1	Daily and Annual Cycles in Thermoregulatory Behaviour and Cardio-
2	Respiratory Physiology of Black and White Tegu Lizards
3	
4	
5	Colin E. Sanders ¹ , Glenn J. Tattersall ² , Michelle Reichert ¹ , Denis V. Andrade ³ , Augusto
6	S. Abe ³ and William K. Milsom ¹
7	
8	
9	¹ Dept. Zoology, Univ. British Columbia, Vancouver, Canada
10	² Dept. Biology, Brock University, St. Catharines, Ontario, Canada
11	and
12	³ Instituto Nacional de Ciência e Tecnologia em Fisiologia Comparada, Depto de
13	Zoologia, Univ Estadual Paulista - Rio Claro, SP 13506-900, Brazil.
14	
15	
16	
17	Submitted to Journal of Comparative Physiology B, April 24, 2015
18	
19	
20	
21	Corresponding Author:
22	W.K. Milsom
23	Department of Zoology
24	University of British Columbia
25	6270 University Blvd.
26	Vancouver, British Columbia
27	Canada, V6T 1Z4
28	e-mail: milsom@zoology.ubc.ca
29	
30	
31	Running Title: Torpor and dormancy in lizards

ABSTRACT:

2	This study was designed to determine the manner in which metabolism is suppressed
3	during dormancy in black and white tegu lizards (Tupinambis merianae). To this end,
4	heart rate ($f_{\rm H}$), respiration rate ($f_{\rm R}$), and deep body temperature (T _b) were continuously
5	monitored in outdoor enclosures by radio-telemetry for nine months. There was a
6	continuous decline in nighttime breathing and heart rate, at constant T _b , throughout the
7	late summer and fall suggestive of an active metabolic suppression that developed
8	progressively at night preceding the entrance into dormancy. During the day, however,
9	the tegus still emerged to bask. In May, when the tegus made a behavioural commitment
10	to dormancy, T _b (day and night) fell to match burrow temperature, accompanied by a
11	further reduction in $f_{\rm H}$ and $f_{\rm R}$. Tegus, under the conditions of this study, did arouse
12	periodically during dormancy. There was a complex interplay between changes in $f_{\rm H}$ and
13	T _b associated with the direct effects of temperature and the indirect effects of
14	thermoregulation, activity, and changes in metabolism. This interplay gave rise to a daily
15	hysteresis in the $f_{\rm H}/{\rm T_b}$ relationship reflective of the physiological changes associated with
16	warming and cooling as preferred T _b alternated between daytime and nighttime levels.
17	The shape of the hysteresis curve varied with season along with changes in metabolic
18	state and daytime and nighttime body temperature preferences.
19	
20	Keywords: Reptiles, tegu lizards, torpor, dormancy, hibernation, cardiorespiratory
21	control, seasonal adjustments

1 INTRODUCTION:

2	Hibernation is employed by many animals as a strategy to survive periods of
3	limited energy availability in the environment (Carey et al., 2003). Some of the hallmark
4	traits of endothermic hibernation are a depression of body temperature (T_b) and a
5	reduction of basal metabolic rate, accompanied by falls in ventilation and heart rate
6	(Lyman 1965, Wilis, 1982; Carey et al., 2003; Tøien et al. 2015). While the magnitude
7	and mechanism of metabolism and T_b depression in hibernating endotherms have been
8	well studied (Lyman, 1982; Nedergaard et al., 1990; Storey and Storey, 1990; Carey et
9	al., 2003), the same aspects of dormancy have not been extensively studied in
10	ectothermic hibernators. It is clear that many overwintering ectotherms are capable of
11	similar reductions in metabolism, often independent of changes in T _b ; Mayhew (1965)
12	referred to this as brumation, in order to distinguish ectothermic winter dormancy from
13	endothermic hibernation.
14	Reduction in metabolic rate at the initiation of hibernation involves both lowering
15	of the hypothalamic set point for body temperature regulation and active metabolic
16	suppression (mammals: Heller et al. 1977; Nedergaard et al., 1990; Heldmaier et al.
17	1993). This is also true of amphibians and reptiles, however these groups rely on
18	behavioural rather than physiological methods to reduce T _b (Rollinson et al., 2008;
19	Tattersall and Boutilier, 1997; Donohoe et al., 1998; Tattersall and Boutilier, 1999; Huey
20	et al., 1977; Guppy and Withers, 1999; Glanville and Seebacher 2006). The manner in
21	which these behavioural and physiological strategies are integrated and employed by
22	ectotherms during entrance into dormancy, however, are not well understood.

1	The black and white tegu (Tupinambis merianae) is a large, diurnal lizard of
2	South America that undergoes winter dormancy in its southern range (Abe, 1995; Avila-
3	Pires, 1995). During dormancy, tegus retreat into their burrows where they fast and
4	remain inactive from May to August (Abe, 1995; Andrade et al., 2004). Preparation for
5	dormancy begins well before environmental conditions become adverse and tegus can
6	depress metabolism to dormant levels at any time of the year when inactive, in constant
7	cold, darkness and deprived of food (Milsom, et al. 2008). By the end of the
8	autumn/beginning of the winter, the final steps leading to dormancy appear to be a
9	behavioral decision to retreat into the burrow, let T _b equilibrate with the surroundings,
10	and abandon behavioural thermoregulation. There also appears to be a progressive
11	reduction in thermal sensitivity (Q_{10}) from summer to winter such that the metabolic rate
12	of dormant lizards becomes relatively temperature independent (Abe, 1983; 1993; 1995;
13	Souza <i>et al.</i> , 2004). This reduction in Q_{10} has been proposed to be an advantage to
14	maintaining extremely low metabolic rates even when burrow temperatures fluctuate
15	(Toledo et al., 2008).

16 The previous studies on hibernating tegus have given rise to several questions. 17 First, under natural conditions, can nightly metabolic depression be detected in advance 18 of winter dormancy while the animals are still active during the day? As soon as tegus 19 commit to dormancy and retreat to the burrow they generally remain there for the season, 20 but it is not known whether they immediately enter dormancy or if the degree of 21 metabolic suppression increases as dormancy progresses. The latter has been reported to 22 occur in Lacerta vivipara (Patterson & Davies, 1978), although the metabolic suppression 23 was not sustained throughout the entire season. Finally, it is not clear whether the period

of dormancy is always one prolonged bout or whether these animals undergo periodic
 arousals during which they remain relatively inactive within their burrows, as is seen in
 other dormant lizards, such as *Varanus rosenbergi* (Rismiller & McKelvey, 2000).

