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General Abstract 

Activity of the medial frontal cortex (MFC) has been implicated in attention  regulation 

and performance monitoring. The MFC is thought to generate several event-related 

potential (ERPs) components, known as medial frontal negativities (MFNs), that are 

elicited when a behavioural response becomes difficult to control (e.g., following an  

error or shifting from a frequently executed response). The functional significance of 

MFNs has traditionally been interpreted in the context of the paradigm used to elicit a 

specific response, such as errors. In a series of studies, we consider the functional 

similarity of multiple MFC brain responses by designing novel performance monitoring 

tasks and exploiting advanced methods for electroencephalography (EEG) signal 

processing and robust estimation statistics for hypothesis testing. In study 1, we designed 

a response cueing task and used Independent Component Analysis (ICA) to show that the 

latent factors describing a MFN to stimuli that cued the potential need to inhibit a 

response on upcoming trials also accounted for medial frontal brain responses that 

occurred when individuals made a mistake or inhibited an incorrect response. It was also 

found that increases in theta occurred to each of these task events, and that the effects 

were evident at the group level and in single cases. In study 2, we replicated our method 

of classifying MFC activity to cues in our response task and showed again, using 

additional tasks, that error commission, response inhibition, and, to a lesser extent, the 

processing of performance feedback all elicited similar changes across MFNs and theta 

power. In the final study, we converted our response cueing paradigm  into a saccade 

cueing task in order to examine the oscillatory dynamics of response preparation. We 

found that, compared to easy pro-saccades, successfully preparing a difficult anti-
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saccadic response was characterized by an increase in MFC theta and the suppression of 

posterior alpha power prior to executing the eye movement. These findings align with a 

large body of literature on performance monitoring and ERPs, and indicate that MFNs, 

along with their signature in theta power, reflects the general process of controlling 

attention and adapting behaviour without the need to induce error commission, the 

inhibition of responses, or the presentation of negative feedback.  

 

Keywords: medial frontal cortex; performance monitoring; theta power; independent 

component analysis; robust estimation statistics  
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Chapter 1 

General Introduction 

 Extensive study during the past two decades has been focused on the role of the 

medial frontal cortex, including the anterior cingulate cortex (ACC), in performance 

monitoring and self-regulation, resulting in several proposals regarding how ACC 

structure and function provide a neural basis for the control of attention and behaviour. 

Early conceptualizations highlight the ACC‟s contribution in biasing the allocation of 

attention for goal-directed behaviour (Mesulam, 1990; Posner, Fox, & Raichle, 1988), 

particularly with respect to coordinating and modifying behavioural response selection 

(e.g., „attention for action‟; Posner & Dehaene, 1994; Posner & Petersen, 1990). 

Similarly, more recent discussions in cognitive neuroscience focus on the associations 

between ACC activation and performance monitoring, evaluating, and adjusting 

behaviour vis-à-vis its role in modulating information flow between other brain regions 

(Paus, 2001; Posner, Rothbart, Sheese, & Tang, 2007; Weston, 2012). Although the core 

cognitive function of the human ACC has been variably attributed to paradigm-specific 

processes, such as error processing or response conflict, it is proposed here that the role 

of the medial frontal cortex in performance monitoring reflects a more general process of 

controlled attention modulation This interpretation is supported by our data which 

suggests that a common factor accounts for medial frontal activation in various 

paradigms designed to focus on multiple neurocognitive processes, including error 

processing, inhibitory control, and processing external performance feedback.  
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Anatomical and clinical data implicating the medial frontal cortex and ACC in 

regulating attention toward task goals 

 Anatomically, the ACC is connected with frontal (lateral and dorsolateral, as well 

as primary, supplementary, and premotor cortices), subcortical (thalamus, amygdala, 

ventral striatum), and brainstem structures (locus coeruleus, monoamine nuclei, 

periaqueductal gray, red nucleus) known to mediate aspects of cognition, arousal, 

motivation, and intentional behaviour (Barbas & Pandya, 1989; Bates & Goldman-Rakic, 

1993; Devinsky, Morrell, & Vogt, 1995; Dum & Strick, 1991; Paus, 2001; Vogt & 

Pandya, 1987; Vogt, Pandya, & Rosene, 1987). Given these connections the ACC can 

participate in the modulation of attention and facilitate changes in behaviour in the face 

of dynamic challenges (Medalla & Barbas, 2009; Paus, 2001; Weston, 2012). Clinical 

data also implicate the ACC in attention control as structural and functional disruptions 

often manifest as impairments in effortful and volitional attempts to regulate behaviour 

toward task goals, particularly when tasks are cognitively challenging and require rapid 

shifts in behaviour. Lesions to the ACC and surrounding prefrontal cortex have been 

associated with impairments in response control/inhibition and task switching in both 

human and non-human samples (Gläscher et al., 2012; Rudebeck et al., 2008; Rushworth, 

Hadland, Gaffan, & Passingham, 2003; Seamans, Floresco, & Phillips, 1995; Swick & 

Jovanovic, 2002; Swick & Turken, 2004), indicating that the ACC is involved in 

modulating attention toward task goals.  

Animal studies on medial frontal cortex and ACC and controlled attention 

 Animal studies provides direct evidence that ACC activity is associated with 

attention control, task switching, and biasing behaviour toward task goals. Single-unit 



3 

 

recordings in rats show that commission errors reflect disorganized firing patterns 

(Lapish, Durstewitz, Chandler, & Seamans, 2008) of neuronal assemblies in the ACC and 

that associative learning and successful behaviour are underscored by the capacity to 

establish and maintain distinct functional relationships. Similarly, Bryden, Johnson, 

Tobia, Kashtelyan, and Roesch (2011) found that neurons in the rat ACC are sensitive to 

error commission, reward prediction errors, and become more active when there is an 

increased demand for attentional resources such as learning new response contingencies 

or during unexpected shifts in the value of a previously rewarded target. Indeed, the firing 

of neurons in the ACC are impacted by changes in task demands including task-switching 

(Johnston, Levin, Koval, & Everling, 2007), and events that inform optimal stimulus-

response strategies (Quilodran, Rothé, & Procyk, 2008).  

 Neurons in the ACC of primates show enhanced phasic theta oscillations during 

both the preparatory and remedial stages of stimulus-response selections (Womelsdorf, 

Johnston, Vinck, & Everling, 2010a), again suggesting that the ACC is involved in 

establishing and modulating behavioural task-sets (Isomura, Ito, Akazawa, Nambu, & 

Takada, 2003). In addition, activation patterns of ACC neurons, as well as their 

functional relationship with other brain regions (Totah, Jackson, & Moghaddam, 2013), 

prior to the onset of stimuli are predictive of subsequent choice selection (Isomura et al., 

2003; Womelsdorf  et al., 2010a), particularly following a task switch (Johnston et al., 

2007). These findings across species and paradigms are in line with a model of ACC 

function in which the ACC becomes engaged when task events demand increases or the 

maintenance of high levels of attention control so that task goals can be achieved.  
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The medial frontal cortex and performance monitoring 

 Different performance monitoring paradigms are used to examine attention, 

providing multiple lines of evidence, from ERP and functional magnetic resonance 

imaging (fMRI) studies, to suggest that ACC activity is affected by task demands. For 

example, amplitude of medial frontal ERP components and blood-oxygen-level-

dependent (BOLD) responses increase when stimulus-response rules are reversed 

(Schroder, Moran, Moser, & Altmann, 2012) or when response conflicts, such as the need 

to shift responses to another stimulus dimension, are introduced (Hsieh & Wu, 2011; 

Liston, Matalon, Hare, Davidson, & Casey, 2006; Rushworth, Buckley, Behrens, Walton, 

& Bannerman, 2007). In addition, the size of MFNs (Randall & Smith, 2011) and ACC 

BOLD activity (Aarts, Roelofs, & van Turennout, 2008) are associated with changes in 

expectation, and relate to attention allocation in the pursuit of establishing appropriate 

response sets (Luks, Simpson, Feiwell, & Miller, 2002; Swainson et al., 2003), including 

biasing attention toward relevant stimuli when individuals attempt to minimize 

interference from task irrelevant information (Weissman, Gopalakrishnan, Hazlett, & 

Woldorff, 2005). Thus, task-switching and response shifts perturb ACC activity, 

suggesting that this brain region is recruited for coordinating and changing behavioural 

policies in order to achieve task goals (Woodward, Metzak, Meier, & Holroyd, 2008; 

Woodward, Ruff, & Ngan, 2006).  

 The sensitivity of the ACC to cognitive demands was validated by Paus (1998) 

who, after reviewing 107 PET studies, identified task difficulty as a key variable 

modulating activation in the ACC. Others have observed linear increases in ACC source 

activity as a function of response interference (Hanslmayr et al., 2008), and greater phasic 
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activation of the ACC when task demands require moment-to-moment adjustments in 

behaviour compared to when responses strategies need to be maintained (Wilk & Morton, 

2012; Wilk, Ezekiel, & Morton, 2012). At the network level, functional connectivity 

within (caudal and anterior ACC) and between the ACC and frontal regions (dorsolateral 

prefrontal cortex, frontal operculum) is increased in cued conditions of a Go-NoGo task 

(Schulz, Bédard, Czarnecki, & Fan, 2011), suggesting that the ACC, along with other 

brain regions, coordinates processes related to preparing and/or biasing the selection of 

appropriate responses.  

Medial frontal cortex, medial frontal negativities, and controlled attention 

 Several ERP components, including the error-related negativity (ERN), NoGo 

N200 (NoGo N2), and feedback-related negativity (FRN), have been attributed to the 

ACC‟s role in error detection (Gehring, Goss, Coles, Meyer, & Donchin, 1993; Miltner, 

Braun, & Coles, 1997; Miltner, 2003), conflict monitoring and response 

control/suppression (Botvinick, Nystrom, Fissell, Carter, & Cohen, 1999; Nieuwenhuis, 

Yeung, van den Wildenberg, & Ridderinkhof, 2003; van Veen & Carter, 2002), feedback 

processing (Gehring & Willoughby, 2002), reinforcement/associative learning and error 

prediction (Holroyd & Coles, 2008; Holroyd & Yeung, 2012; Holroyd & Coles, 2002; 

Nieuwenhuis, Holroyd, Mol, & Coles, 2004), expectancy deviation (Oliveira, McDonald, 

& Goodman, 2007), and predicting the likelihood/timing of action outcomes (Alexander 

& Brown, 2011). 

 The ERN emerges following erroneous response commission and is elicited  

using speeded response tasks in which equally likely stimulus-response mappings occur 

on each trial, or responses need to be modified or inhibited. Unlike the response-locked 
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ERN, the NoGo N2 and FRN are locked to the onset of NoGo and feedback stimuli, 

respectively. Infrequent NoGo stimuli cue the need to withhold a pre-potent response 

and, when successful, individuals produce an enhanced negativity (approximately 200 to 

350 ms) in the ERP compared to Go trials. The FRN is elicited to feedback stimuli 

informing individuals about response outcomes, particularly about whether or not a 

response was correct or their choices result in gain/reward or loss/punishment (Gehring & 

Willoughby, 2002). Researchers typically compute difference waves in order to isolate 

variance that is specific to response errors (ERN: Correct minus Error), conflict 

monitoring/inhibitory control (NoGo N2: Go minus NoGo), or feedback processing 

(FRN: Correct/Positive minus Incorrect/Negative). Collectively, these ERP components 

can be classified as medial frontal negativities (MFNs) on the basis of similar underlying 

neuronal generators and their topographic voltage distribution at the scalp, which 

consistently point to ACC and surrounding medial frontal sources (see van Noordt & 

Segalowitz, 2012).  

 Attributing the core function of the ACC to various paradigm-specific processes 

is tempting, in part because the described MFNs are elicited in different cognitive tasks. 

Although driven by different task events, a growing body of literature suggests that there 

is functional similarity across MFNs, not just in terms of scalp topographies (e.g., 

Gruendler, Ullsperger, & Huster, 2011), waveform morphology, and source generators, 

but that they can also be captured by the same latent component(s) in the EEG signal. 

Hoffmann and Falkenstein (2010) showed that the negative wave immediately following 

correct and error responses can be described by the same independent component (IC), 

whereas others have demonstrated overlap in cortical sources accounting for the 
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response-locked ERN and stimulus-locked FRN (Gentsch, Ullsperger, & Ullsperger, 

2009). Extending these findings, Wessel, Danielmeier, Morton, and Ullsperger (2012) 

showed that the ERN and novelty N2, an ERP component elicited in response to 

infrequent task-relevant stimuli, also share common neuronal generators in the ACC and 

that the back-projected ERN independent components (ICs) can also describe the N2 

response to novel stimuli.  

 It is obvious that the various MFNs are elicited under different experimental 

contexts and reflect, to some extent, different performance monitoring demands of the 

tasks. However, the medial frontal cortex response is not specific to error commission, 

conflict monitoring, response inhibition, or reinforcement learning. In addition to having 

similar cortical sources, each of these MFNs are similar in that they are affected by task 

demands to regulate or modify behaviour. These include bringing cognitive resources 

online when processing outcomes that inform behavioural choice selection, during 

feedback/reinforcement learning, or following the execution of an erroneous response. 

Thus, these brain responses are observed when a salient stimulus or behavioural event 

occurs, particularly when these events signal a need to change response patterns (e.g., 

when they involve a context switch cue, response conflict/inhibition, a behavioural error, 

or feedback processing). These findings have led several prominent researchers to 

suggests that these electrocortical signals reflect a realization of the need for cognitive 

control during performance monitoring (Cavanagh & Frank, 2014; Cavanagh, Zambrano-

Vazquez, & Allen, 2012; Clayton, Yeung, & Cohen Kadosh, 2015; Hickey, Chelazzi, & 

Theeuwes, 2010; Narayanan, Cavanagh, Frank, & Laubach, 2013). This common theme 

suggests a simpler approach to describing and understanding the role of the medial 
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frontal cortex in attention control - i.e., effortful and volitionally engaged attempts to 

regulate awareness and behaviour toward task goals.  

MFNs, theta oscillations, and cognitive control 

 Many researchers have moved beyond traditional ERP time-domain approaches 

and decompose the EEG signal, using short-time Fourier (Thakor & Tong, 2004) or 

wavelet transforms (Kumar, Sajeeth, Samar, Desjardins, & Segalowitz, 2014; Quiroga, 

Sakowitz, Basar, & Schurmann, 2001) to retain potentially important information about 

the spectral dynamics in the EEG. The practice of using a fixed-latency average 

amplitude approach permits the investigation of only partial phase alignment and changes 

in power driven by stimulus or response time locking (Le Van Quyen & Bragin, 2007; 

Sauseng et al., 2007). Not only do time-frequency transforms retain more of the EEG 

data, compared to the average voltage ERP approach, but they provide a more nuanced 

picture of brain dynamics and more closely reflect the activation of neuronal assemblies 

that generate scalp recorded EEG (Buzsáki, 2006). One measure that can be derived from 

time-frequency transforms is referred to as event-related spectral perturbations (ERSPs), 

which reflect changes in the mean EEG power that are driven by task stimuli or 

behavioural responses. ERSPs, unlike ERPs, are able to capture spontaneous changes in 

EEG power that are temporally stable but not coherent in phase angle across trials 

(Makeig, 1993; Makeig, Debener, Onton, & Delorme, 2004).  

 A literature focusing on the spectral properties of medial frontal activation during 

performance monitoring has exploded during the past decade. Within this literature there 

is a compelling consistency across studies illustrating that MFNs have a clear signature in 

theta rhythms (~ 3-8 Hz). Neurocognitive processes underlying response commission 
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errors, response control during conflict and inhibition, response cueing, and processing 

novel stimuli and unexpected/negative feedback have all been linked to transient peaks in 

theta power (Cavanagh, Frank, Klein, & Allen, 2010; Cavanagh et al., 2012; Cohen & 

Cavanagh, 2011; Cohen, Ridderinkhof, Haupt, Elger, & Fell, 2008; Hajihosseini & 

Holroyd, 2013; Luu, Tucker, & Makeig, 2004; Nigbur, Ivanova, & Stürmer, 2011; 

Trujillo & Allen, 2007). For example, researchers have found that theta power at medial 

frontal scalp sites increases following response errors (Luu et al., 2004; Trujillo & Allen, 

2007), whereas others show that the presence of response conflict, such as those 

introduced by NoGo or flanking stimuli, also induce transient bursts of theta activity 

(Cohen & Cavanagh, 2011; Nigbur et al., 2011). Similarly, task outcomes that violate an 

individual's expectations are linked to increases in medial frontal theta power (Cavanagh 

et al., 2010). In addition to MFN ERPs in the EEG literature, convergence across fMRI, 

dipole source modeling, and MEG suggests that increases in theta power during 

performance monitoring are localized to cortical sources in the ACC and surrounding 

medial frontal regions (Asada, Fukuda, Tsunoda, Yamaguchi, & Tonoike, 1999; 

Cavanagh & Shackman, 2015; Hoffmann, Labrenz, & Beste, 2014; Ishii et al., 1999; Liu, 

Woltering, & Lewis, 2014; Tzur & Berger, 2007). 

 In addition to the general theme of increased medial frontal theta power following 

events that challenge behaviour and task goals, there is consistent evidence that these 

theta modulations reflect an important neural substrate for the adaptive control of 

behaviour in both human and non-human samples (Narayanan et al., 2013). In macaques 

and rats, theta is enhanced as a function of cognitive load (Tsujimoto, Shimazu, Isomura, 

& Sasaki, 2010), following task switches in stimulus-response rules (Johnston et al., 
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2007; Womelsdorf et al., 2010a; Womelsdorf, Vinck, Leung, & Everling, 2010b), and 

has been shown to predict response outcomes prior to the onset of target cues 

(Womelsdorf et al., 2010a). In humans, theta is linked to the regulation of attention and 

behaviour, increasing when demands on response control are high (Cohen & Donner, 

2013), following commission errors (van Driel, Ridderinkhof, Cohen, & Driel, 2012), 

and when individuals need to override habitual conditioned responses (Cavanagh, 

Eisenberg, Guitart-Masip, Huys, & Frank, 2013). Furthermore, theta power predicts 

behavioural shifts following unexpected outcomes (Cavanagh et al., 2010), post-error 

slowing (Cavanagh & Shackman, 2015), and response slowing between congruent and 

incongruent trials (Ma, Liu, & Chen, 2015). Together, frontal theta oscillations are 

thought to be a potential mechanism for the control of attention during action selection, 

feedback processing, and response shifts (see Cavanagh & Shackman, 2015; Cavanagh et 

al., 2012). 

ICA, robust estimation techniques and single subject statistics 

 The application of independent component analysis (ICA) to derive latent factors 

that describe the projections of cortical sources has expanded during the past two 

decades. A major limitation of scalp recorded EEG is that the activity at scalp sensors 

reflects a mixed signal of the voltage projections from multiple brain regions that are 

simultaneously active. Because the spreading of field projections that occurs through 

volume conduction is relatively instantaneous, methods of blind source separation are 

necessary to isolate the independent contribution that various brain sources make to the 

scalp recorded EEG (Makeig, Bell, Jung, & Sejnowski, 1996). This method is therefore 

especially useful to isolate constituent brain processes in order to examine their relative 
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contribution to EEG and ERP components (Bell & Sejnowski, 1995; Debener, Makeig, 

Delorme, & Engel, 2005; Desjardins & Segalowitz, 2013; Hu, Mouraux, Hu, & Iannetti, 

2010; Makeig et al., 1999). Compared to traditional processing and analysis of mixed 

scalp EEG, the use of ICA expands the types of questions and hypothesis that can be 

studied and provides better information about the unique brain dynamics of cortical 

sources (Delorme & Makeig, 2004; Makeig et al., 2004; Makeig & Onton, 2008).  

 Historically, psychologists have limited themselves to analyzing group averages 

with parametric tests. The field of cognitive and affective neuroscience, like many others, 

is no exception to this tradition. A host of issues can arise when relying on tests that 

assess differences in means and variances across groups (e.g., t-tests and Analysis of 

Variance), including the presence of group differences that misrepresent single subject 

effects. Moreover, the conventional approach to processing and scoring ERPs, along with 

the use of small sample sizes and data which likely violate model assumptions, can 

introduce additional theoretical limitations. Ultimately, conventional signal processing 

techniques coupled with parametric tests leads to an oversimplification of the data which, 

in turn, impairs our ability to understand the neural correlates of behaviour.  

 As with any statistical approach, parametric techniques are limited in their 

application. A central assumption of these tests is that sampling distributions reflect the 

normal curve. However, it is common for distributions to be asymmetrical, excessively 

kurtotic, and/or contain outliers (Wilcox & Keselman, 2003). For example, Wilcox and 

Keselman (2003) illustrate that sampling from data that are skewed creates appreciable 

incongruity between the actual t and normal distribution. Although this is especially 

problematic with small samples, the number of subjects needed to rectify these 
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discrepancies can easily become impractical (e.g., 200 to 300). In addition, outliers and 

uneven tails inflate the variance of the sampling distribution, thereby attenuating the t-

statistic and reducing statistical power to reject the null hypothesis (Howell, 2009). 

Ultimately, these issues lead to biased tests that can increase the likelihood of retaining a 

null hypothesis or, in other cases, they can produce exaggerated effect sizes (i.e., the 

likelihood of making a Type I error is not minimized in the presence of a true null 

hypothesis; Pernet, Sajda, & Rousselet, 2011; Rousselet, Husk, Bennett, & Sekuler, 2008; 

Rousselet & Pernet, 2011; Wilcox & Keselman, 2003). The repercussions of having poor 

measures of location and dispersion can manifest as unrepresentative confidence 

intervals, an alpha that is higher than the nominal level or is unequally divided between 

the tails of the distribution, and a reduction in statistical power for rejecting the null 

hypothesis (Wilcox & Keselman, 2003; Wilcox, 2005).  

 An alternative approach is to apply robust estimation techniques because these 

statistical measures and procedures are relatively insensitive to violations in model 

assumptions, such as non-normality, and are relatively insensitive to distribution 

characteristics, including skewness (Wilcox & Keselman, 2003; Wilcox, 2005). Applying 

robust estimation techniques is a way to deal with statistical limitations present in 

parametric tests, promote the retention of data for hypothesis testing, and permits the 

testing of hypotheses within individuals. ERP data do not escape the issues described 

above, and the conventional approach to processing ERP signals further constrains our 

understanding about the neural correlates of behaviour as reflected by intra-individual 

variability. The dominant strategy currently used in ERP research has methodological, 

statistical, and theoretical limitations. Although attempts are made to deal with complex 
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neurophysiological and behavioural phenomena, methods of signal processing and 

hypothesis testing oversimplify what is most likely true about the data (e.g., distribution 

characteristics), and what is certainly known to be true about the nature of brain function 

(e.g., simultaneous activation of multiple cortical regions and coordinated neural 

networks). Methodologically, EEG recordings result in extremely large amounts of data 

as a consequence of both the digitization of analog brain activity with high temporal 

resolution and high density electrode montages (data collected every 1-2 milliseconds 

across 128 different channels, resulting in 64,000 and 128,000 data points/second). It is 

clear that the process of averaging trials and scoring peak voltages dramatically reduces 

the data being used for analysis. Instead of examining voltages across all time points, 

both within and across trials, each subject‟s brain activity is indexed by a single value 

reflecting peak voltage at a specific latency, at a single site, in a waveform that has been 

averaged across trials. These individual-level values are then typically averaged across 

individuals and compared between groups, or examined in terms of differences between 

individuals (i.e., inter-individual variance) and studied in relation to other individual 

differences variables. 

