
An Abstract Algebraic Theory of L-Fuzzy
Relations for Relational Databases

Abdul Wazed Chowdhury
Department of Computer Science

Supervisor:

Dr. Michael Winter

Submitted in partial fulfilment of the requirements for the degree of Master of Science

Faculty of Mathematics and Science, Brock University

St. Catharines, Ontario, Canada

c©2015 Abdul Wazed Chowdhury

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brock University Digital Repository

https://core.ac.uk/display/62649652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BROCK UNIVERSITY

Abstract
Faculty of Mathematics and Science

Computer Science

Master of Science

An Abstract Algebraic Theory of L-Fuzzy Relations for Relational Databases

by Abdul Wazed Chowdhury

Classical relational databases lack proper ways to manage certain real-world situations includ-

ing imprecise or uncertain data. Fuzzy databases overcome this limitation by allowing each

entry in the table to be a fuzzy set where each element of the corresponding domain is assigned

a membership degree from the real interval r0 . . . 1s. But this fuzzy mechanism becomes in-

appropriate in modelling scenarios where data might be incomparable. Therefore, we become

interested in further generalization of fuzzy database into L-fuzzy database. In such a database,

the characteristic function for a fuzzy set maps to an arbitrary complete Brouwerian lattice L.

From the query language perspectives, the language of fuzzy database, FSQL extends the reg-

ular Structured Query Language (SQL) by adding fuzzy specific constructions. In addition to

that, L-fuzzy query language LFSQL introduces appropriate linguistic operations to define and

manipulate inexact data in anL-fuzzy database. This research mainly focuses on defining the se-

mantics ofLFSQL. However, it requires an abstract algebraic theory which can be used to prove

all the properties of, and operations on, L-fuzzy relations. In our study, we show that the theory

of arrow categories forms a suitable framework for that. Therefore, we define the semantics of

LFSQL in the abstract notion of an arrow category. In addition, we implement the operations of

L-fuzzy relations in Haskell and develop a parser that translates algebraic expressions into our

implementation.

University Web Site URL Here (include http://)
https://www.brocku.ca/mathematics-science
Department or School Web Site URL Here (include http://)

Acknowledgements

I owe my deepest gratitude to my supervisor Dr. Michael Winter for everything, everything.

Besides him, I would like to thank everyone in the advisory committee and all my friends in the

department.

And love to Durdana Rahman, my wife, for her continuous support throughout the study.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures vi

1 Introduction 1
1.1 Introduction . 1
1.2 Databases . 1

1.2.1 Relational Database . 2
1.2.2 Missing or Imprecise Data in Relational Databases 2
1.2.3 Fuzzy Database . 3
1.2.4 Querying a Database . 4

1.3 L-Fuzzy Database . 5
1.4 Motivation . 6
1.5 Main Contribution of the Thesis . 7

2 Mathematical Preliminaries 8
2.1 Classical Relations . 8

2.1.1 Set Theoretic Operations on Relations 11
2.1.2 Relational Operations . 12
2.1.3 Composite Operations on Relations 14
2.1.4 Properties of Relations . 15

2.2 Orders and Lattices . 21
2.2.1 Equivalence Relation, Quotient Set, and Splitting a Relation 21
2.2.2 Partial Order and Total Order . 23
2.2.3 Hasse Diagram . 23
2.2.4 Lower and Upper Bounds: Meet and Join 24
2.2.5 Lattices . 27

2.2.5.1 Distributive lattice . 28
2.2.5.2 Bounded lattice . 29

2.3 Fuzzy Sets and Relations . 31
2.4 L-fuzzy Sets and Relations . 34

iii

Contents iv

2.4.1 Operations on L-Fuzzy Relations . 35
2.4.2 Crispness in L-Fuzzy Relations . 36
2.4.3 Scalar Relations . 37
2.4.4 α-Cuts and Arrow Operations . 38

2.5 Algebra of Relations . 40
2.5.1 Algebra of Classical Relations . 41
2.5.2 Algebra of Fuzzy Relations . 41

2.6 Categories of Relations . 42
2.6.1 Categories . 42
2.6.2 Categorical Terminologies . 43

2.6.2.1 Initial, Terminal, and Null Objects 44
2.6.2.2 Categorical Product . 44
2.6.2.3 Categorical Sum or Coproduct 45

2.6.3 Categories of L-Fuzzy Relations . 45
2.6.3.1 Allegories . 46
2.6.3.2 Dedekind Categories . 48
2.6.3.3 Arrow Categories . 49

3 L-Fuzzy Structured Query Language 51
3.1 L-Fuzzy Databases . 51

3.1.1 Metadatabase . 53
3.1.2 Linguistic Labels and L-Fuzzy Sets 54

3.2 L-Fuzzy Structured Query Language (LFSQL) 57
3.2.1 L-Fuzzy Comparators . 57
3.2.2 The CREATE Statement . 58
3.2.3 The INSERT Statement . 59
3.2.4 The WHERE Clause . 59
3.2.5 The DELETE Statement: . 60
3.2.6 The SELECT Statement: . 60
3.2.7 An LFSQL Query Example . 60
3.2.8 Inner Joins . 61

3.3 Semantics of LFSQL . 62
3.3.1 Semantics of L-Fuzzy Sets . 64
3.3.2 Semantics of Tables . 66
3.3.3 Semantics of L-Fuzzy Comparators 68
3.3.4 Semantics of WHERE Clause . 72
3.3.5 Semantics of Statements . 73

3.3.5.1 Semantics of CREATE Statement 73
3.3.5.2 Semantics of INSERT Statement 74
3.3.5.3 Semantics of DELETE Statement 76
3.3.5.4 Semantics of SELECT Statement 77

4 Implementations 83
4.1 Haskell . 83
4.2 Implementation of L-Fuzzy Relations . 84

4.2.1 Data Types . 84
4.2.2 Type Classes . 85

Contents v

4.2.3 L-Fuzzy Relational Operations . 87
4.3 Parser . 87
4.4 The eval Function and the Semantics . 89

5 Conclusion and Future Works 91

Bibliography 93

List of Figures

2.1 Divisibility relation on the divisors of 24 . 10
2.2 Example of a vector relation . 19
2.3 Univalent and multivalent part of a relation 21
2.4 Equivalence relations . 22
2.5 Two Hasse diagrams . 24
2.6 Maximal and minimal elements of posets . 25
2.7 Calculating upper bounds for each row of a relation 26
2.8 Meet and join on posets . 27
2.9 Lattice examples . 28
2.10 Two distributive and two non-distributive lattices 29
2.11 Relative pseudocomplement . 31
2.12 Trapezoidal fuzzy set defining “good” cell phones 32
2.13 A complete Brouwerian lattice L . 35
2.14 Two scalar relations . 37
2.15 An ideal relation . 38
2.16 α-cuts on R . 40
2.17 Categorical diagram . 43
2.18 Categorical product . 45
2.19 Categorical sum or coproduct . 45

3.1 L-fuzzy contact list . 52
3.2 A complete distributive lattice D6 . 53
3.3 A Java method as preimplemented function 55
3.4 Query output . 61
3.5 Modelling a database table . 67
3.6 Modelling the INSERT statement . 74
3.7 Modelling SELECT statement . 78

vi

To my father
Golam Mostafa Chowdhury

vii

Chapter 1

Introduction

1.1 Introduction

In mathematics the theory of sets and relations forms the basis of many other mathematical con-

cepts. While set theory studies collections of entities (commonly known as elements) and var-

ious operations on those collections, the theory of relations deals with the association between

individual elements. The importance of organizing a huge collection of data on the basis of their

relationship has been proven to be both mathematically sound and practically useful. The term

database better describes such an organization of data. Our research concentrates on defining

the semantics of a language for L-fuzzy databases. This particular generalization of classical

databases overcomes its shortcomings in handling real-world problems like imprecision in data.

1.2 Databases

Over the last decade databases have become an indispensable part of all kinds of software appli-

cations. The contact list on a cell phone probably is the most common example of a database that

we deal with in our daily life. Databases might be as big as the collection of client information

of a bank or a global email service provider like Gmail or Yahoo to the central governmental

database of a country.

In computing, a database is an organized collection of information facilitating its easy stor-

age, management, and retrieval. Databases are usually characterized by the organizational ap-

proach they follow. There are relational approaches, hierarchical approaches, object-oriented

approaches, and so on. Among them the relational model is the one most widely used nowa-

days.

1

Chapter 1. Introduction 2

1.2.1 Relational Database

In a relational database data are stored and presented in tables with rows and columns. Each

column of a table refers to an attribute of an object (also called an entity) whereas a row is

considered to be the object having a number of attributes. A table can be thought of a relation in

the sense that it is a collection of objects of the same type. For example the contact records on

someone’s phone might be organized in a table as follows. Here we have records (or tuples) of

four persons containing their names and phone numbers.

Name Phone no.

John +12222222222

Kevin +13333333333

Linda +14444444444

Richy +15555555555

In a relational database a Data Definition Language (DDL) is used to build and modify the struc-

ture of the data and a Data Manipulation Language (DML) is used to populate that structure and

fetch useful information. The most typical example of a database language is Structured Query

Language (SQL). SQL comes with a DML as well as a DDL component. SQL-DDL contains

statements for defining database structure. Examples of such statements include CREATE to

create a table, ALTER to modify the structure of table, etc. DML statements, on the other hand,

are used for managing records. For instance, a SELECT statement retrieves information from a

database, an INSERT statement adds a record to an existing table, and so on.

1.2.2 Missing or Imprecise Data in Relational Databases

Well-structured relational databases can manage almost all kinds of information. In particular,

missing information are usually denoted by null in such a database. For example, presently

almost all cellular phones allow users to enter additional information like someone’s birth-date,

address, company, etc., while creating a new contact. But many of such contacts contain only

name and phone numbers. Therefore, null can be used to represent information which are absent

in such a contact list. Here, as shown below, we have two derived attributes: Distance obtained

from Address, and Age from Date of Birth.

Name Phone no. Address Distance Date of birth Age

John +12222222222 19 York street 3 null null

Kevin +13333333333 null null null null

Linda +14444444444 null null March 15, 1970 45

Richy +15555555555 125 Perfect road 6 August 29, 1998 17

Chapter 1. Introduction 3

Also, there are a number of real-world scenarios where data might be imprecise or uncertain.

Unfortunately classical relational databases lack a proper way to handle that. For example,

someone’s phone might have contact records where dates of birth and addresses of his friends

are missing but he can very well tell if Kevin is young or old, whether soccer or hockey is more

popular among his friends, who lives closest to him, and so on. Using this kind of language

expressions is a common phenomenon of our daily life. In regard to a relational database, we

have only two alternatives to represent such an expression: either use a null or guess a value

appropriate for a label. For example, if we only know that Kevin is young but not his precise

age, then using a null does not provide any information about Kevin’s age, nor does it preserve

the information already known that Kevin is young. In the second approach we pick a random

value that we consider young which actually does provide some information but is most likely to

be wrong. In order to handle such imprecision in data the concepts of fuzzy relational databases

and its query language, Fuzzy Structured Query Language (FLSQL), have emerged.

1.2.3 Fuzzy Database

In a fuzzy relational database (or simply fuzzy database) we can store a fuzzy set for each field

whereas a classical relational database allows only a single value per field. Fuzzy sets can be

distinguished from their classical counterparts by their characteristic function. For a classical

set, a characteristic function also called a membership function, has the form χB : A Ñ B where

B is the set of Boolean values, i.e., tTrue, Falseu. However, as mentioned before such a Boolean

function is very inappropriate in managing vagueness in data which requires us to have more

alternatives than simply yes and no. In order to handle such situations Lotfi A. Zadeh (1965)

[36] introduced the notion of fuzzy sets. He changed the standard characteristic function to map

to the unit interval of real numbers: χB : A Ñ r0 . . . 1s where 1 indicates full membership, 0 not

a member at all with all other values in between representing how strongly an element belongs

to a set. For instance let’s say we have a group of students {Russel, Peter, Andy, James} and their

marks {62,95,46,75} in some course. Now if we are interested to make a list of good students,

then that list can be expressed as a fuzzy set where each of the students would be there with

different degrees of membership. A membership function for such a set could be:

χgoodpsnameq �
#

0 iff markssname 50,
markssname � 50

50 iff 50 ¤ markssname ¤ 100

Therefore, we get this: {0.24/Russel, 0.9/Peter, 0/Andy, 0.5/James}. It is evident that Russel, Pe-

ter, and James have passed the course and Peter can be considered better than Russel and James

for this course. In contrast, a classical representation of this list, which would be {1/Russel,

Chapter 1. Introduction 4

1/Peter, 0/Andy, 1/James}, provides no information other than just pass and fail. Represent-

ing data of different ranges by the unit interval thus provides a better way for working with

inexactness in data.