- 4 To understand the natural mechanisms involved in winter dormancy requires 5 continuous monitoring of behaviour, T_b and, ideally, metabolism throughout the year. 6 Here we record continuously behaviour and T_b along with heart and breathing rates as 7 physiological surrogates for metabolism (Zaar et al., 2004, Butler et al., 2000, 2002; 8 Clark *et al.*, 2004; Clark et al., 2006; Green et al., 2008; Piercy et al., 2015), in a group of 9 black and white tegus, T. merianae, housed outdoors under semi-natural conditions. We 10 hypothesized that metabolic suppression (as indicated by changes in heart rate and 11 breathing frequency) would not be evident until the tegus remained in the burrows for 12 extended periods but that metabolism would then progressively fall and be sustained 13 throughout the dormant period.
- 14

15 METHODS:

Our study was conducted at the Jacarezario, UNESP Bela Vista Campus, Rio Claro, SP, Brazil. Tegus were captive bred and reared for scientific study and conservation *ex-situ*. The study cohort consisted of 2 males and 2 females. Only 4 animals could be recorded from concurrently as the telemetry base station could only receive and decode 4 signals at the same time. Animals were weighed each month except during dormancy to reduce interference with the dormant state. The tegus weighed $3.2 \pm$ 0.3 kg at the start of the study and 3.5 ± 0.4 kg by the end. All surgeries and experiments

1 were conducted under animal care approval from both the UBC animal care committee

2 and the Universidade Estadual Paulista - Rio Claro (Protocol #A09-0232).

3 Surgery:

4 Animals were anaesthetized using Halothane vapour. An incision was made mid-5 ventrally from just below the sternum to just anterior to the post-hepatic septum. A 6 second incision (\sim 3cm) was then made through the post-hepatic septum and the body of 7 the T29F-7B implantable biopotential/temperature amplifier/encoder (5.7 X 2.8 X 0.92 8 cm; (60 g or roughly 2% of body weight)) (Konigsberg Instruments, Inc., Pasadena, CA, 9 USA) was inserted through the opening to lie between the fat bodies ventral to the 10 digestive tract in the abdominal cavity. To monitor heart rate, ECG leads were affixed to 11 the medial pleuroperitoneal membrane along the body wall with PeriAcryl glue and 12 mersiline mesh so that the negative (-) contact lead rested near the apex of the heart and 13 the positive (+) contact lead was near the conus arteriosus. To monitor respiration rate, 14 Biopotential leads were sutured into the intercostal muscles on the left side, about 1 cm 15 apart vertically, in the area between the fourth and fifth ribs of the lateral body wall. The 16 underlying muscle layers and integument were sutured closed independently, and 17 artificial ventilation with air was continued until the animals regained consciousness. The 18 tegus were treated post-surgery with Baytril (0.1ml/kg IM, every other day) and housed 19 in indoor enclosures for at least a week to ensure full recovery.

20 Study Enclosures:

Outdoor enclosures measuring 2.5 m X 3.5 m enclosed with 1 m high walls were planted
with local short blade grass and each enclosure housed a small tree (*Eugenia uniflora*).
Each enclosure also contained a rectangular burrow (60 cm wide X 80 cm long X 50 cm

deep) constructed of brick and cement half buried in the ground with an opening 30 cm X
 10 cm.

3 These artificial burrows resemble refuges used in nature; tegus choose to 4 hibernate in concrete, man-made structures (such as under houses) as opposed to under 5 rocks (Winck & Cechin, 2008). Over the top of the burrows were pyramidal lids (60 cm 6 X 80 cm base, 1 m height) constructed of plywood and internally insulated with 2cm 7 thick Styrofoam insulation. These unorthodox lids reduced solar heating of burrows as 8 well as accommodated infrared cameras to monitor activity in the burrows. Four 9 StowAway TidBit temperature data loggers (Digi-Key Corp., Thief River Falls, MN, 10 USA) programmed to take a reading of the local ambient temperature every 15 minutes 11 were placed around the enclosures, one in each burrow, one affixed on the north facing 12 wall of one enclosure and one on the opposite south facing side of the wall, about 75 cm 13 above the ground. The data logger on the north face recorded temperatures in direct 14 sunlight while the south-facing data logger recorded ambient temperatures in the shade. 15 The TidBit data loggers and telemetry implants were calibrated in water baths set 16 at four temperatures (7.2, 23, 29, and 39.7°C) for at least 30 min and compared against a 17 precision mercury thermometer both before and after the study. Data loggers were placed 18 on a backing of 2 cm thick Styrofoam to insulate them from conductive heat transfer from 19 underlying structures. Antennae to receive telemetric signals from the implants were 20 suspended 1 m above the enclosures to maximize receptivity.

21 Data Acquisition

Environmental data (rainfall, atmospheric pressure, relative humidity) was
collected from the local UNESP meteorological station (22°23'S, 47°32'W, 626.5m

1 altitude). Daily mean atmospheric pressure and relative humidity were calculated by 2 UNESP personnel from three daily readings taken at 09:00, 15:00 and 21:00. 3 The T29F-7B implantable biopotential/temperature amplifier/encoders 4 (Konigsberg Instruments, Inc.) were configured to continuously receive and broadcast the 5 electrocardiogram (ECG), a biopotential recording of chest wall impedance associated 6 with intercostal muscle movements, and body core temperature. Telemeter signals were 7 received and decoded with a TR8-2-2/TD14-10 telemetry signal processor and 8 demodulator (Konigsberg Instruments, Inc.) and the raw decoded voltage signals were 9 collected with a Datag Instruments DI-720 data acquisition system at 250 Hz per channel. 10 These files were later processed with custom-designed MatLab scripts configured to full-11 wave rectify (only the breathing biopotentials), digitally filter (low pass), and detect 12 peaks (using peakdetect.m from Matlab Central) to detect instantaneous heart ($f_{\rm H}$), and 13 respiration rates ($f_{\rm R}$). Automated peak detection was visually verified for accuracy, and to 14 account for any irregularities or interference in electrical signals.