 Another concern, that can be resolved using robust estimation techniques, is that a 

large proportion of ERP studies include relatively small sample sizes. Many trials are 

collected for each individual and contained in group averages; however, effects are 

computed on sample sizes that rarely exceed 50 to 60 subjects, with most studies 

consisting of only a few dozen individuals. Aside from this deviation from the central 

limit theorem, there is no a priori reason to assume that ERP data are normally 

distributed, or that they conform to any other well defined distribution (Rousselet & 
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Pernet, 2011). It can be common for distributions of ERPs to contain outliers because the 

same neural processes can vary in appreciable magnitude across individuals, especially 

when captured as single peak voltages at specific scalp sites. Together, traditional 

processing and statistical analysis of ERP data can lead to situations in which there are 

large discrepancies between group averages and single subject averages. 

 These issues raise practical and theoretical concerns because they increase the 

likelihood of producing unreliable, non-replicable, misleading, or incorrect results which, 

in turn, directly impact interpretations regarding the functional significance of brain 

responses, or how these responses relate to behaviour. The standard method of scoring 

peak amplitudes at specific time points not only ignores the time-course of the neural 

oscillation, but it further implies that singular peaks in activity reflect a meaningful 

constituent of a particular neurocognitive process (Luck, 2005; Rousselet & Pernet, 

2011). An alternative approach is to quantify differences in evoked responses across their 

entire time course. By doing so researchers retain the majority of their data and, in turn, 

can examine a more complete picture of brain activity within every individual studied. 

Robust estimation procedures are not novel, but only recently have ERP 

researchers begun to apply some of these methods. Two major techniques of robust 

estimation include trimmed means and bootstrap re-sampling. One way to achieve a 

robust measure of location involves removing a certain percentage of cases from each tail 

of the distribution before calculating the mean. This technique, referred to as trimming 

the mean, has started to gain traction in recent ERP research (Desjardins & Segalowitz, 

2013; Rousselet et al., 2008) and favours the central values of the distribution by 

minimizing the influence of unequal or heavy tails, either of which could drastically 
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affect the mean (Wilcox, 2005). Bootstrapping is a re-sampling procedure that is used to 

create distributions and obtain parameter estimates from existing data sets. The process 

involves sampling randomly, with replacement, n times from an original pool of data to 

produce a bootstrapped sample and compute the parameter of interest (e.g., mean). 

Iterating this process several hundred or thousands of times creates a distribution of the 

estimated parameter and allows confidence intervals to be calculated. Null or alternative 

hypotheses can then be tested without making assumptions about the characteristics of 

the underlying distributions. Indeed, one of the main advantages is that bootstrap 

procedures are distribution-free, thereby ensuring that the validity of the test is not 

dependent on how the data are distributed. Several research groups have capitalized on 

the utility of these methods in different ways, such as examining how reliable well-

established ERP effects are in individual subjects (Desjardins & Segalowitz, 2013; 

Rousselet et al., 2008; Rousselet & Pernet, 2011).  

Proposed Studies 

 The overall goal of this dissertation is to examine the role of the medial frontal 

cortex in controlled attention by using novel response cueing tasks, advanced signal 

processing procedures, and analytical techniques of robust estimation for hypothesis 

testing. In a series of 3 independent studies we will examine whether medial frontal 

cortex activation during performance monitoring can be described from a domain-general 

perspective, focused on the need for increased attention control, as opposed to isolated 

and specific interpretations that focus on error processing, response conflict, inhibitory 

control, or reinforcement learning. In study 1, we isolate ICs, in single subjects, that 

represent medial frontal activation by using simple response cueing events and assess 
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whether these latent factors also describe traditional ERN and NoGo N2 ERP effects. In 

addition, we examine time-frequency transforms of the EEG data to test whether theta 

power is modulated as a function of cued response demands. Study 2 replicates and 

extends the functional classification of medial frontal activity from study 1 by using a 

shortened version of the response cueing task in a larger sample, and includes several 

commonly used performance monitoring paradigms. The inclusion of these additional 

tasks allows us to assess whether medial frontal ICs that are classified in the response cue 

task share a common neural signature in theta rhythms across multiple task events  that 

signal the need for controlled attention (i.e., response-locked ERN, stimulus-locked N2, 

and stimulus-locked FRN). Furthermore, robust estimation techniques will be used to 

assess the reliability of medial frontal theta modulation within and between subjects. In 

study 3 we aim to expand our model by modifying our response cueing task to test 

whether medial frontal theta power is modulated during the preparation of controlled eye 

movement responses, as opposed to the traditional focus on activity evoked by stimulus 

or response outcomes.  
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Abstract 

The human medial frontal cortex and especially the anterior cingulate cortex (ACC) have 

been implicated in several aspects of performance monitoring. We examined event-

related EEG during a general process of controlling attention by using a novel paradigm 

to elicit a medial frontal negativity (MFN) to stimuli that indicate potential changes in 

future response demands. Independent Component Analysis revealed that the latent 

factors that accounted for MFN activity to such changes also accounted for activity 

associated with the error-related negativity and the NoGo inhibitory N2. Given that the 

medial frontal activation to these changes varied reliably across subjects simply as a 

function of potential need to alter responses in the absence of error commission and 

response inhibition, we propose that the underlying basis for medial frontal activation in 

situations demanding ongoing monitoring of performance involves an increase in 

attention control, a factor common to all MFN paradigms. 
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Introduction 

One of the core cognitive functions of the human medial frontal cortex, in 

particular the anterior cingulate cortex (ACC), has been variably attributed to error 

detection (Gehring et al., 1993; Miltner et al., 1997), response-conflict monitoring (van 

Veen et al., 2001), reinforcement/associative learning (Holroyd & Coles, 2008; Holroyd 

& Yeung, 2012; Holroyd & Coles, 2002), deviation from expectancy (Oliveira et al., 

2007), inhibitory control (Falkenstein et al., 1999), and the prediction of timing in action 

outcomes (Alexander & Brown, 2011). This range of models is due to the proliferation of 

paradigms that elicit a particular event-related potential (ERP) component, collectively 

referred to as medial frontal negativities (MFNs), which are thought to reflect activation 

of ACC and surrounding medial frontal sources. Functionally isolating and describing 

MFN effects such as the error-related negativity (ERN) and NoGo inhibitory N2 (N2) is 

complicated with respect to underlying neurophysiology, and tempered further by group-

level statistics focused on mixed source projections in the EEG. We present evidence 

across single subjects that several MFNs are indeed functionally complicated, but can 

parsimoniously be attributed to the general process of controlling attention even in the 

absence of errors, response conflicts, reinforcement/associative learning, or inhibitory 

control. This general function can be shown to account for medial frontal activation that 

is typically associated with these paradigm-specific processes that result in the MFN. 

Single-unit ACC recordings in rats suggest that functional relationships in 

neuronal assemblies serve as a basis for successful behavioral adaptation such that error 

commission reflects a lack of organization in firing patterns (Lapish et al., 2008). 

Extending this interpretation, Bryden et al. (2011) concluded that neurons in the rat ACC 
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are not only sensitive to commission and reward-prediction errors, but that they also 

become active when there is an increased demand for attentional resources such as those 

needed for the learning of new response contingencies or during unexpected shifts in 

target value. Indeed, the firing of neurons in the ACC is impacted by changes in task 

demands, such as task-switching (Johnston et al., 2007) and the presentation of events 

that inform optimal stimulus-response strategies (Hyafil et al., 2009; Quilodran et al., 

2008). Some researchers have documented that phasic theta oscillations in the primate 

ACC increase during both the preparatory and remedial stages of stimulus-response 

selections (Womelsdorf et al., 2010), further suggesting that the ACC is involved in 

establishing and modulating behavioral strategies (Isomura et al., 2003). 

In humans, activity in the ACC has been shown to increase when response 

conflicts are introduced (Hsieh & Wu, 2011; Liston et al., 2006) and when stimulus-

response rules are reversed (Schroder et al., 2012). Others report that ACC activity, as 

reflected in a class of ERPs involving a MFN (Randall & Smith, 2011) and in blood-

oxygen-level dependent (BOLD) responses (Aarts et al., 2008), is associated with 

changes in expectation and attention allocation in the pursuit of establishing appropriate 

response sets (Luks et al., 2002; Swainson et al., 2003). This includes biasing attention 

toward relevant stimuli in order to minimize behavioral interference in the presence of 

distracting information (Weissman et al., 2005). The ACC‟s role in the dynamic online 

control of behavior is further reflected by data showing that phasic responses in the ACC 

are greater when task demands require moment-to-moment adjustments in behavior 

compared to when response strategies need to be maintained (Wilk et al., 2012). 
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Indeed, the medial frontal cortex is sensitive to cognitive load (Davis et al., 2005) 

and lesion studies involving both humans and rats show that medial frontal regions are 

important for the optimization of on-going behavior (Bissonette, Powell, & Roesch, 

2013; Newman, Creer, & McGaughy, 2014; Sheth et al., 2012; Srinivasan et al., 2013). 

Several models focusing on error processing, response conflict, reinforcement learning, 

expectation violation, action-outcome predictions and evaluation (Jahn, Nee, Alexander, 

& Brown, 2014) explain well some empirical findings, but medial frontal activity is not 

necessarily specific to factors described in current models. For example, Grinband et al.  

(2011a, 2011b) show that medial frontal activity is modulated by time on task, 

irrespective of error likelihood or conflict stemming from competing response options. 

Others have reported that, compared to easier trials, simply showing individuals a 

preview of an upcoming trial that is relatively more difficult elicits MFN similar to those 

observed during error commission and inhibitory control (Oliveira, Hickey, & 

McDonald, 2014). Furthermore, functional connectivity within caudal and anterior 

regions of the ACC and between the ACC and frontal regions (dorsolateral prefrontal 

cortex, frontal operculum) is increased in cued inhibitory control conditions of a Go-

NoGo task (Schulz et al., 2011), suggesting that the ACC, along with other brain regions, 

is involved in the coordination of those processes related to preparing and/or biasing the 

selection of appropriate responses.  

Taken together, these data indicate that the role of the medial frontal cortex, 

including the ACC, in performance monitoring is not specific to error commission, 

response conflict monitoring, or reinforcement learning but might be better understood by 

focusing on what is constant across these various paradigms. A general theme regarding 
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medial frontal activation during performance monitoring is that the ACC and surrounding 

medial frontal cortex are sensitive to events that signal the need for changes in attentional 

and behavioral control. However, current data do not address the issue of whether the 

MFNs elicited in the various paradigms result from a common underlying generator and 

functional basis, or the degree to which these effects are reliable across subjects.  

 We present here data from a new paradigm demonstrating that an MFN ERP 

component is elicited when individuals are alerted to potential changes in response 

demands, and that this activation also describes MFN activity associated with the 

traditional ERN and response-inhibition NoGo N2. Importantly the MFN associated with 

stimuli signaling such a change in the response demands was not tied to processes based 

on error detection, response conflict, inhibition, reinforcement learning, or feedback 

evaluation and yet still accounted for the MFN resulting from some of these paradigms. 

Therefore, we propose that this basic function associated with the attention system 

reflects the underlying basis for medial frontal activation in situations that demand the 

dynamic ongoing monitoring of performance. 

Methods 

Participants 

 Twelve young adults (Mage = 27 years, SD = 4.35 years; 5 female, 7 male) 

participated in the present study, the majority of whom were university students (n = 10). 

Participants were free from any neurological or psychiatric conditions, and had self-

reported normal or corrected-to-normal vision. Participation was voluntary and was not 

influenced by monetary compensation. 
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Task 

 Our novel task was similar to traditional NoGo paradigms in that the overall goal 

was to respond as quickly as possible to target Go stimuli and withhold responses to 

infrequent NoGo stimuli. The Go and NoGo stimuli were centered plus signs that were 

either black or white, counterbalanced across participants. The novel part of this task is 

that the Go and NoGo stimuli appear inside a square border, the color of which signaled 

the current context. The context border was always on the screen and changed color 

every 1 to 8 trials at the time of a Go stimulus onset. The context border indicated one of 

two situations: The “Certain” context indicated that the participant was in a run of trials 

consisting of only Go trials; the “Possible” context indicated that the run consisted of 

both Go and NoGo trials. Thus, participants knew whether or not there was a possibility 

of encountering NoGo trials and could use this information to adjust their response 

strategy accordingly. Each context was associated with a pair of colors, counterbalanced 

across participants. As an example, for half of the counterbalanced sessions a black or 

white border color indicated that there would be no NoGo trials (Certain run), but while 

the border was either red or blue a NoGo trial could occur on any trial (Possible run). 

Border color changes only occurred on Go trials. So, a border color change from black to 

white would indicate no change of context, but a border color change from black to red 

would indicate a change in context, say, from Certain to Possible. Thus, the border color 

changes were of four types: from Certain to Certain (CC), from Certain to Possible (CP), 

from Possible to Certain (PC), and from Possible to Possible (PP). Introducing these 

context cues allows us to assess whether changing expectations for Go versus NoGo trials 

is reflected in medial frontal activation.  The task therefore consisted of seven types of 
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trials all together; four Go trials with a border color change (CC, CP, PC, and PP), two 

Go trials without a border change (Go in Certain context, Go in Possible context) and 

NoGo trials. Participants were given all the details regarding task dynamics and trial 

types, and could use this information to strategize behavior across contexts. See Figure 

2.1 for a summary of the various Go and context cue trial types.  

 
Figure 2.1 Schematic illustration of task parameters. Fixation crosses were presented for 50 ms 

followed by a 2 second response window. This example represents all stimuli features used in the 

task.  Response context and response stimuli were counterbalanced across subjects. 

  

 Go and NoGo stimuli were presented for 50 ms and were followed by a 2-second 

response window, with an ITI selected randomly between 400 and 900 ms after the 

response. The task was performed in 4 blocks, approximately 12 minutes each, separated 

by short breaks. Participants completed a total of 2640 trials, which were broken down 

into the following trial types: 1776 Go trials without border color changes (888 x two 

response contexts: Certain and Possible), 576 with border color changes (144 x four 

types: CC, CP, PC and PP), and 288 NoGo trials.  
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Electrophysiological recordings and data reduction 

 Electrophysiological recordings were done using a 128-channel BioSemi Active 

Two system. The zero-reference principal voltage values (each site quantified relative to 

the driven right leg and common mode sense loop) were digitized at a rate of 512 Hz. 

Coordinates for the electrode montages were digitized for each subject using the 

Polhemus3 System
® 

Fastrak. In addition to the 128 electrodes mounted in the cap, six 

external sensors were applied symmetrically on the zygomatic processes, outer canthi, 

and inferior orbital bones, as well as one sensor at the nasion. 

 Offline, automated pre-processing and bootstrap testing was done using EEGLab 

(Delorme & Makeig, 2004) with custom in-house code created in MATLab 2010b and 

executed in Octave 3.6.3 on the Shared Hierarchical Academic Research Computing 

Network (SHARCNet). The data were systematically processed for the removal of bad 

channels and periods of non-stationarity based on correlation distributions between 

neighboring channels (see Desjardins & Segalowitz, 2013, for an expanded description of 

these methods). On average there were 12 channels (SD = 6.54, ranging from 5 to 28), 

before implementing independent component analysis (ICA). Extended infomax ICA 

(Bell & Sejnowski, 1995; Jung et al., 2001; Makeig et al., 2004) implemented in EEGLab 

was used to produce on average per subject 123 spatially fixed and temporally 

independent components (ICs). The activation values of the ICs were then used to 

classify periods of relative non-stationarity in the data. This was achieved by flagging 

periods of time in which 10% of the independent components had activation values that 

were outside of their own 99% confidence interval during in task periods of the recording 

(Desjardins & Segalowitz, 2013). Based on this criterion, on average 6% (SD = 5.76, 
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ranging from 2% to 22%) of in-task time was rejected. Following this rejection procedure 

a second ICA decomposition was applied to the remaining time intervals. A single dipole 

was fit to the field projection weight matrix of each IC using the dipfit plugin for 

EEGLab (Oostenveld, Fries, Maris, & Schoffelen, 2011). Subsequent variance measures 

of IC activation (e.g., Global Field Amplitude (GFA) and percentage of variance 

accounted for) were calculated by taking the variance across channels, for each time 

point, once the IC activation was projected back to the scalp. For specific IC(s), back-

projection to the scalp was accomplished by reducing the mixing matrix of the specific 

IC(s), which was then multiplied by the time course of activation for the IC(s).  

 Two levels of IC classification were used in this analysis. The first was the 

cortical classification and the second was the MFN classification. The goal of cortical 

classification was to reduce the EEG signal to all the cortical ICs (i.e., remove all non-

cortical ICs). This cortically classified component set was then projected back to the 

scalp without ECG, EOG, EMG and other stationary noise sources, thus representing the 

full cleaned cortical EEG signal. The flagging of ICs as artifact was done initially on the 

basis of dipole residual variance. Specifically, those ICs whose field projections had a 

residual dipole variance of 15% or more were flagged for rejection. Subsequently, 

manual examination of the continuous signals and topographies was used as a final 

rejection criteria for biological (EMG, ECG or EOG) or channel artifact ICs. An average 

of 17 cortical components out of 123 per subject (on average) were retained in the 

cortical classification process. The MFN classification procedures followed the final data 

reduction procedure. 
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 The final data reduction procedure in preparation for hypothesis testing included 

the purging of flagged time periods and artifact ICs. The cleaned continuous data were 

re-referenced to the average of 19 interpolated sites and filtered between 1 Hz and 30 Hz. 

The data were then segmented for the examination of various event-related measures. 

Response-locked trials were baseline corrected between -600 and -400 ms, and a baseline 

of -200 to 0 ms was used for all stimulus-locked trials.  On average, individuals produced 

69 error commission trials (response-locked for ERNs), 198 NoGo correct trials 

(stimulus-locked for MFNs), and 542 stimulus-locked border color change trials (137 

CC, 137 CP, 132 PC, and 136 PP) that were artifact free.  

 Once the data were reduced for hypothesis testing, the MFN component 

classification was performed. From the cortically classified component data set for each 

participant, MFN component classification  was accomplished by examining the spatial 

scalp variance at specific latencies in ERP condition differences (see Desjardins & 

Segalowitz, 2013). In the current study, this involved the comparison of stimulus-locked 

ERPs of correct border color change trials and the Go trials without a border color 

change. ICs were ranked by the percentage of variance accounted for in the difference 

topographies over the period associated with MFN activation. The period associated with 

the MFN activation was selected manually for each subject based on scalp data GFA (i.e., 

standard deviation of amplitude values across all channels at each time point) troughs on 

each side of the MFN peak. In Figure 2.2 this would correspond to the period between 

about 150 and 325 ms following the stimulus onset. The percentage of variance 

accounted for by a specific IC was calculated in the ERP difference between border 

change trials and Go trials in the Certain context averaged over the time period of 
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interest. This was the total spatial variance (all components projected back to the scalp) 

minus the variance of the other ICs (projected back to the scalp) divided by the total scalp 

variance. Components were added by order of their contribution in accounting for spatial 

variance in the GFA during the MFN on border color change trials minus Go trials until, 

cumulatively, they accounted for at least 60% of the spatial variance at the scalp (see Fig. 

2.2). In one case the criteria had to be increased to 80% in order to include an MFN IC 

accounting for the border color change MFN effect. In cases where multiple ICs with 

various topographical projections were included in the 60% spatial variance criteria, 

manual selection of MFN ICs was used based on identifying a fronto-central medial 

topography. A single MFN IC was isolated for all participants with the exception of two 

individuals who had in addition a centrally projecting IC that accounted for scalp 

variance during the border color change MFN effect. The MFN-classified ICs had 

topographical projections similar to traditional ERN and NoGo N2 contrasts (see Figs. 

2.5 and 2.7). A similar approach used by others focusing on the ERN has shown that, in 

most subjects, a single IC accounts for waveform differences between error and correct 

responses (Gentsch et al., 2009; Hoffmann & Falkenstein, 2010; Roger, Bénar, Vidal, 

Hasbroucq, & Burle, 2010; Silvetti, Nuñez Castellar, Roger, & Verguts, 2014; Wessel & 

Ullsperger, 2011). 
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Figure 2.2 Topographical maps of border change MFN IC back projections (left, black boxes) 

and residual data (right, red boxes) for border change and Go trials. Grand average topographies 

are shown in the top boxes, whereas individual topographies are shown in the bottom boxes. The 

shaded axis area (175 - 325 ms) highlights the latency window of the border change minus Go 

(e.g., stimulus N2) effect, which was used to classify MFN ICs and derive the topographical 

maps. The waveforms in the bottom panel show the global field amplitude of the difference 

between stimulus-locked border change and Go trials for the entire scalp data (green), MFN IC 

(black), and residual scalp data (red). Also shown are sLORETA source estimates of the cortical 
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activation associated with MFN ICs (Brodmann Areas 6 [premotor and supplementary motor 

cortex], and dorsal 24 and 32 [anterior cingulate cortex]) and residual scalp data (Brodmann 

Areas 19 [extrastriate cortex], 22 [superior temporal gyrus], and 39 [angular gyrus]) between 175 

and 325 ms. 

 

Statistical analyses 

Robust estimation 

 The hypothesis testing in the present study was performed using robust estimation 

techniques. Robust estimation refers to a class of measures that are relatively insensitive 

to distribution characteristic such as outliers, uneven tails, skewness, and to violations of 

parametric model assumptions (Wilcox, 2005). Conversely, parameters such as the 

arithmetic mean that are affected by distribution characteristics (e.g., outliers/extreme 

values) are considered non-robust estimators. There are several advantages to robust 

estimation, which include greater control over measures of location (e.g., the mean) and 

over unequally divided or inflated alpha levels, thus minimizing the likelihood of having 

unrepresentative confidence intervals and increasing statistical power for rejecting the 

null hypothesis. These techniques are especially useful in small sample sizes when there 

are no expectations of normality (as with ERPs), and for quantifying effects across the 

entire time-course of ERPs (Desjardins & Segalowitz, 2013; Rousselet et al., 2008; 

Rousselet & Pernet, 2011).Ultimately, these techniques provide greater control over Type 

I error and a better representation of the probability distribution.  

 In the present study, we used trimmed means for RT and electrophysiological 

distributions, and performed bootstrapping tests to assess differences across conditions.  