Note that fuzzy sets can wisely be used to provide mathematical interpretation of language

expression (also called linguistic labels) like young, popular, etc. in a fuzzy database. As an

example, young can be represented by a fuzzy set with the following characteristic function:

χyoungpxq �

$''&
''%

0 iff x ¡ 25 years,
25� x

10 iff 15 years ¤ x ¤ 25 years,

1 iff 15 years x

1.2.4 Querying a Database

An SQL query on a relational database produces a list of tuples that satisfies the condition.

Such a query has three major parts: SELECT, FROM and WHERE. SELECT clause is used to

choose one or more attributes of our interest. In the FROM clause we specify the tables that

we want to retrieve data from. Finally, the WHERE clause which is the only optional part, tells

about the condition that all resultant tuples should satisfy. We continue using the contact list

example above for further demonstrations. At this point we are interested to know about only

those people who have an age smaller than or equal to 20. The result shows that only the record

for Richy fulfils the condition.

SELECT Name, Phone no., Age

FROM Contacts

WHERE Age ¤ 20

Name Phone no. Age

Richy +15555555555 17

In contrast to SQL, a query in FSQL results in a list of tuples each with a degree value up

to which it satisfies the condition. In order to make it possible working on imprecise data in

a database, the language of FSQL adds to the regular SQL statements operations which are

specific to fuzzy sets. For example, in FSQL each of the comparison operations �, ¤, and
of regular SQL is available in two forms: a possibility operation F�, F¤, F , and a necessity

operation NF�, NF¤, NF . In our contact-list example, a possibility comparison of age F=

$Young computes the degree that someone possibly has an age which is considered to be young.

A necessity comparison of age NF= Young, on the other hand, computes a degree up to which

every potential age a person could have is considered to be young.

Moreover, FSQL provides additional constructs to specify a threshold (THOLD) for the mini-

mum degree up to which a resultant tuple should satisfy the condition. It also allows the use

Chapter 1. Introduction 5

t-norms and t-conorms in place of min and max while computing logical connective and and

or. In fuzzy theory Triangular Norm (t-norm) and Triangular Conorm (t-conorm) are binary

operations that are used to compute intersection and union of two fuzzy sets respectively. It is to

be noted that minimum function is the largest t-norm whereas maximum function is the smallest

t-conorm.

A linguistic label in FSQL is always preceded by a $ sign. A fuzzy database uses a meta-

database to store fuzzy-specific constructs such as characteristic functions for linguistic labels,

t-norms and t-conorms, etc. Here is a fuzzy version of the contact list database where we keep

only the relevant fields because of our interest on Age. We use the same query before except that

¤ is changed to F¤ and a threshold of 0.4 is enforced. This query when executed returns only

those tuples that satisfy the condition and obtain a membership degree greater than or equal to

0.4.

Name Phone no. Age

John +12222222222 $Old

Kevin +13333333333 $Young

Linda +14444444444 45

Richy +15555555555 17

SELECT Name, Phone no., Age

FROM Contacts

WHERE Age F¤ 20 THOLD 0.4

Name Phone no. Age

Kevin +13333333333 $Young

Richy +15555555555 17

1.3 L-Fuzzy Database

It is evident that the unit interval of r0 . . . 1s is linearly ordered meaning that for any x, y P
r0 . . . 1s, we have either x ¤ y or y ¤ x. Elements of an ordered set for which the ordering

relation (¤ here) holds commutatively are called “comparable”. This property implies that we

are always able to tell for any two elements a and b which is more in a given fuzzy set B by

comparing χBpaq and χBpbq. But in a number of real world applications this might not be the

case. As an example we assume that Kevin wants to buy a cell phone and his primary concern

is the size of a phone’s internal memory as there are tradeoffs between memory sizes and their

associated costs. We consider to model the memory size of different cell phones as a fuzzy

set. The degree of membership of a given memory size in the set of good sizes indicates how

well that particular size serves our requirement. An internal memory of 64GB might be good

because of greater storage capacity but not so good because of the extra cost incurred. 16GB of

memory, on the other hand, can be considered good because of the standard phone price, but not

good enough as approximately half of the memory is occupied by the phone operating system

which results in limited storage capacity available for the user. For these reasons both memory

Chapter 1. Introduction 6

sizes should be in the fuzzy set of good memory sizes up to a certain degree. However, it seems

hard, or even impossible or sometimes unwanted, to decide which memory size is better, i.e.,

we do not want that χgoodp16GBq ¤ χgoodp64GBq or vice versa. So we become interested

in a set where there might be incomparable elements alongside comparable ones. Such a set

is called a partially ordered set or poset. An useful example of poset might be the set of all

divisors of 24 which is t1, 2, 3, 4, 6, 8, 12, 24u with divisibility (|) as the induced relation. Note

that neither 3 divides 4, nor does 4 divide 3 which means that 3 and 4 are incomparable. The

two most common operations on a poset is the greatest lower bound or meet (^) and the least

upper bound or join (_). A lower bound of two elements x and y of a poset pP,¤q is an element

z P P so that z ¤ x and z ¤ y. In the previous example of divisors, 4 and 6 has two lower

bounds 1 and 2. Therefore, their meet would be the greatest element of all their lower bounds

which is 2 here. Dually an upper bound for x, y P P is an element z so that x ¤ z and y ¤ z.

It is clear that 4 and 6 in the example above have two upper bounds t12, 24u. As a result, the

least upper bound or join of 4 and 6 is 12. A poset in which a meet and a join exist for any two

elements is called a lattice. Clearly the poset pt1, 2, 3, 4, 6, 8, 12, 24u, |q is a lattice. However,

pt2, 3, 4, 10, 12, 20, 25u, |q cannot be a lattice because t12, 20u doesn’t have a join as well as

t2, 5u doesn’t have a meet. A lattice L might contain an element 1 such that for all x P L,

x ^ 1 � x and x _ 1 � 1. Such an element is called the top element or upper bound of L. The

dual of top element is called the bottom of L, expressed as 0, such that for all x P L, x^ 0 � 0

and x_ 0 � x. Note that top and bottom elements of a lattice are unique; however, if they exist.

In our study we are interested in Goguen (1967)’s generalization of fuzzy sets to L-fuzzy sets

where L stands for an arbitrary complete Brouwerian lattice. The characteristic function for

L-fuzzy sets has the form χB : A Ñ L, i.e., elements have membership degrees chosen from a

lattice L with a meet (^) and a join (_) operation and a least element 0 and a greatest element

1. As because understanding of poset, lattice, L-fuzzy relations and their operations requires

explanations, we defer their details to Chapter 2.

Therefore, an L-fuzzy database can be said to generalize a fuzzy database by allowing us to

store an L-fuzzy set for each column of a table. Such a database thus can appropriately handle

imprecise as well as incomparable data.

1.4 Motivation

In this research, we are motivated to have an abstract algebraic theory for L-fuzzy relations

where we can prove all the formal properties and operations of L-fuzzy relations as well as of

classical relations along with the associated axioms. Category theory is a good choice to start

with as a large collection of concepts and theorems have already been available based on cate-

gorical axioms only. A Dedekind category essentially forms a suitable framework to deal with

Chapter 1. Introduction 7

binary relations. Unfortunately it is very weak in expressing crispness. The concept of crispness,

although quantitative opposite to fuzziness, is very important in the world of fuzziness. A crisp

relation is an L-fuzzy relation in which each membership value is either 0 (the least element of

L) or 1 (the greatest element of L). These relations provide a natural way to embed regular rela-

tions in the fuzzy world and so should be expressed properly by any algebraic theory ofL-fuzzy

relations. The theory of arrow categories extends Dedekind categories by introducing two arrow

operations that provides an appropriate way of dealing with crispness.

The main purpose of this thesis is to define the semantics of L-fuzzy query language LFSQL

using the theories of arrow categories. In doing so, we have implemented the operations of L-

fuzzy relations in Haskell and developed a parser that would translate algebraic expressions into

our implementation. Apart from this, our work uses the relation algebraic system RelView for

demonstration purposes.

Prior to discussing our implementation, we recall all the relevant mathematical preliminaries

with examples in Chapter 2. It starts with the basic definition of classical relations, proceeds

toward the L-version of it, discusses the different categorical concepts available for relations,

and ends up with the theory of Arrow categories. Chapter 3 solely discusses the semantics

of LFSQL followed by our concrete implementations in Chapter 4. We give our concluding

remarks and some useful directions for future works in Chapter 5.

1.5 Main Contribution of the Thesis

The purpose of this section is to clearly identify the unique contribution of this research in

contrast to E. Adjei’s work [1]. The following points summarize this.

• In Chapter 3 we present an abstract semantics for the L-fuzzy query language, LFSQL in

arrow categories and this can be considered to be the main contribution of this thesis.

• As a part of the realization of the semantics provided here, we have implemented the

concrete arrow category of L-fuzzy relations between finite sets in Haskell.

• Last but not the least, we have developed a parser that can be used to translate relation

algebraic terms into our concrete implementation and a structure to execute those terms

using relational instances.

Chapter 2

Mathematical Preliminaries

This chapter reviews the different mathematical concepts that are crucial to our study. As re-

lations and their algebra have been used throughout our research, this chapter begins with the

basic definition of classical relation, describes its different properties and operations before we

switch to the fuzzy version of it. As mentioned earlier we use L-fuzzy relations to interpret

L-fuzzy databases while defining semantics for its query language LFSQL. Therefore, L-fuzzy

relations and its calculus are accounted elaborately in this chapter. It was also mentioned that

the theory of arrow categories forms a suitable algebraic framework for L-fuzzy relations. So,

we would include an in-depth demonstration of this theory with all the required proofs as well

as appropriate examples whenever and wherever applicable. The ideas and concepts included

here would suffice to start with the semantics of LFSQL in the very next chapter.

2.1 Classical Relations

In mathematics and computer science, relating entities of different types entails great results.

The best example might be a relational database where we organize information according to

their relationship. In the contact list example from Chapter 1, a contact record is nothing but

relating a Name entity with a Phone no. entity. Below there are some of the mathematical

statements demonstrating how we relate entities usually.

x , y, 10 20, 2 P N, 5 ¥ 5, N � Z, 10 kg � 4.5 lb,
?

2 � 1.414

In each of these statements a single symbol, used infix, expresses the relationship between the

quantities on either sides. These are examples of binary relations as they associate a pair of

objects.

8

Chapter 2. Mathematical Preliminaries 9

In mathematics the operation of Cartesian product forms ordered pairs from two sets of objects.

By the term “ordered” we mean that the first element of a pair comes from the first participating

set while the second from the second set. If A and B are two sets then their Cartesian product is

defined as

A� B � tpa, bq | a P A and b P Bu

In the contact list example below, although the Cartesian product of Name and Phone no. pro-

duces four pairs, only two of them state the relationship accurately. These are:

i. (John, +12222222222), and ii. (Kevin, +13333333333).

Name Phone no.

John +12222222222

Kevin +13333333333

Name = {John, Kevin}

Phone no. = {+12222222222,+13333333333}

Name� Phone no. = { (John, +12222222222), (John, +13333333333), (Kevin, +12222222222),

(Kevin, +13333333333)}

Therefore, a binary relation R between two sets A and B can be defined in either of the following

two ways.