15 **Experimental Protocol**

The tegus were housed as pairs (one male and one female) and allowed to roam freely in their enclosures. Active lizards were fed to satiation on average every three days, their diet consisting of meat mixed with vegetables and fruit with added multivitamin supplement. In the months prior to dormancy, the tegus consumed progressively less food and eventually stopped for the duration of the dormancy period. Water was available at all times. Continuous data recording began on the first of January and continued through to the end of September for all lizards. Recordings ceased at

various times throughout October as the life span of the batteries in the telemetry units
 was reached.

3 Data Analysis

4 Average values were calculated for each variable [heart rate (*f*H), breathing rate 5 $(f_{\rm R})$, deep body temperature $(T_{\rm b})$, burrow temperature $(T_{\rm burrow})$, and the temperature in 6 direct sunlight and shade] for each individual for each 15 min time period for the entire 7 study period. These 15 min averages were subsequently averaged over each day, week, 8 and month for each tegu. Daily maximum and daily minimum values were also extracted 9 from each individual for subsequent comparisons and averaged over each week, and 10 month for each tegu. Seasonal comparisons were made by comparing critical months 11 corresponding to the: active period (February), dormant period (May), and the post-12 arousal reproductive period (September).

Monthly nighttime minimum levels of oxygen consumption were calculated from the formula derived by Piercy et al. (2015) from the relationship between heart rate and metabolic rate for this species of tegu lizard under quiescent conditions. The equation used was: $\log_{10}(O_2 \text{ consumption}) = -1.47 + 0.67 (\log_{10} (heart rate)).$

17 Statistical analysis between averaged values was done by repeated measures one-18 way ANOVA followed by a Student-Newman-Kuels post-hoc test, unless normalcy tests 19 failed, when a non-parametric repeated measures one-way ANOVA on ranks (Kruskal-20 Walis test) was used. Within month data were compared by paired t-test. All values are 21 presented as mean \pm standard error of the mean (s.e.m). Differences were considered to 22 be statistically significant at the level of P < 0.05.

1 RESULTS:

2 Meteorological Data

3 In general, the summer time (December to February) in Rio Claro is warm and 4 wet while the winter (June to August) is cool and dry. During this study, the lowest mean 5 daily temperatures occurred from May to August (~15°C) and corresponded to the 6 periods of highest barometric pressure (716 mmHg) while the highest mean daily 7 temperatures occurred from November to January ($\sim 27^{\circ}$ C) and corresponded to the 8 periods of lowest barometric pressure (~705 mmHg). In this particular year, August and 9 September were the driest months (virtually no rainfall) and were the months with the 10 lowest relative humidity (~50%). At this latitude, however, seasonal differences in all of 11 these variables, except rainfall, is modest. 12 **Seasonal Patterns of Behaviour** 13 January-July: Throughout this period there were days when animals remained in their 14 burrows and did not emerge. Such events were rare from January to March (2-4 15 events/month of 1-2 days each), and associated with inclement weather. In April these 16 periods were common (6-8 periods) and lasted ~2-3 days each. During late April / early 17 May, the lizards began block the entrance to the burrows with vegetation and remained 18 inactive in their burrows marking the start of the dormancy period that continued through 19 June and July. Tegus still emerged periodically throughout the dormancy period (3-4 20 times/month on average for usually 1 day each). 21 August-September: Starting in August the tegus began to emerge from their burrows

every day indicating the end of the dormancy period. Animals never remained inactive in

their burrows during the daytime in September.

1 Seasonal Patterns of Physiological Change

2	<i>January-March:</i> From January to March, daytime temperatures in the enclosures (T _a)
3	often rose to 40°C or higher and nighttime temperatures fell to below 20°C (Fig. 1A).
4	Burrow temperatures (T _{burrow}) fluctuated little over the day, ranging between 23 and 26°C
5	(Fig. 2A). Tegus went out to bask each day at roughly the time that T_a rose above T_{burrow}
6	(as indicated by the red dotted line and the rise in body temperatures for the tegus in
7	February in Fig. 1A). During this period, maximum day-time T_b (~32-35°C) were
8	remarkably uniform in all animals (Fig. 2B). The tegus entered the burrows in the
9	evening well before T_a began to approach T_{burrow} (Fig. 1A) and their T_b fell very slowly,
10	equilibrating with burrow temperature by the middle of the night (Fig. 1A). Nighttime T_b
11	minima were also relatively uniform throughout this period (Fig. 2B).
12	In the morning during this period, $f_{\rm H}$ and $f_{\rm R}$ began to rise at a constant T _b an hour
13	or more before the tegus left their burrows to bask, while in the evening $f_{\rm H}$ and $f_{\rm R}$ began
14	to fall in advance of T_b declining (Fig. 1B). Maximum daily f_H and f_R began to fall
15	significantly (P = 0.031 and <0.05 respectively) in March (Fig. 2C&D). Similarly,
16	minimum values of $f_{\rm H}$ and $f_{\rm R}$ during the night fell progressively (P <0.05) over the three
17	months (Fig 2C &D) (by 60 to 75%) despite the fact that mean T_b was relatively constant.
18	April:_Although T _{burrow} in April still fluctuated over the same range as the preceding
19	months, nighttime minimum T_b continued to fall (P = 0.007)(Fig. 2). Maximum daily
20	voluntary temperature also declined (P<0.001) (Fig. 2), despite the sustained and elevated
21	ambient temperatures in the sun. During April, when animals remained in their burrows,
22	daytime maximum T_b remained at the previous night's minimum T_b .

During April, $f_{\rm H}$ and $f_{\rm R}$ no longer began to rise in the morning before T_b, but rose only when the tegus left their burrows to bask. Both maximum daytime and minimum nighttime rates were lower in April than in March (for $f_{\rm H}$ min P<0.05, and for max P0.031; for $f_{\rm R}$ both min and max P<0.05) and the magnitude of the daily changes in T_b, $f_{\rm H}$, and $f_{\rm R}$ were reduced.

6 *May-July:* During the dormancy period, the tegus largely remained in their burrows that 7 were at their lowest temperatures for the year. At this time, T_b equaled T_{burrow} . When a 8 tegu did emerge, it was late in the day and while T_b at such times did rise, it was only to 9 moderate levels (18-22 °C) and for brief amounts of time. Once the animals entered 10 dormancy, mean f_H and f_R remained low and relatively constant throughout the day and 11 night (Fig. 2).