Trimmed means favor central values in a distribution and are calculated after removing a 

percentage of data points from each tail. In this paper 20% refers to removing 20% of the 

values of the bottom and 20% of the values from the top of the ranked sample (leaving 
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the middle 60% of values) before calculating the mean. Bootstrapping is a re-sampling 

technique that allows one to obtain robust parameter estimates from a given surrogate 

distribution of size n. Sampling is done, with replacement from an original data pool to 

create a single bootstrapped (or surrogate) sample. For our purposes, a single 

bootstrapped surrogate sample reflects the difference, at each time point, between two 

categorical event related responses (e.g., border color change minus Go). For example, in 

the case of the GFA ERPs, given 100 artifact free trials in two conditions, 100 trials are 

selected randomly from each condition with replacement, the 20% trimmed mean 

(removing the top 20 and bottom 20 ranked values) is calculated for each condition, and 

then the difference value at each time point of the ERP GFA is stored as a single 

surrogate ERP. This process is iterated one thousand times to achieve a distribution of the 

estimated parameter (GFA ERP differences) and to calculate confidence intervals around 

the measure.  

Behavioral outcomes 

 Given that task ITI was response-dependent, it is unlikely that very early 

responses belonged to a previous trial. These early responses more likely reflect 

anticipation of response execution, precisely what the task is meant to exploit during the 

Certain context. Nevertheless, to minimize carry-over of late responses from previous 

trials, response times faster than 50 ms and slower than 1000 ms were excluded. Single 

subject robust means are the average of 1000 surrogate means that were each calculated 

by re-sampling and then trimming by 20% the raw distribution of reaction times, thereby 

further stabilizing the means.  
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 Analyses involving mean values were carried out using a robust ANOVA 

procedure that involves bootstrapping to assess differences between conditions. 

Specifically, a distribution of differences scores is established through re-sampling of the 

raw data. The mean of these differences is calculated after trimming the distribution by 

20%. This bootstrapping of the raw data to create a distribution of difference scores, 

trimming, and mean calculation is repeated 1000 times. Follow-up pair-wise comparisons 

also implement bootstrapping to assess whether each contrast is significantly different 

from the null hypothesis. Similarly, we used a robust estimation technique for 

correlations in which paired values are re-sampled with replacement to create surrogate 

'x' and 'y' distributions. Iterating this process 1000 times provides a robust measure of the 

correlation and as well confidence intervals.  

Event-related potentials and time-frequency analyses 

  Each contrast was performed using the 20% trimmed mean of the trials, and 

included 1000 bootstrap samples. The 99% confidence interval was used to assess 

significant differences in the waveforms between -200 and 800 ms for stimulus-locked 

trials and between -600 and 800 ms for response-locked trials. To ensure comparable trial 

numbers in the averaged ERP global field amplitude (GFA), a maximum of 50 trials were 

used in each bootstrapped (or surrogate) sample for traditional Error minus Correct and 

Go minus NoGo contrasts (as the number of errors and NoGo trials are relatively 

limited); border color change minus Go contrasts used a maximum of 200 trials each. For 

the border color change condition, there were at least 111 trials available for bootstrap re-

sampling. We examined the results for bootstrapping output when comparing border 

color change to Go trials on the basis of sampling 111versus 200 trials and verified they 
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were the same. This process of calculating the difference wave was iterated 1000 times 

for each categorical ERP contrast, and single-subject bootstrapped effects for functionally 

classified MFN-ICs are shown to demonstrate reliability in magnitude and timing across 

individuals.  

 The same bootstrapping approach was taken to assess the average event-related 

non-phase-locked spectral power in the theta frequency for border color change and Go 

trials across individuals. The time-frequency decomposition was achieved using the 

'newtimef' function in EEGlab. Specifically, complex Morlet wavelets were used to 

convolve the event-related activity into spectral power for oscillations ranging from 3 to 

30 Hz, with wavelet cycles increasing from 1 at the lowest frequency (3 Hz) to 14.5 at the 

highest frequency (30 Hz). Given that medial frontal theta band responses reflect a 

common neural signature of performance monitoring ERPs and cognitive control 

(Cavanagh & Frank, 2014; Cavanagh, Zambrano-Vazques, & Allen, 2012), we focused 

on theta band responses and used the bootstrapped z-scores for border color change 

minus Go contrasts and assessed differences against the 99% confidence interval. 

 

Results 

Behavioral measures 

Accuracy 

 Response accuracy for Go trials (ranging from .96 to .99) and border color change 

trials (ranging from .88 to .99) were near ceiling levels whereas NoGo trial accuracy was 

considerably lower (M = .72, SD = .10) and variable (.52 to .93). Response accuracy 

varied between Go (in Certain and Possible contexts) and NoGo trials (omnibus test, P 
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<.001, one-way repeated measures robust ANOVA), with the ranges for Go and NoGo 

trials considerably different as indicated above. Response accuracy was greater for Go 

than NoGo trials (Ps <.01, robust t test), with no difference between Go trials in the two 

contexts (P = .2, robust t test). There were no reliable differences in accuracy across the 

four border-change trial types (omnibus test, P = .46, one-way repeated measures robust 

ANOVA). See Table 2.1 for all accuracy values. 

Response time 

 Response times were significantly different across border change trial types 

(omnibus test, P =.038, one-way repeated measures robust ANOVA). Follow-up tests 

indicated that response times on PP trials were slower compared to PC trials (P = .004, 

robust t test), CC (P = .014, robust t test), and CP (P = .048, robust t test) trials. This 

shows that, across the four change types, individuals are slowest to respond on trials 

which cue the continuation of Possible NoGo trials (PP). Although no other pair-wise 

contrasts were reliable using our robust estimation approaches, it is worth noting that 

response times were slower when coming out of Possible (PC and PP) compared to the 

Certain (CP and CC) context (P = .041, robust t test) suggesting that individuals were 

sensitive to the response context as expected.  

Response times also varied across Go and NoGo trials (omnibus test, P <.001, 

one-way repeated measures robust ANOVA). Specifically, average response times to Go 

trials were significantly faster in the Certain compared to the Possible context (P <.01, 

robust t test). In addition, responses made on NoGo trials (i.e., errors) were significantly 

faster than those on Go trials in the Possible context (P <.01, robust t test; see lines 6 and 

7 in Table 2.1), with no reliable differences in response times between Go trials in the 
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Certain context and NoGo trials (P =.09, robust t test). See Table 2.1 for a summary of 

the descriptive statistics for response time across trial types.  

Table 2.1 

Robust means and standard deviations for response time and accuracy for Border Color 

Change, Go, and NoGo trials 

 

 Response Time Accuracy 

Trial Type M SD M SD 

1. Border color change CC 253.26 8.47 .99 .023 

2. Border color change CP  258.24 9.11 .98 .033 

3. Border color change PC  264.21 7.90 .99 .010 

4. Border color change PP 278.67 9.23 .99 .009 

5. Go in Certain context 232.97 2.02 .99 .011 

6. Go in Possible context 253.26 8.47 .99 .006 

7. NoGo errors 227.43 5.45 .73 .103 

 

 To further assess the robustness of our experimental manipulation, we examined 

whether the difference in response times to Go trials across response contexts was 

statistically reliable within each participant. Taking advantage of the abundance of trials 

(approximately 700 per response context) we found that the effect was robust within 

subjects, indicating that every participant responded significantly more slowly to Go 

stimuli in the Possible compared the Certain context (see Fig. 2.3). Differences were 

considered significant when the standard deviation of the trimmed surrogate mean 

response time differences was greater than a z-score of 2.326 (i.e., 99% CI). These 

response time data indicate that all individuals were sensitive to the stimulus information, 

adopting a slower response strategy on Go trials when there was the possibility that the 

response would need to be inhibited.  
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Figure 2.3 Bar graph showing individuals' robust mean response time to Go stimuli presented in 

Certain and Possible response contexts. Responses to Go stimuli were significantly slower in the 

Possible compared to the Certain context, at the group and single-subject level (all differences 

exceed the 99% confidence interval). Error bars reflect single subjects' 99% confidence interval 

about the robust mean for each condition (i.e., single subject mean + [2.326 (single subject 

standard deviation of surrogates)]). 

 

Individual differences 

We also assessed individual differences in speed-accuracy trade-off as additional 

verification that our experimental manipulation affected task performance. This 

validation focused on the shift in response strategy to Go stimuli across contexts, and 

how this related to accuracy on NoGo trials. Our expectation was that greater shifts in 

response times (i.e., slowing down) between Go trials in the Certain and Possible context 

would be associated with better inhibitory control on NoGo trials because commission 

errors typically result from impulsive responses. Using a robust estimation approach we 

created a surrogate distribution of 1000 Pearson r coefficients and assessed significance 

in relation to the 95% confidence interval. Re-sampling for Pearson r in this case was 

done without trimming the distributions given the small sample size. Confirming our 

expectations, the mean difference in response time for Go trials (i.e., Possible minus 

Certain) was positively correlated with NoGo accuracy (robustr = .79, 95% CI [0.47 
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0.96]; see Fig. 2.4). These data illustrate that shifting to a slower response strategy in the 

Possible context is associated with a reduced propensity to make commission errors on 

NoGo trials. 

 
Figure 2.4 Scatterplot showing positive correlation between individuals' response time 

difference (i.e., response time to Go trials in Possible context minus response time to Go trials in 

Certain context) and NoGo accuracy. The shaded region surrounding the regression line indicates 

the upper and lower bounds of the 95% confidence interval.  
 

To ensure that the meaningful variance was specific to shifts in response strategy 

within subject and not to an individual difference in RT across subjects, we used the same 

robust Pearson r approach and correlated the RT difference score (i.e., Go Possible minus 

Go Certain) with (i) average RT on Go-Certain trials and (ii) average RT on Go-Possible 

trials. Neither of these relationships were statistically reliable (Ps > .25), indicating that 

the capacity to withhold prepotent responses was related specifically to the degree to 

which individuals adjusted responses and not general response speed.  

Electrophysiological measures 

MFN Independent Components as related to response-locked ERN and NoGo N2 

 ERN. Compared to correct responses, NoGo commission errors were associated 

with greater scalp GFA emerging at the time of button presses, continuing for 150 ms, 
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peaking at approximately 100 ms (see Fig. 2.5). In line with our expectations, the 

difference activity during the time of the ERN was captured by the border-change MFN-

selected ICs, demonstrated in the bootstrapped z-scores that exceed 2.326 (Fig. 2.6). The 

robustness of these findings are substantiated across individuals: for 11 of the 12 subjects, 

their border-change MFN-selected IC accounted for differences between errors and 

corrects within the first 150 ms following responses, i.e., accounted for the ERN.  

 
Figure 2.5 Grand average topographies of border change MFN IC (top-left, black box) and 

residual data (top-right, red box) for Correct and Error trials. The shaded axis area (0 - 150 ms) 

highlights the latency window of the Correct minus Error (i.e., ERN) effect, which was used to 

derive the topographical maps. The waveforms show the GFA of the difference between 

response-locked Correct and Error trials for the entire scalp data (green), border change MFN IC 

(black), and residual scalp data (red). 
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Figure 2.6 Waveforms show the bootstrapped GFA for group ERP overlays of Error and Correct 

response-locked trials for the border change MFN-selected ICs (top) and residual scalp data 

(bottom). Significant differences in the categorical contrast are assessed in relation to the 99% 



49 

 

confidence interval (gray overlays), which do not include zero (horizontal red line). Between the 

overlays are single subject bootstrapped z-scores for the border change MFN ICs (top panel) and 

scalp residual (bottom panel). Plots are masked at the 99% confidence interval to highlight only 

those effects which are reliably different between conditions (i.e., z-score greater +/- 2.326). The 

tally bands indicate, at each time point, the percentage of subjects who demonstrate a reliable 

effect.  
 

 This pattern is further demonstrated in Supplementary Figure 2.1, which shows 

that the border-change MFN-selected ICs back-projected to site FCz captures the 

traditional error-versus-correct effect (black line Supplementary Figure 2.1e). The scalp 

GFA in Figure 2.5, waveforms for the z-scores in Figure 2.6, and site FCz indicate some 

effect in the residual scalp data during the ERN timing; however, it is clear from the 

residual topographical maps that this activation does not reflect a recognizable MFN (red 

line in Fig. 2.5). This is an important consideration, given that traditional scalp measures 

of the ERN can include residual effects that do not reflect medial frontal activation. 

 NoGo N2. As expected, there was greater activation in the MFN-selected ICs 

following NoGo compared to Go stimuli during the time of the N2, as reflected in both 

scalp GFA (green line in Fig. 2.7) and bootstrapped z-scores (Fig. 2.8). Similar to the 

ERN results, Supplementary Figure 2.1 further illustrates that the border-change MFN-

selected ICs back-projected to the scalp reflect traditional stimulus-locked NoGo N2 

effects at channel FCz (see black line in Supplementary Fig. 2.1f). These data show that 

MFN activity elicited by response cues can account for differences in activation between 

stimulus-locked correct Go and NoGo trials constituting the NoGo N2. Similar to the 

response-locked ERN effects, the scalp GFA in Figure 2.7, waveforms for the z-scores in 

Figure 2.8, and site FCz (Supplementary Fig. 2.1f) demonstrate effects in the residual 

scalp data that overlap in time considerably with the NoGo N2 effects. The topographies 

of these residual data show that this activity is not an MFN (Fig. 2.7). The single subject 



50 

 

data indicate that these effects are generally less reliable than those for the ERN, with 

only 6 of 12 individuals eliciting a MFN that accounts for the significant difference in N2 

between the Go and NoGo trials, suggesting that the standard scalp NoGo N2 effect is a 

combination of mixed source projections, including some that are not medial frontal. 

 
Figure 2.7 Grand average topographies of border change MFN IC (bottom-left, black box) and 

residual data (bottom-right, red box) for Go and NoGo trials. The shaded axis area (175 - 325 ms) 

highlights the latency window of the Go minus NoGo (i.e., N2) effect, which was used to derive 

the topographical maps. The waveforms show the GFA amplitude of the difference between 

stimulus-locked Go and NoGo trials for the entire scalp data (green), border change MFN IC 

(black), and residual scalp data (red). 
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Figure 2.8 Waveforms show the bootstrapped GFA for group ERP overlays of NoGo and Go 

stimulus-locked trials for border change MFN-selected ICs (top) and residual scalp data (bottom). 

Significant differences in the categorical contrast are assessed in relation to the 99% confidence 

interval (gray overlays), which do not include zero (horizontal red line). Between the overlays are 
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single subject bootstrapped z-scores for the border change MFN ICs (top panel) and scalp residual 

(bottom panel). Plots are masked at the 99% confidence interval to highlight only those effects 

which are reliably different between conditions (i.e., z-score greater +/- 2.326). The tally bands 

indicate, at each time point, the percentage of subjects who demonstrate a reliable effect.  

 

 Independent Components and border-change-trial comparisons 

 We compared, as a first step, activation between all four border-change trial types 

(CC, CP, PC, and PP) as a single condition with standard Go trials to identify a border-

change N2 effect that could be captured by MFN-ICs. Subsequent analyses demonstrated 

that the border-change MFN-ICs can describe well the traditional ERN and NoGo N2 

effects, although considerable variability exists across subjects. Given that the border 

color changes in our task signal different response demands, it is important to consider 

potential differences in activation as a function of the trial type and whether the effects 

are being driven by specific border changes. With respect to the 99% confidence interval 

(z +/- 2.326), bootstrap testing indicated border-change minus Go effects were reliable for 

each border-change type and are reflective of typical stimulus-locked N2 effects. 

Importantly, as there was no differentiation between border-change and Go trials prior to 

240 ms, the border-change MFN-ICs are impervious to the changes in border color (in 

contrast to the evident P2 components) and therefore the border-change MFN-IC is 

predominantly sensitive to the cognitive demands signaled by the response cue (see Fig. 

2.9). 
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Figure 2.9 Waveforms show the bootstrapped z-score ERP overlays of border change and Go 

trials for residual border change MFN-selected ICs (top) and scalp data (bottom) . Significant 

differences in the categorical contrasts are assessed in relation to the 99% confidence interval 

(transparent overlays), which do not include zero (horizontal red line). The gray shaded axis areas 

highlight the time points where every border change trial type was differentiated from Go trials 

during the P2 (175 - 220 ms) and N2 (240 - 300 ms) latency ranges.  Between the overlays are 

single subject bootstrapped z-scores for the border change MFN ICs comparing the difference 

between each border change trial type and Go trials. Plots are masked at the 99% confidence 

interval to highlight only those effects which are reliably different between conditions (i.e., z-

score greater +/- 2.326). The tally bands indicate, at each time point, the percentage of subjects 

who demonstrate a reliable effect. Adjacent plots show differences in pair-wise comparisons 



54 

 

between border change trial types, masked at the 99% confidence interval, for the border change 

MFN-ICs and scalp residual.  
 

 As can be seen in Figure 2.9, although border-change trials elicited greater P2 

(approximate latency range of 165 to 200 ms) activation than Go trials, there were minor 

differences across border-change types only starting to emerge around 200 ms. This is 

also depicted by the pair-wise comparison plots showing the between-conditions 

bootstrapped z-score differences that exceed the 99% confidence interval. In clear 

contrast, z-scores of the border-change minus Go difference wave revealed a robust 

differentiation in MFN IC activity during the N2 (approximate latency range of 220 to 

305 ms) that varied as a function of border-change type. The pair-wise comparisons of z-

scores indicated that the GFA for PP trials was significantly larger than GFA on CC, PC, 

and CP trials. In addition, GFA was similar across CP and PC trials but was larger in both 

cases than GFA on CC trials (see Fig. 2.9 for summary). Together, these data show that 

the border-change MFN-selected ICs account specifically for the border-change N2 

effect. In addition, these are associated with greater activation with CP cues signaling a 

greater need to increase vigilance than for the PP, PC or CC trials.  

 The single subjects' data complement well the overall findings at the group level. 

It is clear from the bootstrapped z-scores across individuals that results are not biased 

simply by the magnitude of effects in some individuals, but instead are driven by the 

number of subjects reliably differentiating between border-change and Go trials; larger 

differentiation between border-change and Go trials at the group level is a reflection of 

the consistency of effects across subjects. For example, PP trials signal the greatest level 

of response control that is required in the task and are most differentiated from Go trials, 

with 9 out of the 12 subjects reliably eliciting a MFN during the time of the N2. 
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Conversely, CC Switch trials signal the least demand on response control and are 

differentiated the least from Go trials, with only 5 of the 12 subjects showing a reliable 

MFN during the time of the N2.  

 Also demonstrated by the single subject data is the consistency in the timing of 

border-change N2 effects, as well as the nearly absent overlap between MFN and residual 

effects. For all four border-change minus Go contrasts, the subjects who demonstrate 

reliable effects do so within a considerably narrow time window between 250 and 300 

ms. Thus, the MFN effects are tightly coupled around the time of stimulus-locked N2 

ERPs. In addition, the time during the N2 is nearly fully captured by the selected border-

change MFN-ICs with no effects in the residual. These data demonstrate not only that the 

MFN-ICs describe the border-change effects, but also that the timing of these N2 effects 

are highly stable across individuals unlike those found for the ERN and NoGo N2.  

 We examined further the differences in medial frontal activation to response cues 

by focusing on non-phased locked theta power. Overall, the border-change minus Go N2 

effects observed in the ERPs are reflected in the oscillatory dynamics of the selected ICs, 

such that cues signaling the greatest demands on response control (CP and PP) are 

associated with more robust effects across individuals. A clear finding is the fact that 

border-change trial types differentiate from standard Go trials and group themselves 

based on the response context: moving into a Possible block (CP and PP) elicits similar 

responses, but are completely differentiated from trials moving into a Certain block (PC 

and CC) which themselves do not differ (see Fig. 2.10). Particularly striking in the time-

frequency results is that the most robust differentiation across subjects is observed for CP 
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response cues, with all but one subject showing a reliable effect (the same individual who 

also showed unreliable effects in their ERP responses).  

 
Figure 2.10 Waveforms show the bootstrapped theta power z-score overlays of border change 

and Go trials for border change MFN-selected ICs (top). Significant differences in the categorical 

contrasts are assessed in relation to the 99% confidence interval (transparent overlays), which do 

not include zero (horizontal red line). The gray shaded axis areas highlight the peak effect for 

border change minus Go trials. Below the overlays are single subject bootstrapped z-scores for 

the theta power of border change MFN ICs comparing the difference between each border change 
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trial type and Go trials. Plots are masked at the 99% confidence interval to highlight only those 

effects which are reliably different between conditions (i.e., z-score greater +/- 2.326). The tally 

bands indicate, at each time point, the percentage of subjects who demonstrate a reliable effect. 

Adjacent plots show differences in pair-wise comparisons between theta power across border 

change trial types, masked at the 99% confidence interval, for the border change MFN-ICs. 

 

Discussion 

           Medial frontal cortex function has been studied using a broad range of tasks and is 

thought to play a role in coordinating cognitive, affective, and behavioral processes 

across multiple contexts (Devinsky et al., 1995; Paus, 2001; Weston, 2012). Its role has 

been variously interpreted within the specific paradigm eliciting its activation and thus 

includes such processes as error-detection/likelihood, response conflict/monitoring, and 

response inhibition. We tested a simplified model of the controlled attention processes 

underlying all these effects and, through the use of a novel response-demand cueing 

paradigm, show that behavior and medial frontal activity are affected by stimulus cues 

signaling potential changes in response context that do not involve errors, response 

conflict resolution, or response inhibition. We successfully isolated, in each subject, 

medial frontal ICs accounting for variance in scalp GFA specifically during the time 

window of the stimulus-locked N2, and found that these ICs describe the variance in 

medial frontal activity in traditional response-locked ERN and stimulus-locked NoGo N2 

contrasts. In addition, we found that the activation of these medial frontal ICs varied as a 

function of the type of border color change, being largest and most robust when the 

cognitive demands of the task were greatest. In addition to our ERP results, the non-phase 

locked theta band responses confirmed further the finding that MFN ICs are modulated 

by the demands signaled by the response cues, being largest and most differentiated from 
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Go trials when individuals are cued going into a context requiring dynamic response 

control (i.e., Possible) when coming from a context that does not (i.e., Certain).  

 Attributing the core cognitive function of the medial frontal cortex to various 

paradigm-specific processes derives, in part, from the fact that the medial frontal cortex 

and ACC generate different ERP components depending on the task event. However, a 

growing body of literature supports the notion that there is a functional equivalency 

across MFNs and that they can be captured by the same latent component(s) in the EEG 

signal without characterizing the functional nature of this commonality. Hoffmann and 

Falkenstein (2010) showed that the negative wave immediately following correct and 

error responses can be described by the same IC, whereas others have demonstrated 

overlap in the response-locked ERN and stimulus-locked FRN (Gentsch et al., 2009).  In 

their study, Gruendler et al. (2011) collected ERNs, FRNs, and NoGo N2s and found 

significant overlap in their topographical scalp maps of peak activations across 

individuals. Using a different paradigm Wessel et al. (2012) showed that the ERN and 

novelty N2, an ERP component elicited in response to infrequent task-relevant stimuli, 

also share common neuronal generators in the medial frontal cortex and ACC and that the 

back-projected ERN ICs can also capture the medial frontal response to novel stimuli. 