1. As a subset of Cartesian product: R � A� B.

It means that R contains only those ordered pairs that have the association induced by R.

If we think of R as contact records in our example, i.e., R � Name� PhoneNo., then we

get the following.

R = {(John, +12222222222), (Kevin, +13333333333)}

It is well-known that power set of a set consists of all the possible subsets. Therefore,

there might be as many as 2|A|�|B| different binary relations from A to B.

2. As a Boolean function: R : A� B Ñ B where B � ttrue, f alseu.
This notation maps an ordered pair pa, bq to true if it is related by R, otherwise it is mapped

to f alse. Such a function is called the characteristic function of the set. Therefore, a pair

pa, bq has a membership degree of true if pa, bq P R, f alse otherwise.

Name�Phone no.

(John, +12222222222)

(John, +13333333333)

(Kevin, +12222222222)

(Kevin, +13333333333)

{true,false}

true

false

Chapter 2. Mathematical Preliminaries 10

We call A the source of R and B, the target. So, we write R : A Ñ B. To express the fact that

an a P A is related to some b P B by R, we simple write aRb. To visualize relations we would

prefer to use matrices as in [27]. In such a matrix source elements are set to the labels of rows

and those from the target set are used as column-labels. An entry at row a and column b is 1 if

aRb, otherwise it is a 0.

� �12222222222 �13333333333

John 1 0

Kevin 0 1

�

The domain of a relation R : A Ñ B is the set ta P A | Db P B : Rpa, bqu [31]. Dually, the

codomain or range or image of R is the set tb P B | Da P A : Rpa, bqu.

Note that the Cartesian product is not associative, neither commutative. It means that for any

sets A, B, and C

• Non-associativity: pA � Bq � C , A � pB � Cq, but these two products are related by

a bijective function which means that they are isomorphic. We will define bijection and

isomorphism later in this chapter.

• Non-commutativity: A� B , B� A.

All the relations we have used so far associate elements from two different sets, thus called het-

erogeneous binary relations. An special version of this relates elements within a single set, i.e.,

homogeneous. As an example consider the set of divisors of 24 which is t1, 2, 3, 4, 6, 8, 12, 24u.
The divisibility relation p|q on this set could be represented as follows.

�
�����������

1 2 3 4 6 8 12 24

1 1 1 1 1 1 1 1 1
2 0 1 0 1 1 1 1 1
3 0 0 1 0 1 0 1 1
4 0 0 0 1 0 1 1 1
6 0 0 0 0 1 1 1 1
8 0 0 0 0 0 1 0 1

12 0 0 0 0 0 0 1 1
24 0 0 0 0 0 0 0 1

�
����������

Figure 2.1: Divisibility relation on the divisors of 24

From the above matrix it is evident that the divisibility relation p|q is included in the smaller

than or equal p¤q relation, i.e., | �¤. Note that we use � for inclusions on relations whereas �
denotes inclusions on sets. For definition of �, please refer to the next section.

Chapter 2. Mathematical Preliminaries 11

2.1.1 Set Theoretic Operations on Relations

Interpreting a relation R : A Ñ B as a subset of A�B implies that certain set-theoretic operations

be immediately applicable on relations as well. For demonstrating these operations we use sets

of prime and perfect numbers. Recall that a prime is a natural number greater than 1 that is

divisible by only 1 and itself. A perfect number, on the other hand, is characterized by the fact

that it is a positive integer for which the proper divisors add up to itself. It is also interesting to

remember the Euclid–Euler theorem that relates these two: if 2p � 1 is prime (also known as

Mersenne prime) for a prime p, then 2p�1p2p � 1q is an even perfect number. To keep it simple

for now we limit our first set A to the first, second, and fourth prime number and the second set

B to the first two perfect numbers. For relations, we assume R, S : A Ñ B to be the “divides” (|)
or “is a divisor of”, and the “smaller than or equal to” (¤) relations, respectively.

R �

�
���

6 28

2 1 1

3 1 0

7 0 1

�
�� and, S �

�
���

6 28

2 1 1

3 1 1

7 0 1

�
��

• Union: R\ S � tpa, bq P A� B | pa, bq P R or pa, bq P S u.

�
���

6 28

2 1 1

3 1 0

7 0 1

�
�� \

�
���

6 28

2 1 1

3 1 1

7 0 1

�
�� �

�
���

6 28

2 1 1

3 1 1

7 0 1

�
��

• Intersection: R[S � tpa, bq P A� B | pa, bq P R and pa, bq P S u.

�
���

6 28

2 1 1

3 1 0

7 0 1

�
�� [

�
���

6 28

2 1 1

3 1 1

7 0 1

�
�� �

�
���

6 28

2 1 1

3 1 0

5 0 1

�
��

• Complement: S � tpa, bq P A� B | pa, bq < S u.
It is clear from the above definition of S that S represents the “greater than” (¡) relation.

Note that the complement operation is involutory. In mathematics an involution is such a

Chapter 2. Mathematical Preliminaries 12

function if applied twice, produces the original information. This means that S = S .

S �

�
���

6 28

2 0 0

3 0 0

7 1 0

�
��

• Inclusion: R � S ðñ @a P A : @b P B : rpa, bq P R ùñ pa, bq P S s. Notice that this

property (R is included in S) is equivalent to R[S � H.

�
���

6 28

2 1 1

3 1 0

7 0 1

�
�� [

�
���

6 28

2 0 0

3 0 0

7 1 0

�
�� � H

Therefore, R is included into S . It entails from the fact that a divisor is always less than

or equal to a dividend.

• Empty or null relation (yAB): It is called the bottom relation from A to B as it doesn’t

associate an element of A with any element of B. Clearly the equality relation (�) between

the sets A and B as defined above produces the empty relation here as they do not have

any element in common.

• Universal relation (xAB): This is the largest relation from A to B and relates every element

of A with all the elements of B. This is why it is also know as the top relation from A to

B. In this particular example S as well as R \ S equals to xAB. Therefore, it is evident

that for any relation X : A Ñ B, X \ xAB = xAB.

2.1.2 Relational Operations

This section defines the characteristic operations of relations. These operations play vital roles

in almost any study on relations. For the demonstrations, we continue using the above example

and add the greatest common divisor (gcd) and least common multiple (lcm) of 6 and 28 as the

set C. We also define T : B Ñ C to be another instance of “divides” (|) or “is a divisor of”

relation.

T �
� 2 84

6 0 1

28 0 1

�

Chapter 2. Mathematical Preliminaries 13

• Converse or transpose: It converts R : A Ñ B into a relation from B to A such that

R` � tpb, aq P B� A | pa, bq P Ru. On an n � n matrix this operation simply exchanges

row- and column-labels and mirros the matrix-entries along the diagonal from upper left

to lower right. In our case R` means the ‘divides by‘” relation.

It is intuitive that the converse or transpose operation is involutory too, i.e., R`` = R.

In addition, the order of application of the two involutions (complement and converse)

doesn’t matter.

R` �
� 2 3 7

6 1 1 0

28 1 0 1

�
, R` �

� 2 3 7

6 0 0 1

28 0 1 0

�
, and R

` �
� 2 3 7

6 0 0 1

28 0 1 0

�

• Composition or multiplication: The composition of R : A Ñ B and T : B Ñ C is another

relation defined by

R; T � tpa, cq P A�C | Db P B : pa, bq P R and pb, cq P Tu

�
���

6 28

2 1 1

3 1 0

7 0 1

�
��;

� 2 84

6 0 1

28 0 1

�
�

�
���

2 84

2 0 1

3 0 1

7 0 1

�
��

Note that for two relations to be composable, the target of the first relation should be

the same as the source of the second relation. In this example, one can easily reason

about the composition as, “a divides b” and “b divides c” eventually mean that “a divides

c”. Throughout our study we write R; T to indicate that we first apply R and then T .

There are left and right unit relations that act as the unit elements for composition. For

R : A Ñ B, the unit relations are IA and IB such that IA; R � R; IB � R. These are

also known as identity relations and they relate every element to itself, i.e., for example,

IA � tpa, aq | a P Au [31].

IA �

�
���

2 3 7

2 1 0 0

3 0 1 0

7 0 0 1

�
��and IB �

� 6 28

6 1 0

28 0 1

�

Note that identity relations are always of the form n � n while visualized as matrices

with all diagonal entries being 1 along top-left to bottom-right. In case of the source of R

above, which is t2, 3, 7u, IA is 3� 3 diagonal matrix.

Composition has certain properties which are important in the calculus of relations. For

X : D Ñ E, Y : E Ñ F, W : D Ñ F, and Z : F Ñ G,

Chapter 2. Mathematical Preliminaries 14

– Composition is associative, i.e., pX; Yq; Z � X; pY; Zq, but not commutative, i.e.,

X; Y , Y; X.

– The converse of X; Y is given by pX; Yq` � Y`; X`.

– Taraski rule: For all X , yDE , xDD; X;xEE = xDE .

– Schröder equivalences: It depicts the interaction between composition, converse,

and complement, with respect to containment [28].

X; Y � W ðñ X`; W � Y ðñ W; Y` � X.

– Dedekind rule: This is a variant of Schröder equivalences and does not involve com-

plements.

X; Y [W � pX [W; Y`q; pY [X`; Wq.

The proofs are trivial and could be found in any book on relation algebra including [27]

and [28]. From now on we omit the indices of x, y, and I if those are clear from the

context.

2.1.3 Composite Operations on Relations

These operations are derived from the above operations and yield useful results in our study. As

composition is also known as multiplication, it is worth asking if there exists a quotient of one

relation with respect to another like in the case of usual multiplication, for instance, 2 � x � 6

entails x � 3. This is why, the operations of residuals are defined. Since composition is not

commutative, we have two residuals, left residual and right residual. For the demonstrations,

we use the following sets of prime numbers (A and C) and perfect numbers (B and D).

A � t2, 3, 5u, B � t7, 11u, C � t6, 28u, D � t496, 8128u

We define three relations R : B Ñ C, S : A Ñ C, and T : A Ñ D, all representing the “divide”

relation between different sets of numbers.

R �
� 6 28

7 0 0

11 0 0

�
, S �

�
���

6 28

2 1 1

3 1 0

5 0 0

�
��, and T �

�
���

496 8128

2 1 1

3 0 0

5 0 0

�
��

• Left residual: The left residual of two relations R : B Ñ C and S : A Ñ C (S over R),

both having the same range, is defined as S {R � S ; R` [31]. Component wise,

S {R � tpa, bq | @c : Rpb, cq ùñ S pa, cqu

Chapter 2. Mathematical Preliminaries 15

.

R` �
� 7 11

6 0 0

28 0 0

�
, S �

�
���

6 28

2 0 0

3 0 1

5 1 1

�
��, S ; R` �

�
���

7 11

2 0 0

3 0 0

5 0 0

�
��

Therefore, S {R � S ; R` �

�
���

7 11

2 1 1

3 1 1

5 1 1

�
��

Note that S {R is the largest of all relations X : A Ñ B such that X; R � S . In our

example, the left residual S {R : A Ñ B relates two numbers from t2, 3, 5u and t7, 11u
if every perfect number from t6, 28u that can be divided by the first number can also be

divided by the second.

• Right residual: The right residual of S : A Ñ C over T : A Ñ D, having identical source,

is another relation defined as TzS � T`; S . We define TzS componentwisely as follows

TzS � tpd, cq | @a : T pa, dq ùñ S pa, cqu

T` �
� 2 3 5

496 1 0 0

8128 1 0 0

�
, S �

�
���

6 28

2 0 0

3 0 1

5 1 1

�
��, T`; S �

� 6 28

496 0 0

8128 0 0

�

Therefore, TzS �
� 6 28

496 1 1

8128 1 1

�

One can easily verify that the residual TzS : D Ñ C in our example, relates a perfect

number from t496, 8128u to another from t6, 28u if every prime number of t2, 3, 5u that

divides the first also divides the second.

It is to be noted that, TzS � S `{T``.