12 August-September: In August, animals began frequently to emerge from their burrows and by September they were emerging every day. Again, emergence occurred only once 13 14 T_a exceeded T_{burrow} (as indicated by the rise in body temperatures for the tegus in 15 September in Fig. 1). Periods of basking were longer and maximum daytime T_b increased to 33-37°C (Fig. 2). Animals entered the burrows after T_a began to fall, but while T_a was 16 17 still well above T_{burrow} (as indicated by the blue dotted line for September in Fig. 1A). 18 Mean T_{burrow} was beginning to increase at night and during the day (P<0.001) (Fig. 2). 19 During this period, T_b never fell to the level of T_{burrow} during the night (Fig. 1,2). 20 In the morning during this period, $f_{\rm H}$ and $f_{\rm R}$ again began to rise at a constant T_b 21 before the tegus left their burrows to bask and began to fall in advance of T_b in the 22 evening (Fig. 1). Maximum daily $f_{\rm H}$ and $f_{\rm R}$ began to increase progressively (P = 0.011 and

1 <0.05 respectively) through August and September, as did nighttime $f_{\rm H}$, $f_{\rm R}$ and $T_{\rm b}$

2 (P<0.05, P<0.05 and P=0.002 respectively) (Fig. 2).

3 Heart Rate Hysteresis

From January through March, the rate of increase (with respect to T_b) in f_H during warming exceeded the rate of decrease during cooling and thus there was a large hysteresis in the correlation between f_H and core T_b (Figure 3). During the dormancy period there was less hysteresis in the relationship between f_H and T_b (Fig. 3). Beginning in August, but most evident in September, are dramatic increases in f_H before T_b rises in the morning, and falls in heart rate before T_b falls in the evening (Figs. 1,3).

10 Nightime Metabolic Rate:

In Figure 4, the monthly nighttime minimum values of T_b , T_{burrow} , f_H and f_R have 11 12 been re-plotted along with rates of oxygen consumption calculated from the formula 13 derived by Piercy et al. (2015) from the relationship between heart rate and metabolic rate 14 for this species of tegu lizard under quiescent conditions. From this figure it is clear that 15 $f_{\rm H}, f_{\rm R}$ and calculated levels of O₂ consumption fell progressively at night from January 16 through April (P<0.001, 0.05 and 0.001 respectively) despite the fact that T_b was constant. From April into May, however, there was a further progressive drop in $f_{\rm H}, f_{\rm R}$ 17 18 and estimated O₂ consumption (only the latter was significant P=0.037) at night but this 19 was associated with a further, non-significant drop in T_b. In June and July all variables 20 remained relatively constant while in August and September, all variables increased (P = 0.003 for O₂ consumption, <0.001 for $f_{\rm H}$, <0.05 for $f_{\rm R}$, <0.05 for T_b and <0.001 for 21 22 T_{burrow}).

2 DISCUSSION:

3 The Pattern of Metabolic Rate Reduction Leading into Dormancy

4 One of the goals of this study was to describe the pattern by which metabolism 5 falls during the autumn under natural conditions. Does it occur progressively during the 6 day and night, does it occur only at night, or does it occur only during multi-day periods 7 of inactivity in the burrow? Previous studies have shown that tegu lizards depress 8 metabolism in advance of dormancy (Abe, 1983; 1993; 1995). In all of these studies, 9 measurements were made on animals confined in dark for several days, usually at 10 constant temperature (Abe, 1983; 1993; 1995; Souza et al., 2004; Andrade and Abe, 11 1999; Milsom et al., 2008; Toledo et al., 2008). By contrast, in nature during this period 12 tegus are still active and warm themselves to active temperatures during the day while 13 being exposed to progressive changes in photoperiod and ambient temperature (Köhler 14 and Langerwerf, 2000).

15 We found that from January to March, tegus regulated their maximum daily T_b from 33 to 37°C, except on days with inclement weather when T_a did not permit 16 behavioural thermoregulation to this extent. Minimum nighttime T_b and T_{burrow} from 17 18 January to April also remained constant. By contrast, nighttime values of $f_{\rm H}$ and $f_{\rm R}$ 19 declined progressively over this period and daytime maximum levels also began to 20 decline in March. The declines in nighttime $f_{\rm H}$ and $f_{\rm R}$ at constant T_b suggest that 21 metabolic rate was being suppressed actively and progressively over this period of time. 22 Based on the calculations in Fig. 4, nighttime metabolic rate appears to have been 23 suppressed by approximately 45% from January to April. This is similar to the

progressive decline in metabolism seen in *L. vivipara*, although for this species the
decline occurred during the dormancy only and not preceding it (Patterson & Davies,
1978). While we do not have data that reveals the mechanism underlying this reduction,
altered right-to-left intra-cardiac shunting, reducing O₂ delivery to the tissues, has
previously been implicated in metabolic suppression (Hicks and Wang, 2004) and is a
definite possibility.

Daytime $f_{\rm H}$ fell in March, suggesting that daytime metabolic rate may also have begun to fall prior to entrance into dormancy. However, the animals were active to varying degrees during the day and not in a steady state, therefore heart rate could not be used to estimate metabolic rate.

11 The decline in maximum T_b that occurred in April may be indicative of an 12 endogenous seasonal rhythm of body temperature and metabolism. Although it was 13 possible for the tegus to achieve higher maximum T_b, that they did not is suggestive of an 14 endogenous seasonal rhythm, like that seen in the sleepy lizard, T. rugosa (Firth & Belan, 15 1998; Ellis et al., 2008). From April into May there was a further significant nighttime drop in $f_{\rm H}$ and $f_{\rm R}$ indicating a further suppression in metabolism, but this was associated 16 17 with a significant fall in T_b . This amounted to a 30% decrease in O_2 consumption (a Q_{10} 18 of 2.1) bringing the metabolic rate to levels that were 45% of those calculated in January. 19 As indicated by the low but consistent levels of T_b , f_H and f_R (day and night) from May 20 through July, metabolism was relatively uniform during dormancy. The values of 21 metabolic rate estimated for the tegus in dormancy $(0.18 - 0.21 \text{ ml } O_2/\text{min/kg})$ are similar 22 to those measured in previous studies on dormant tegus (0.15- 0.30 ml O₂/min/kg; Abe, 23 1995; Andrade and Abe, 1999; Milsom et al., 2008; Souza et al., 2004; Toledo et al.,

2008), indicating that our methods for estimating metabolic rate were consistent with
 previous studies.