We add to this literature by showing that simply presenting individuals with cues 

signaling the potential need for a relative increase in response control is sufficient to elicit 

an N2-like component whose IC can also describe the ERN and NoGo N2. Not only do 

our results converge with previous findings demonstrating functional overlap across 

MFNs, they also support a simpler model of medial frontal activation in performance 
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paradigms that differ in task demands but in which the modulation of controlled attention 

is the underlying principle.   

 The presence of a stimulus-locked N2 in response to border changes is not well 

described by some models that have been proposed to explain MFN effects in other tasks. 

With the exception of NoGo trials, each trial in the task required the same response with 

the only unique feature differentiating border-change trials from Go trials being a change 

in border color. The fact that response accuracy was at ceiling levels and undifferentiated 

across border-change and Go trials indicates that the modulation of medial frontal 

projecting ICs observed to border changes are not linked to error likelihood/expectancy 

or error commission, in addition to not being due to inhibitory control or performance 

feedback. It could be argued that the presence of the N2 on border-change trials reflects 

an expectancy violation due to their infrequent occurrence relative to standard Go trials. 

Although we do not disagree with this interpretation for the presence of an N2 to border-

change trials generally, it is insufficient in explaining differences in activation across the 

different types of border-change trials, which occurred equally throughout the task. In 

regards to another proposal, Silvetti and colleagues have presented convincing evidence 

for overlap in the modulation of medial frontal activity in relation to cognitive demands 

or effort and reward expectation and prediction (Silvetti, Alexander, Verguts, & Brown, 

2014; Silvetti, Nuñez Castellar, et al., 2014; Silvetti, Seurinck, & Verguts, 2011, 2013). 

Our findings are certainly compatible with some aspects of this model (e.g., prediction 

error signal evoked by infrequenct border-change trials), but our paradigm is not focused 

on traditional aspects of reinforcement learning in which subjects are required to use 

external feedback to learn appropriate response contingencies or update behavioral 
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repertoires. Our paradigm required no learning about how to deal with task demands and 

offered no feedback about behavior, but simply offered cues that informed subjects about 

the potential need for dynamic response control.  

 Also demonstrated here is the reliability and consistency in effects across single 

subjects. This in-depth treatment of the data provides detail that may otherwise be 

inaccessible at the group level. For example, the 3 participants not showing a statistically 

reliable IC separation of PP and Go trials also produced poor ERNs and unreliable NoGo 

N2s. This is consistent with our conclusion that the border-change MFN-IC captures the 

core function resulting in the MFNs that make up the ERN and NoGo N2. Furthermore, 

our hypothesis predicts the exact timing and topography of the border-change MFN-IC 

effect, namely, a MFN during the N2.  Thus, our results suggest a unifying function 

involving the modulation of controlled attention that accounts for medial frontal 

activation that has classically been interpreted in the context of paradigm-specific 

processes. These findings contribute to a growing literature presenting various theoretical 

perspectives that highlight the role of the medial frontal cortex in cognitive control. 

 The modified Go-NoGo task used here offers a way to elicit medial frontal 

activity to simple stimulus events which are, importantly, unrelated to error commission, 

stimulus-response conflict, response inhibition, explicit performance feedback, or 

unexpected feedback task events. Examining activation to simple stimulus changes 

avoids contamination from more complex task demands and cognitive processes (e.g., 

errors or response inhibition), and allows greater experimental control over the 

frequency, ordering, and variability of task events. In addition, having a task that 

maintains stimulus-response mappings ensures that differences in activation are due to 
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subtle implications of the stimulus content, not a result of proactive interference (e.g., 

previously learned associations interfering with current trial performance) or stimulus-

response binding (e.g., interference resulting from changes in previous stimulus-response 

pairings). The combination of our ERP and time-frequency results indicate that medial 

frontal activation and the robustness of effects are modulated by the differences to the 

cues for the various response contexts. In particular theta band responses to CP trials 

were reliable in all but one subject (who was also atypical on other measures) and this 

cue most closely resembles (in our task) ERP events that are often used to study attention 

control (e.g., in ERN and NoGo paradigms). The border color change on CP trials signals 

the need to change from a ballistic response pattern to one that is more cautious, similar 

to how committing an error or receiving a NoGo cue signals the need to abort habitual 

responding. Thus, these data suggest that our task offers a way to study medial frontal 

activation on the basis of simple response cueing which is still compatible with more 

complex cognitive models. Our finding that MFN-ICs describe activation to cues 

informing individuals about the relative need for attention control fits well with the role 

of the medial frontal cortex in performance monitoring. Furthermore, by accounting for 

the ERN in error-detection and NoGo N2 in response inhibition paradigms, our results 

underscore the common need for attention control to appropriately resolve dynamic 

challenges to behavior. 

 Ultimately, our goal is to characterize and understand how the medial frontal 

cortex contributes to performance monitoring in conjunction with other brain regions. For 

example, the dorsolateral prefrontal cortex (DLPFC) has been identified as working 

together with the ACC in modulating attention and behavior (Gehring & Knight, 
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2000).The ACC is connected with mid-PFC, DLPFC, and premotor regions (Bates & 

Goldman-Rakic, 1993; Devinsky et al., 1995; Paus, 2001; Petrides & Pandya, 1999) and 

several imaging and electrophysiological studies point to distinct, yet complementary, 

roles for these regions in controlled attention (Dove et al., 2000; Kerns, 2006; Liston et 

al., 2006; MacDonald et al., 2000). Researchers have also suggested that the ACC works 

together with the DLPFC to implement controlled attention (Schulz et al., 2011; Silton et 

al., 2010) and resolve interference from previously executed behavioral strategies (Hyafil 

et al., 2009); this is possibly through ACC inhibition of excitatory neurons in the DLPFC, 

thereby facilitating performance under conditions of high cognitive load (e.g., response 

selection, error process, and task-switching) (Medalla & Barbas, 2009). These 

interpretations converge with extensive clinical evidence pointing to the ACC and 

DLPFC as part of a key network mediating response and attention control in task 

switching (Gläscher et al., 2012). We suggest that attribution of a specific deficit in 

processes associated with a specific MFN-eliciting paradigm, such as error monitoring or 

response inhibition, may more parsimoniously be attributed to a general one of attention 

control. A potentially useful next step could be to isolate and map information flow 

across ICs attributable to ACC, DLFPC, and other cortical sources in order to better 

understanding the dynamic functional relationships between these regions that work 

together to support adaptive behavior.  

Conclusions 

 We have demonstrated that simply alerting individuals to potential changes in 

response demands reliably affects task behavior and produces differential activation in 

ICs capturing MFN responses attributable to medial frontal sources. Importantly, medial 
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frontal activity related to this manipulation varied as a function of task demand in the 

absence of error commission, response conflict, inhibition, reinforcement learning, or 

feedback evaluation. Furthermore, traditional ERN and NoGo N2 effects were well 

explained by the ICs explaining border-change-related activity, supporting the 

interpretation that the medial frontal cortex responds to the general process of controlled 

attention modulation. Overall, our findings underscore the common need for attention 

control to appropriately resolve dynamic challenges to behavior and extend previous 

findings from the performance monitoring literature, suggesting that the broad role of the 

medial frontal cortex in attention control may be captured and clarified with simple 

response context paradigms such as ours.  
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Supplementary Materials 

 

 
Supplementary Figure 2.1 Top row: Waveforms at channel FCz for total scalp (green), border 

change MFN IC (black), and residual scalp (red) data for border change minus Go (left), Correct 

minus error (middle), and Go minus NoGo (right) contrasts. Solid lines represent border change, 

Error, and NoGo trials, whereas dashed lines represent Go, Correct, and Go trials. Bottom row: 

Difference waveforms at channel FCz between border change minus Go (left), Correct minus 

Error (middle), and Go minus NoGo (right) categorical ERP contrasts, for total scalp (green), 

border change MFN IC (black), and residual scalp (red) data. Note that the topographies of the 

residual of the Correct minus Error and  Go minus NoGo differences do not indicate a medial 

frontal source, whereas the topographies of the border change MFN-selected ICs indicate a 

medial frontal source, shown in Fig. 2.5 and Fig. 2.7. 
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Abstract 

Theta oscillations in the EEG have been linked to several event-related potentials that are 

elicited during performance monitoring tasks, including the error-related negativity 

(ERN), NoGo N2, and the feedback-related negativity (FRN). We used a novel paradigm 

to isolate independent components (ICs) in single subjects' (n = 27) EEG accounting for a 

medial frontal negativity (MFN) to response cue stimuli that signal a potential change in 

future response demands. Medial frontal projecting ICs that were sensitive to these 

response cues also described well the ERN, NoGo N2, and, to a lesser extent, FRN in Go-

NoGo, Letter Flanker, and Time Estimations. In addition, bootstrap re-sampling of 

spectral power indicated that the medial frontal ICs show an increase in theta activity 

during the ERN, NoGo N2, and FRN effects across and within individuals. Our results 

provide an important validation of previous studies by showing that increases in medial 

frontal theta to cognitively challenging events is a robust effect within individuals, as 

well as accounting for events from the different performance monitoring tasks. Thus, 

medial frontal theta reflects a neural response common to all MFN paradigms and 

characterizes the general process of controlling attention without the need to induce error 

commission, inhibited responses or to present negative feedback.  



73 

 

Introduction 

 The medial frontal cortex, including the anterior cingulate cortex (ACC), is an 

important neural substrate for cognitive control (Ridderinkhof, Ullsperger, Crone, & 

Nieuwenhuis, 2004). In the EEG literature, the functional significance of medial frontal 

cortex activity in the service of adaptive behavioural control and reinforcement learning 

is typically studied using event-related potentials (ERPs) that are generated in 

performance monitoring paradigms. Moving beyond the basic average amplitude and 

fixed latency ERP tradition, a growing body of evidence suggests that oscillations in the 

EEG offer a more nuanced understanding of canonical psychological processes and 

cognitive states (Makeig et al., 2004). In particular, the EEG dynamics reflected in 

medial frontal theta rhythms represent a common signature of cognitive processes that are 

engaged to challenging events (Cavanagh & Shackman, 2015; Cavanagh, Zambrano-

Vazquez, & Allen, 2012; Cohen & Cavanagh, 2011; Hajihosseini & Holroyd, 2013; 

Holroyd & Yeung, 2012). Although there have been several elegant studies showing that 

theta-band activity in/over the medial frontal cortex is linked to cognitive control 

(Cavanagh & Shackman, 2015; Cavanagh et al., 2012), evidence is currently lacking that 

demonstrates the functional similarity of theta responses across different tasks or the 

extent to which effects are reliable within individuals. In the current study, we provide a 

thorough analysis for functionally classifying medial frontal activity using a novel 

response cueing task, show that latent factors in the EEG account for multiple brain 

responses across tasks, and that modulation of medial frontal theta is reliable within and 

between individuals.  
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Performance monitoring and medial frontal ERPs 

 From a cognitive neuroscience perspective, medial frontal function is often 

studied using performance monitoring tasks aimed at exploiting commission errors 

(Gehring et al., 1993), inhibitory control (Bokura, Yamaguchi, & Kobayashi, 2001), 

feedback-related learning (Holroyd & Coles, 2008; Holroyd & Yeung, 2012), response 

conflict (Carter & van Veen, 2007; van Veen, Cohen, Botvinick, Stenger, & Carter, 2001; 

van Veen & Carter, 2002), and task-switching (van Noordt, Desjardins, & Segalowitz, 

2015a). Different functional neuroimaging methods suggest that medial frontal activation 

is sensitive to the cognitive demands of a task, typically increasing when task behaviour 

becomes more difficult to control due to trial unpredictability, competing stimulus-

response associations, or the need to switch between different response strategies (Davis 

et al., 2005; Weissman et al., 2005; Wilk et al., 2012). With respect to the human EEG, a 

well known class of ERP components, collectively referred to as medial frontal 

negativities (MFNs), have been linked to medial frontal function and show similar source 

activations and topographical projections to the scalp during performance monitoring 

tasks (see van Noordt & Segalowitz, 2012).  Some studies suggest that activation 

corresponding to different MFNs reflects a unifying function of the medial frontal cortex 

in the service of cognitive control. For example, several research groups have isolated 

independent components in the EEG which describe well a number of medial frontal ERP 

effects. The same latent factor describes negative deflections in the EEG following error 

and correct responses (Hoffmann & Falkenstein, 2010; Roger et al., 2010), error 

responses and feedback processing (Gentsch et al., 2009), as well as error responses and 

novelty N2 (Wessel et al., 2012). In our own lab, we have recently extended these 
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findings by demonstrating that medial frontal ICs accounting for activation to stimuli 

signaling potential changes in response demands also describe the scalp variance in 

traditional response-locked ERN and stimulus-locked NoGo N2 effects (van Noordt et 

al., 2015a). The functional similarity in these medial frontal activations during 

performance monitoring is bolstered further by the growing evidence that these ERPs 

have a common signature in theta rhythms.  

Performance monitoring and medial frontal theta  

 Multiple neuroimaging methods, in both non-human and human samples, 

including functional magnetic resonance imaging (fMRI; Meltzer, Negishi, Mayes, & 

Constable, 2007), transcranial magnetic stimulation (TMS; Ott, Ullsperger, Jocham, 

Neumann, & Klein, 2011), magnetoencephalography (MEG; Ishii et al., 1999), and direct 

intracranial recordings (Cristofori et al., 2013; Isomura et al., 2003; Womelsdorf et al., 

2010b), point to the ACC and surrounding medial cortical sources as generators of theta 

band responses during performance monitoring. In line with these findings there is much 

evidence that MFN ERP components elicited during performance monitoring oscillate in 

the theta range and are modulated by response conflict, punishment/unexpected feedback, 

error commission, stimulus novelty, inhibitory control, and response cueing (Cavanagh, 

Frank, Klein, & Allen, 2010; Cavanagh et al., 2012; Cohen & Cavanagh, 2011; Cohen, 

Ridderinkhof, Haupt, Elger, & Fell, 2008; Hajihosseini & Holroyd, 2013; Luu, Tucker, & 

Makeig, 2004; Nigbur et al., 2011; Trujillo & Allen, 2007; van Noordt et al., 2015a). 

 The functional significance of medial frontal theta is revealed by studies linking 

theta band activity to important aspects of cognitive control and performance monitoring. 

In macaques, theta is enhanced when attentional load increases (Tsujimoto et al., 2010) 
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and the patterns of theta oscillations in medial frontal neurons predict behavioural 

outcomes prior to the presentation of a target cue, particularly when stimulus-response 

rules need to adjusted (Womelsdorf et al., 2010a). Similarly, in humans, theta is an 

obvious neural correlate for the dynamic regulation of adaptive behaviour. Theta power 

increases when the demands on response control are high (Cohen & Donner, 2013), when 

individuals successfully override Pavlovian stimulus-response associations (Cavanagh et 

al., 2013), as well as following attentional lapses that result in commission errors (van 

Driel et al., 2012). Compared to poorer learners, frontal theta is greater in individuals 

who perform well in reinforcement learning contexts (Luft, Nolte, & Bhattacharya, 2013) 

and has been found to predict reaction time differences between congruent and 

incongruent stimuli (Ma et al., 2015), post-error response slowing/response switching 

(Cavanagh & Shackman, 2015), and behavioural shifts following unexpected outcomes 

(Cavanagh et al., 2010). Experimentally manipulating medial frontal cortex excitability 

systematically affects behaviour (Reinhart & Woodman, 2014), and greater theta phase 

synchrony is associated with improved response control following errors (Reinhart, Zhu, 

Park, & Woodman, 2015), which suggests that theta oscillations are essential to cognitive 

control. Taken together, electrophysiological performance monitoring studies implicate 

theta oscillations as a potential mechanism for the control of attention during action 

selection, feedback processing, and response shifts (see Cavanagh & Shackman, 2015; 

Cavanagh et al., 2012). 

Current study 

 The first goal of the current study was to replicate our method of isolating latent 

factors in the single subjects' EEG that reflect medial frontal activation, specifically using 
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stimuli in our response cueing task that are not based on errors, response conflict, 

inhibition, or feedback processing. We show that medial frontal ICs classified in our 

response cue task also describe MFNs from other tasks. Importantly, the residual ERPs 

for the ERN, NoGo N2, and FRN do not reflect activity corresponding to traditional 

medial frontal sources. Finally, bootstrap re-sampling of time-frequency data shows that 

medial frontal theta effects are reliable both between and within subjects across several 

performance monitoring tasks.  

Methods 

Participants 

 Thirty young adults (Mage = 24 years, SD = 7.34 years; 21 female, 9 male) 

participated. These individuals self-reported normal or corrected-to-normal vision and 

that they were free from any neurological or psychiatric conditions. Compensation for 

participating included either $20 honorarium or 2.5 hours of research credit for qualifying 

courses. Data from three subjects were discarded from analyses due to excessive artifact 

and unreliable decomposition of their EEG into latent independent components. Thus, all 

behavioural and electrophysiological analyses were conducted on the remaining 27 

participants. The study received clearance from the Brock University Bioscience 

Research Ethics Board and all participants provided informed consent. 

Tasks 

 Each of the tasks in the current study used a dynamic adjustment in the speed of 

stimulus presentation so that task difficulty was sensitive to individual differences in 

speed and accuracy. This dynamic adjustment increases the likelihood of having a 

comparable level of difficulty across subjects, as opposed to having static parameters that 
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are insensitive to differences in individuals' capacity to perform the task. All four tasks 

were completed in approximately 45 to 60 minutes, depending on participant's response 

speed. 

Response cueing task  

 The response cueing task used in this study is identical to the paradigm described 

in van Noordt et al. (2015a), with the exception that the total length of the task was 

truncated in order to accommodate the other three tasks. Similar to traditional NoGo 

tasks, the goal is to respond as quickly as possible to target Go stimuli and withhold 

responses to infrequent NoGo stimuli.  The response stimulus was a plus sign that was 

black or white (counterbalanced across participants), the colour of which defined the trial 

as either Go or NoGo. The plus sign was presented inside a central square border that 

periodically changed colour, every 1 to 8 trials, simultaneously with the onset of a Go 

stimulus. The colour of the central square border indicated the current response context as 

either "Certain", a run of trials requiring only Go responses, or "Possible", a run of trials 

requiring both Go and NoGo responses. A pair of colours was associated with each of the 

response contexts. For example, a black or white border colour signaled the presence of 

only Go trials (i.e., "Certain" run), whereas red or blue border colour signaled that both 

Go and NoGo trials could occur (i.e., "Possible" run). These colour-contexts produced 

four response types including  from Certain to Certain (CC), from Certain to Possible 

(CP), from Possible to Certain (PC), and from Possible to Possible (PP). The border 

colour change trials are important because they allow us to test whether medial frontal 

activation is sensitive to cues indicating potential changes in response demands, 

independent of errors, response inhibition, or processing performance feedback. All the 
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information about task goals, trial types, and colour-context associations were provided 

to participants. Thus, individuals did not need to learn these associations or task rules 

through trial-and-error, and instead could use the response cue information to modify 

their attention and behavioural control for optimal performance. See Figure 3.1 for a 

summary of the various Go and context cue trial types. 

 
Figure 3.1 Schematic illustration of task parameters. Fixation crosses were presented for 50 ms 

followed by a 2 second response window. This example represents all stimuli features used in the 

task.  Response context and response stimuli were counterbalanced across subjects. 
 

 Go and NoGo stimuli were presented for 50 ms and were followed by a 2-second 

response window, with an ITI selected randomly between 400 and 900 ms after the 

response. There were 660 trials in total, consisting of 68% Go trials (34% in the Certain 

and 34% in the Possible response contexts), 22% border colour change trials (5.5% for 

each of the four border colour change types), and 10% NoGo trials.   
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Go-NoGo task 

 A standard visual Go-NoGo task was used to capture the stimulus-locked NoGo 

N2 and response-locked ERN. In this task individuals responded to the rapid serial 

presentation of the letters 'M' and 'W'. One letter was designated as the "Go" target and 

requires a button press as quickly as possible, whereas the "NoGo" stimulus indicated 

that the response needed to be withheld. Target stimuli were counterbalanced across 

participants. There were 600 trials in total and a pre-potent response tendency was 

established by having 77% Go trials, 19% NoGo trials, and 4% repeated NoGo (i.e., 

NoGo trial following previous NoGo trial). Stimuli were presented for 50 ms. The ISI 

adjustment on trial n was based on a running tally of performance on the previous 10 

trials, such that accuracy lower than 70% resulted in adding 15 ms to the ISI, whereas 

accuracy greater than 70% resulted in truncating the ISI by 15 ms. This adjustment 

reached a cap if the ISI was as low as 750 ms or as high as 1250 ms. 

Eriksen letter flanker task  

 The Eriksen Flanker Task (Eriksen & Eriksen, 1974) is a well established 

performance monitoring task used to examine stimulus-response programming and the 

response-locked ERN. The participant's goal was to identify the central target item in a 

string of five letters and respond with the appropriate left/right button press. In this 

version the stimuli consisted of the letters 'H' and 'S'. Flanking letters introduce response 

interference when they are associated with the response opposite the central target letter 

(e.g., HHSHH, requiring left button press; incompatible), compared to when all letters are 

linked to the same response (e.g., HHHHH, requiring right button press; compatible). 

Stimulus-response mapping was counterbalanced across participants. The five letter 
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arrays were presented randomly for 200 ms. There were 660 trials in total, divided 

equally between congruent and incongruent trials. The ISI adjustment on trial n was 

based on a running tally of performance on the previous 10 trials, such that accuracy 

lower than 70% resulted in adding 10 ms to the ISI, whereas accuracy greater than 70% 

resulting in truncating the ISI by 10 ms. This adjustment reached a cap if the ISI was as 

low as 500 ms or as high as 1250 ms. 

Time estimation task 

 A time estimation task was used to collect FRNs to correct and error performance 

feedback. In this task, individuals were asked to make a button press when they thought 

that one second had elapsed following the disappearance of the trial cue. Feedback 

consisted of the words "Correct" or "Incorrect" depending on the accuracy of the 

response, but did not specify whether the responses were too short or too long. This 

allowed us to study feedback processing in the absence of rewards/punishments and 

reinforcement learning. Participants completed a total of 180 trials. Each trial involved a 

dynamic window within which responses would be deemed correct to increase the 

likelihood of comparable frequency across correct and error feedback. The initial window 

accepted responses as correct if they were delivered within +/- 100 ms of the one second 

interval. Subsequently, on trial n the response window was adjusted by +/- 10 ms 

depending on whether or not subject's accuracy was at least 70% on the previous 10 

trials. If accuracy was higher than 70% the window was truncated, whereas an accuracy 

lower than 70% resulted in the response window expanding.  
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Electrophysiological recordings and data reduction 

 EEG was recorded using a128-channel BioSemi Active Two system. The zero-

reference principal voltage values (each site quantified relative to the driven right leg and 

common mode sense loop) were digitized at a rate of 512 Hz. An average montage was 

used to represent the 3-D spatial location of channel coordinates. An additional seven 

external sensors were applied symmetrically on the zygomatic processes, outer canthi, 

and inferior orbital bones, as well as one sensor at the nasion. 