2.1.4 Properties of Relations

Relations can be distinguished by the properties they may satisfy. For example, the relation of

“smaller than or equal to” (¤) holds for any two consecutive numbers x, y P Z, while “smaller

than” () does not. Again, a number can be associated to more than one number in terms of

divisibility while a person can be attached to exactly one other person on paternal relationship.

Chapter 2. Mathematical Preliminaries 16

Among the different properties of relations, important are those that connects to ordering and to

functions [27]. Our research requires some of these properties to be explored in details. Note that

these include properties like reflexivity, symmetry, and transitivity, that apply to homogeneous

relations only. We start with the following “divides” relations of arbitrary integers as examples.

For clarity, we define their source and target as P : A Ñ B, Q : C Ñ D, and R : A Ñ E.

P �

�
���

25 26 27

2 0 1 0

3 0 0 1

5 1 0 0

�
��, Q �

� 28 29

7 1 0

11 0 0

�
, R �

�
���

30 31 32 33

2 1 0 1 0

3 1 0 0 1

5 1 0 0 0

�
��

• Univalent relation: A relation S : G Ñ H is univalent if it associates an element of the

source to at most one element of the target. Mathematically, S is univalent iff

@g P G : @h1, h2 P H : pgS h1 and gS h2q ùñ h1 � h2

In the contact list example, a phone number is held by exactly one person, thus forming a

univalent relation. Clearly P is univalent here. The univalency property of S is equivalent

to S `; S � IH . For the above relation P, we have

P` �

�
���

2 3 5

25 0 0 1

26 1 0 0

27 0 1 0

�
��and P`; P �

�
���

25 26 27

25 1 0 0

26 0 1 0

27 0 0 1

�
�� � IB.

Similarly, Q is also univalent while R is not.

Q`; Q �
� 28 29

28 1 0

29 0 0

�
� ID, and R`; R �

�
������

30 31 32 33

30 1 0 1 1

31 0 0 0 0

32 1 0 1 0

33 1 0 0 1

�
����� @ IE

Univalent relations are also known as partially defined functions as there might be source

elements which are related to none of the target elements. Note that some of these results,

R`; R for instance, might seem to make no sense in regard to the original “divides” relation

at the first sight. But, all of these actually have an intuitive interpretation. For example,

a 1 at px, yq P pR`; Rq indicates whether x and y share a divisor or not. It is clear that

30 has a common divisor with each of t30, 32, 33u. However, we will skip any future

interpretation of this kind as they are not important to the contexts.

Chapter 2. Mathematical Preliminaries 17

• Injective relation: A relation is said to be injective iff the converse is univalent. Here, P

and Q are injectives as both P` and Q` are univalent. However, R is not injective as 30

has more than one image in R`.

R` �

�
������

2 3 5

30 1 1 1

31 0 0 0

32 1 0 0

33 0 1 0

�
�����, and Q` �

� 7 11

28 1 0

29 0 0

�

• Total relation: A relation S : G Ñ H is total if each of its source-element is associated

with at least one element from the target. From [27],

S total : ðñ @g P G, Dh P H : gS h

This property is equivalent to IGG � S ; S ` [31]. Clearly, in our example, P and R are total

while Q is not.

R; R` �

�
���

2 3 5

2 1 1 1

3 1 1 1

5 1 1 1

�
��� I and Q; Q` �

� 28 29

28 1 0

29 0 0

�
A I

• Surjective relation: A relation is surjective iff its converse is total. Here P is surjective.

However, neither Q, nor R is surjective as 31 in R` and 29 in Q` are not related to any of

their target elements, respectively.

• Bijective relation: A relation is called a bijective if it is both injective and surjective. In

our example, only P is bijective.

• Mapping: A relation which is total and univalent is called a mapping. One may easily find

that P defined above is a mapping.

Note that relations have the flexibility of being able to express more things than functions

or mappings do. This is because a relation may assign zero, one, or more values to a

member of the source. As a result, it appears to be a better mathematical tool to apply to

numerous applications.

• Vector and point: These relations provide a way to correspond to an element or a subset

of elements [27]. Thus we denote them by lower case letters. In our study these are par-

ticularly useful in selecting tuples from a database table that satisfy certain condition(s).

Chapter 2. Mathematical Preliminaries 18

A relation v : G Ñ H � tpg, hq | h P Hu � G�H is a vector if it is column-constant, i.e.,

v � xGG; v.

As in the definition, a vector makes only the first element of the pairs conditional and thus

provides a way to characterize a subset of the source set. Since the source of a vector

is not important, one often chooses a singleton set 1 � t�u and uses that in the right

example. For instance, if we are interested in the entries for 32 and 33 in R above, then

the corresponding vector would be

v : A Ñ E �

�
���

30 31 32 33

2 0 0 1 1

3 0 0 1 1

5 0 0 1 1

�
�� or simply

� 30 31 32 33

t�u 0 0 1 1
	

Notice that, for any relation S : G Ñ H, pS ;xHHq` and xGG; S are the two vectors that

define the domain and the range of S respectively. At the end of this section we will see

an example for that.

A single element within a set, on the other hand, can be interpreted by a point relation.

Mathematically, a relation p : G Ñ H � tpg, hq | h P Hu � G � H is a point if it is

– column-constant, i.e., p � xGG; p.

– univalent, i.e., p`; p � IHH .

– total, i.e., IGG � p; p`.

A point relation corresponding to 32 in R is given by

p : A Ñ E �

�
���

30 31 32 33

2 0 0 1 0

3 0 0 1 0

5 0 0 1 0

�
�� which is equivalent to

� 30 31 32 33

t�u 0 0 1 0
	

As a short representation of the usage of vector and point relations in our work, we borrow

the example of student-marks from Chapter 1. Our interest here is to know the name of

the students who scored 70 and above. Figure 2.2c shows the corresponding vector for

this.

Now we apply this vector to S by evaluating v; S `. The result below shows that both Peter

Chapter 2. Mathematical Preliminaries 19

Name Marks
Russel 62
Peter 95
Andy 46
James 75

(a) A tabular relation S

�
���

62 95 46 75

Russel 1 0 0 0
Peter 0 1 0 0
Andy 0 0 1 0
James 0 0 0 1

�
��

(b) Matrix representation of S

� 62 95 46 75

t�u 0 1 0 1
�

(c) A vector v

Figure 2.2: Example of a vector relation

and James obtained 70 or more in that course.

� 62 95 46 75

0 1 0 1
	

;

�
������

Russel Peter Andy James

62 1 0 0 0

95 0 1 0 0

46 0 0 1 0

75 0 0 0 1

�
������

� R. P. A. J.

0 1 0 1
	

• Reflexivity: A homogeneous relation T : A Ñ A is said to be reflexive if each element of

A can be associated to itself by T , i.e., aTa for all a P A. Thus, T being reflexive indicates

that I � T . The “divides” relation is reflexive on Z as any integer divides itself. We define

irreflexive relations to be relations in which no element is related to itself. Therefore,

irreflexive relations are, by definition, not reflexive, but not all non-reflexive relations are

irreflexive. The “smaller than” () relation on Z is irreflexive as an integer x cannot be

smaller than itself. In our example above, P and Q are not reflexive, R, however, is neither

reflexive nor irreflexive. If a relation T is irreflexive, then T � I. To summarize these, we

include three relations in the following figure which are reflexive, irreflexive, and none of

them, from left to right.

�
���

1 1 0

0 1 1

1 0 1

�
��
�
���

0 1 0

1 0 1

0 1 0

�
��
�
���

0 1 1

1 0 1

0 0 1

�
��

• Symmetry: A homogeneous relation T : A Ñ A is symmetric if a1Ta2 implies a2Ta1 for

all a1, a2 P A. It can easily be shown that both � and , are symmetric. For a symmetric

relation T , T` � T . Relations which are not symmetric may satisfy one of the following

properties [27]. T : A Ñ A is

– asymmetric iff @a1, a2 : pa1, a2q P T ùñ pa2, a1q < T . If T is asymmetric, then

T [T` � y.

– antisymmetric means that @a1, a2 : a1 , a2 ùñ tpa1, a2q < T or pa2, a1q < Tu.
Antisymmetry in T entails that T [T` � I.

Chapter 2. Mathematical Preliminaries 20

In the following figure, the left relation is asymmetric while the one on the right is anti-

symmetric.

�
���

0 1 0

0 0 1

1 0 0

�
��
�
���

0 0 0

1 1 0

0 1 0

�
��

• Transitivity: This property is useful in defining ordering and equivalence relations. A

homogeneous relation T : A Ñ A is transitive, for any a1, a2, a3 P A, if a1 is related to a2

and a2 is related to a3, then a1 is also related to a3. Mathematically, T is transitive if and

only if

@a1, a2, a3 P A : tpa1, a2q P T and pa2, a3q P Tu ùñ pa1, a3q P T

The “divides” relation on Z is transitive as because whenever x divides y and y divides z,

then x also divides z. For any transitive relation T , T ; T � T .

Having defined the above operations and properties of relations, one could easily verify that the

domain and the codomain of a relation R : A Ñ B are given by the vectors [27]

dompRq � pR;xBq` and codpRq � xA; R

R �

�
���

6 28

2 1 1

3 1 0

5 0 0

�
��, R;xB �

�
���

6 28

2 1 1

3 1 0

5 0 0

�
��;

� 6 28

6 1 1

28 1 1

�
�

�
���

6 28

2 1 1

3 1 1

5 0 0

�
��

dompRq � pR;xBq` �
� 2 3 5

6 1 1 0

28 1 1 0

�
which is equivalent to

� 2 3 5

t�u 1 1 0
	

codpRq � xA; R �

�
���

2 3 5

2 1 1 1

3 1 1 1

5 1 1 1

�
��;

�
���

6 28

2 1 1

3 1 1

5 0 0

�
���

�
���

6 28

2 1 1

3 1 1

5 1 1

�
��

or equivalently, codpRq �
� 6 28

t�u 1 1
	

Considering the differences between relations and functions or mappings, one usually intends

to know which of the source elements are assigned which and how many of the values on the

target side. This can be done by determining the univalent and the multivalent part of a relation.

Chapter 2. Mathematical Preliminaries 21

For any arbitrary relation R, the univalent part (unp) and the multivalent part (mup) is given by

[28]

unppRq � R[R; I � R[R`zI and muppRq � R[R; I

�
�

6 28

2 1 1
3 1 0
5 0 0

�

(a) R

� 6 28

6 0 1
28 1 0

(b) I

�
�

6 28

2 1 1
3 0 1
5 0 0

�

(c) R; I

�
�

6 28

2 0 0
3 1 0
5 0 0

�

(d) unppRq

�
�

6 28

2 1 1
3 0 0
5 0 0

�

(e) muppRq

Figure 2.3: Univalent and multivalent part of a relation

Therefore, every relation splits into its univalent and multivalent parts which results in a disjunc-

tion [28]

R � unppRq \ muppRq, unppRq [muppRq � y

2.2 Orders and Lattices

Ordering appears commonly in various contexts of real life. For example, comparing things is

very usual while buying something so that someone gets the best-match. Chapter 1 included

such an example that explained the concepts behind contrasting goods from an order theoretic

view point. In mathematics, order theory provides an algebraic way to look into orders using

binary relations. In our research, order relations and lattices form the basis for working with

database relations and interpreting their various operations. In this section, we investigate partial

orderings and lattices in greater depth. However, we would like to start with the definition of

equivalence relations and splittings.

2.2.1 Equivalence Relation, Quotient Set, and Splitting a Relation

In a number of situations we have objects that exhibit similar behaviours under certain relations.

In the matrix representation of such a relation, objects own identical rows. These objects can be

considered equivalent although they are different individuals. Such a group of object is called a

equivalent class. One can choose an arbitrary object from a equivalent class as the representative

and apply the operations of partially ordered relations. Now we formalize equivalent relation

and equivalent classes mathematically.

A homogeneous relation Ξ : A Ñ A is said to be an equivalence if Ξ is reflexive (I � Ξ),

transitive (Ξ; Ξ � Ξ), and symmetric (Ξ` � Ξ).