3 In August and September, all variables increased to levels significantly greater 4 than those recorded from tegus at similar body temperatures in May and April, suggesting 5 that they were due not only to the increases in T_b, but also due to removal of the active 6 metabolic suppression. The increasing incidence of arousals associated with slowly 7 increasing nighttime heart rate and breathing in August is also suggestive that the degree 8 of metabolic suppression was decreasing as the period of arousal progressed, which has 9 been documented in other lizard species as they approach arousal (Patterson & Davies, 1978). 10

11 Arousal During Dormancy

12 While species of reptiles that undergo dormancy are not likely to emerge from 13 their burrows in mid-winter when environmental conditions are extreme, they may still 14 arouse from dormancy and remain within the burrow. To date, however, there is no 15 documentation that this occurs. Species of reptiles that go dormant in subtropical regions 16 should be less constrained to remain in their burrows during periods of arousal and it has 17 been shown that *Varanus rosenbergi* spontaneously arouse frequently during dormancy 18 (Rismiller & McKelvey, 2000). In the present study, T. merianae also exhibited periodic 19 bouts of arousal accompanied by short bouts of emergence. Amongst the four individuals 20 in this study there was a wide range of variability in the occurrence of this behaviour, 21 both in the number of times an individual aroused over the period of dormancy and in the 22 phase of the dormant period (early versus late) during which these events occurred. There 23 was no synchrony to the occurrence of arousals in tegus inhabiting the same burrow

suggesting that they were not tightly correlated to local factors such as temperature
change, noise or disturbance. Arousals appeared to occur randomly, with no distinct
pattern in any animal, suggesting that they were not the consequence of an under-lying
biological rhythm. This does not preclude the existence of an internal clock controlling
arousal from dormancy or the onset of reproduction. Many species that are arrhythmic in
winter can be rhythmic at other seasons (see Revel et al., 2007; Ellis et al., 2008).

7 It is possible that these arousals were the consequence of the experimental design. 8 The artificial burrows were designed for ease of access and to allow infra-red recording 9 of activity within the burrow and were thus spacious and left the animals relatively 10 exposed. Natural burrows tend to be more constrictive and possibly deeper in the 11 substrate where daily fluctuations in temperature would be absent. Animals rarely, if 12 ever, leave them during the dormancy season. A more constant temperature and tactile 13 stimulation may promote dormancy and eliminate periods of arousal. At present the 14 underlying cause of the arousals seen in this study is not clear.

15 Periodic arousals are a hallmark of most mammalian hibernation (Willis, 1982) 16 and here too it is not clear what the underlying cause is (Barnes et al., 1993; Wang, 1993; 17 Carey et al., 2003). One hypothesis is that transcription and translation of genetic 18 material are inhibited by low temperatures and that animals must arouse periodically to 19 undertake essential maintenance activities (Van Breukelen and Martin, 2002; Carey et al., 20 2003). The occurrence of periodic arousals is normally rhythmic in mammals (Twente 21 and Twente, 1967), but at present there is no consensus on what triggers these arousals. 22 The incidence and role of periodic arousals in both mammalian and ectothermic 23 hibernation are therefore areas that require further study.

Heart Rate Hysteresis and Implications for Body Temperature Regulation

2 Heart rate hysteresis has been well described in reptiles, and its role in 3 temperature regulation has received much attention. To maximize the period where body 4 temperature exceeds ambient temperature, many reptiles increase cutaneous blood flow in 5 the morning to maximize heat gain. A concomitant rise in heart rate due to the baroreflex 6 leads to an appropriate increase in cardiac output that maintains blood pressure constant 7 (Galli et al., 2004; Crossley et al., 2015). A decrease in cutaneous blood flow and heart 8 rate in the evening conserves heat by reducing the rate of heat loss (Morgareidge and 9 White, 1969; Langille and Crisp; 1980; Galli et al., 2004; Clark and Frappell, 2006). This 10 gives rise to hysteresis in the relationship between $f_{\rm H}$ and $T_{\rm b}$ in which the rate of change in $f_{\rm H}$ reflects the effects of temperature on $f_{\rm H}$ and metabolic rate (Q₁₀ effects), the effects 11 12 of activity and feeding (Zaar et al., 2004), and the effects of thermoregulatory processes 13 associated with reaching/retaining preferred T_b (Seebacher, 2000; Seebacher and 14 Franklin, 2001, 2005).

15 From January to March, and again in August and September, on days when the 16 tegus emerged from their burrows to bask, $f_{\rm H}$ and $f_{\rm R}$ began to rise in the morning, at 17 constant T_b, even before the tegus left their burrows. The most extreme case was in 18 September when $f_{\rm H}$ more than doubled, reaching almost maximum daytime levels over a 19 two hour period before the tegus emerged from their burrows. This correlated with the 20 period of greatest reproductive mating activity, highest daytime T_b and heart rate, and 21 longest periods spent active. This suite of changes is not uncommon in reptiles during 22 mating season and has been attributed to "mating unrest," which can be accompanied by 23 an elevation in preferred T_b (Huey and Bennett, 1987; Rismiller and Heldmaier, 1982;

1	Rismiller and Heldmaier, 1991; Luiseli and Akani, 2002; Seebacher and Franklin, 2005).
2	Once mating occurs, preferred T _b in pregnant females may increase (Hoplodactylus
3	maculatus, Werner and Whitaker, 1978; Thamnophus sirtalis, Stewart, 1965;
4	Gerrhonotus coeruleus, Stewart, 1984) or decrease (Lacerta vivipara, Paterson and
5	Davies, 1978; Scleroperuscyanogenys, Garrick, 1974; Scleroporus jarrovi, Beuchat,
6	1986)
7	This rapid initial increase in $f_{\rm H}$ was most likely due to changes in activity state
8	(sleep to alert) and activity in the burrow. Throughout the fall this pre-emergence
9	increase in $f_{\rm H}$ slowly decreased and by April, $f_{\rm H}$ and $f_{\rm R}$ no longer began to rise in the
10	morning before T _b , instead only rising when the tegus left their burrows to bask.
11	In all seasons, once tegus left the burrow and began to warm, $f_{\rm H}$ and $f_{\rm R}$ increased
12	further, with the rates of these changes varying across the seasons (Fig 3). Not
13	surprisingly, the higher the $f_{\rm H}$ at the time of emergence from the burrow, the lower the
14	rate of rise until the maximum daily $f_{\rm H}$ and $T_{\rm b}$ were reached. The rate of rise at this time
15	must reflect the effects of temperature on $f_{\rm H}$ and metabolic rate (Q ₁₀ effects), the effects
16	of activity, and the effects of thermoregulatory processes associated with reaching
17	preferred T _b .
18	In the evenings of the non-dormant periods, $f_{\rm H}$ and $f_{\rm R}$ began to fall in advance of
19	T _b with the greatest changes occurring in September. These rapid changes most likely
20	reflect increases in total peripheral vascular resistance associated with vasoconstriction of
21	peripheral beds for heat retention as described above (Seebacher, 2000; Clark et al., 2004,
22	Galli et al., 2004; Seebacher and Franklin, 2005). This rapid fall in $f_{\rm H}$ was absent during
23	dormancy when tegu T _b fell rapidly to approximate T _{burrow} within hours of entering the