 Offline the EEG data were submitted to an automated pre-processing pipeline 

using EEGLab (Delorme & Makeig, 2004) with custom in-house code created in 

MATLab 2010b and executed in Octave 3.6.3 on the Shared Hierarchical Academic 

Research Computing Network (SHARCNet). Specifically, the data were systematically 

processed to identify and remove bad channels and periods of non-stationarity on the 

basis of correlation distributions between neighbouring channels (see Desjardins & 

Segalowitz, 2013; van Noordt et al., 2015a; van Noordt, White, Wu, Mayes, & Crowley, 

2015b, for an expanded description of these methods). There was an average of 19 

channels (SD = 7.97, ranging from 3 to 37) removed before submitting the data to 

independent component analysis (ICA). Extended infomax ICA (Bell & Sejnowski, 1995; 

Jung et al., 2001; Makeig et al., 2004) was performed in EEGLab to produce spatially 

fixed and temporally independent components (ICs). The activation of these ICs was then 

used to identify and remove periods of time that showed relative non-stationarity in EEG. 

The flagging of time periods as unreliable was done if 10% of the ICs had activation 

values that were outside of their own 99% confidence interval during in-task time.  After 

removing periods of time showing relative non-stationarity, a second ICA decomposition 
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was applied to the remaining time intervals. Finally, using the dipfit plugin for EEGLab 

(Oostenveld et al., 2011), a single dipole was fit to the field projection weight matrix of 

each IC. Subsequent variance measures of IC activation (e.g., Global Field Amplitude 

(GFA) and percentage of variance accounted for) were calculated by taking the variance 

across channels, for each time point, once the IC activation was projected back to the 

scalp. For specific IC(s), back-projection to the scalp was accomplished by reducing the 

mixing matrix of the specific IC(s), which was then multiplied by the time course of 

activation for the IC(s).  

 Similar to van Noordt et al. (2015a), two levels of IC classification were used in 

this analysis. The first step was the classification of ICs as representing activation of 

cortical sources and the second step focused on classifying medial frontal projecting ICs. 

Cortical classification was done to remove all non-cortical ICs (i.e., ECG, EOG, EMG 

and other stationary noise sources) and reduce the EEG signal to only ICs that were likely 

to reflect the activity of cortical sources. Initially, ICs were flagged for rejection if the 

residual dipole variance was 15% and, subsequently by examining the continuous signals 

and topographies as a final rejection criteria for ICs representing biological or channel 

artifact. Across subjects an average of 10 cortical components were retained. The cleaned 

continuous data were re-referenced to the average of 19 interpolated sites and filtered 

between 1 Hz and 30 Hz for hypothesis testing. The continuous data were then 

segmented around task events of interest. Response-locked trials were baseline corrected 

between -600 and -400 ms, and a baseline of -200 to 0 ms was used for all stimulus-

locked trials.   
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 To isolate medial frontal projecting ICs for hypothesis testing, we examined in 

each participant the spatial scalp variance at specific latencies in the ERP difference 

between Go and Border colour change trials in the response cueing task (see van Noordt 

et al., 2015a). Specifically, we ranked ICs based on the percentage of variance accounted 

for in the ERP condition difference topographies over the period associated with 

stimulus-locked N2 effects (approximately 175 - 325 ms). Thus, the percentage of 

variance accounted for by a specific IC was calculated in the ERP difference between 

border change trials and Go trials in the Certain context averaged over the time period of 

the stimulus-locked N2. This was the total spatial variance (all components projected 

back to the scalp) minus the variance of the other ICs (projected back to the scalp) 

divided by the total scalp variance. Components were continuously added by the order of 

their contribution in accounting for spatial variance in the GFA during the N2 period on 

border colour change trials minus Go trials until, cumulatively, they accounted for at least 

60% of the spatial variance at the scalp (see Fig. 2). In 7 cases the criterion had to be 

increased in order to include a medial frontal IC that was sensitive to the border colour 

change N2 effect (65% [n = 3], 75% [n = 1], 80% [n = 1], 85% [n = 1], 90% [n =1]). If 

multiple ICs with various topographical projections were included in the spatial variance 

criterion, then manual selection of MFN ICs was used based on identifying a fronto-

central medial topography. In 25 cases a single medial frontal projecting IC was isolated 

for each participant. There were 2 individuals who had 2 centrally projecting ICs that 

contributed to the scalp variance during the border colour change N2 effect. For these 

subjects the combined projection of the ICs were used to represent the medial frontal 

cluster. Both our lab (van Noordt et al., 2015a) and others (Gentsch et al., 2009; 
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Hoffmann & Falkenstein, 2010; Roger et al., 2010; Silvetti, Nuñez Castellar, et al., 2014; 

Wessel et al., 2012; Wessel & Ullsperger, 2011) have implemented a similar approach to 

classify medial frontal activity. Across these studies, a single medial frontal projecting IC 

is often found that accounts for waveform differences between categorical ERP contrasts 

that reflect common MFNs. Figure 3.2 summarizes the classification of medial frontal 

ICs across subjects for the Go versus border colour change trials, and clearly replicates 

the findings our previous study (see van Noordt et al., 2015a and Supplementary Figure 

3.1).  
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Figure 3.2 Topographical maps of border change MFN IC back projections (left, black boxes) 

and residual data (right, red boxes) for border change and Go trials. Grand average dipole sources 

are shown in the top boxes, whereas individual topographies are shown in the bottom boxes. The 

shaded axis area (175 - 325 ms) highlights the latency window of the border change minus Go 

(e.g., stimulus N2) effect, which was used to classify MFN ICs and derive the topographical 

maps. The waveforms show the global field amplitude of the difference between stimulus-locked 

border change and Go trials for the entire scalp data (green), MFN ICs (black), and residual ICs 

(red). In order to maintain a clear visualization of voltage distributions, the topographies are 
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scaled within each subject, separately for medial frontal and residual ICs, based on the maximum 

voltages between Go and Border Colour Change trials. For example, medial frontal IC 

topographies for subject 1 are scaled based on the largest absolute values between Go and Border 

Colour Change trials. The same procedure is used for scaling the residual ICs for each subject.  

 

Statistical analyses 

 Robust estimation. We use robust estimation statistics for hypothesis testing to 

examine the full time-course of ERP effects. The seminal work of Wilcox and colleagues 

(Wilcox & Keselman, 2003; Wilcox, 2005, 2009) has pioneered a class of robust 

estimation measures that are relatively insensitive to distribution characteristic such as 

outliers, uneven tails, skewness, and to violations of parametric model assumptions. 

Some of the advantages of using robust estimation techniques include greater control 

over unequally divided or inflated alpha levels, as well as more accurate measure of 

location such as the arithmetic mean. By using robust estimation the statistical power for 

rejecting the null hypothesis is increased by minimizing the calculation of 

unrepresentative confidence intervals. Ultimately, these techniques provide a better 

representation of the probability coverage and greater control over Type I error. Some 

researchers have successfully applied robust estimation techniques in EEG, and cognitive 

neuroscience research can benefit greatly from the use of robust estimation because 

sample sizes are often relatively small, there are no expectations of normality (as with 

ERPs), and effects can be quantified across the entire time-course (e.g., Desjardins & 

Segalowitz, 2013; Rousselet, Husk, Bennett, & Sekuler, 2008; Rousselet & Pernet, 2011; 

van Noordt et al., 2015a). 

 In this study, we used trimmed means instead of full means for both RT and 

electrophysiological distributions. The process of trimming, which favours central values 

in a distribution, is straightforward and involves removing a percentage of data points 
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from each tail before calculating the mean. The analyses in this study relied on trimming 

20% of the values from the top and bottom (leaving the middle 60% of values) prior to 

calculating the mean. In addition to robust means, we also used bootstrap re-sampling to 

yield robust measure of significant differences between conditions. Bootstrapping 

involves re-sampling, with replacement, from an original data pool to create surrogate 

distributions. In this study a bootstrapped surrogate sample refers to the difference, at 

each time point, between a categorical contrast (e.g., border colour change minus Go). 

For example, to assess spectral power differences, given n trials in each condition, 50 

trials from each condition are selected randomly with replacement. The 20% trimmed 

mean (removing the top 20 and bottom 20 ranked trials) is calculated for each condition, 

and then the difference value at each time point is stored as a surrogate. Iterating this 

process 1000 times produces a distribution of the condition difference, for each time and 

frequency, and allows calculation of confidence intervals around the surrogate 

distributions. 

 Behavioural outcomes. To minimize carry-over of late responses from previous 

trials, or exceptionally slow responses, reaction times faster than 50 ms and slower than 

800 ms were excluded for the Response Cueing, Go-NoGo, and Letter Flanker tasks. 

Robust means were used for response times, which reflect the average of 1000 surrogate 

means that were each calculated by re-sampling and then trimming each tail of the raw 

distribution by 20%, for each subject. Behavioural effects in this study were performed 

using a robust ANOVA procedure that involves bootstrapping to assess differences 

between conditions. Re-sampling of the raw data provides a distribution of differences 

scores, and the mean of these differences is calculated after trimming 20% of the values 
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from both tails of the distribution. The bootstrapping of the raw data to create a 

distribution of difference scores, trimming, and mean calculation is repeated 1000 times.  

 Time-frequency analyses. Event-related EEG activity was convolved, using 

Morlet wavelets, into time-frequency spectrograms using the 'newtimef' function in 

EEGlab. Spectral power from 3 to 20 Hz was calculated with wavelet cycles increasing 

from 1 (at 3 Hz) to 8.5 (at 20 Hz). A standardized absolute z-score of 2.326 (i.e., 99% 

confidence interval)  was used to assess significant differences in spectral power between 

-400 and 1000 ms for all trial types. To increase the likelihood of comparable trial 

numbers in the averaged time-frequency spectrograms, we capped the trial numbers for 

bootstrap re-sampling. All contrasts were capped at 50 trials, with the exception of the 

correct versus repeat error in the Go-NoGo task, which was capped at 10 trials because 

the occurrence of two successive NoGo trials was rare, resulting in a limited number of 

trials available for re-sampling.  

Results 

Behavioural measures 

Accuracy  

 The descriptive statistics for response accuracy across trials and tasks are 

summarized in Table 3.1.  
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Table 3.1 

Summary of descriptive statistics for response accuracy across tasks 

 

Task Mean Median Mode SD Range 

Response cue      

Go Certain .95 .96 .99 .04 .84 - 1.00 

Go Possible .96 .97 .97 .06 .77 - 1.00 

Border colour change CC .96 .97 1.00 .06 .75 - 1.00 

Border colour change CP .91 .94 1.00 .10 .50 - 1.00 

Border colour change PC .93 .97 1.00 .13 .50 - 1.00 

Border colour change PP .93 1.00 1.00 .09 .58 - 1.00 

NoGo  .71 .72 .72 .15 .39 - 1.00 

Go-NoGo      

Go Correct .99 1.00 1.00 .02 .94 - 1.00 

NoGo  .64 .62 .85 .15 .41 - .92 

NoGo Repeat  .50 .50 .55 .20 .10 - .63 

Letter Flanker       

Congruent .88 .89 .86 .06 .79 - 1.00 

Incongruent .78 .77 .70 .08 .63 - .93 

Time Estimation      

Correct .53 .56 .57 .07 .36 - .63 
Note: The near chance accuracy for border colour change trials CP, PC, and PP were due to one 

subject omitting responses on several trials throughout the task. Two other subjects showed some 

response omission on PP trials (one at .61 and one at .67), likely indicating an increased tendency 

to inhibit Go responses to potential upcoming NoGo stimuli. With the exception of these 

omissions, all other subjects responded correctly on at least 78% of trials.   

 

 Response cueing task. NoGo trials had lower and more variable accuracy scores 

across subjects, whereas response accuracy for Go and border colour change trials were 

near ceiling levels (omnibus test, p <.001). Response accuracy was similar for Go trials 

between the Certain and Possible contexts (robust t-test, p >.05, 95% CI [- .02, .009], and 

Go trials in both the Certain (robust t-test, p <.001, 95% CI [.02, .30]) and Possible 

(robust t-test, p <.001, 95% CI [.02, .30]) contexts were significantly higher than NoGo 

accuracy. 

 Although near ceiling levels, there was a reliable difference in response accuracy 

across border colour change trials (omnibus test, p <.001). When coming from a Certain 

context where each trial is predictable, individuals tended to omit a greater number of 



91 

 

response on a border change trial that indicated the following block of trials was 

unpredictable (CP) compared to when the border change indicated that the following 

trials would still be predictable (CC; robust t-test, p <.05, 95% CI [.01, .07]). Similarly, 

commission accuracy was lower when individuals received a cue to change from habitual 

to dynamic responding (CP) compared to cues indicating that dynamic responding was 

still required in the following trials and no switch was required (PP; robust t-test, p <.05, 

95% CI [-.65, -.01]). No other contrasts were statistically reliable. These results indicate 

that individuals were sensitive to response cues as they were more likely to omit a 

response to a cue indicating that they needed change their strategy to include the 

possibility of response inhibition on upcoming trials.  

 Go-NoGo task. Response accuracy varied between Go trials and standard (i.e., the 

first instance of a NoGo trial) as well as repeat NoGo trials (omnibus test, p <.001). 

Contrasts showed that Go trial accuracy was higher compared to both standard (robust t-

test, p <.001, 95% CI [.28, .43]) and repeated NoGo trials (robust t-test, p <.001, 95% CI 

[39, .59]). In addition, response accuracy was reliably higher on the first NoGo compared 

to repeated NoGo trials (robust t-test, p <.001, 95% CI [.05, .22]).  

 Letter flanker task. Response accuracy varied as a function of trial type, with 

higher accuracy for congruent compared to incongruent trials (robust t-test, p <.001, 95% 

CI [.07, .12]).  

Response times 

 The descriptive statistics for response times across trials and tasks are 

summarized in Table 3.2.  
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Table 3.2 

Summary of descriptive statistics for response times (ms) across tasks 

 

Task Mean Median SD Range 

Response cue     

Go Certain 255.01 248.06 31.53 198.38 - 328.99 

Go Possible 281.09 270.68 36.32 227.40 - 378.70 

Border colour change CC 291.14 285.91 58.09 212.08 - 468.43  

Border colour change CP 292.61 276.43 61.80 223.06 - 448.39 

Border colour change PC 327.02 308.10 74.91 225.29 - 549.17 

Border colour change PP 333.97 317.18 62.94 253.80 - 522.93 

NoGo Error 251.85 238.98 34.85 207.52 - 359.74 

Go Possible Pre-NoGo Error 279.56 271.30 35.96 227.83 - 370.94 

Go Possible Post-NoGo Error 322.49 295.23 76.19 228.09 - 519.36 

Go-NoGo     

Go Correct 276.01 279.94 27.10 212.42 - 343.34 

NoGo  233.77 234.93 23.14 184.60 - 284.03 

NoGo Repeat  256.88 260.39 31.73 197.94 - 305.91 

Go Correct Post-NoGo Error 338.56 344.24 48.87 251.20 - 431.73 

Letter Flanker      

Correct 407.75 416.38 50.44 271.86 - 493.37 

Error 323.83 320.89 35.60 250.82 - 388.60 

Congruent Correct 392.22 396.96 46.34 269.28 - 471.78 

Congruent Error 312.38 317.34 39.21 241.05 - 396.63 

Incongruent Correct 427.23 421.93 55.67 275.32 - 521.67 

Incongruent Error 329.39 322.30 35.31 253.52 - 385.99 

Time Estimation     

Correct 33.39 996.98 46.28 952.79 - 1134.35 

Error 167.84 1053.90 206.06 539.53 - 1399.56 

Correct Post-Error 38.43 1002.23 52.26 925.73 - 1167.99 

 

 Response cueing task. Response times varied across Go and NoGo trials (omnibus 

test, p <.001), such that responses on Go trials in the Certain context were significantly 

faster than Go trials in the Possible context (robust t-test, p <.001, 95% CI [-32.33, -

19.07]), but similar to NoGo error response times (robust t-test, p >.05, 95% CI [-2.81, 

13.06]). NoGo error responses were also significantly faster than responses on Go trials 

in the Possible context (robust t-test, p <.001, 95% CI [19.51, 35.85]). Focusing on the 

Possible context, which includes both Go and NoGo trials, we found that response times 
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on Go trials following an error were significantly slower than those preceding the error 

(robust t-test, p <.001, 95% CI [-62.34, -16.79]) as NoGo errors (robust t-test, p <.001, 

95% CI [19.02, 35.02]). In addition, responses were significantly slower following an 

error compared to NoGo errors (robust t-test, p <.001, 95% CI [34.34, 87]). Together, 

these results indicate that errors are characterized by fast responses, with individuals  

being sensitive to the task demands by executing slower responses when there was a 

chance for NoGo trials, or slowing down following erroneous responses.  

 Response times also varied across border colour change trials (omnibus test, p 

<.01). Specifically, responses to Certain-Certain border colour changes were significantly 

faster than Possible-Certain (robust t-test, p <.01, 95% CI [-52.74, -14.45]) and Possible-

Possible (robust t-test, p <.001, 95% CI [-65.32, -23]) border colour change trials. 

Responses to Certain-Possible border colour changes were significantly faster than 

Possible-Certain (robust t-test, p <.001, 95% CI [-47.06, -15.17]) and Possible-Possible 

(robust t-test, p <.001, 95% CI [-64.11, -20.37]) border colour change trials. There were 

no reliable differences between Certain-Certain and Certain-Possible border change trials 

(robust t-test, p >.05, 95% CI [-9.63, 12.65]), or between Possible-Certain and Possible-

Possible border change trials (robust t-test, p <.001, 95% CI [-26.79, 5.82]). Together, 

these results indicate that individuals tended to have slower responses to border colour 

changes when coming out of a Possible context compared to a Certain context, 

suggesting that individuals were sensitive to the current blocked response context.  

 Go-NoGo task. Response times varied across Go and NoGo trials (omnibus test, p 

<.001). Specifically, correct responses were significantly faster than standard NoGo 

errors (robust t-test, p <.001, 95% CI [35.47, 47.32]), errors on repeated NoGo trials 
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(robust t-test, p <.001, 95% CI [7.66, 27.76]), and correct responses following a NoGo 

error (robust t-test, p <.001, 95% CI [-80.03. -45.26]). NoGo error responses were 

significantly faster than errors on repeated NoGo trials (robust t-test, p <.001, 95% CI [-

34.39 , -14.21]) and correct responses following NoGo errors (robust t-test, p <.001, 95% 

CI [-120.88, -86.62]). Finally, errors on repeated NoGo trials were significantly faster 

than correct responses following NoGo errors (robust t-test, p <.001, 95% CI [-95.29, -

62.99]). Together, these results indicate that individuals were sensitive to task demands 

by slowing down when facing NoGo trials, even if errors were made on repeated NoGo 

trials, and adopting an even slower response strategy for Go trials following errors.  

 Letter Flanker task. In general, responses were significantly faster for error 

compared to correct trials (robust t-test, p <.001, 95% CI [70.20, 91.07]). There were also 

reliable differences for error and correct responses across trial type. Specifically, correct 

responses on congruent trials were significantly slower than congruent (robust t-test, p 

<.001, 95% CI [66.38, 91.24]) and incongruent errors (robust t-test, p <.001, 95% CI 

[48.64, 71.56]), but faster than incongruent correct responses (robust t-test, p <.001, 95% 

CI [-41.17, -27.16]). Responses on congruent errors were significantly faster than 

incongruent correct (robust t-test, p <.01, 95% CI [-131.25, -97.76]) and incongruent 

error trials (robust t-test, p <.001, 95% CI [-27.91, -5.94]). Finally, incongruent correct 

responses were significantly slower than incongruent error responses (robust t-test, p 

<.001, 95% CI [80.55, 108.77]). Together, these results indicate that individuals were 

sensitive to task demands such that responses on error trials were faster than correct 

responses, and responses on congruent trials were faster than responses involving 

incongruent flankers.  
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 Time Estimation task. Time estimates varied across correct, error, and post-error 

trials (omnibus test, p <.05) with respect to their absolute deviation from 1 second. 

Incorrect estimates showed a significant deviation from 1 second compared to correct 

(robust t-test, p <.001, 95% CI [-168.60, -77.21]) and post-error correct estimations 

(robust t-test, p <.001, 95% CI [76.92, 160.62]). The deviation from 1 second on correct 

trials was comparable to the deviation on post-error correct trials (robust t-test, p >.05, 

95% CI [-15.20, 5.45]). Together, these results indicate that error trials were 

characterized by a larger deviation from 1 second estimates than correct trials.  

Medial frontal ICs as related to the NoGo N2, FRN, and ERN 

 To assess whether MFN responses across paradigms are similar, we examined 

whether the medial frontal ICs that were classified in our response cueing task also 

describe the ERN, NoGo N2, and FRN from the other performance monitoring tasks. 

Figure 3.3 shows that traditional MFN effects are well described by the ICs that were 

classified to border colour change trials in our response cueing task. Specifically, there is 

considerable overlap between the total scalp and medial frontal IC projections during the 

time of the ERN and NoGo N2, and clear MFN topographies. Although less of the total 

scalp data is accounted for during the time of the FRN, there is a clear peak in the GFA 

for the medial frontal ICs and the topographical projection is less positive for error 

compared to correct feedback. To further demonstrate that the classified medial frontal 

ICs account for traditional MFN effects, we examined the residual ICs (i.e., after 

removing medial frontal classified ICs), across tasks, and the corresponding topographies 

during the time of the NoGo N2, FRN, and ERN. As shown in Figure 3.3, the 

topographical maps during the timing of the NoGo N2, FRN, and ERN, do not reflect 
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activation of a recognizable MFN, suggesting that the MFN effects that are traditionally 

scored at the scalp are well accounted for by the medial frontal ICs that were classified 

using our response cueing task.  

 
Figure 3.3 Topographical maps of border change MFN IC back projections (left, black boxes) 

and residual data (right, red boxes) during the NoGo N2 (top left), FRN (bottom left), and ERN 

(right) from the Go/No-Go (top), Time Estimation, and Letter Flanker tasks. The waveforms 

show the global field amplitude of the difference between conditions for the entire scalp data 

(green), MFN ICs (black), and residual ICs (red). The shaded axis area highlighted the latency 

window of the traditional MFN effects and timing used to derive the topographical maps.  
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Medial frontal IC theta power 

 All time-frequency spectrograms and reliability tally plots are masked at the 99% 

confidence interval so that only significant z-scores are shown in colour. Grand average 

contrasts show that, for the border colour change medial frontal ICs, theta power is 

reliably modulated for stimulus-locked N2 and response-locked ERN effects across each 

of the four performance monitoring tasks (see Figures 3.4 and 3.5). 
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Figure 3.4  Summary of stimulus-locked N2 effects across tasks and subjects for the border 

colour change medial frontal ICs. The first column shows the ERPs (site FCz), the second column 

shows the bootstrapped spectral condition overlays, the third column shows the bootstrapped z-

score differences in spectral power, and the fourth column shows the consistency of significant 

condition effects across single subjects. The time-frequency plots in columns three and four are 

masked at the 99% confidence interval to show in colour only those power values that 

significantly different between conditions. Vertical lines represent the boundaries for the N2/P3 

complex. Horizontal lines represent the boundaries of the theta frequency band.  
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Figure 3.5 Summary of response-locked ERN effects across tasks and subjects for the border 

colour change medial frontal ICs. The first column shows the ERPs (site FCz), the second column 

shows the bootstrapped spectral condition overlays, the third column shows the bootstrapped z-

score differences in spectral power, and the fourth column shows the consistency of significant 

condition effects across single subjects. The time-frequency plots in columns three and four are 

masked at the 99% confidence interval to show in colour only those power values that 

significantly different between conditions. Vertical lines represent the boundaries for the ERN/Pe 

complex. Horizontal lines represent the boundaries of the theta frequency band. 
 