Chapter 2. Mathematical Preliminaries 22

If we make this definition flexible by removing the constraint for Ξ being reflexive, then Ξ

becomes a partial equivalent relation.

�
���

a b c d

a 1 1 0 0
b 1 1 0 0
c 0 0 1 1
d 0 0 1 1

�
��

(a) A equivalence relation

�
���

a b c d

a 1 1 0 0
b 1 1 0 0
c 0 0 1 0
d 0 0 0 0

�
��

(b) A partial equivalence re-
lation as pd, dq < Ξ

Figure 2.4: Equivalence relations

An equivalence relation Ξ on a set A yields a partitioning of A into equivalence classes [28]. We

recall the definition of a partition on A to be a collection of non-empty disjoint subsets of A, i.e.,

Ai X A j � H for i , j, and
�

1¤i¤n Ai � A.

Now, the equivalence class of any element a P A with respect to a equivalence relation Ξ is

the set of b P A such that pa, bq P Ξ. The set of all equivalence classes on A is called the

quotient set and is denoted by A{Ξ. For example, the quotient sets for the above two matrices

are tta, bu, tc, duu and tta, bu, tcuu respectively.

Given an equivalence relation Ξ : A Ñ A, a set B together with a relation R : B Ñ A is called

a splitting of Ξ if and only if R; R` � IB and R`; R � Ξ. As an example, consider Ξ to be the

second relation in Figure 2.4, B � tta, bu, tcuu which is the quotient set on A, and R be the

relation that relates an equivalence class to all elements it contains.

R; R` �
� a b c d

ta,bu 1 1 0 0

tcu 0 0 1 0

�
;

�
������

ta,bu tcu

a 1 0

b 1 0

c 0 1

d 0 0

�
������

� ta,bu tcu

ta,bu 1 0

tcu 0 1

�
� IB

R`; R �

�
������

ta,bu tcu

a 1 0

b 1 0

c 0 1

d 0 0

�
�����;

� a b c d

ta,bu 1 1 0 0

tcu 0 0 1 0

�
�

�
������

a b c d

a 1 1 0 0

b 1 1 0 0

c 0 0 1 0

d 0 0 0 0

�
������ Ξ

The operations above clearly state that R splits Ξ into equivalence classes by removing the

duplicated and the zero rows.

Chapter 2. Mathematical Preliminaries 23

2.2.2 Partial Order and Total Order

Consider the set of divisors of 8 which is t1, 2, 4, 8u. The elements of this set can be compared

on the basis of divisibility (|). By comparing two numbers x and y in our set t1, 2, 4, 8u we

recognize that either x|y or y|x. Therefore, (t1, 2, 4, 8u, |) is said to be a total or linear order as

it contains comparable elements only. On the other hand, the set of divisors of 6, i.e., t1, 2, 3, 6u
includes incomparable elements. This is because neither 2|3, nor does 3|2. Thus, we cannot

arrange them to form a total order on |, therefore, (t1, 2, 3, 6u, |) is a partial order. Such a set

is called a partially ordered set or poset. We use the symbol ¤ to denote both partial and total

orders. At this point, we give the formal definition of these orders.

As defined in [31], a pair (P, ¤) consisting of a set and a binary relation on it is a partially

ordered set or poset if

• ¤ is reflexive, i.e., x ¤ x for all x P P,

• ¤ is transitive, i.e., if x ¤ y and y ¤ z, then x ¤ z for all x, y, z P P, and

• ¤ is antisymmetric, i.e., if x ¤ y and y ¤ x, then x � y for all x, y P P.

Given a set P, an order on it, expressed as , is said to be strict if

• is transitive, i.e., if x y and y z, then x z for all x, y, z P P, and

• is asymmetric, i.e., @x, y P P : x y ùñ y ≮ x

Now, an order E is said to be total if E\E` � xwhereas a strict order C is total if C\C`\I �
x. Notice that every partial order induces a strict order and vice versa.

The power set of any set together with the order of inclusion is a good example of poset. This

means that, for the set ta, bu, (tH, tau, tbu, ta, buu,�) is a poset as tau * tbu and tbu * tau,
i.e., tau and tbu are incomparable. As an example of totally ordered set, on the other hand,

we can think of the unit interval of real numbers which is used as the range of the membership

function in fuzzy sets. That is, r0, 1s � tx P R | 0 ¤ x ¤ 1u [31] together with the relation of

“less than or equal to” (¤) is a total order.

2.2.3 Hasse Diagram

In most situations having a diagrammatic representation of finite ordered sets aids in investigat-

ing their properties. Hasse diagram is such a handy tool named after the German mathematician

Helmut Hasse.

Chapter 2. Mathematical Preliminaries 24

In a Hasse diagram, each element of the ordered set is represented by a node and its immediate

successors are placed above the node and connected to it by line segments or curves. This is

why Hasse diagrams are also known as upward drawings. A Hasse diagram does not include

any transitive relationship between the nodes, i.e., if x ¤ z, then there is no node y such that

x ¤ y ¤ z. Figure 2.5 shows the Hasse diagrams of a partial order and a total order.

ta, b, cu

tb, cu ta, bu ta, cu

tbu tcu tau

H
(a) A poset (Ppta, b, cuq,�)

8

4

2

1

(b) A strict order (t1, 2, 4, 8u, |)

Figure 2.5: Two Hasse diagrams

2.2.4 Lower and Upper Bounds: Meet and Join

While dealing with an ordering, we usually become interested in knowing the greatest and the

smallest element in the corresponding set. It becomes even more important while dealing with

partial orderings as they might contain incomparable elements. However, things become differ-

ent for orderings which are not finite. Here we focus on the lower and upper bounds of partial

orders.

Let pP,¤q be a partial order and an arbitrary subset Q � P.

An element m P Q is a maximal element of Q if no other element in Q is strictly greater than m,

i.e., @n P Q� tmu : m ≮ n.

An element m P Q is a minimal element of Q if no other element in Q is strictly smaller than m,

i.e., @n P Q� tmu : n ≮ m.

These definitions apply to strict orders too as because all strict orders are essentially posets. In

the following figure, (a) is the poset pt1, 2, 3, 4, 6, 8, 12, 24u, |q in which t1, 2, 3u has a minimal

element 1 but two maximal elements, 2 and 3. However, the subset t2, 4, 8u has a minimal

element 2 and a maximal element 8. The poset in Figure 2.6b contains two minimal elements, 2

and 3, and three maximal elements, 8, 12, and 9. The strict order in Figure 2.6c, however, has a

minimal and maximal element for any subset.

This is clear that a subset of a partial order can have 0, 1, or more maximal as well as minimal

elements. However, in our study we are interested in posets which have only one maximal or

minimal elements. This maximal element is then called the maximum or greatest element as it is

Chapter 2. Mathematical Preliminaries 25

24

8 12

4 6

2 3

1

(a) divisors of 24

8 12

4 6 9

2 3

(b) (t2, 3, 4, 6, 9, 8, 12u, |)

8

4

2

1

(c) (t1, 2, 4, 8u, |)

Figure 2.6: Maximal and minimal elements of posets

larger than any other element in the poset. Dually, a poset P with exactly one minimal element

m is said to have a minimum or least element as because for all n P P, m ¤ n.

Therefore, the maximum and the minimum elements of a poset are unique, if they exist. In our

study, we respectively use 0 and 1 to express the least and the greatest elements of partial orders.

It is evident that, t1, 2, 3u in Figure 2.6a has the minimum element 1, but no maximum element

as none of the maximal elements 2 and 3 greater than the other. However, for the whole poset

in the same figure, 24 and 1 are the greatest and the least element, respectively. The poset in

Figure 2.6b has neither a maximum, nor a minimum element. It is easy to recognize that all

strict orders like the one in Figure 2.6c include greatest and least elements.

It can also be seen from Figure 2.6 that, for a subset Q � P, the superset P might contain an

element m which is strictly greater or smaller than all elements of Q. For example, although the

subset t1, 2, 3u in (a) doesn’t include a maximal element that belong to itself, each number of

t6, 12, 24u can be thought of as a maximal for it. Thus, we generalize the concept of maximal

and minimal elements to upper and lower bounds by letting a maximal element be outside of a

subset.

An element u P P is an upper bound of the set Q � P if @q P Q : q ¤ u.

An element l P P is an lower bound of the set Q � P if @q P Q : l ¤ q.

Therefore, t2, 4, 8u in Figure 2.6a has two upper bounds, 8 and 24, and two lower bounds, 2 and

1. However, t4, 6u in Figure 2.6b has only one upper bound and one lower bound which are 12

and 2, respectively.

Apart from this, we can compute the upper bounds and lower bounds for each row of a relation

by using residuals. That is, for a given relation R : A Ñ B with ordering E, the set of upper

bounds (ubd) and lower bounds (lbd) are given by

ubdEpRq � R`zE and lbdEpRq � R`zE`

Chapter 2. Mathematical Preliminaries 26

In order to demonstrate the calculation of upper bounds, we use the divisibility relation in Figure

2.1 (Hasse diagram is given in Figure 2.6a) as the order E and define R to be the relation in

Figure 2.7. Notice that each of the four rows of R indicates the numbers that we are interested

to compute the upper bounds of. For example, in the second row we compute the upper bounds

for 2, 3, and 4. As given in the resultant matrix, one could easily verify with Figure 2.6a that the

upper bounds of 2, 3, and 4 are 12 and 24.

R �

�
���

1 2 3 4 6 8 12 24

0 0 1 0 0 1 0 0
0 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0

�
��

ubdEpRq � R`zE � R``; E � R; E �

�
���

1 2 3 4 6 8 12 24

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 1

�
��

Figure 2.7: Calculating upper bounds for each row of a relation

It is evident from the above examples that some set might have more than one upper bounds or

lower bounds. At this point we therefore define the least upper bound and the greatest lower

bound for sets.

An upper bound a of Q is the least upper bound or supremum or join of Q if only if, for any

upper bound b of Q, we have a ¤ b, i.e., the minimum element in the set of upper bounds. We

write this as a ��Q.

Dually, a lower bound a of Q is the greatest lower bound or infimum or meet of Q if only if, for

any upper bound b of Q, b ¤ a. It is written as a ��Q.

However, for a subset tx, yu � Q, we write x_ y and x^ y to express respectively, the join and

meet of x and y.

In the first poset of the following figure, the upper bounds of ta, b, cu is the set td, f , h, iu and

its only lower bound is a. It is more than evident that d is strictly smaller than any other lower

bound in the set, so it is the least upper bound or join of ta, b, cu. At the same time, its only

lower bound a is the greatest lower bound or meet. Looking at the partial order in 2.8b, we find

that 8 ^ 10 � 2, 9 _ 4 � 0,
�t6, 10, 11u � 1, etc. On the right poset of Figure 2.8, tu, vu has

two upper bounds, x, and z. Since x ¤ z, therefore, the join for tu, vu is x. However, it doesn’t

have a meet.

Note that, the left poset of Figure 2.8 has a least element a, two maximal elements h and i, but

neither h ¤ i, nor i ¤ h, therefore, none of them is the maximum. But, the ordering on the

Chapter 2. Mathematical Preliminaries 27

middle has a greatest element 0 as well as a least element 1. Finally, the partial order on the

right has neither a greatest element, nor a least element.

h i

f g

d e

b c

a

(a) a poset

0

12 8

9 6 4 10

3 2 5 7 11

1

(b) divisibility on r0 . . . 12s

y z

w x

t u v

q r s

p

(c) another poset

Figure 2.8: Meet and join on posets

2.2.5 Lattices

Lattices constitute a particular class of partially ordered sets that has been found very useful

in different branches of mathematics including logic, topology, algebra, and so on. In fact, the

study of lattices was brought to life by Richard Dedekind more than a hundred of years ago

when he published two fundamental papers on this theory [20, 25]. However, it was given a

huge boost by a series of papers from Garrett Birkhoff who then wrote a textbook in 1940 [3].

A poset pL,¤q is a lattice if for every two-element subset there exists a greatest lower as well

as a least upper bound, i.e., @a, b P L, a_ b and a^ b exist [6, 27].