burrows, suggesting that peripheral vascular resistance was not increased and therefore
heat retention was not actively occurring as it was during the non-dormant periods. The
abandonment of heat retention strategies during dormancy may be a strategy to maintain
a reduced metabolic rate, as much as it may be related to the reduction in preferred body
temperature.

6 There were seasonal differences in the complex interplay between changes in $f_{\rm H}$ 7 due to the direct effects of temperature and the indirect effects of thermoregulation, 8 activity, and changes in metabolism. The base hysteresis (i.e. that in each monthly loop) 9 is reflective of the physiological changes associated with daily warming and cooling as 10 preferred T_b alternated between day time and nighttime levels. Changes in the shape and 11 position of the hysteresis curves reflect the fact that these daytime and nighttime 12 preferences change with the seasons.

13

14 CONCLUSION:

15 While this study was largely observational, the continuous recording of body 16 temperature along with heart rate and breathing rate in black and white tegu lizards, 17 provides insight into the physiological correlates of changes in behaviour patterns. In 18 particular, the data suggest there was a continuous decline in nighttime metabolic rate, at 19 constant T_b throughout the late summer and fall during the lead up to the dormancy 20 period. This is indicative of an active metabolic suppression that develops progressively, 21 but only at night in the early stages. Although lizards dedicate shorter periods of daytime 22 to basking during the late summer and fall, they still reach the same T_b values seen in 23 spring and early summer. In May, when the tegus made a behavioural commitment to

1	dormancy, there was a decrease in T_b associated with a decrease in T_{burrow} and
2	accompanied by a further reduction in heart rate, breathing rate and metabolic rate.
3	Dormancy was a fairly uniform state from which the tegus, under the conditions of this
4	study, did arouse periodically. The sum of the data suggest that tegu lizards can actively
5	suppress metabolism in a complex and temperature independent fashion for which the
6	underlying mechanism remains to be explored.
7	
8	
9	ACKNOWLEDGEMENTS: This research was supported by grants from the Conselho
10	Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to ASA, from the
11	Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and Fundação para o
12	Desenvolvimento da Unesp (FUNDUNESP) to DVA, and the Natural Sciences and
13	Engineering Research Council of Canada to WKM and GJT.

REFERENCES:

2	
3	Abe AS (1983) Observations on dormancy in tegu lizards – Tupinambis teguixim
4	(Reptilia, Teiidae). Naturalia 8:235-239.
5	
6	Abe AS (1993) Effect of the environment on ventilation in reptiles. In Bicudo JEPW (ed)
7	The Vertebrate Gas Transport cascade: Adaptations to Environment and Mode of
8	Life, CRC Press Inc., Boca Raton, Florida, pp 87-93.
9	
10	Abe AS (1995) Estivation in South American amphibians and reptiles. Brazilian
11	J Med Biol Res 28:1241-1247.
12	
13	Andrade DV, Abe AS (1999) Gas exchange and ventilation during dormancy
14	in the tegu lizard Tupinambis merianae. J Exp Biol 202:3677-3685.
15	
16	Andrade DV, Brito SP, Toledo LF, Abe AS (2004) Seasonal changes in
17	blood oxygen transport and acid-base status in the tegu lizard, Tupinambis
18	merianae. Respir Physiol Neurobiol 140:197-208.
19	
20	Ávila-Pires TCS (1995) Lizards of Brazilian Amazonia (Reptilia: Squamata).
21	Zoologische Verhandelingen 1995:3-706.
22	
23	Barnes BM, Omtzigt C, Daan S (1993) Hibernators periodically arouse in order to
24	sleep. In Carey C, Florant GL, Wunder BA, Horwitz B (eds) Life in the Cold:
25	Ecological, Physiological, and Molecular Mechanisms. Westview Press, Boulder,
26	pp 555-558.
27	
28	Bartholomew GA, Tucker VA (1963). Control of changes in body temperature,
29	metabolism, and circulation by the agamid lizard, Amphibolurus barbatus.
30	Physiol Zool 36:199-218.
31	

1	Beuchat CA (1986). Reproductive influences on the thermoregulatory behavior of a live
2	-bearing lizard. Copeia 1986:971-979.
3	
4	Butler PJ, Woakes AJ, Bevan RM, Stephenson R (2000). Heart rate and rate of oxygen
5	consumption during flight of the barnacle goose, Branta leucopsis.
6	Comp Biochem Physiol A 126:379-385.
7	
8	Butler PJ, Frappell PB, Wang T, Wikelski M (2002) The relationship between heart rate
9	and rate of oxygen consumption in Galapagos marine iguanas (Amblyrhynchus
10	cristatus) at two different temperatures. J Exp Biol 205:1917-1924.
11	
12	Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: Cellular and
13	molecular responses to depressed metabolism and low temperature. Physiol Rev
14	83:1153-1181.
15	
16	Clark TD, Butler PJ, Frappell PB (2004) Digestive state influences the heart
17	rate hysteresis and rates of heat exchange in the varanid lizard Varanus
18	rosenbergi. J Exp Biol 208:2269-2276.
19	
20	Clark TD, Butler PJ, Frappell PB (2006) Factors influencing the prediction of
21	metabolic rate in a reptile. Functional Ecol 20:105-113.
22	
23	Crossley DA, Wearing OH, Platzack B, Hartzler LK, Hicks JW (2015) Acute and chronic
24	temperature effects on cardiovascular regulation in the red-eared slider (Trachemys
25	scripta). J Comp Physiol B 185:401-411
26	
27	Ellis DJ, Firth BT, Belan I (2008) Interseasonal variation in the circadian rhythms of
28	locomotor activity and temperature selection in sleepy lizards, Tiliqua rugosa. J
29	Comp Physiol [A] 194:701-712
30	
31	Firth BT, Belan I (1998) Daily and seasonal rhythms in selected body temperatures in the