 The average likelihood of finding a reliable effect for response-locked ERNs 

across individuals was 92 %, with only 2 subjects exhibiting less than a 50% chance that 

medial frontal theta differentiates between correct and error trials (subjects 3 and 9, 
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shown below; see Figure 3.6). Similarly, there was a 73% likelihood of finding reliable 

stimulus-locked N2 effects across individuals, with only 3 subjects showing less than a 

50% chance that medial frontal theta differentiates between conditions (subjects 3, 8, and 

9, shown below; see Figure 3.7).  



101 

 

 
Figure 3.6 Tally plots indicate the reliability across time and frequency of finding a stimulus-

locked N2 effect in each subject. The tally is aggregated based on z-scores that exceed the 99% 

confidence internal (i.e., z-score > 2.326) for N2 effects across the different performance 

monitoring tasks. Vertical lines represent the boundaries for the N2/P3 complex. Horizontal lines 

represent the boundaries of the theta frequency band. 
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Figure 3.7 Tally plots indicate the reliability across time and frequency of finding a response-

locked ERN effect in each subject. The tally is aggregated based on z-scores that exceed the 99% 

confidence internal (i.e., z-score > 2.326) for ERN effects across the different performance 

monitoring tasks. Vertical lines represent the boundaries for the ERN/Pe complex. Horizontal 

lines represent the boundaries of the theta frequency band. 
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 These data clearly show that the reliable effects of IC spectral power are 

consistent and well isolated across both time (200 - 500 ms for stimulus-locked N2/P3 

complex, 100 - 300 ms from response-locked ERN/Pe complex) and the theta frequency 

range (approximately 3 to 7 Hz). The stimulus-locked N2 and response-locked ERN 

effects are elaborated on in the following sections, separated by performance monitoring 

task.  

Stimulus-locked N2 effects  

 Response cue task. The summary figures for stimulus-locked N2 effects in the 

response cue task show that modulation of medial frontal theta is reliable for all 

categorical contrasts. Across subjects, the border colour change effects observed here 

replicate the findings reported in van Noordt et al. (2015a). Specifically, increases in 

theta power to border colour change trials are more reliable across subjects when the 

response cues signal a need for high cognitive control (i.e., CP [70%] and PP [63%]) as 

compared to cues signaling that upcoming trials are predictable and require a pre-potent 

response (i.e., PC [41%] and CC [52%]). The most reliable effect of increased theta 

found across subjects was for successful response inhibition to NoGo stimuli (82%).  

 Go-NoGo task. Similar to the response cue task, there was a robust effect of 

NoGo N2 theta modulation in 96% of subjects. These findings clearly show convergent 

validity between medial frontal activation during inhibition in traditional NoGo N2 tasks 

and our novel response cueing task.  

 Time estimation task. There was moderate reliability for increases in medial 

frontal theta corresponding to the FRN error and correct feedback. These findings suggest 

that robust increases in theta linked to the FRN in the time estimation task are less 
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consistent across subjects as compared to the N2 border colour change and NoGo N2 

effects. 

Response-locked ERN effects 

 Response cue task. There was a reliable increases of theta power in 69% of 

subjects for medial frontal selected ICs following NoGo error compared to correct 

responses during the time of the ERN. The grand averages for this categorical contrast do 

not include data for subjects 1 or 15 due to an absence of response commission errors.  

 Go-NoGo task. Similar to the stimulus-locked N2 effects in the NoGo task, the 

response-locked ERN shows the most consistent reliability compared to the other tasks, 

with 92% of subjects showing increased theta power on NoGo trials. Increases in theta 

for medial frontal selected ICs were found for both standard error trials (i.e., error on a 

NoGo following a Go trial), as well as catch/repeat error trials (i.e., error on NoGo 

following a NoGo trial). The grand averages for this categorical contrast do not include 

data for subjects 7 or 15 due to an absence of response commission errors.  

 Letter flanker task. There was a reliable increase in theta power for medial frontal 

selected ICs following response-locked errors in the flanker task. Greater medial frontal 

theta following error compared to correct responses was reliable for both congruent and 

incongruent trials, with a greater number of subjects showing consistent effects for 

incongruent (89%) compared to congruent (69%) trials. The grand averages contrasting 

congruent trials do not include data for subjects 15 due to an absence of response 

commission errors. 
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Discussion 

 Much evidence points to the medial frontal cortex as an important neural substrate 

of cognitive control and the generator of several MFN ERP components that are elicited 

in performance monitoring tasks. We have shown here that these various MFNs can be 

accounted for by the same latent factor in single subjects' EEG and that theta oscillations 

are common to MFNs elicited during such performance monitoring tasks. Our analysis 

extends the traditional ERP approach by implementing advanced data processing and 

analytical techniques and, to our knowledge, is the first study to exploit the benefits of 

robust estimation using bootstrap re-sampling on the time-frequency data in order to 

assess the reliability of medial frontal theta effects between and within single subjects 

and across tasks.  

 Several studies have now documented similarity across MFNs in that some of 

them can be captured by the same latent components or models in the EEG signal (ERN 

and FRN: Gentsch et al., 2009; ERN and CRN: Hoffmann & Falkenstein, 2010; ERN and 

novelty N2: Wessel et al., 2012). In the current study we replicated more rigorously our 

method of functionally classifying medial frontal ICs using simple response cues that are 

unrelated to errors, response inhibition, or feedback, and show that these ICs account for 

the traditional NoGo N2, FRN, and ERN effects (van Noordt et al., 2015a). This is 

illustrated strongly in that, when we remove the medial frontal classified ICs, the 

remaining activation in the residual data does not correspond to a medial frontal source 

projection that characterizes MFNs. Our results also suggest that, although there is 

functional overlap across MFNs, there is some variation in the robustness of NoGo N2, 
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FRN, and ERN effects. In particular, feedback-related (FRN) modulation of theta was 

less consistent across subjects (i.e., fewer subjects showing greater theta to incorrect 

compared to correct feedback; 44%) compared to theta effects for the NoGo N2 (96% of 

subjects) and ERN (92% of subjects). Our data also show that the strength of 

bootstrapped theta effects is mirrored in their robustness across subjects, such that a 

greater number of subjects show significant effects when the z-score differences in theta 

between conditions are largest. Researchers have examined the oscillatory dynamics of 

these ERP components through the use of time-frequency decompositions and the 

perturbations in spectral power following task events known to elicit MFNs. A consistent 

finding is that MFNs share a common neural signature in theta rhythms, which have been 

linked to sources in the medial frontal cortex (Asada et al., 1999; Hoffmann et al., 2014; 

Ishii et al., 1999; Liu et al., 2014; Maurer et al., 2014). Across studies, medial frontal 

theta is found to increase during instances of response conflict, punishment/unexpected 

feedback, error commission, stimulus novelty, inhibitory control, rule violations, and 

response cueing (Cavanagh et al., 2010, 2012; Cavanagh & Shackman, 2015; Clayton, 

Yeung, & Cohen Kadosh, 2015; Cohen et al., 2008; Hajihosseini & Holroyd, 2013; 

Lavallee, Meemken, Herrmann, & Huster, 2014; Luu et al., 2004; Nigbur et al., 2011; 

Trujillo & Allen, 2007; van Noordt et al., 2015a). Direct intracranial recordings in 

humans converge with evidence from scalp recording potentials by showing that inter-

regional theta encoding increases as a function of rule difficulty in a response control task 

(Voytek et al., 2015).  

 Increases in theta appear to be important for successful behavioural control 

(Cavanagh, Cohen, & Allen, 2009). In support of this, multiple studies have now 
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demonstrated that theta dynamics are related to adaptive response control, such as 

overriding pre-potent stimulus-response associations (Cavanagh et al., 2013), optimal 

behavioural adjustment following feedback (e.g., reinforcement learning; Cavanagh et al., 

2010; Luft et al., 2013), response adjustments between conflicting stimuli (e.g., stimulus-

response congruency; Ma et al., 2015), and post-error slowing (Cavanagh & Shackman, 

2015). In a separate study, we found that increased medial frontal theta during response 

preparation is a prerequisite for successful control over saccadic movements (van Noordt, 

Desjardins, Gogo, Tekok-Kilic, & Segalowitz, unpublished). Consistent with this, 

increasing theta synchrony via transcranial direct current stimulation (tDCS) stimulation 

results in greater response control (Reinhart et al., 2015), suggesting that medial frontal 

theta is critical for realizing the need for cognitive control in the face of dynamic 

behavioural challenges.  

 Assessing the functional similarity across ERP components that are elicited by 

different task events is an important line of research, which benefits greatly from the 

methods used in the current study. These methods are not only useful for removal of 

well-known artifacts in the EEG (Jungl, Humphriesl, Lee, & Makeig, 1998), but they also 

enhance the quality of hypothesis testing and interpretability of results. With respect to 

medial frontal activation during performance monitoring tasks, ICA and bootstrapping of 

time-frequency data is superior to traditional approaches restricted to the time domain of 

scalp data and group-level parametric statistics. Scalp EEG is a mixed projection from 

simultaneously active cortical sources, which limits the types of questions that can be 

answered about brain function and the relation it may have to behaviour. For example, 

traditional ERP approaches involve hypothesis testing and interpretation of brain signals 
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that contain a source projection of interest (e.g., medial frontal activity following 

response commission; ERN) as well as activity from cortical sources that are potentially 

unrelated or non-specific to the cognitive process that is being examined. By using 

methods of blind source separation, including ICA, researchers are able to isolate the 

activation of different cortical sources and perform hypothesis testing on the un-mixed 

field projections. The utility of the ICA approach is continually garnering support among 

researchers who have used this method to isolate source projections that include the P1, 

N1, N170, N2, P3, ERN, and FRN ERP complexes (Debener, Makeig, Delorme, & 

Engel, 2005; Desjardins & Segalowitz, 2013; Gentsch et al., 2009; Hoffmann & 

Falkenstein, 2010; Jung et al., 2001; Makeig et al., 1999, 2002; Makeig & Onton, 2008; 

Roger et al., 2010; Silvetti et al., 2014; van Noordt et al., 2015a; Wessel et al., 2012). 

Similarly, using such methods in the current study show that it is possible to isolate and 

functional classify a specific cortical process and examine whether a cortical source 

projection behaves similarly to different task events.  

Summary 

 In this study we replicated and extended a method of functionally classifying 

medial frontal ICs in single subjects, using a task that includes stimulus cues indicating 

the potential need for changes in response control. We found that these medial frontal 

classified ICs describe several well-established stimulus-locked N2 and response-locked 

ERN effects in multiple performance monitoring tasks. Importantly, bootstrap re-

sampling of spectral data for these MFN ERPs showed that ERN, NoGo N2, and FRN 

effects across four different tasks are functionally similar in that they all show a common 

signature of increased theta power in the components isolated in our response cueing 
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task. These effects were strongest for the NoGo N2 and ERN, with moderate robustness 

in FRN effects. Using the outcome of the single subject bootstrap testing, we demonstrate 

that the medial effects are quite robust across individuals and tasks, being highly 

consistent across both time and the theta frequency range. These results add an important 

piece to the literature on medial frontal theta and cognitive control by showing that, in 

single subjects, multiple MFN effects are well accounted for by latent factors in the EEG 

signal, which can be isolated using simple response cueing paradigms. 
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Supplementary Materials 

 

 
Supplementary Figure 3.1 Comparison of medial frontal IC functional classification from two 

independent samples using response cueing task. The top panel is adapted from van Noordt et al. 

(2015a) and includes 12 subjects. The bottom panel is adapted from the current study and 

includes 27 subjects. Waveforms represent the GFA of the difference between Go and Border 

Colour Change trials for the total scalp data (green), medial frontal classified ICs (black), and 

residual ICs (red). Source estimates are shown on the right for both sLORETA and dipole 

models.  
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Chapter 4 

 

Cognitive control in the eye of the beholder: Theta and alpha modulation during 

response preparation in a cued saccade task. 

 

 

Abstract 

The oscillatory dynamics of medial frontal EEG theta and posterior alpha are implicated 

in the modulation of attention and cognitive control. We used a novel saccade cueing 

paradigm to examine whether theta and alpha distinguish successful response preparation 

separately from response execution. After classifying medial frontal and posterior alpha 

independent components, the EEG spectral power in these sources was calculated on pro- 

and anti-saccade trials prior to response probes. The results of bootstrap re-sampling 

show that, compared to easy pro-saccade trials, correct anti-saccades are characterized by 

an increase in medial frontal theta and suppression of posterior alpha during the response 

preparation period. Furthermore, an absence of increased medial frontal theta prior to 

anti-saccade probes occurred on error trials, that is, a failure to control pre-potent eye 

movements. For these error trials, a burst in medial frontal theta is instead observed 

following error feedback. Our findings show that enhanced medial frontal theta is linked 

not only to dynamic cognitive control that is reactive (such as, after error commission), 

but that it is also an important prerequisite for success when behavioural control is 

challenged.  
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Introduction 

 Purposeful control of attention is required when strategizing and directing 

behaviour towards achieving goals, especially when preparing to overcome habitual and 

prepotent responses. The medial frontal cortex has been well-established as an important 

neural substrate of performance and response monitoring, particularly in contexts that are 

challenging and involve the need for rapid shifts in stimulus-response contingencies. 

Converging evidence from animal and human studies using intracranial recordings 

(Cristofori et al., 2013; Isomura et al., 2003; Womelsdorf  et al., 2010), 

magnetoencephalography (MEG; Ishii et al., 1999), electroencephalography (EEG; Luu, 

Tucker, & Makeig, 2004; Trujillo & Allen, 2007; van Noordt, Desjardins, & Segalowitz, 

2015a), functional magnetic resonance imaging (fMRI; Meltzer, Negishi, Mayes, & 

Constable, 2007), and transcranial direct current and magnetic stimulation (TMS; Ott, 

Ullsperger, Jocham, Neumann, & Klein, 2011) shows that activation in frontal sources 

during performance monitoring is consistently linked to signals in the theta frequency 

range (~ 3 to 8 Hz). In addition to theta modulation, suppression of posterior alpha 

rhythms is also commonly observed when individuals are required to focus on task 

demands and be vigilant about their response selections (Chen, Feng, Zhao, Yin, & 

Wang, 2008; O‟Connell et al., 2009; van Driel, Ridderinkhof, & Cohen, 2012). Together, 

the oscillatory dynamics of frontal theta and posterior alpha may be important markers of 

cognitive control, especially when preparing to override a pre-potent response tendency. 

 In the current study using a novel saccade-cueing task, we found that medial 

frontal theta and posterior alpha are modulated by response cues signaling the relative 

difficulty of impending eye saccades. In contrast to traditional performance-monitoring 
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paradigms that focus on evoked brain responses, we consider the role of theta and alpha 

in relation to the cognitive state that is induced while individuals prepare for a response 

probe. Importantly, we show that the failure to appropriately control a pre-potent eye 

movement characterized by a lack of medial frontal theta power prior to the response, 

that is, during the preparation stage. Our results expand our understanding of the role of 

the medial frontal cortex and its generated EEG theta beyond its traditional association 

with activity evoked by stimuli or by response outcomes to that of response preparation 

as a prerequisite for successful control over behaviour. 

Medial frontal cortex, cognitive control, and theta activity  

 There is much evidence that EEG theta rhythms reflect the activation in medial 

frontal sources that is often observed in performance monitoring paradigms (Cavanagh & 

Shackman, 2015; Cavanagh et al., 2012; Nigbur et al., 2011). In particular, several medial 

frontal negativity ERP components, which oscillate in the theta frequency, have been 

linked to response errors, inhibition, and outcome evaluation, as well as to the processing 

of novel, surprising, or unexpected feedback (Cavanagh et al., 2012; Narayanan et al., 

2013). These stimulus and behavioural events, such as the commission of errors (Cohen, 

2011; Luu et al., 2004; Trujillo & Allen, 2007) and the responses to negative or 

unexpected feedback (Cohen et al., 2008; Hajihosseini & Holroyd, 2013), evoke 

increases in theta power. Akin to errors, which indicate the need to change response 

control, theta activity at medial frontal sites increases as a function of expectancy 

violation (Cavanagh et al., 2010) and in the presence of response conflicts (Cohen & 

Cavanagh, 2011) such as those introduced by NoGo or flanking stimuli (Nigbur et al., 

2011). Furthermore, changes in medial frontal blood-oxygen-level-dependent (BOLD) 
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signals following response errors are associated with EEG theta band activity (Hoffmann 

et al., 2014). Although many studies have shown that medial frontal theta oscillations are 

important for understanding attention in the service of cognitive control (Clayton, Yeung, 

& Kadosh, 2015), this research is focused on EEG associated with activity that is evoked 

by specific behavioural responses or specific stimuli. Consequently, there has, to date, 

been little research focused on theta dynamics during periods of response preparation in 

humans. Such studies are important for determining whether the presence of medial theta 

is simply a co-requisite for performance monitoring or if, in fact, it is also a pre-requisite 

for staging successful cognitive control.  

 More direct evidence for theta modulation during response preparation is found in 

non-human studies showing that theta activity is increased during the 

preparatory/anticipatory stages of response selection or execution. For example, 

recording from neurons in the primate anterior cingulate cortex (ACC) shows that theta-

band activity is linked to response selection and execution (Isomura et al., 2003), and that 

increases in theta occur in macaques during response preparation (Womelsdorf  et al., 

2010). Medial frontal theta activity also increases prior to self-initiated movements 

(Tsujimoto, Shimazu, & Isomura, 2006) and has been found to predict which stimulus-

response mapping will be executed following the presentation of a visual target 

(Womelsdorf  et al., 2010a). Similar findings have been reported in rats, such that 

behavioural choices are predicted by increases in ACC-prelimbic theta synchrony prior to 

response cue onset (Totah et al., 2013). Thus, recruiting executive control to resolve 

behavioural challenges is commonly linked to modulation of theta-band activity in 

medial frontal neurons in studies with non-human samples.   
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Attention and posterior alpha activity 

 Alpha frequencies represent a major component of human EEG and have been 

investigated in several experimental contexts. The literature on alpha activity is complex 

and includes evidence of a variety of changes in alpha as a function of task demands. For 

example, alpha oscillations have been found to increase as a function of working memory 

load during retention periods (Jensen, Gelfand, Kounios, & Lisman, 2002). Indeed, some 

researchers report alpha increases as a function of task difficulty, but these studies often 

focus on visual-spatial working memory tasks (Jensen et al., 2002; Klimesch, Sauseng, & 

Hanslmayr, 2007) as opposed to performance monitoring and speeded response tasks 

(e.g., Go/NoGo, Letter Flanker), which are the focus of the current study. In the context 

of these tasks, alpha activity reflects the “idling” of the cortex and is suppressed during 

bouts of increased attentional demand. Furthermore, alpha is highly synchronized in 

regions that together form the default mode network (Jann et al., 2009), which is engaged 

during resting states and when demands on stimulus processing are minimal. Alpha 

oscillations in the human EEG often show peak activity at parietal and occipital scalp 

sites (Adrian & Matthews, 1934; Hamm, Sabatinelli, & Clementz, 2012). As an index of 

cortical excitability (Romei, Rihs, Brodbeck, & Thut, 2008), power in the alpha spectrum 

at posterior sites is larger while individuals are at rest with their eyes closed compared to 

at rest with eyes open (Chen et al., 2008), showing an inverse relationship between alpha 

power and external attentional demands. Furthermore, alpha band activity has been found 

to reliably increase leading up to a missed target in a continuous expectancy task 

(O‟Connell et al., 2009), suggesting that either low attentional control or vigilance to the 

task coincides with a state of heightened alpha power (van Driel et al., 2012).  
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 Related to the goals of the current study, multiple researchers report reductions in 

alpha power in tandem with changes in theta activity when demands on attention and 

behavioural control are relatively high. Together, changes in alpha and theta during 

performance monitoring likely reflect the establishment of task-related activity (Belyusar 

et al., 2013) and network mechanisms that support sensory gating in service of cognitive 

control (Sadaghiani et al., 2012). For example, alpha phase locking and power in parietal 

and occipital regions are reduced prior to cue onset (Hamm, Dyckman, McDowell, & 

Clementz, 2012) and following behavioural responses on errors trials (van Driel et al., 

2012). During these instances of failed behavioural control, inter-regional theta activity in 

the frontal cortex is enhanced (van Driel et al., 2012) and has been shown to correlate 

negatively with BOLD signals in the default mode network (Scheeringa et al., 2008). 

Similarly, using an anti-saccade task, Belyusar et al. (2013) found that alpha suppression 

to target letters was inversely related to theta activity. Taken together, these studies 

support the notion that volitional control of attention and moment-to-moment changes in 

response demands are characterized by suppression in posterior alpha oscillations and 

enhancement of theta-band activity in frontal regions.  

The current study 

 By using a novel response cueing saccade task, we tested the hypothesis that 

frontal theta and posterior alpha are sensitive to the cognitive preparatory demands of the 

task. Unlike traditional approaches, our novel saccade task introduces a delay period 

between cues signaling whether the trial required a pro- or an anti-saccade to subsequent 

presentation of peripheral response probes. Thus, in addition to examining oscillatory 

dynamics as a reactive response to behavioural outcomes (e.g., following error 
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commission or feedback), we consider whether theta and alpha modulation are functional 

prerequisites to successful behavioural control when overcoming habitual responses.  

Methods 

Participants 

 Twelve healthy young adults volunteered to participate in the current study, all of 

whom were right handed and had normal or corrected-to-normal vision. EEG data for one 

subject were excluded due to excessive artifacts during recording. The remaining 11 

participants consisted of 7 males and 4 females, with a mean age of 25 years (SD = 2.87 

years). Participation was voluntary and involved no monetary incentives. The study 

received clearance from the Brock University Bioscience Research Ethics Board and all 

participants provided informed consent. 