A lattice in which any subset has a least upper and a greatest lower bound is called a complete

lattice. Evidently every complete lattice has a least element 0 and a greatest element 1 with

0 ��L ��H and 1 ��L ��H [31].

It is sometimes useful to define a lattice in terms of semilattices. A lower semilatticeL is a poset

for which every pair of elements x and y has a greatest lower bound or meet, x ^ y. It is called

complete iff every subset M , H of L has a meet denoted by
�

M. Dully, we define L to be

a complete upper semilattice iff every nonempty subset M � L has a least upper bound or join

denoted by
�

M. It is evident that a complete lower semilattice has a least element 0 � �L
while a complete upper semilattice has a greatest element 1 ��L. Finally, a poset is a lattice

if it is both a lower semilattice and upper semilattice with respect to the same partial order.

There are four posets in the following figure out of which only the second one is not a lattice.

This is because, in the Figure 2.9b, although tx, yu has three lower bounds, u, v, and w, none of

them is greater than the other two. Therefore, tx, yu does not have the greatest lower bound or

meet. Similarly, tv,wu does not have a join.

Chapter 2. Mathematical Preliminaries 28

30

6 10 15

2 3 5

1

(a) divisors of 30

z

x y

v w

u

(b) a poset

e

d

b c

a

(c) a lattice

1

c

a b

(d) an upper semilattice

Figure 2.9: Lattice examples

Notice that for a lattice L, _ and ^ are the two characteristic binary operations that map L2

(L�L) to L. They satisfy the following axiomatic identities [6]

• Idempotency: a_ a � a,

a^ a � a

• Commutativity: a_ b � b_ a,

a^ b � b^ a

• Associativity: pa_ bq _ c � a_ pb_ cq,
pa^ bq ^ c � a^ pb^ cq

• Absorption: a_ pb^ cq � a,

a^ pb_ cq � a

Therefore, a lattice (L,¤) is equivalent to the algebra (L;^,_) iff L is nonempty with a ¤
b ðñ a ^ b � a [6]. This entails that the axioms for idempotency are redundant above as

a ¤ a implies a_ a � a^ a � a.

In our study, as we would see, we need the lattices to be bounded and distributive. However,

these two properties are generally used to distinguish between lattices of different kinds.

2.2.5.1 Distributive lattice

In many lattices, the meet and join operations behave analogous to the arithmetic multiplication

(*) and addition (+) operations where the first distributes over the later. So, we become interested

in the distributivity of one of these lattice operations on the other.

A lattice (L,^,_) is said to be distributive if, for any a, b, c P L, it satisfies the following [6]

a^ pb_ cq � pa^ bq _ pa^ cq
a_ pb^ cq � pa_ bq ^ pa_ cq

Chapter 2. Mathematical Preliminaries 29

36

12 18

4 6 9

2 3

1

(a) Divisors of 36

1

a

0

(b) r0 . . . 1s

1

a b c

0

(c) M3

1

a

c

b

0

(d) N5

Figure 2.10: Two distributive and two non-distributive lattices

A common example of distributive lattice is (Z�, |), i.e., the set of positive integers with the

greatest common divisor as the meet and the least common multiple as the join. It can be proved

intuitively that any chain is also distributive with the two functions of max and min being the join

and the meet, respectively. However, the lattices in Figure 2.10c and 2.10d are not distributive.

In fact, M3, the diamond lattice, is the simplest non-distributive lattice. In the pentagon lattice

N5, a^pb_cq � a^1 � a and pa^bq_pa^cq � b_0 � b, which proves its non-distributivity.

M3 and N5 are important in the study of lattices as they can be used to identify if an arbitrary

lattice is distributive: a lattice is distributive if none of its sublattices is isomorphic to M3 or N5.

We define a sublattice to be a nonempty subset M � L which itself is a lattice with the same

meet and join operations as L. This means that, for any a, b P M, we have a^ b and a_ b in M.

Two lattices L1 � pL1,¤q and L2 � pL2,¤q are said to be isomorphic [6], and the map

ϕ : L1 Ñ L2 is an isomporphism iff ϕ is a bijection and

a ¤ b in L1 iff ϕpaq ¤ ϕpbq in L2.

2.2.5.2 Bounded lattice

A lattice (L,^,_, 0, 1) is called a bounded lattice with the greatest and least element 1 and 0 if

for any a P L, a_ 0 � a and a^ 1 � a.

All the lattices in Figure 2.10 are bounded. However, as explained before, M3 and N5 are not

distributive.

Having defined bounded lattices, one might easily coincide this definition with that of a complete

lattice, but there are differences. Complete lattices require that for any subset M � L, we have�
M and

�
M. In the case of emptyset, every lattice element can be treated as a lower bound

as well as an upper bound. Therefore, for M � H,
�

M � 0 and
�

M � 1. As both complete

and bounded lattices include binary meet and join, complete lattices can thus be thought of a

special class of bounded lattices. Surely, there are bounded lattices which are not complete.

Chapter 2. Mathematical Preliminaries 30

At this point of our study, we become interested in defining complements for lattice elements

which yields useful results in lattice theory. We start with the definition of complements.

It is easy to recall that complement of a set, so of a relation, consists of those elements that it

does not include. If the universe of discourse is defined, then the computed complement is called

the absolute complement. However, the type of complement we are going to work on is known

as the relative complement as we calculate complement of an element relative to another.

As in [6], in a bounded lattice L, b is a complement of a iff

a^ b � 0, and a_ b � 1.

Generally, a lattice element might have zero or more complements. If every element of a

bounded lattice L has a complement, then it is called a complemented lattice. But if L is dis-

tributive, also called a bounded distributive lattice, then any element a P L can have at most one

complement [6]. For example, in Figure 2.10d, c has two complements, a and b. So, although

N5 is bounded, it is not distributive. In the bounded distributive lattice of Figure 2.9c, on the

other hand, none of b, c and d has a complement. Therefore, it is not complemented. However,

divisors of 30 in Figure 2.9a constitute a bounded distributive lattice which is complemented

too.

It is to be noted that in a bounded distributive lattice L, if b is a complement of a, then b is the

largest element x of L such that a ^ x � 0 [6]. More generally, let L be a lattice with 0; an

element a is a pseudocomplement of a (P L) iff a ^ a � 0, and a ^ x � 0 implies that

x ¤ a. There may be at most one pseudocomplement for an element. A lattice in which every

element has a pseudocomplement is called a pseudocomplemented lattice.

For x, y P L, the relative pseudocomplement of x in y is an element x Ñ y so that for all z P L

z ¤ x Ñ y ðñ x^ z ¤ y r31s

A lattice in which the relative pseudocomplement exists for every pair of elements is called a

Brouwerian lattice or a Heyting algebra [31]. However, it can be proved that every finite dis-

tributive lattice is a Brouwerian lattice. Heyting algebras, introduced by Arend Heyting (1930)

[13], are important in our study and would be used in Dedekind categories, an algebraic frame-

work for binary relations.

A bounded lattice L together with greatest and least element 1 and 0, and a binary implication

operationÑ forms a Heyting algebra iff for all x, y, z P L it satisfies the following axioms:

1. x Ñ x � 1

2. x^ px Ñ yq � x^ y

Chapter 2. Mathematical Preliminaries 31

3. y^ px Ñ yq � y

4. x Ñ py^ zq � px Ñ yq ^ px Ñ zq (Distributivity ofÑ)

As an example, we consider the lattice in 2.11a and compute the relative pseudocomplement

for each of its elements. However, for two relations, we calculate relative pseudocomplements

componentwise.

1

c

a b

0

(a) A Heyting algebra L

�
�����

0 a b c 1

0 1 1 1 1 1
a b b 1 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

�
����

(b) x Ñ y for all x, y P L

Figure 2.11: Relative pseudocomplement

2.3 Fuzzy Sets and Relations

The word “fuzziness” means the ambiguity that one can find in the definition of something. For

example, “low pressure”, “small fish”, “tall building”, etc. are some common phrases that have

uncertainty included in their definitions. As mentioned in Chapter 1, we use the term “linguistic

label” to refer to these phrases. Note that this type of uncertainties are different than probabilities

as the former do not depend on the occurrence of phenomena or some particular tests [30].

Feeling the essence of a new mathematical theory for dealing with such vagueness in infor-

mation, Lotfi A. Zadeh in 1965 [36] introduced the concepts of fuzzy sets and relations. This

theory defines a mathematical grade for each element from the unit interval r0 . . . 1s to which an

element is included in a set. The function that produces the degrees is called the characteristic

or membership function. Contrast to classical sets, fuzzy sets thus provide a convenient way of

dealing with situations where the we require to define memberships more general than a simple

true or false. Therefore, as mentioned in Chapter 1, a fuzzy set thus generalizes the concept of

classical sets by replacing the bivalent target of its membership function χB : A Ñ B by the real

interval r0 . . . 1s. Mathematically, a fuzzy set A over a universe of discourse X (finite or infinite)

is a set of pairs [8]

A � tχApxq{x : x P X, χApxq P r0 . . . 1s � Ru

If χApxq � 1 for some x, then it is called a full member of X. A degree of 0, on other hand,

indicates that x does not belong to X at all. As an example, we continue using from Chapter

1, the problem of modelling memory sizes of cell phones by a fuzzy set in order to find a

Chapter 2. Mathematical Preliminaries 32

“good” match. However, in order to make the example more realistic, we would like add a

few more performance factors that affect customers’ choices of cell phones. These include

processor speed, screen size, battery life, and camera resolution. We write the set of factors

as Z � tprocessor,memory, screen, battery, camerau. One could easily notice that each of

these factors has tradeoffs between customer’s satisfaction and the associated cost. In addition,

each factor has its own benefits and disadvantages from a customer’s view point. For example,

usually the faster the processor of a phone, the more power it consumes; although larger screens

produce better view but drain the battery quickly and also make it difficult to handle the phone;

the capacity of a battery more or less affects its size, and so on. We say that a phone is good for

a customer if he/she rate it 80 or more for each of the these factors. Therefore, it is reasonable to

view a cell phone as a vector where the components are ratings for the factors. Thus, selecting

a “good” cell phone is a optimization problem where someone needs to select a phone that

best meets his/her requirements. A characteristic function to evaluate such a set of cell phones

against a specific factor might be

χgoodpphoneq �
#

1 iff x f actor ¡� 80,
x f actor

80 otherwise

It is often useful to visualize a fuzzy set by trapezoidal diagram. Figure 2.12 depicts such a

diagram for the above function. It is clear that the “goodness” of a cell phone increases as its

score approaches 50 at which point it gains a membership degree of 1. Note that each of these

factors could actually be represented by a distinct fuzzy set in a real world application.

Rating

χ

0

1

80 100
Universe of Discourse

Figure 2.12: Trapezoidal fuzzy set defining “good” cell phones

If X � tBrand1, Brand2, Brand3, Brand4u be the set of cell phones and Y � t66, 94, 49, 81u
be their respective ratings by a customer on “internal memory”, then the following fuzzy set

A : X Ñ r0 . . . 1s represents how well the customer is satisfied with these phones for their inter-

nal memories.

A � t0.825{Brand1, 1{Brand2, 0.6125{Brand3, 1{Brand4u
Although we are using simple numeric examples here, one could easily understand that differ-

ent types and ranges of data can actually be represented by the unique interval r0 . . . 1s. This

tremendous feature of fuzzy sets has made researchers able to express mathematically ambiguity

in human thinking as well as in real world in a much better way.

Chapter 2. Mathematical Preliminaries 33

Like crisp sets, we have the different set theoretic operations on fuzzy sets. However, we define

them in terms of the membership functions [30]. For the demonstrations here, we define another

fuzzy set B which indicates the level of customer satisfaction regarding battery life of the four

cell phones. However, we use the same membership function χgood as before.