1	Australian lizard Tiliqua rugosa (Scincidae): field and laboratory observations.
2	Physiol Zool 71, 303-311.
3	
4	Galli G, Taylor EW, Wang T (2004) The cardiovascular responses of the freshwater
5	turtle Trachemys scripta to warming and cooling. J Exp Biol 207:1471-1478.
6	
7	Garrick LD (1974) Reproductive influences on behavioral thermoregulation in the lizard,
8	Sceloporus cyanogenys. Physiol Behaviour 12:85-91.
9	
10	Green JA, Frappell PB, Clark TD, Butler PJ (2008) Predicting rate of oxygen
11	consumption from heart rate while little penguins work rest and play. Comp
12	Biochem Physiol 150A:222-230
13	
14	Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives
15	and biochemical generalizations. Biol. Rev. 74:1-40.
16	
17	Hicks JW, Wang T (2004) Hypometabolism in reptiles: behavioural and physiological
18	mechanisms that reduce aerobic demands. Resp Physiol Neurobi 141:261-271
19	
20	Huey RB and Bennett (1987). Phylogenetic studies of coadaptation: preferred
21	temperatures versus optimal performance temperatures of lizards. Evolution
22	41:1098–1115.
23	
24	Huey RB and Pianka ER (1977) Seasonal variation in thermoregulatory behavior and
25	body temperature of diurnal Kalahari lizards. Ecology 58: 1066-1075.
26	
27	Köhler G, Langerwerf B (2000) Tejus: Lebensweise, Plege, Zucht. Herpeton, Offenbach
28	
29	Langille BL, Crisp B (1980) Temperature dependence of blood viscosity in frogs and
30	turtles: effect on heat exchange with environment. Am J Physiol 239: R248-R253
31	

1	Luiselli L, Akani GC (2002) Is thermoregulation really unimportant for tropical
2	reptiles? Comparative study of four sympatric snake species from Africa. Acta
3	Oecol 23:59–68.
4	
5	Lyman CP (1982) Entering Hibernation. In: Lyman CP, Willis JS, Malan A, Wang LCH,
6	(eds) Hibernation and torpor in mammals and birds. Academic Press, New York,
7	pp 37-53
8	
9	Mayhew, WW 1965. Hibernation in the Horned Lizard, Phrynosoma m'calli. Comp
10	Biochem Physiol 16:103-119
11	
12	Milsom WK (1991) Control of breathing during hibernation. Chapter 7. In: Lenfant C,
13	Wood SC, Weber RE (eds) Lung Biology in Health and Disease; Volume 56:
14	Strategies of Physiological Adaptation. Marcel Dekker Inc., New York, pp 119-
15	148
16	
17	Milsom WK, Zimmer MB, Harris MB (1999) Regulation of cardiac rhythm in
18	hibernating mammals. Comp Biochem Physiol 124A:383-391.
19	
20	Milsom WK, Andrade DV, Brito SP, Toledo LF, Wang T, Abe AS (2008)
21	Seasonal changes in daily metabolic patterns of tegu lizards (Tupinambis
22	merianae) placed in the cold (17°C) and dark. Physiol Biochem Zool 81:165-
23	175.
24	
25	Milstead WW (1961) Notes on the Teiid lizards in southern Brazil. Copeia 1961:493-
26	495.
27	
28	Morgareidge K,. White FN (1969) Cutaneous vascular changes during heating and
29	cooling in the Galápagos marine iguana. Nature 223:587-591.
30	
31	Nedergaard J, Cannon B, Jaenicke R (1990) Mammalian Hibernation. Phil Trans R Soc

1 Lond B 326: 669-686.

2	
3	Patterson JW, Davies PMC (1978) Energy expenditure and metabolic adaptation during
4	winter dormancy in the lizard Lacerta vivipara Jacquin. J Therm Biol 3:183-186.
5	
6	Piercy J, Rogers K, Andrade D, Abe AS, Tattersall G, Milsom WK (2015). The
7	relationship between body temperature, heart rate, breathing rate, and the rate of
8	oxygen consumption in the tegu lizard (Tupinambis merianae) at various levels of
9	activity. J Comp Physiol B (Submitted).
10	
11	Revel FG, Herwig A, Garidou ML, Dardente H, Menet JS, Masson-Pevet M, Simonneux
12	V, Saboureau M, Pevet, P (2007) The circadian clock stops ticking during deep
13	hibernation in the European hamster. Proc Natl Acad Sci 104:13816-13820
14	
15	Rismiller PD, Heldmaier G (1982) The effect of photoperiod on temperature selection in
16	the European green lizard, Lactera viridis. Occologia 53: 222-226.
17	
18	Rismiller PD, Heldmaier G (1991) Seasonal changes in daily metabolic patterns of
19	Lacerta viridis. J Comp Physiol B 161:482-488
20	
21	Rismiller PD, McKelvey MW (2000). Spontaneous arousal in reptiles? Body
22	temperature ecology of Rosenberg's Goanna, Varanus rosenbergi. In: Heldmaier
23	G, Klingenspor M (eds) Life in the Cold. Springer-Verlag, New York, pp 57-64
24	
25	Rollinson, N, Tattersall, GJ, Brooks, RJ (2008) Overwintering habitats of a northern
26	population of Painted Turtles (Chrysemys picta): Winter temperature selection
27	and dissolved oxygen concentrations. J Herpetol 42, 312-321.
28	Seebacher F, (2000) Heat transfer in a microvascular network: the effect of heart rate
29	on heating and cooling in reptiles (Pogona barbata and Varanus varius). J
30	Theor Biol 203:97-109.

