data Generation 

 

 The input parameters for this numerical study are as follows.  The size B of the Blue 

force (which shoots first) is fixed at 4 warships, while the size A of the Red force (which shoots 

second) is varied from 2 to 10 warships.  These choices provide scenarios where the likely Blue 
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outcome ranges from almost always being unharmed (when A = 2), to almost always being 

eliminated (when A = 10).  For simplicity, all Red and Blue ships are identical: each can launch 

n = nβ = 4 offensive missiles and attempt ny = nz =2 defensive interceptions per salvo.   

 

 The probability of success for each offensive missile p = pβ is varied across 3 values: 

0.50, 0.67, and 0.83.  The same 3 values are separately used for the probability of success for 

each defensive interception py = pz.  The damage caused by each missile is random with mean μu 

= μv = 0.33 ships and standard deviation σu = σv = 0.11 ships; thus the average staying power is 

1/0.33 ≈ 3 hits per ship.  These are the same figures used in Armstrong (2007, 2011).    

 

 The combination of 9 Red forces sizes, 3 offensive missile probabilities, and 3 defensive 

interception probabilities gives a total of 81 scenarios for testing in both the model and the 

simulation.  In terms of salvo combat lethality (Armstrong, 2004), these scenarios all fall into the 

moderate lethality category.  The study avoids high lethality scenarios because their tendency 

towards heavy losses or “overkill” could overshadow any differences between the model and the 

simulation.  The study also avoids low lethality scenarios, because if one side is effectively 

invulnerable, it does not matter whether it fires first or second.  

 

 For the simulation with @Risk, the first half of the spread sheet calculates the losses 

inflicted by Blue against Red.  A binomial distribution represents the number of accurate 

missiles from Blue, and another binomial distribution represents the number of successful 

interceptions by Red.  The difference (if positive) between those two variables indicates the 

number of non-intercepted missiles that hit Red.  For each missile, a normal distribution 

determines the loss suffered by Red.  The second half of the spread sheet calculates the losses 

inflicted by the Red survivors (if any) against Blue in a similar manner.  

 

 The simulation tracks the Blue losses across 10000 trials (battles) for each of the 81 

scenarios.  Each scenario yields four metrics: the mean losses suffered by Blue, measured in 

ships; the standard deviation of those losses, in ships; the probability of losing zero ships; and the 

probability of losing all 4 ships.  The mean and standard deviation are key summary statistics of 

the loss distribution, while the two probabilities examine the distribution’s upper and lower tails. 

 

Data Analysis 

 

 As an example of the results, consider the scenario where Red has 6 ships and the 

probability of success is 0.67 for each offensive missile and defensive interception.  Across 

10000 simulated trials, Blue losses had a mean of 2.637 ships and a standard deviation of 0.989 

ships.  Blue lost no ships in 0.8% of the trials, while it lost all of its ships in 12.5% of them. 

 

 By comparison, the model calculates Blue’s mean loss to be 2.643 ships, or 0.006 ships 

higher than the simulation.  The standard deviation is 0.986 ships, or 0.003 ships lower.  The 

probability of losing zero ships is 1.1% and the probability of total loss is 15.2%.  Thus in this 

particular scenario, the fit between the model and the simulation is very close for the mean and 

standard deviation, and reasonably close for the tail probabilities. 
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 The next step is to assess the fit between the model and the simulation across all 81 

scenarios at once.  One qualitative approach uses scatter plots, as in Armstrong (2011).  For 

example, in Figure 1 each circle represents one scenario; it matches the probability of Blue being 

totally eliminated as calculated by the model (vertical axis) with the corresponding probability 

from the simulation (horizontal axis).  The diagram also includes a diagonal reference line to 

indicate where the dots hypothetically would fall if a perfect fit existed between model and 

simulation.  In this figure most points fall just above the line, indicating that the model tends to 

slightly overestimate this probability, especially for values near 0.5. This may be due to the 

simple continuity correction Armstrong (2005) used in the model, which assigns probability 

mass near zero to zero.  Scatter plots for the other 3 metrics (not shown) suggest even closer fits. 

 

 To confirm these visual impressions, linear regressions were calculated next for each of 

the 4 metrics across all 81 pairs of measurements, with the regression constants fixed to zero.  

The top half of Table 3 displays the results.  In this context, slope coefficients and R2 values 

close to 1.000 indicate that the model outputs are similar to the simulation outputs.   