B � t0.75{Brand1, 0.68{Brand2, 1{Brand3, 0.92{Brand4u

• The union of two fuzzy sets A and B, A Y B, is the fuzzy set defined by the following

membership function:

χAYBpxq � χApxq _ χBpxq

where _ denotes the maximum of the two values and therefore the join of two real values

over the unit interval r0 . . . 1s. In our example,

AY B � t0.825{Brand1, 1{Brand2, 1{Brand3, 1{Brand4u.

• The intersection of two fuzzy sets A and B is another fuzzy set with the following mem-

bership function:

χAXBpxq � χApxq ^ χBpxq

where ^ represents the minimum (meet) of the two values. In our example,

AX B � t0.75{Brand1, 0.68{Brand2, 0.6125{Brand3, 0.92{Brand4u.

• The complement of a fuzzy set A has the following membership function:

χApxq � 1� χApxq.

In our example, B � t0.25{Brand1, 0.32{Brand2, 0{Brand3, 0.08{Brand4u.

• A fuzzy set A is said to be included in another fuzzy set B if and only if χApxq ¤ χBpxq
for all x P A.

In order to process imprecise information in relational structures, the concept of fuzzy relations

was introduced in [36]. Like fuzzy sets, fuzzy relations use characteristic functions to assign

values to members indicating their degrees of membership.

If A and B are two universes of discourse and χA�B : A� B Ñ r0 . . . 1s, then a fuzzy relation is

defined as [8]

R � tχA�Bpa, bq{pa, bq : pa, bq P A� B, χA�Bpa, bq P r0 . . . 1s P Ru.

For pa, bq P A � B, Rpa, bq indicates the degree how far a and b are associated under R. It

is easy to remember from Chapter 1 that, likewise fuzzy sets generalizes classical sets, fuzzy

relations are a generalization of classical relations. As an example of fuzzy relations, we focus

on the individual factors of each phone-brand in the previous example. Rather than defining a

Chapter 2. Mathematical Preliminaries 34

sophisticated membership function for that, we just divide the ratings by 100 to get the corre-

sponding values between 0 and 1. Therefore, an entry in the matrix representation of such a

relation R : A � B Ñ r0 . . . 1s would indicate the customer rating of a phone in the relevant

factor.

R �

�
������

processor memory screen battery camera

Brand1 0.72 0.66 0.8 0.34 0

Brand2 1 0.94 0.88 0.95 0.74

Brand3 0.37 0.41 0.44 0.25 0.1

Brand4 0.89 0.81 1 0.78 0.60

�
�����

Before introducing L-fuzzy relations, we recall that the composition of fuzzy relations is also

known as sup-min composition. For a complete Browerian lattice L and two L-fuzzy relations

Q : A Ñ B, S : B Ñ C, their composition is another L-fuzzy relation defined by

pQ; S qpa, cq :�
ª
bPB

pQpa, bq ^ S pb, cqq.

Also, Semi-scalar multiplication of a fuzzy relation R by a scalar k produces a fuzzy relation kR

such that kRpx, yq � kRpx, yq.

From the discussions on posets and lattices in Section 2.2 we find that the closed unit interval

r0 . . . 1s is completely ordered i.e., it is a chain. But there are numerous situations where this

linear set of fuzzy membership values is not sufficient to express fuzzy data. In Chapter 1,

we included an example that modelled the difficulties in selecting a “good” size of cell phone

memory. In order to handle such situations where multiple factors contribute to memberships,

we move to the generalization of fuzzy sets and relations by J. A. Goguen (1967) [7].

2.4 L-fuzzy Sets and Relations

For an arbitrary lattice L, an L-fuzzy set A on a set B is a function A : B Ñ L [7]. Note

that the set of all L-fuzzy sets on B is LB. In order to capture the notion of fuzziness properly,

Goguen in his paper [7] imposed L to be a complete Brouwerian lattice (see Section 2.2.5.2 for

definitions).

Similarly, for a complete Brouwerian lattice L, an L-fuzzy relation R between two sets X and

Y is a function R : A � B Ñ L. In other words, R is an element of LA�B [7]. We will see later

that the set of all L-fuzzy relations between A and B forms a complete Brouwerian lattice with

a least element 0 and a greatest element 1. We can summarize the three versions of relations in

terms of their characteristic functions as follows.

• Classical relation: R : A� B Ñ B.

Chapter 2. Mathematical Preliminaries 35

• Fuzzy relation: R : A� B Ñ r0 . . . 1s.

• L-fuzzy relation: R : A� B Ñ L.

It is more than evident that an L-fuzzy relation could be specialized to a normal fuzzy relation

by replacing the partial order L by the chain r0 . . . 1s, which then could be further specialized to

a classical relation by replacing the chain t0, 1u, a bivalent chain representing true and false in

B.

In our example, let us replace r0 . . . 1s by the following lattice for degrees of membership. We

interpret the lattice elements as: for a particular factor, 0 denotes a “bad” rating, gc and ge respec-

tively denote “good” ratings based on price (cost effective) and customer experience (customer

satisfaction), b indicates “better” ratings, and finally, 1 denotes the “best” rating.

1

b

gc ge

0

Figure 2.13: A complete Brouwerian lattice L

Using the above lattice, we can define an L-fuzzy relation R : X Ñ Z as follows.

R �

�
������

processor memory screen battery camera

Brand1 b ge b gc b

Brand2 1 1 b 1 ge

Brand3 0 gc gc 0 gc

Brand4 1 b ge b gc

�
�����

2.4.1 Operations on L-Fuzzy Relations

At this point, we define certain operations on L-fuzzy relations which are important in our

study. Notice that for L � B, these operations coincide with those of classical relations defined

in Section 2.1. We thus omit examples for their demonstrations.

For L-fuzzy relations Q,R : A Ñ B, S : B Ñ C, and T : D Ñ B, [31]

• Union: pQ\ Rqpa, bq :� Qpa, bq _ Rpa, bq

• Intersection: pQ[Rqpa, bq :� Qpa, bq ^ Rpa, bq

• Converse: Q`pa, bq :� Qpb, aq

Chapter 2. Mathematical Preliminaries 36

• Composition: pQ; S qpa, cq :� �
bPB
pQpa, bq ^ S pb, cqq

• Inclusion: Q � R ðñ @a P A, b P B : Qpa, bq ¤ Rpa, bq

• Empty and Universal relation: yAB :� 0, xAB :� 1 where 0 and 1 are the least and

greatest element of L, respectively.

• Identity relation: IApa1, a2q :�
#

1 iff a1 � a2,

0 otherwise

• Left residual: pQ{T qpa, dq :� �
b

T pd, bq Ñ Qpa, bq where Ñ denotes the relative pseu-

docomplement.

In order to define the semantic constructions for LFSQL appropriately, we look at the following

properties of these operations. The corresponding proofs can be found in [31].

For a complete Brouwerian lattice L and L-fuzzy relations Q,Q2,Qi : A Ñ B, R,Ri : B Ñ
C, S : C Ñ D for i P I and T : A Ñ C, we have

1. Q; IB � Q and IB; R � R

2. pQ; Rq; S � Q; pR; S q

3. pQ[Q2q` � Q` [Q2
`

4. pQ; Rq` � R`; Q`

5. pQ`q` � Q

6. Q; p�
iPI

Riq � �
iPI
pQ; Riq and p�

iPI
Qiq; R �

�
iPI
pQi; Rq

7. Q; R[T � Q; pR[Q`; T q

8. Q;yBC � yAC

9. Q; p�
iPI

Riq �
�
iPI
pQ; Riq and p�

iPI
Qiq; R � �

iPI
pQi; Rq

2.4.2 Crispness in L-Fuzzy Relations

As L-fuzzy relations generalizes classical relations, it is intuitive to say that the later is con-

tained in the former. In fuzzy world, these relations that represents the presence or absence of

association between elements is called crisp relations. Crispness is fundamental to the study

of fuzziness. Goguen wrote in his paper [7], “Things unfuzzified or only trivially fuzzified are

crisp; crispness is the qualitative opposite of fuzziness, although technically it is a special case.”

Chapter 2. Mathematical Preliminaries 37

An L-fuzzy relation Q is called 0-1 crisp, iff for all px, yq P Q, Qpx, yq � 0 or Qpx, yq � 1.

Therefore, when the least and the greatest element of L represents true and false of B, 0 � 1

crisp relations may be regarded as regular classical relations. Note that, these relations are closed

under the operations of L-fuzzy relations defined above.

2.4.3 Scalar Relations

Given a set of L-fuzzy relations, one usually becomes interested to know about the structure L.

Scalar relations provide a means to abstractly identify the underlying lattice L. The notion of

scalar relations was first introduced in [11] and [17].

A relation α : A Ñ A is called a scalar on A iff α � IA and xAA;α � α;xAA.

Notice that scalars are partial identities. Therefore, for some l P L and x, y P A, a scalar

α : A Ñ A could alternatively be defined as

αl
Apx, yq �

#
l iff x � y,

0 otherwise

If A is a three-element set and l P L, then one could easily verify that the followings two rela-

tions are scalars on A.

�
� l 0 0

0 l 0
0 0 l

�

(a) Scalar relation IA

�
� 0 0 0

0 0 0
0 0 0

�

(b) Scalar relation yAA

Figure 2.14: Two scalar relations

Jónsson and Tarski in [16] introduced the notion of ideals which are equivalent to scalar re-

lations and thus provide an alternative way of generating a special classe of L-fuzzy relations

isomorphic to the underlying L.

A relation R : A Ñ B is said to be an ideal relation iff xAA; R;xBB � R.

As an example, consider the L-fuzzy relations on the sets A � t2, 3, 5u, B � t6, 28u and the

lattice in Figure 2.13. It is clear that there might be as many as |L||A|�|A| � 59 � 1953125

different L-fuzzy relations on A, but only 5 of them have the form of Figure 2.14a which are

scalars. Similarly, although there might be |L||A|�|B| � 56 � 15625 different L-fuzzy relations

from A to B, only 5 of them look like the following relation for some l P L which are essentially

ideals.

Chapter 2. Mathematical Preliminaries 38

�
� l l

l l
l l

�

Figure 2.15: An ideal relation

The set of scalars on A, similarly, the set of ideals between A and B are isomorphic to the

underlying lattice shown in Figure 2.13. This implies that abstractly they behave the same way

the original lattice elements behave when applied to the different lattice operations.

2.4.4 α-Cuts and Arrow Operations

It is of common interest in the fuzzy world to generate crisp relations. For example, although a

fuzzy database stores fuzzy information, the result of an user query usually results in something

crisp. In order to select a specific element from a fuzzy set of alternatives in fuzzy decision

theory, several cut operations were introduced in [5, 19]. Here we are interested in α-cuts which

can generate crisp relations.

For an L-fuzzy relation R, an α-cut for some α P L is defined as the following 0-1 crisp relation

[31]

Rα �
#

1 iff Rpx, yq ¥ α

0 otherwise

It is clear that this cut operation produces crisp relations that associate only those pairs of el-

ements for which the membership degree is at least α. For pairs with smaller degrees, it sets

them to the least element 0. Thus, in an L-fuzzy database, α-cuts can be used to model queries

with thresholds, i.e., to select only those tuples that satisfy the condition with a degree greater

or equal to the threshold.

We now define two special α-cuts that are called up-arrow (Ò) and down-arrow (Ó) operations.

For an L-fuzzy relation R, the arrow operations are defined as

RÒ �
#

1 iff Rpx, yq , 0

0 otherwise
RÓ �

#
1 iff Rpx, yq � 1

0 otherwise

The Ò operation, when applied to a relation, raise the the membership degrees, which are not

zero, to 1. Therefore, it produces the least 0-1 crisp relation containing R. The Ó operation, on

the other hand, sets the membership degrees, which are smaller than 1, to zero. As a result, it

produces the greatest 0-1 crisp relation that R contains. The relations RÒ and RÓ are known as

the support and the kernel of R in the fuzzy world.

Chapter 2. Mathematical Preliminaries 39

In our example of modelling factors affecting customer choice of cell phones from Section 2.4,

the Ò and Ó operations obtain the following relations.