1	
2	Seebacher F, Franklin CE (2001) Control of heart rate during thermoregulation in the
3	heliothermic lizard Pogona barbata: importance of cholinergic and adrenergic
4	mechanisms. J Exp Biol 204:4361-4366
5	
6	Seebacher F, Franklin CE (2005) Physiological mechanisms of thermoregulation in
7	reptiles: a review. J Comp Physiol B 175:533-541.
8	
9	Souza SCR de, Carvalho JE de, Abe AS, Bicudo JEPW, Bianconcini MSC
10	(2004) Seasonal metabolic depression, substrate utilisation and changes in scaling
11	patterns during the first year cycle of tegu lizards (Tupinambis merianae). J Exp
12	Biol 207:307-318.
13	
14	Stewart GR (1965) Thermal ecology of the garter snake Thamnophis sirtalis concinnus
15	(Hallowell) and Thamnophis orfinoides (Baird and Girard). Herpetologica 21:81-
16	102.
17	
18	Stewart JR (1984) Thermal biology of the live bearing lizard <i>Gerrhonotus coeruleus</i> .
19	Herpetologica 40:349-355.
20	
21	Tattersall, GJ, Boutilier, RG (1997) Balancing hypoxia and hypothermia in cold-
22	submerged frogs. J Exp Biol 200, 1031-1038.
23	Tattersall, GJ, Boutilier, RG (1999) Behavioural oxy-regulation by cold-submerged frogs
24	in heterogeneous oxygen environments. Can J Zool 77, 843-850.
25	Tattersall GJ, Milsom WK, Abe AS, Brito SP, Andrade DV (2004) The thermogenesis of
26	digestion in rattlesnakes. J Exp Biol 207:579-585.
27	
28	Tøien Ø, Blake J, Barnes BM (2015) Thermoregulation and energetics in hibernating
29	black bears: metabolic rate and the mystery of multi-day body temperature cycles.
30	J Comp Physiol B 185:447-461

1	
2	Toledo LF, Brito SP, Milsom WK, Abe AS, Andrade DV (2008) Effects of
3	season, temperature and body mass on the standard metabolic rate of tegu lizards
4	(Tupinambis merianae). Physiol Biochem Zool 81:158-164.
5	
6	Twente JW, Twente JA (1967) Seasonal variation in the hibernating behaviour
7	of Citellus lateralis. In: Fisher KC, Dawe AR, Lyman CP, Schöbaum E, South
8	FE Jr (eds) Mammalian Hibernation III. Elsevier Inc., New York, pp 47-63
9	
10	Van Breukelen F, Martin SL (2002) Reversible depression of transcription
11	during hibernation. J Comp Physiol B 172:355-361.
12	
13	Vitt LJ, Carvalho CM de (1995) Niche partitioning in a tropical wet season:
14	lizards in the Lavrado area of northern Brazil. Copeia 1995:305-329.
15	
16	Vitt LJ, Zani PA (1996) Organization of a taxonomically diverse lizard
17	assemblage in Amazonian Ecuador. Can J Zool 74:1313-1335.
18	
19	Wang LCH (1993) Neurochemical regulation of arousal from hibernation. In: Carey C,
20	Florant GL, Wunder BA Horwitz B (eds) Life in the Cold: Ecological,
21	Physiological, and Molecular Mechanisms. Westview Press, Boulder, pp 559-561.
22	
23	Werner YL, Whitaker AH (1978) Observations and comments on the body temperatures
24	of some New Zealand reptiles. New Zealand J Zool 5:375-393.
25	
26	Willis JS (1982) The Mystery of the Periodic Arousal. In: Lyman CP, Willis JS, Malan
27	A, Wang LCH (eds) Hibernation and torpor in mammals and birds. Academic
28	Press, New York, pp 92-103
29	
30	Winck GR, Cechin SZ (2008). Hibernation and emergence pattern of Tupinambis

1	merianae (Squamata: Teiidae) in the Taim Ecological Station, southern Brazil. J
2	Nat Hist 42: 239-247
3	
4	Zaar M, Larsen E, Wang T (2004) Hysteresis of heart rate and heat exchange of fasting
5	and postprandial savannah monitor lizards (Varanus exanthematicus). Comp
6	Biochem Phys A 137:675-682
7	

- 1 Figure Captions:
- 2
- 3

4 Fig 1 Mean (±SEM) values for A) ambient temperature, burrow temperature, tegu 5 temperatures, and B) heart rate for all tegus for each 15 min period on all days during 6 February (the active season), May (the dormancy season) and September (the post-7 arousal, reproductive season). The dotted lines represent the average time when tegus left 8 their burrows in the morning (red) and retreated into their burrows for the evening (blue) 9 during days of emergence. C) The relationships between mean values of $T_{\rm b}$ and heart 10 rate for all tegus for all days of each of these months. Times when tegus, on average, 11 emerged to bask (red dot) or retreated to their burrows to rest for the night (blue dot) are 12 indicated in the upper left corner of each graph 13 14 **Fig 2** Mean (±SEM; error bars may be smaller than symbols) monthly values for 15 maximum and minimum A) ambient temperatures and burrow temperatures B) tegu body 16 temperatures C) heart rate, and D) breathing rate for all tegus over the entire recording 17 period. Maximum values are indicated by open symbols while minimum values are 18 indicated by filled symbols. In (A) the grey shading links the maximum and minimum 19 ambient temperatures while the black shading links the maximum and minimum burrow 20 temperatures. Note how well the burrows are buffered from ambient temperature swings. 21 * indicates values that are significantly lower than January values. + indicates values that 22 are significantly elevated compared to January values. All minimum values are lower 23 than maximum values except for those indicated with a # 24 25 Fig 3 The relationships between mean values of body temperature and heart rate for all 26 tegus for all days of all months (error bars are omitted for clarity) 27 28 Fig 4 A. Mean (±SEM; error bars may be smaller than symbols) monthly values for 29 heart rate (f_H) , breathing rate (f_R) and minimum burrow and tegu body temperatures for all 30 tegus over the entire recording period. B. Resting levels of estimated oxygen 31 consumption over the same period (derived from the equation of Piercy et al., 2015).

- 1 Note the fall in heart rate, breathing rate and rate of oxygen consumption at constant
- 2 burrow and tegu temperatures from January to April. * indicates values that are
- 3 significantly lower than January values. + indicates values that are significantly elevated
- 4 compared to January values. Vertical dotted lines indicate the entrance into and the
- 5 emergence from dormancy.
- 6
- 7

Figure 1

Figure 2

Figure 3

Figure 4