 

 For example, regression of the probabilities of complete elimination from the model 

against those of the simulation yielded R2 = 0.999, showing that the model gives extremely close 

estimates of the simulation values; it explains 99.9% of the variation in them.  The slope 

coefficient of 1.026 meanwhile confirms that the model tends to marginally overestimate these 

probabilities.  The results for the other 3 metrics indicate fits that are at least as good. 

 

 The bottom half of the table quantifies the model-to-simulation fit in a different way.  

First, the difference between each result from the model and the equivalent result from the 

simulation was calculated, as in, e.g., (difference in mean loss) = (model mean loss) – 

(simulation mean loss). Then the averages and variances of those differences across all 81 

scenarios were determined.  Average differences close to zero indicate that the model gives an 

accurate (unbiased) estimate of the simulation, whereas positive averages indicate a tendency to 

overestimate and negative averages a tendency to underestimate.  Similarly, variances close to 

zero suggest that the model is consistent in its estimates of the simulation, whereas larger 

variances suggest wider swings from scenario to scenario.  The table also shows the difference 

with the largest magnitude, positive or negative.  All of these figures confirm that the fit between 

the model and the simulation is generally very close.   

 

Applying the Model to a Carrier Battle 

 

 This section demonstrates the application of the sequential stochastic salvo model in a 

small study of the Battle of the Coral Sea (the Monte Carlo simulation is not used in this part of 

the study).  This battle was important historically because it was the first naval engagement 

fought entirely via an exchange of carrier airstrikes, and strategically because it saved Port 

Moresby from Japanese invasion.  At the tactical level, the losses were heavier on the American 

side: the Lexington sank and the Yorktown needed major repairs in Pearl Harbor.  On the 

Japanese side, the crippled Shokaku required months to repair; the Zuikaku remained operational, 

but returned to Japan to replenish its aircraft (Lundstrom, 1984).   
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 In the battle on 8 May 1942, the attacks between the aircraft carriers (CVs) of the United 

States Navy (USN) and the Imperial Japanese Navy (IJN) were effectively simultaneous.  But 

they could easily have been sequential if, as at Midway, one fleet had spotted the other sooner.   

 

 This work extends an earlier counterfactual study by Armstrong and Powell (2005).  

They varied the number of USN CVs, the disposition of those CVs (grouped or dispersed), and 

their ratio of defensive fighters to offensive bombers.  Their results indicate that adding another 

USN CV would have substantially increased IJN losses, but only marginally decreased USN 

losses.  As well, the USN’s outcome would likely have been better if it had dispersed its CVs, 

but worse if it had carried more fighters and fewer bombers. 

 

 The new factor to vary here is the sequence of attacks; three possibilities are compared. 

 

 Simultaneous: The USN and IJN conduct their airstrikes simultaneously, as in the actual 

battle, and as in Armstrong and Powell (2005). 

 USN first: The USN executes its attack first while the IJN defends; then the IJN survivors 

respond with a counter-attack while the USN defends.   

 USN second: The IJN executes its attack first while the USN defends; then the USN 

survivors respond with a counter-attack while the USN defends.   

 

 The other parameter that is varied here is the number of American carriers.  Historically 

the USN had 2 CVs in the battle, but this study also tries value of 1, 3, and 4, as there were 4 

USN CVs in the Pacific theatre at that time.  Combining the 4 levels of USN force strength along 

with the 3 attack sequences yields 12 different scenarios for comparison. 

 

 The model inputs for these scenarios are shown in Table 4.  They were derived in 

Armstrong and Powell (2005) using historical data.  Each point of offensive firepower represents 

one dive bomber or torpedo bomber, and each point of defensive firepower represents one fighter 

aircraft.  For example, each USN CV carries 17 fighters, and each of those fighters has a 

probability of 0.3529 of successfully intercepting one IJN bomber.  

 

 Table 5 contains the main model outputs for both the USN and IJN, rounded to two 

decimal places.  These indicate the average CV losses, the standard deviation of those losses, the 

probability of losing zero CVs, and the probability of losing all of the CVs.  The final column 

subtracts the mean USN loss from the mean IJN loss; a positive number indicates an American 

advantage, while a negative one indicates a Japanese advantage.  