Pro-/anti-saccade delay task 

 We modified the traditional Go-NoGo paradigm to create a novel task in which 

participants were required to make frequent pro-saccades and infrequent anti-saccades to 

peripheral probes. For the duration of the task, three squares were always present on the 

screen, including a central square which provided information about the trial type (i.e., a 

cue for an upcoming pro-saccade or anti-saccade trial) and two peripheral borders (left 

and right) where the response probe could appear (see Figure 4.1). Trials were initiated 

by having participants focus their gaze on the central square for 200 ms, at which point a 

fixation cross was presented for 50 ms. The colour of the fixation cross was either white 

or black and signaled that the trial required either a pro-saccade (e.g., white fixation) 

toward or an anti-saccade (e.g., black fixation) away from the peripheral response probe. 

After a delay of 800 ms, a response probe flashed for 50 ms in one of the peripheral 
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squares.  Thus, depending on the colour of the central cue, participants were required to 

respond either by looking at the square where the peripheral response probe appeared 

(pro-saccade), or at the square opposite to where the probe appeared (anti-saccade). A 

fixation of at least 30 ms at a peripheral square was required for responses to be logged. 

Immediately following a response, feedback, which consisted of a check mark for correct 

responses or an “X” for incorrect responses, was presented for 200 ms inside the 

peripheral square where the response was made. Participants were then required to return 

their gaze to the middle square in order to initiate the next trial.  
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Figure 4.1 Schematic illustration of task parameters. The left panel shows the temporal 

sequence for a single trial, beginning with fixation and ending with feedback. The right panel is 

an example the response context indicated by border color. This example represents all stimuli 

features used in the task. Response context and saccade cue were counterbalanced across 

subjects.  
 

 Features of this saccade task were modeled from a response cuing task that we 

developed and previously used to examine medial frontal activation (van Noordt et al., 

2015a). Pro- and anti- saccade trials occurred within specific blocked contexts, which 

were indicated by the border colour of the middle square. There were two principal 

contexts: The “Certain” context indicated that the participant would only be presented 

with central cues signaling a pro-saccade response (e.g., all fixation crosses would be 
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white), while the “Possible” context included central cues signaling that trials could 

consist of both pro-saccade or anti-saccade responses. These two contexts were defined 

by the border color of the middle square, whereby a white or black border indicated the 

“Possible” context, and a blue or red border indicated the “Certain” context, or vice versa 

as per counterbalancing across participants. The colour of the middle context border 

changed, randomly with a range of three to seven trials, simultaneously with the onset of 

the central cue, and could change from a Certain to a Certain context (CC), Certain to 

Possible (CP), Possible to Certain (PC), and Possible to Possible (PP). As an example, for 

half the counterbalanced sessions, blue and red context border colours indicated the 

presence of only pro-saccade trials, whereas white and black context border colours 

indicated the presence of a combination of pro- and anti-saccade trials. These 

associations were counter-balanced across subjects, along with the colour of the central 

cues differentiating pro-saccade and anti-saccade trials. Participants were informed of all 

task parameters and the context details before beginning the task, and were free to 

strategize behaviour across trial contexts without the need to gradually learn the 

appropriate stimulus-response, fixation cue, and border context associations. See Figure 

4.1 for a summary of trial details. 

 The task was performed in four blocks, each lasting approximately eight minutes, 

depending on participant response times. Each participant completed a total of 896 trials, 

which were broken down into the following trial types: 512 pro-saccade trials without 

border switches (320 during Certain contexts, 192 during Possible contexts), 256 pro-

saccade context switch trials (64 × four types: CC, CP, PC, and PP), and 128 anti-saccade 

trials during Possible contexts. Peripheral probes appeared an equal number of times in 
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the left and right peripheral borders for each trial type (e.g., 64 left probe and 64 right 

probe anti-saccade trials, 32 left probe CC and 32 right probe CC trials). This sample is 

part of a larger on-going study and our specific interest was to examine the dynamics of 

theta and alpha power from medial frontal and posterior sources, respectively, during the 

delay period between the presentation of the saccade cue and the onset of the peripheral 

probe. Therefore, we focused on comparing only those pro- and anti-saccade trials that 

occurred during the “Possible” context given that each trial type is unpredictable until the 

saccade response cue is presented.  

 This study relied on the integration of the E-Prime (version 2.0, Psychology 

Software Tools, Inc.), Smart Eye Pro (version 5.8, Smart Eye AB), and Net Station 

(version 4.5.1, EGI, Inc.) software to present the saccade-cueing task, as well as record 

the spatio-temporal dynamics of saccades and EEG. All participants were secured in a 

chin rest that was placed at a fixed height to minimize neck tension, head movements, 

and changes in visual angle to the screen during the task.   

Electrophysiological recordings and data reduction 

 EEG data were acquired using a 128-channel HydroCel Geodesic Sensor Net 

(HCGSN; EGI, Inc.), equipped with Ag/AgCl electrodes, and a 300 series amplifier. 

Signa Gel (Cortech Solutions, Inc.) was used as an electrolyte medium, and impedances 

were verified at 100 kOhms or lower prior to recording. Recordings were collected with a 

sampling rate of 500 Hz, 100 Hz low pass filter, 0.1 Hz high-pass, and referenced to site 

Cz.  

 Offline, EEG data were submitted to an automated pre-processing pipeline and 

then bootstrap testing using EEGLab (Delorme & Makeig, 2004). Custom in-house code 
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was created using MATLab 2010b and executed in Octave 3.6.3 on the Shared 

Hierarchical Academic Research Computing Network (SHARCNet). The systematic 

automated processing stream follows closely the steps described in detail by Desjardins 

and Segalowitz (2013), as well as van Noordt et al. (2015a) and van Noordt, White, Wu, 

Mayes, and Crowley (2015b). Briefly, processing the EEG data involved the flagging of 

channels and in-task time based on channel-neighbour correlation distributions. The goal 

of this stage of the processing pipeline is to identify and remove artifacts in order 

increase the quality of blind source separation using independent component analysis 

(ICA). There were, on average, 13 channels (SD = 5, ranging from 7 to 21) removed 

before performing the ICA (Bell & Sejnowski, 1995; Jung et al., 2001; Makeig et al., 

2004). After this initial ICA, a similar flagging procedure that was applied to the channel 

data was carried out on the standard deviation of the IC time courses to identify and 

remove periods of activation during which at least 10% of the components were outside 

of their own 99% confidence interval. The second ICA was applied to the remaining 

continuous signal, low-pass filtered at 30 Hz.  

Classification of independent components 

 Subsequent to fitting the field projection weight matrix of each IC (dipfit plug-in 

for EEGLab; Oostenveld, Fries, Maris, & Schoffelen, 2011), cortical classification of ICs 

was performed to remove from the EEG signal those components that were non-cortical 

(i.e., stationary noise signals, biological artifacts). ICs were removed on the basis of 

residual dipole variance of 15%, IC topographies, and their continuous signal. 

Specifically, manual examination of topographies and continuous signals was done to 

remove stable non-cortical ICs that describe biological (i.e., EMG, ECG, EOG) or single 
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channel artifacts. After purging flagged times and ICs, the data were filtered 1 to 30 Hz 

and re-referenced to the average of 19 interpolated sites. Across subjects an average of 12 

cortical ICs (SD = 4.42, ranging from 6 to 21) were retained from this classification 

process.  

 Prior to hypothesis testing, the cortically classified ICs were examined to identify 

in each subject ICs reflecting medial frontal projections and posterior sources generating 

alpha-band activity. ICs were classified independent from the saccade cues that were 

used for hypothesis testing. Specifically, ICs with a medial frontal projection were 

retained if a single dipole fit had a residual variance of less than 10% and the absolute 

value of the peak projection was maximal at, or adjacent to, Cz and FCz midline sites. A 

single medial central/frontal IC was retained for 7 subjects, whereas four subjects had 2 

medial frontal projecting ICs that met classification criteria. In these four subjects, the 

mean of the combined projection was used for hypothesis testing. See Figure 4.2 for a 

summary of the selected medial frontal ICs and their residual variance.  
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Figure 4.2 Topographical maps of medial frontal ICs that were retained for hypothesis testing.  

The top panel shows the grand average medial frontal IC projection and dipole fit. Bottom panel 

shows the single subject medial frontal IC projections. Percentages reflect the residual variance of 

a single dipole for each medial frontal IC that was retained. The polarity of the topographies are 

arbitrary. 
 

 Given that border colour change trials in our task signal the potential need for 

increased vigilance, we focused on the Certain-Certain (CC) border changes to assess 

alpha suppression because they make minimal demands on response control compared to 

other border change trials and are independent of the events used for hypothesis testing. 

Classifying posterior ICs that generate alpha rhythms was therefore done by examining 

event-related spectrograms for CC trials and the continuous time course activity. An IC 

was classified as a generator of posterior alpha if the source projection (i) produced peak 
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activation focused over posterior/occipital regions, (ii) showed a reduction in event-

related alpha power following CC border changes, and (iii) had explicit periodic 

oscillatory peak in ongoing alpha. These criteria allowed us to retain between 3 and 5 

posterior ICs per subject, which were clustered to represent posterior alpha.  

Time-frequency decomposition of classified independent components 

 Our analyses focused on comparing activity in medial frontal and posterior alpha 

ICs during the delay period between saccade cues and the peripheral response probes for 

pro- and anti-saccade trials. Epochs were time-locked to the onset of saccade cues, 2000 

ms preceding and 2850 ms succeeding each cue. A baseline of – 200 to 0 ms was used for 

all segments. There was an average of 168 (SD = 33) and 114 (SD = 21) artifact free trials 

for pro- and anti-saccade cues, respectively. The EEGLab function “newtimef” was used 

to decompose the single trial EEG data into time-frequency spectrograms. Event-related 

activity was convolved into spectral power using Morlet wavelets, with cycles increasing 

from 1 at 1 Hz to 10.5 at 20 Hz. This time-frequency transformation provided us with 

event-related spectral perturbations (ERSPs) for medial frontal and posterior alpha IC 

clusters.  

Statistical analyses and robust estimation 

 Robust estimation techniques are ideal for dealing with small sample sizes and 

avoiding issues that arise when violating assumptions of traditional parametric tests 

(Wilcox, 2005). Given that robust parameter estimates provide greater control over 

measures of location, alpha levels, and unrepresentative confidence intervals (Wilcox & 

Keselman, 2003; Wilcox, 2005), their utility in EEG research is evident in quantifying 

effects of event-related activity across all time points (Desjardins & Segalowitz, 2013; 
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Rousselet, Husk, Bennett, & Sekuler, 2008; Rousselet & Pernet, 2011; van Noordt et al., 

2015a). In this study we used trimmed means and bootstrap re-sampling to assess 

differences in brain activity to task events. ERSP contrasts used a 20% trimmed mean 

and 1000 bootstrap samples to assess categorical differences, at each time point. Thus, we 

selected with replacement n trials from each condition, trimmed 20% of the trials (i.e., 

top 20 and bottom 20 ranked values), and calculated the difference between conditions at 

each time point. Iterating this process 1000 times creates a distribution of ERSPs and 

allows the calculation of confidence intervals around the differences. Activation 

differences between conditions were assessed by comparing surrogate distribution values 

against the 99% confidence interval (i.e., standard z-score of +/- 2.326). There was no 

trial cap for ERSP analyses, and therefore all available trials were used to create 

surrogate distributions.  

 Behavioural analyses involving mean accuracy and reaction time values were 

performed using a robust ANOVA procedure that involves bootstrap re-sampling to 

assess differences in categorical contrasts. Through re-sampling of the raw data a 

distribution of difference scores was obtained, and the mean of these differences was then 

calculated after trimming 20% of the ranked values from each tail. This process of re-

sampling, trimming, and mean calculation was repeated 1000 times. Follow-up pair-wise 

comparisons also included bootstrap re-sampling to determine whether a given 

categorical contrast is significantly different from the null hypothesis.  
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Results 

Behavioural 

Accuracy 

 Accuracy for pro-saccade trials approached ceiling levels (M = .96, SD = .06). 

Although accuracy for anti-saccade trials was, as expected, marginally worse and more 

variable (M = .85, SD = .15) compared to pro-saccade trials (p < .05, 95% CI [-0.04, -

0.16]), performance across subjects was quite high. With the exception of subject 6 who 

performed near chance levels for anti-saccade trials, all participants achieved an accuracy 

of 80% or higher.  

Reaction times 

 Reaction times were calculated as the latency difference between the onset of a 

peripheral response probe and the onset of response feedback. From this difference, a 

constant of 30 ms was subtracted to account for the fixation time required for the 

response to be registered and feedback to be presented. Average saccade response times 

varied as a function of trial difficulty and accuracy (see Figure 4.3).  
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Figure 4.3 Bar graph showing individuals' mean saccade response time for pro-saccade error 

(black), pro-saccade correct (blue), anti-saccade error (green), and anti-saccade correct (red) 

trials. Error  bars reflect single subjects' standard error of the mean.  
 

Pro-saccade errors trials had the shortest latency and were not included in statistical 

analysis of response times because these were highly infrequent across subjects (M = 7.9) 

and suspiciously fast (M = 146.89 ms), indicating that these responses reflect impulsive, 

unplanned, and non-systematic eye movements. Performing a one-way repeated measures 

robust ANOVA revealed a significant difference across response times for pro-saccade 

correct, anti-saccade correct, and anti-saccade error (p < .001). 

 Follow-up pair-wise comparisons indicated that pro-saccade correct (M = 309.26)  

responses were significantly faster than anti-saccade correct (M = 346.13) responses (p < 

.01, 95% CI [-17.60, -56.09]), but were not reliably different from anti-saccade (M = 

304.72) error responses (p > .05, 95% CI [43.55, -38.84]). Finally, anti-saccade error 

responses were significantly faster than anti-saccade correct response (p < .01, 95% CI 

[79.37, 7.79]). This pattern of responses aligns with the difficulty of the various eye-

movements, such that anti-saccade correct trials, which are the most difficult and require 
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successful inhibition of a pre-potent behaviour, had the longest latency. In addition, anti-

saccade error trials and pro-saccade correct trials had similar latencies for responses to 

peripheral probes. This similarity in response times is to be expected given that anti-

saccade errors are trials in which subjects made a pro-saccade to the peripheral probe, 

and should therefore be similar to pro-saccade correct trials.  

Electrophysiological  

Theta and alpha power 

 Anti-saccade error and pro-saccade correct. Theta power  in medial frontal ICs 

during the timing of feedback was greater for anti-saccade error compared to pro-saccade 

correct trials. As illustrated in Figure 4.4, processing error feedback is characterized by 

an increase in theta power for medial frontal sources, as well as a decrease in alpha power 

for posterior sources. The 3-D plots at the top of Figure 4.4 show spectral power, across 

time and frequency, in the medial frontal (left) and posterior alpha (right) IC clusters for 

pro-saccade correct and anti-saccade error trials. The 2-D plot illustrates the z-score 

difference in spectral power between pro- and anti-saccade correct trials across time and 

frequency. The plot is masked to only show in color those values that exceed the 99% 

confidence intervals. Data points in green indicate greater (i.e., z > 2.326) medial frontal 

IC activity and grey data points highlight greater suppression (i.e., z < 2.326) in posterior 

alpha ICs for anti-saccade error compared to pro-saccade correct trials. Thus, the 

presentation of error feedback on anti-saccade trials is associated with increases in medial 

frontal theta and suppression of posterior alpha.  

 



137 

 

 
Figure 4.4  The top panel of 3-D plots shows time-frequency overlays for spectral power in 

medial frontal (left) and posterior alpha (right) IC clusters, contrasting pro-saccade correct and 

anti-saccade error trials. There is a reliable increase in medial frontal theta (green) and a decrease 

in posterior alpha (dark grey) following error feedback on anti-saccade trials. The bottom panel of 

3-D plots shows time-frequency overlays for spectral power in medial frontal (left) and posterior 

alpha (right) IC clusters, contrasting pro-saccade and anti-saccade correct trials. During the delay 

period there is a reliable increase in medial frontal theta (red) and a decrease in posterior alpha 

(blue) on anti-saccade correct trials. The central 2-D plot shows the z-score condition differences 
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in medial frontal and posterior alpha clusters, masked at the 99% confidence interval (i.e., z +/- 

2.326). Green data points indicate greater activation in medial frontal ICs on anti-saccade error 

trials, whereas dark grey data points indicate a decrease in power for posterior alpha ICs. Red 

data points indicate greater activation in medial frontal ICs on anti-saccade correct trials, whereas 

blue data points indicate a decrease in posterior alpha ICs. Coloured vertical lines indicate the 

range (+/- 1 SD) of mean saccade response times for pro-saccade correct (blue), anti-saccade 

correct (red), and  anti-saccade error trials (green), which also signifies the approximate timing 

for feedback onset.  

Note: PS C = Pro-Saccade Correct, AS E = Anti-Saccade Error, AS C = Anti-Saccade Error  

  

 Anti-saccade correct and pro-saccade correct. Central to our hypothesis was 

whether there are differences in activation during the delay period between saccade cue 

and response probe for pro-saccade and anti-saccade correct trials. The expectation is 

that, compared to pro-saccades, correct anti-saccades are relatively more difficult to 

prepare and execute given the need to override a pre-potent response and that the induced 

cognitive state will be reflected in theta rhythms. We found that spectral power was 

modulated on correct trials as a function of saccade type. The 3-D plots at the bottom of 

Figure 4.4 show spectral power, across time and frequency, in the medial frontal (left) 

and posterior alpha (right) IC clusters for pro- and anti-saccade correct trials. 

Specifically, compared to pro-saccade trials, we observed increases in theta power in 

medial frontal ICs and suppression of alpha power for posterior ICs during the delay 

period between an anti-saccade cue and peripheral response probe. The 2-D plot 

illustrates the z-score difference in spectral power between pro- and anti-saccade correct 

trials across time and frequency. Data points in red indicate greater (i.e., z > 2.326) 

medial frontal IC activity and blue data points indicate suppression (i.e., z < -2.326) in 

posterior alpha ICs for anti-saccade correct trials. It is clear that reliable effects start to 

emerge after the presentation of the saccade cue and span until the presentation of a 

peripheral probe. These results show that, compared to pro-saccade cues, there is a 
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simultaneous increase in medial frontal theta and suppression of posterior alpha when 

individuals successfully preparing an anti-saccade to the impending response probe. 

 Anti-saccade correct and anti-saccade error. To validate the role of medial 

frontal theta for successful response control it is necessary to show that enhanced theta 

occurs during response preparation for anti-saccade correct compared to error trials. In 

contrast to the medial frontal theta effects observed while individuals correctly prepare 

for an anti-saccade response, there was no reliable increase in theta during the delay 

period for anti-saccade trials on which an error was committed. Instead, on error trials a 

burst of theta occurs around the time of feedback presentation (see Figure 4.5).  
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Figure 4.5 The 3-D plots shows time-frequency overlays for spectral power in medial frontal 

(top left) and posterior alpha (top right) IC clusters, contrasting anti-saccade correct and anti-

saccade error trials. During the delay period there is a reliable increase in medial frontal theta 

(light grey) on anti-saccade correct compared to anti-saccade error trials. In contrast, there is a 

reliable increase in medial frontal theta (green) on anti-saccade error compared to anti-saccade 

correct trials following the presentation of response feedback. In posterior alpha ICs there is 

greater suppression of power on anti-saccade error compared to anti-saccade correct trials. The 

central 2-D plot shows the z-score condition differences in medial frontal and posterior alpha ICs, 

masked at the 99% confidence interval (i.e., z +/- 2.326). Data points in light grey indicate greater 

medial frontal IC activity on correct anti-saccade trials, whereas data points in green indicate 

greater medial frontal IC activity on anti-saccade error trials. For posterior alpha ICs, data points 

in dark grey indicate suppression of power for anti-saccade error trials. Coloured vertical lines 

indicate the range (+/- 1 SD) of mean saccade response times for pro-saccade correct (blue), pro-

saccade, anti-saccade correct (red), and anti-saccade error (green) trials, which also signifies the 

approximate timing for feedback onset.  

Note: AS E = Anti-Saccade Error, AS C = Anti-Saccade Error 
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 We verified further the effects reported above by extracting the peak activation 

for medial frontal and posterior alpha ICs in the theta and alpha frequency bands, 

respectively, and assessing the differences between conditions against the 99% 

confidence interval. As shown in Figure 4.6, there is a reliable increase in medial frontal 

theta power during the delay period on anti-saccade compared to pro-saccade correct 

trials, as well as anti-saccade correct compared to anti-saccade error trials. In addition, 

there is a reliable increase in medial frontal theta following anti-saccade error compared 

to anti- and pro-saccade correct feedback. Posterior alpha effects are less specific to task 

events, such that suppression is observed during response preparation on anti-saccade 

correct compared to pro-saccade correct trials, as well as on anti-saccade error compared 

to pro-saccade correct trials. Following performance feedback, alpha power is reduced on 

anti-saccade error compared to anti- and pro-saccade correct trials.  
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Figure 4.6 The waveforms show the peak spectral power, across trials, in theta and alpha bands 

for medial frontal theta (top plot) and posterior alpha (bottom plot) IC clusters. The transparent 

overlays below the waveforms show the upper and lower confidence intervals for each 

categorical contrast. For medial frontal ICs, there is a significant increase in theta during the 

delay period on anti-saccade correct trials compared to pro-saccade correct (red confidence 

intervals) and anti-saccade error trials (grey confidence intervals). There is also a significant 

increase in theta following response feedback on anti-saccade error trials compared to pro-

saccade correct (green confidence intervals) and anti-saccade correct trials (grey confidence 

intervals). For posterior alpha ICs, there is a significant reduction in alpha power during the delay 

period for anti-saccade correct (red confidence intervals) and anti-saccade error (grey confidence 

intervals) compared to pro-saccade correct trials. Following response feedback there is a 

significant reduction in alpha power for anti-saccade error compared to pro-saccade correct 

(green confidence intervals) and anti-saccade correct (grey confidence intervals) trials. Coloured 

vertical lines indicate the range (+/- 1 SD) of mean saccade response times for pro-saccade (blue), 

anti-saccade correct (red), and anti-saccade error (green) trials, which also signifies the 

approximate timing for feedback onset.  

Note: PS C = Pro-Saccade Correct, AS C = Anti-Saccade Error, AS E = Anti-Saccade Error 
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Discussion 

 Theta rhythms in the medial frontal cortex, and/or at medial frontal scalp sites, are 

a common signature of performance monitoring and cognitive control. It is well 

established that the medial frontal cortex is engaged when events demand a change in 

task set or response control, such as error commission, inhibitory control, feedback 

processing, stimulus-response conflicts, as well as events that are novel or unexpected 

(Forster & Brown, 2011; Jessup, Busemeyer, & Brown, 2010; Oliveira, McDonald, & 

Goodman, 2007; van Noordt et al., 2015a; Wessel & Ullsperger, 2011). In contrast to the 

evidence for event-related activations, less is known about the oscillatory dynamics 

associated with response preparation in humans. We used a novel saccade cueing task to 

isolate latent factors in the EEG and show that, compared to executing an automatic 

response, appropriately preparing to inhibit a pre-potent saccade is characterized by an 

increase in theta power in medial frontal sources and a decrease in alpha power in 

posterior sources. In addition, there is a lack of medial frontal theta during response 

preparation is characteristic of error commission trials, suggesting that this is a marker for 

the failure to establish adequate control over responses. In contrast, during these error 

trials, enhancement of medial frontal theta occurs during the presentation of error 

feedback. Thus, an increase in medial frontal theta during the anticipation of response 

probes appears to underlie successful cognitive control over pre-potent saccades.   