 

 For example, the fourth row of the table describes the historical case where the USN has 

2 CVs and attacks simultaneously with the IJN; these numbers are the same as in Armstrong and 

Powell (2005).  The model estimates the average number of CVs incapacitated (not necessarily 

sunk) at 1.82 for the USN and 1.44 for the IJN.  These are reasonably similar to, though perhaps 

slightly higher than, the actual results of the battle.  The difference of the means, 1.44 – 1.82 = -

0.38 CVs, can be seen as fairly representing the tactical defeat suffered by the USN.   

 

 By comparison, the fifth row of Table 5 shows the results of the same USN force 

attacking first.   The USN’s average loss decreases from 1.82 to just 0.17 CVs, while the 
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standard deviation remains relatively unchanged at 0.18 versus 0.19 CVs.  The probability of the 

American force suffering no loss at all jumps from 0% to 38.2%, while the probability of being 

completely destroyed drops from 30.6% to 0%.  The IJN loss statistics remain unchanged, so the 

difference in the average losses changes from -0.38 (a small American disadvantage) to +1.27 (a 

large American advantage). 

 

 Looking down the rest of the table, the numbers show that attacking first greatly reduces 

the USN’s losses whenever it employs 2 or more CVs.  In this context, striking first is more 

valuable than adding another CV.  This point is illustrated in Figure 2, which shows the 

difference in mean losses from the model for each combination of carrier strength and attack 

type.  While attacking first almost always provides some advantage to the USN, there is clearly 

an interaction effect between the sequence of attacks and the number of carriers.  The 

incremental benefit of having an extra CV is greatest when the USN attack firsts; or to put it 

another way, the benefit of a first strike is greatest when there are enough CVs to deliver a 

decisive blow.   

 

 By contrast, a lone USN CV receives little benefit from attacking first, as it lacks enough 

firepower to fight 2 opponents.  To “attack effectively first” (Hughes, 2000: xxv), one must not 

only attack first, but also attack effectively.  The plot also illustrates that “more” is not always 

“better”.  If the USN attacks simultaneously or second, they actually get better average results 

with 1 CV than with 2, because the latter choice exposes more of their ships to loss. 

 

 These results suggest that if the USN had actually been able to attack first with its 2 CVs, 

the battle’s tactical outcome would likely have been much more favourable.  The Lexington 

would not have sunk and the Yorktown would have been untouched.  This would have given the 

USN an extra margin of safety for the Battle of Midway one month later. 

 

 Conversely, attacking second would likely have been disastrous for the USN.  The 

minimally damaged IJN CVs could have launched a follow-up airstrike against the weakened 

USN.  The Japanese would thereby have established control of the Coral Sea and been able to 

complete their invasion of Port Moresby.   

 

Discussion 
 

 This paper develops a sequential-fire version of the stochastic salvo combat model by 

modifying the existing simultaneous-fire model.  This modified model allows researchers to 

quantify the benefits of striking first, and yet it remains simple enough to implement in user-

friendly software such as spread sheets.  Numerical tests indicate that the model produces results 

very similar to those of Monte Carlo simulation.   

 

 The model is then used to study the impact of different attack sequences in the 1942 

Battle of the Coral Sea.  The results indicate that an American first strike would have been more 

beneficial for them than having another aircraft carrier but striking simultaneously.  Conversely, 

a Japanese first strike would have been devastating for the Americans and allowed the Japanese 

to invade Port Moresby.  
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 Future mathematical research could explore more sophisticated sequential models to see 

whether additional complexity would provide any meaningful improvement in accuracy.  Future 

research could also examine situations where each side may be able to influence (perhaps at 

some cost) the sequence of attacks; this would involve adding elements of game theory, as in the 

attacker-defender game literature. 

 

 On the empirical side, researchers could use the new model to study the naval battles at 

Midway in 1942 and the Philippine Sea in 1944, where the airstrikes did occur sequentially.  The 

model could also be adapted for other contexts, such as Connors’ (2012) study of the 1853 Battle 

of Balaclava or Edmiston’s (2011) study of a hypothetical near-future battle.  Given the ample 

empirical data that is available for the 1944 Ardennes campaign, there might be potential for 

study there as well (see, e.g., Hausken and Moxnes, 2005). 
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Table 1: Notation for deterministic model  

 
Red Blue Description 

A B Beginning force strength 

  Offensive power per unit 

u v Loss suffered per hit 

w x Staying power per unit 

y z Defensive power per unit 

 

 

 

 

Table 2: Additional notation for stochastic model    

 
Red Blue Description 

n n Offensive missiles per unit per salvo 

p p Probability of an accurate missile 

OffA OffB Total accurate offensive missiles per salvo 

ny  nz Defensive interceptions per unit per salvo 

py  pz Probability of a successful interception 

DefA  DefB Total successful defensive interceptions per salvo 

NetBA  NetAB Nominal non-intercepted offensive missiles 

FNetBA  GNetAB  cdf of nominal non-intercepted offensive missiles 

fNetBA gNetAB  pdf of nominal non-intercepted offensive missiles 

A1*  B1*  Nominal surviving force strength after one salvo 

FB1*  GB1*  cdf of nominal surviving force strength 

fB1*  gB1*  pdf of nominal surviving force strength 

A1  B1  Actual surviving force strength after one salvo 

 

 

 

 

 

Table 3: Comparison of Blue losses, model versus simulation, for mean loss, standard deviation 

of loss (SD), probability of zero loss (P[0]), and probability of total loss (P[all]) 
 

 Mean SD P[0] P[all] 

Regression R2, model v. simulation 1.000  0.999  1.000 0.999 

Regression slope, model v. simulation 1.000  0.996  1.000 1.026 

Average of differences, model - simulation 0.001 -0.005  0.001 0.014 

Variance of differences, model - simulation 0.000  0.000  0.000 0.000 

Greatest difference, model - simulation 0.059 -0.052 -0.012 0.057 
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Table 4: Coral Sea model inputs derived in Armstrong & Powell (2005) 

 
 USN IJN 

Number of aircraft carriers 2 2 

Bomber aircraft per carrier 47 33 

Fighter aircraft per carrier 17 20.5 

Probability of successful deployment per bomber 0.5000 0.7727 

Probability of successful intercept per fighter 0.35290 0.04878 

Average loss suffered per bomber 0.04766 0.03208 

Standard deviation of loss per bomber 0.01589 0.01069 

 

 

 

 

Table 5: Estimated Coral Sea losses from the model as the attack sequence and USN force size 

are varied.  The numbers show the mean loss, standard deviation of loss (SD), probability of zero 

loss (P[0]), and probability of total loss (P[all]), as well as the difference of means = (USN 

mean) – (IJN mean). 

 
USN 

CVs 

Attack 

Sequence 

USN: 

Mean 

 

SD 

 

P[0] 

 

P[All] 

IJN: 

Mean 

 

SD 

 

P[0] 

 

P[All] 

Difference 

of Means 

1 Simultaneous 1.00 0.00     0% 100% 0.69 0.13   0%     0% -0.31 

1 USN first 0.99 0.05     0%   92% 0.69 0.13   0%     0% -0.30 

1 USN second 1.00 0.00     0% 100% 0.00 0.01 96%     0% -1.00 

2 Simultaneous 1.82 0.18     0%   31% 1.44 0.18   0%     0% -0.38 

2 USN first 0.17 0.19   38%     0% 1.44 0.18   0%     0% +1.27 

2 USN second 1.82 0.18     0%   31% 0.10 0.11 36%     0% -1.72 

3 Simultaneous 1.57 0.25     0%     0% 1.98 0.06   0%   84% +0.41 

3 USN first 0.00 0.00 100%     0% 1.98 0.06   0%   84% +1.98 

3 USN second 1.57 0.25     0%     0% 1.01 0.24   0%     0% -0.56 

4 Simultaneous 1.29 0.26     0%     0% 2.00 0.01   0% 100% +0.71 

4 USN first 0.00 0.00 100%     0% 2.00 0.01   0% 100% +2.00 

4 USN second 1.29 0.26     0%     0% 1.88 0.17   0%   50% +0.59 
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Figure 1: Scatter plot comparing model versus simulation for the probability that all Blue units 

are eliminated.  Each circle represents the results from one scenario, while the diagonal line 

indicates where the circles would fall if the fit had been perfect. 
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Figure 2: Interaction plot for the difference between the IJN and USN mean losses from the 

model as the attack sequence and the USN force size are varied.  Positive numbers indicate a 

USN advantage. 

 

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

1 2 3 4

IJ
N

 m
e

an
 lo

ss
 -

U
SN

 m
e

an
 lo

ss

Number of USN CVs in battle

USN first

Simultaneous

USN second

 
 