 Much evidence for medial frontal theta in the service of cognitive control is found 

across several post-response paradigms and multiple functional measures. Committing 

errors, inhibiting pre-potent responses, and facing response conflicts or unexpected 

events are all sufficient to transiently increase theta over the medial frontal cortex 
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(Cohen, 2011; Luu et al., 2004; Trujillo & Allen, 2007; van Noordt et al., 2015a). For 

example, Nigbur et al. (2011) found that theta bursts consistently occur when cognitive 

demands are high, including response inhibition to NoGo stimuli, incongruent trials on a 

flanker task, and incompatible trials on a Simon task. Similarly, Cavanagh et al. (2012) 

found a common theta signature in the EEG for stimulus- and response-locked effects of 

novelty, conflict, and error processing. We have also shown previously, using a task 

similar to our current saccade paradigm, that there are increases in medial frontal theta in 

response to cues that signal a need for potential changes in response demands. This 

occurs even when these cues are not tied to response conflict, error commission, 

behavioural inhibition, reinforcement learning, or to the processing of feedback (van 

Noordt et al., 2015a). Thus, parsimoniously, one can describe the dynamics of theta 

oscillations over the medial frontal cortex as instances in which individuals realize a need 

for changes in attention allocation and cognitive control (Cavanagh & Frank, 2014; 

Holroyd & Yeung, 2012). In addition to previous studies, our results suggest that 

increases in medial frontal theta can be induced simply by the need to brace oneself for a 

potentially effortful response.  

 Our findings also show that the direct evidence from the animal work showing 

that theta-band activity of medial frontal neurons increases during response preparation 

(Isomura et al., 2003; Tsujimoto et al., 2006, 2010; Womelsdorf et al., 2010) can be 

confirmed in humans and is linked to response outcomes (Totah et al., 2013; Womelsdorf 

et al., 2010). In our task, successful control over reflexive saccade movements was 

underscored by theta enhancement while individuals prepared their response to an 

impending peripheral stimulus. Thus, we found, in humans, that a lack of theta 
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enhancement while preparing an anti-saccade resulted in a failure to direct eye 

movements away from a peripheral probe.  

 It has been proposed that medial frontal theta reflects a mechanism through which 

neuronal assemblies and networks integrate information from memory, bias sensory 

gating toward relevant stimuli or stimulus features, and modify task-sets in the face of 

dynamic environmental contingencies (Buzsáki & Draguhn, 2004; Klimesch, 1999). This 

theoretical framework can also accommodate the evidence for alpha suppression or 

asynchrony during bouts of high cognitive load and when task events or responses 

require for a change in attentional control (Sadaghiani et al., 2012). From this 

perspective, the transient increases and decreases in medial frontal theta and posterior 

alpha, respectively, could reflect the activation of networks involved in preparing and 

modifying response repertoires. For example, Cavanagh, Cohen, and Allen (2009) show 

that errors are associated with an increase in theta at medial frontal sites, whereas trials 

preceding error commission are characterized by reductions in theta power. These data 

are consistent with our results, showing an increase in theta power when there is a 

demand for attention and response modulation, and less theta during failed response 

control, likely due to attentional lapses. Given that posterior alpha is a reflection of 

cortical excitability and activation of the default mode network (Klimesch et al., 2007; 

Romei et al., 2008), which is deactivation of cortical networks associated with attention 

to external demands (Knyazev, Slobodskoj-Plusnin, Bocharov, & Pylkova, 2011), 

reductions in alpha ought to be observed when individuals must abort automatic and 

habitual response tendencies. Some have reported that alpha relates inversely to theta 

power (Belyusar et al., 2013), and others have shown that changing behaviour following 
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attentional lapses, as indicated by response errors, is associated with suppression of 

posterior alpha and increases in frontal theta activity (van Driel et al., 2012). 

 Our novel saccade cueing task offers several avenues for future research with 

clear testable hypotheses. As an example, to further uncover the network dynamics that 

support cognitive control, researchers could focus on temporal features of the functional 

relationships between cortical sources. In this approach, the application of methods such 

as Granger Causality could prove useful for assessing temporal precedence and whether 

medial frontal theta predicts subsequent suppression of alpha activity in posterior regions. 

Given the well known role of the frontal eye fields (FEFs) in preparing, executing, and 

modifying eye movements (Curtis, Rao, & D‟Esposito, 2004; Offen, Gardner, & Heeger, 

2010), it would be useful to isolate their field projections to better understand the 

underlying cortical networks supporting the control of eye movements. For example, 

activation in the FEFs varies depending on whether saccades are correct or incorrect, with 

FEF responses occurring prior to visual cortex activity on error trials (Herdman & Ryan, 

2007), suggesting a network level communication between frontal and posterior sensory 

regions in support of orienting attention toward task relevant information (Medendorp, 

Buchholz, Van Der Werf, & Leoné, 2011). Others have suggested that the FEFs are 

involved in the top-down control over visual processing and allocation of visuospatial 

attention (Capotosto, Babiloni, Romani, & Corbetta, 2009; Hamm et al., 2012; Mazer, 

2011). Together, these perspectives are in line with a framework in which suppression of 

posterior alpha during saccade tasks reflects sensory enhancement of task-relevant stimuli 

(Buchholz, Jensen, & Medendorp, 2014).  
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Summary 

 In this study we employed a novel saccade cueing paradigm and show that 

successful control of overt attentional deployment is characterized by increases in medial 

frontal theta and suppression of posterior alpha during response preparation. In addition, 

failure to appropriately prepare an anti-saccade is predicted by a temporal displacement 

of medial frontal theta. On error trials, instead of occurring during the response 

preparation period, a burst of medial frontal theta occurs following feedback. Although 

well established in the animal literature, we add to the evidence in humans for the role for 

"proactive" medial frontal theta during response preparation by showing that medial 

frontal theta may be an important prerequisite for successful response control.  
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Chapter 5 

General Discussion 

 The role of the medial frontal cortex in controlled attention was examined in this 

dissertation by using novel response cueing tasks, advanced signal processing procedures, 

and robust estimation techniques for hypothesis testing. The goal was to test the idea that 

medial frontal cortex activation during performance monitoring can be described from a 

domain-general perspective, with an emphasis on the need for controlled attention, as 

opposed to isolated and specific interpretations based on the specific paradigm used (e.g.,  

error processing, response conflict, inhibitory control, or reinforcement learning).  

 For study 1 we developed a novel response cueing task and successfully isolated, 

in each subject, medial frontal projecting ICs that were sensitive to border-change 

stimulus cues signaling the need for potential changes is response demands. These 

response cues also reliably affected task behaviour, such that individuals shifted to a 

slower response strategy when there was the possibility of facing a NoGo trial. This shift 

in response strategy predicted individual differences in inhibitory control on NoGo trials. 

Important to our hypotheses, the ERN and NoGo N2 were well explained by the 

functionally classified medial frontal ICs that differentiated Go from border-change trials. 

We also found that theta power in medial frontal ICs increased when individuals were 

alerted to potential changes in response demands, varying as a function of the cued 

demands; increases in theta were reliably greater for cues indicating the need for dynamic 

response control (i.e., "Possible" context; PP and CP cues) as opposed to cues signaling 

that responses would be predictable and habitual (i.e., "Certain" context; CC and PC 

cues). The fact that classified medial frontal activity was systematically related to cued 
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response demands, which were not tied to error commission, competing responses or 

response conflict, inhibition, reinforcement learning, or the evaluation of exogenous 

feedback, supports our model in which medial frontal cortex responses reflect the 

domain-general process of controlled attention modulation. 

 In study 2, with a larger sample than study 1, we successfully replicated our 

method of functionally classifying medial frontal ICs using a shortened version of our 

response cueing task. We also replicated the finding that increases in medial frontal theta 

to response cues were more reliable across subjects for those cues indicating the need for 

dynamic response control (i.e., "Possible" context; PP and CP cues) compared to cues 

signaling that pre-potent ballistic responding was sufficient for successful performance 

(i.e., "Certain" context; CC and PC cues). By including several other well-known 

performance monitoring paradigms, we provided further support for our model by 

showing that theta modulation in the classified ICs is consistent across multiple task 

events that describe traditional ERN, NoGo N2, and FRN effects. To our knowledge, this 

is the first study to provide such an in-depth analysis of the reliability of medial frontal 

theta effects between and within subjects across multiple paradigms.  

 The final study was designed to expand the predictions of our domain-general 

model of medial frontal function. To this end, we created a modified version of our 

original response cueing task to test whether medial frontal theta power is modulated 

during the preparation of controlled eye movements, as opposed to traditional effects 

focused on activity evoked by stimulus or response outcomes. This unique task allowed 

us to separate activity during response preparation/anticipation from activity related to 

overt responding. Our results support our model by showing that, compared to habitual 
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pro-saccades, preparing an anti-saccade response is characterized by an increase in 

medial frontal theta and suppression of posterior alpha power prior to responding. In 

addition, we found that failure to appropriately prepare and execute anti-saccade 

responses is linked to an absence of enhanced medial frontal delta/theta during response 

preparation, but that a burst of medial frontal slow-wave activity occurs following error 

feedback (rather than prior to response probing). These results show that enhanced slow-

wave oscillations in the delta/theta range are linked not only to dynamic cognitive control 

that is reactive (e.g., error commission), but that these power changes are also a 

prerequisite to response preparation for success when behavioural control is challenged. 

These findings are consistent with a large body of literature focused on oscillatory 

dynamics and cognitive control, and further support our model that medial frontal activity 

during performance monitoring reflects a domain-general process of controlled attention.  

Domain-general role for medial frontal function 

 During the past few decades several elegant models have been proposed to 

explain the neural correlates of performance monitoring and the functional significance 

of medial frontal activation in cognitive control. These models have tended to focus on 

specific MFNs and are interpreted within the context and paradigm being used to elicit 

the ERPs. Together, these models offer explanations for the MFN in terms of neural 

correlates of error detection (Gehring et al., 1993; Miltner et al., 1997; Miltner, 2003), 

conflict monitoring and response suppression (Botvinick et al., 1999; Nieuwenhuis et al., 

2003; van Veen & Carter, 2002), processing exogenous performance feedback (Gehring 

& Willoughby, 2002), associative/reinforcement learning (Holroyd & Coles, 2008; 

Holroyd & Yeung, 2012; Holroyd & Coles, 2002; Nieuwenhuis, Holroyd, Mol, & Coles, 
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2004), outcome expectancy deviation (Oliveira et al., 2007), and predicting the likelihood 

and timing of action outcomes on the basis of the ERN, NoGo N2, and FRN (Alexander 

& Brown, 2011). More recently, researchers have started to realize that the functional 

significance of multiple MFNs can be parsimoniously described from a domain-general 

perspective, such that the medial frontal cortex is activated to events that signal a need for 

optimization of attentional and response control.  

 One such domain-general model has been proposed by Cavanagh and colleagues 

(see Cavanagh & Shackman, 2015). These researchers provide meta-analytic evidence to 

support their adaptive control hypothesis, which suggests that a common signature of 

medial frontal theta describes MFNs that are associated with multiple stimulus or 

behavioural outcomes, and that these neural responses reflect the common need for 

cognitive control over goal-directed behaviour. Moreover, their hypothesis is an attempt 

to integrate the findings which show that anxiety and negative affect martial similar 

neural processes that are described by theories of cognitive control. Our model and the 

results of the studies presented here, although not focused on the integration of anxiety 

and control processes, are in line with a domain-general perspectives arguing that medial 

frontal theta is enhanced when individuals realize the need for cognitive control (e.g., 

Cavanagh et al., 2012; Narayanan et al., 2013).  

Theta and the coordination of neuronal communication to support behaviour  

 Theta oscillations are not only a neural correlate of cognitive control, but have 

also been proposed as a neurophysiological mechanism that supports the coordination of 

local and large-scale network communication in the brain (Buzsáki, 2006). The notion 

that changes in theta power and phase synchrony reflect the temporal organization of 
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neuronal assemblies in different brain regions is supported by evidence from intracranial 

recording, performance monitoring, and working memory studies (Cavanagh & Frank, 

2014; Cohen & Van Gaal, 2013; Jacobs, Hwang, Curran, & Kahana, 2006; Narayanan et 

al., 2013; Padrão, Rodriguez-Herreros, Pérez Zapata, & Rodriguez-Fornells, 2015; 

Rutishauser, Ross, Mamelak, & Schuman, 2010; Voytek et al., 2015; Womelsdorf et al., 

2010). For example, theta activity of ACC neurons in macaques not only predicts the 

implementation of task rules, but also the behavioural adjustments following failures in 

response control (Womelsdorf et al., 2010). In humans, proactive and reactive 

behavioural control has been linked to functional connectivity of theta in multiple 

frontoparietal networks (Cooper et al., 2015).  

 Others have demonstrated that medial frontal theta during response/error 

monitoring serves as a neural hub that interacts with the oscillatory dynamics in posterior 

brain networks to support adaptive behavioural control (Cohen & Van Gaal, 2013). 

Similarly, intracranial recordings in human epilepsy patients performing a Stroop task 

show that conflict detection and behavioural adaptation are characterized by dynamic, 

and directionally specific, interactions of oscillatory interactions between dorsomedial 

and dorsolateral prefrontal cortex. Specifically, conflict detection engages dorsomedial 

prefrontal theta power which, in turn, predicts subsequent entrainment of dorsolateral 

prefrontal theta. Conversely, resolving behavioural conflict showed the reverse pattern of 

coupling, such that post-response dorsolateral gamma predicted subsequent increases in 

dorsomedial theta power (Oehrn et al., 2014). Also, using intracranial recordings in 

humans, Voytek et al. (2015) found that frontal theta is enhanced, along with local 

gamma activity, when responding to task rules that become progressively abstract. 
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Moreover, these increases in oscillatory phase dynamics predicted response times across 

single trials. Taken together, multiple lines of evidence suggest that frontal theta 

oscillatory dynamics reflect a neurophysiological mechanism for coordinating the 

canonical processes of cognitive control.  

 Although not the direct focus of this thesis, a noteworthy line of research 

demonstrates that theta oscillations are a neural correlate of cognitive operations that 

relate to working memory. Several researchers have found that medial frontal theta, 

localized to the ACC, increases as a function of memory load (Maurer et al., 2014) and 

predicts successful working memory manipulation (Itthipuripat, Wessel, & Aron, 2013; 

Rutishauser et al., 2010). More direct evidence comes from a study by Rutishauser et al. 

(2010) in which the authors collected intracranial recordings in humans while they 

performed a working memory task. Their results indicate that coordinated temporal theta 

spiking of hippocampal neurons predicted successful memory formation, such that 

coherence of theta spiking was 50% higher on trials for which target information was 

subsequently remembered compared to when it was forgotten. These results are 

intriguing for future research into the theta dynamics that characterize cognitive control, 

given that the hippocampal formation is a potent generator of theta rhythms (Gray & 

McNaughton, 2000), with some studies indicating that during certain behavioural states, 

such as exploration, hippocampal and frontal theta show transient coherence in their 

signal properties (Young & McNaughton, 2009). The events that signal the need for 

changes in attention in the service of adaptive behaviour could therefore reflect processes 

of memory formation and updating, such that current stimuli or responses in the task are 

compared to the mental representation of task goals (e.g., seeing a response cue that 
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signals upcoming trials are less predictable or require dynamic adjustments to response 

control, as is the case in our response cueing paradigms).  

 Considering our domain-general model, other fruitful lines of research could 

include examining theta across the lifespan and in clinical populations to clarify further 

the role of medial frontal theta in cognitive control. Assuming that theta dynamics are 

meaningful correlates of cognitive control, examining changes in theta could shed light 

on the behavioural manifestations that characterize variability in self-regulation across 

development and in special populations. Some recent research suggests that, indeed, theta 

dynamics differentiate aspects of cognition and behaviour in both developmental and 

clinical contexts. For example, Lithfous et al. (2015) found that enhancement of frontal 

theta during encoding is correlated with successful formation of cognitive maps required 

for spatial memory in young adults, whereas older adults showed poorer spatial memory 

and lower levels of theta. Similarly, Begus, Southgate, and Gliga (2015) studied infants 

while they performed an object exploration task and found that frontal theta predicted 

subsequent object recognition in a preferential-look test. Compared to normally 

developing controls, lower levels of frontal theta have also been linked to poorer 

performance in cognitive flexibility in children with autism (Yeung et al., 2015) and 

attentional lapses in children with developmental coordination disorder (Wang et al., 

2015). Thus, profiles of frontal theta could help clarify the cognitive deficits that are 

typically observed in normal aging and in clinical populations that have limited self-

regulation and behavioural control.  
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The application and utility of robust estimation techniques  

 The ultimate goal for most psychological research is to capture meaningful 

information that is pertinent to individuals in order to understand some aspect of their 

behaviour. In the field of cognitive and affective neuroscience, a richer understanding of 

the neural correlates of behaviour is currently limited by conventional ERP processing 

techniques, as well as the use of traditional statistical approaches to testing differences in 

ERPs averaged across groups. It is clear that these statistical and signal processing 

methods can impact directly upon the building, testing, revising, and application of 

theoretical models. Robust estimation techniques can address more efficiently such issues 

due to (1) their relative insensitivity to violations of statistical assumptions, and (2) their 

ability to provide a far more detailed picture of single trial intra-individual variability in 

ERPs.  

 As described above, several researchers have applied techniques of robust 

estimation in order to better understand brain-behaviour associations, resolve inconsistent 

observations, and clarify competing theoretical perspectives. However, the advantages of 

these techniques have only begun to be exploited in the cognitive neurosciences. In fact, 

it has been over 10 years since researchers first showed that robust estimation is a better 

way to deal with averaged ERPs from a small number of trials that are not likely 

normally distributed (see Leonowicz, Karvanen, & Shishkin, 2005). Nonetheless, 

“business as usual” in ERP research does not currently include a general awareness of 

these tools, knowledge of their application, or a willingness to see them implemented. I 

would like to stress that robust estimation can be used to capitalize on other aspects of 
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electrocortical signals, or to investigate research questions that may otherwise be 

untenable with traditional methods. 

 To reiterate a previous point, the ultimate goal in cognitive neuroscience should 

be to understand, describe, and predict how the human brain processes information and 

supports behaviour, across experimental trials, within single subjects (Rousselet & 

Pernet, 2011).  Rousselet and colleagues (Pernet et al., 2011; Rousselet & Pernet, 2011) 

argue cogently in support of a paradigm shift in the analysis of ERP data, one in which 

we recognize that “…the brain is doing its job on each trial of an experiment, and our 

ultimate goal should be to understand single-trial brain activity, not activity averaged 

within or across subjects” (Rousselet & Pernet, 2011, p.4). It is no secret that group level 

analyses are limited in their ability to detect potentially important within subject 

variability and do not reveal any information about the presence or absence of effects 

within individuals, nor do they provide details regarding effects at the single trial level. 

Advancing our understanding of brain-behaviour relationships could, therefore, be 

augmented by applying additional analytical tools, including robust estimation 

procedures.  

 In general these procedures offer an alternative to removing or ignoring 

potentially important information about variability across trials (e.g., time course of 

voltage changes), and also allow for the direct analysis of the unique variability that 

exists within individuals, on an individual-by-individual basis. Thus, serious 

consideration needs to be given to methods of robust estimation in ERP research in order 

for this goal to be achieved. In line with this, Howell (2009) has acknowledged that it is 
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common for trends in statistical application to change and that “… permutation and 

bootstrapping procedures will take over – the only question is when” (p.660). 

Future Directions 

 A richer understanding of controlled attention and self-regulation could be 

achieved by extending the proposed domain-general model of medial frontal activation. 

In particular, in future studies I will apply this model to clarify the differences in brain-

behaviour associations between healthy individuals and those with dysfunctional self-

regulation, such as persons with issues relating to anxiety, avoidance/defensiveness, and 

threat detection. It is known that individuals with anxiety tend to show hyperactivation of 

the medial frontal cortex during performance monitoring compared to non-anxious 

individuals (Hajcak, McDonald, & Simons, 2003; Olvet & Hajcak, 2009; Weinberg, 

Olvet, & Hajcak, 2010; Weinberg, Riesel, & Hajcak, 2011). In addition, as described by 

the adaptive control hypothesis, highly anxious individuals show enhanced recruitment of 

medial frontal regions that are also engaged during bouts of high cognitive load (e.g., 

following response errors, and during response inhibition; Cavanagh & Shackman, 2015). 

One possibility would be to focus on attentional bias to threat by using our response 

cueing task in conjunction with a task that involves presenting noxious stimuli following 

failed cognitive control (e.g., air puff). This study could assess whether highly anxious 

individuals show enhanced activation to non-threatening cues that signal the need for 

cognitive control compared to those that are paired with unpleasant outcomes, and 

whether this pattern is different in non-anxious controls. In some of our other work we 

have shown that medial frontal theta following social rejection in the Cyberball paradigm 

is correlated with individual differences in self-reported ostracism distress (van Noordt et 
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al., 2015), suggesting that theta oscillations are a useful measure for understanding 

individual differences in stress. Thus, by applying the methods used in our studies, future 

research can lead to better understanding of the attentional factors at the individual 

subject level that differentiate normal from clinical anxiety and how these affect 

behaviour.  

 Pharmacological manipulation of the noradrenergic system could also shed light 

on the neural correlates of anxiety and the role of medial frontal theta in attention control. 

Some have used fMRI and found that administration of the monoaminergic drug 

methylphenidate, which is known to affect dopamine and norepinephrine functions in the 

prefrontal cortex, increased activation of the dorsal ACC and led to improved conscious 

error awareness (Hester et al., 2012). Others have shown that administration of alpha 2-A 

adrenoceptor agonist yohimbine increases error-related brain potentials and facilitates 

adaptive performance monitoring resulting in reduced commission errors (Riba, 

Rodríguez-Fornells, Morte, Münte, & Barbanoj, 2005). Importantly, these studies could 

inform other clinical perspectives and help build transdiagnostic models to help identify 

developmental risk factors for anxiety and stress disorders, as well as assess treatment 

outcomes that might appear before subjective or behavioural measures demonstrate 

reliable effects. 

 Another avenue of research would be to consider the relationship between the 

robustness of effects and individual differences in behaviour or personality. Considering 

the likelihood of finding significant differences in evoked responses in tandem with a 

measure of the strength of the effect would provide even more information about the 

intra-individual variability in brain function. For example, those who show more reliable 
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differentiation in their brain responses to error and correct feedback may be more 

proficient in successfully adjusting their behaviour on subsequent trials, or perhaps 

individuals who show a greater differentiation between fearful and neutral faces have a 

greater tendency to exhibit behaviours associated with anxiety. Electrophysiological 

research with clinical populations can certainly benefit from the application of these 

analytical techniques, especially in small samples or case studies (e.g., Allen, 2002).  
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