RÒ �

�
������

p m s b c

B1 1 1 1 1 1

B2 1 1 1 1 1

B3 0 1 1 0 1

B4 1 1 1 1 1

�
�����, RÓ �

�
������

p m s b c

B1 0 0 0 0 0

B2 1 1 0 1 0

B3 0 0 0 0 0

B4 1 0 0 0 0

�
�����

As we will see later, the two arrow operations would be used in defining the algebraic theory of

Arrow categories. So, we proceed to explore certain useful properties of these operations.

Let Q,R : A Ñ B and S : B Ñ C are three L-fuzzy relations on the complete Brouwerian

lattice L. Then we have

1. Q is 0-1 crisp iff QÒ � Q, or equivalently iff QÓ � Q

2. pR`; S ÓqÒ � RÒ`; S Ó

3. pQ[RÓqÒ � QÒ [RÓ

4. if lpP Lq , 0, then αl
A
Ò � IA

Once again, the proofs can be found in [31].

It is important to note that an L-fuzzy relation R can be represented by the set of all its α-cuts,

i.e., by the set of all crisp relations Rα such that px, yq P Rα iff α ¤ Rpx, yq. This is known as the

α-cut Theorem in fuzzy theory. It states that, for an L-fuzzy relation R : A Ñ B on the complete

Brouwerian lattice L, we have

R �
§
lPL

pαl
A; Rαq

As an example, we consider the following arbitrary relation using the lattice in Figure 2.13

R �

�
���

1 gc 0

b b 0

0 ge 1

�
��

We define the following α-cuts on R.

In a matrix Rl above, we set a 1 for px, yq iff l ¤ Rpx, yq. For example, as there are only four

entries in R, namely b’s and 1’s which are greater than or equal to b, they become 1’s in Rb. We

Chapter 2. Mathematical Preliminaries 40

�
� 1 1 1

1 1 1
1 1 1

�

(a) R0

�
� 1 1 0

1 1 0
0 0 1

�

(b) Rgc

�
� 1 0 0

1 1 0
0 1 1

�

(c) Rge

�
� 1 0 0

1 1 0
0 0 1

�

(d) Rb

�
� 1 0 0

0 0 0
0 0 1

�

(e) R1

Figure 2.16: α-cuts on R

now take the union of the above relations according to the α-cut Theorem.

�
���

0 0 0

0 0 0

0 0 0

�
��\

�
���

gc gc 0

gc gc 0

0 0 gc

�
��\

�
���

ge 0 0

ge ge 0

0 ge ge

�
��\

�
���

b 0 0

b b 0

0 0 b

�
��\

�
���

1 0 0

0 0 0

0 0 1

�
��

�

�
���

1 gc 0

b b 0

0 ge 1

�
��� R

We conclude the section by introducing another important construction.

For a relation R : A Ñ A and a scalar αl : A Ñ A with some l P L, the α-cut of R, Rα can be

computed by evaluating the relational expression pαlzRqÓ. For the demonstration, we continue

using the above relation R with the scalar αb.

pαzRqÓ �

�
��������

�
���

b 0 0

0 b 0

0 0 b

�
��z

�
���

1 gc 0

b b 0

0 ge 1

�
��

�
�������

Ó

�

�
���

1 0 0

1 1 0

0 ge 1

�
��

Ó

�

�
���

1 0 0

1 1 0

0 0 1

�
��

2.5 Algebra of Relations

While analysing some mathematical structure intensively, it eventually becomes important to

have a systematic formalization of its behaviour. The term algebra is widely used by mathe-

maticians to mean such type of formalizations.

As defined in [26], an algebra is a domain or set of elements together with some functions

defined on this domain and taking values in it.

Chapter 2. Mathematical Preliminaries 41

2.5.1 Algebra of Classical Relations

All modern development on relations is affected by the works of A. De Morgan, C. S. Peirce,

and W. Schröder in the late nineteenth century. George Boole, in his book The Mathematical

Analysis of Logic (1847), first introduced an algebraic formalization of relations. However, his

works focused only on unary relations, i.e., relations with one parameter, Rpxq. Recall that a

unary relation is simply a subset of a given set.

De Morgan, in 1860, studied the properties of and operations on binary relations, Rpx, yq. How-

ever, in 1870, C. S. Peirce extended Boole’s works and eventually produced a good general

algebra of mathematical logic [24]. In the next few decades, Morgan and Peirce individually

investigated several operations on relations many of which later on were found to coincide be-

tween their works. During this period, Schröder studied Boole’s and De Morgan’s work on

logic and added several important constructions. The contributions of De Morgan, Peirce, and

Schröder on early versions of relation algebra were summarized in the 1911 edition of the Dic-

tionary of Philosophy and Psychology by J. M. Martin. However, A. Tarski (1941) was the

first person who attempted to axiomatise the algebra of binary relations in terms of equational

postulates.

Note that all these people worked on homogeneous binary relations, i.e., relations from and to

the same set. Their works use Boolean algebra and therefore, include the concept of comple-

ments. However, the authors in [29] talk about heterogeneous relations.

2.5.2 Algebra of Fuzzy Relations

Algebras for fuzzy relations, and therefore, for L-fuzzy relations, require special attention be-

cause of their generalized nature. It follows that fuzzy relation algebras are not Boolean relation

algebras because they deal with more that two values. The authors in [18] investigated alge-

braic formalization of fuzzy relations. As because fuzzy relations do not have complements,

the authors in [18], intend to replace Schröder rule with the complement-free version of it, the

Dedekind rule.

In addition, multiplication by a real number from the interval r0 . . . 1s is common in the study

of fuzzy relations. This leads to semi-scalar multiplication and requires appropriate axioms for

it. Recall that the semi-scalar kR of a fuzzy relation R : X Ñ X by a scalar k P r0 . . . 1s is

a fuzzy relation such that pkRqpx, yq � kRpx, yq for all x, y P X. However, such a semi-scalar

multiplication might not exist for an arbitrary complete Brouwerian lattice.

Moreover, in our study, heterogeneous L-fuzzy relations are of no less importance than the

homogeneous ones.

Chapter 2. Mathematical Preliminaries 42

As a result, none of these algebraic approaches formalizes L-fuzzy relations appropriate for our

research. We therefore, switch to the categorical version of it.

2.6 Categories of Relations

In this section, we will discuss about the various categorical approaches that have been in-

troduced in literature to formalize relations. However, our objective is to deduce an abstract

algebraic framework for L-fuzzy relations which we would use to define the semantics for the

query language of L-fuzzy database.

2.6.1 Categories

Category theory is a relatively young branch of mathematics which is originated from algebraic

topology. It provides a bag of concepts which, through abstraction, describes many different

structures and formalisms from the various branches of mathematics in a uniform way. A sys-

tematic study of categories thus allows us to axiomatically capture the common characteristics

of these structures and relate between them by functions. Therefore, categories are essentially

collections of objects (abstract version of a mathematical structure) and morphisms (abstract

version of structure preserving functions) between them. The two basic properties of a category

are the ability to compose morphisms associatively and that each object has a identity morphism

that maps to itself. We now present a formal definition of categories.

As defined in [31], A category C consists of

1. a class of objects Ob jC,

2. for every pair of objects A and B a class of morphisms CrA, Bs,

3. an associative binary (partial) operation ; that maps each pair of morphisms f in CrA, Bs
and g in CrB,Cs to a morphism f ; g in CrA,Cs,

4. for every object A a morphism IA such that for all f in CrA, Bs and g in CrC, As we have

IA; f � f and g; IA � g.

We will write f : A Ñ B to express a morphism in CrA, Bs which is denotationally consistent

with a relation R : A Ñ B as we would describe relations as morphisms in categories.

The theory of categories has inherent interaction with set theory. While in set theory we deal

with membership and equality of those abstract collections called sets, in category theory, we

speak about composition and equality of those abstract functions, called morphisms. An object

Chapter 2. Mathematical Preliminaries 43

in set theory is determined by its content while in category theory we study objects in terms of its

relationship with other objects of the same category (using morphisms) and of related categories

(using functors).

Commonly, categories are visualized by diagrams in which we represent objects by nodes and a

morphism f in CrA, Bs as an arrow from A to B. This is why, the term “arrow” is interchangeably

used for “morphism”. We say that such a digram commutes iff @a P A : p f ; gqpaq � hpaq and

we write f ; g � h (Figure 2.17a). However, we can add identity morphisms without affecting

commutation as shown in Figure 2.17b.

A
f //

h

��

B

g

��
C

(a) A category

A
f //

IA

��

B

g

��
A h // C

(b) Addition of IA

Figure 2.17: Categorical diagram

A category can be as simple as consisting of a single object 0 and an arrow I0. Figure 2.17a

depicts a category of three objects A, B, and C, together with six morphisms: f , g, h, and

three identity morphisms not shown here. Probably the most common example of a category

is the category of sets, Set, in which sets are objects and functions between sets are treated

as morphisms. If we consider the category of all posets, written as PO, the posets are objects

and monotonic functions are morphisms. Recall that in order theory, a monotonic function f

between two orders (P1,¤1) and (P2,¤2) is one that preserves the given order, i.e., @x, y P P1 :

x ¤1 y ùñ f pxq ¤2 f pyq. The dual of a monotone is an antitone or order-reversing which is

characterized by the property that for all x and y in its domain, x ¤ y ùñ f pxq ¥ f pyq.

In Rel, the category of relations, sets are objects and relations are considered morphisms. Corre-

spondingly, L-Rel, the category of L-fuzzy relations, has nonempty sets as objects and L-fuzzy

relations for morphisms.

2.6.2 Categorical Terminologies

Before we start the details of categories for L-fuzzy relations, we would like to define some

of the categorical terminologies that play important role in our study. These include initial,

terminal, and null objects, categorical product, and finally, categorical sum or coproduct.

Chapter 2. Mathematical Preliminaries 44

2.6.2.1 Initial, Terminal, and Null Objects

An object I of a category C is an initial object if for every object X in C there exists exactly one

morphism from I to X. Dually, an object T is a terminal object in C if for every object X in C

there exists a unique morphism X Ñ T .

An object, which is both an initial and terminal object, is called a zero object or null object in C.

This is important to note that initial and terminal objects need not exist in a category. However,

if they do exist, they are unique up to isomorphism. It means that if I1 and I2 are two initial

objects, then there exists a unique isomorphism between them. Moreover, any object which is

isomorphic to an initial object, is also considered an initial object. The same concept applies to

terminal objects.

As the first example for initial and terminal objects, we consider the category of sets. Here the

empty set is the only initial object and every singleton (one-element) set is a terminal object.

However, there is no zero object. If we consider the category of non-empty sets, then there are

no initial objects. Although every set admits a function from a singleton set in this category,

this function is in general not unique. Therefore, the singleton sets are not initials here. If we

interpret a poset (P,¤) as a category, then the elements of P are the objects and for x, y P P there

is a single morphism from x to y iff x ¤ y. Such a category has an initial object and a terminal

object iff P has a least and a greatest element, respectively.

In the category of relations Rel, the empty set is the only zero object. One can easily justify this

by the fact that the smallest relation on the empty set is equal to the greatest relation on it, i.e.,

yHH � xHH.

2.6.2.2 Categorical Product

In category theory, the product of two objects forms an abstraction of cartesian product.

Let A and B be two objects of a category C. The product of A and B (if it exists) consists of an

object A � B of C and two arrows π : A � B Ñ A and ρ : A � B Ñ B of C such that for every

object C of C and every pair of arrows f : C Ñ A and g : C Ñ B of C there exists a unique

arrow x f , gy : C Ñ A� B such that f � x f , gy; π and g � x f , gy; ρ.

Here, the unique morphism x f , gy is called the product of morphisms f and g, and π and ρ are

called the first and second projections, respectively.

As an example, if we consider the category of sets Set, then categorical product is simply the

cartesian product. In Rel, the categorical product is given by disjoint union of sets. However, if

a poset is treated as a category, then products correspond to greatest lower bounds or meets.

Chapter 2. Mathematical Preliminaries 45

A A� Bπoo ρ // B

C

f

aa

x f ,gy

OO

g

==

Figure 2.18: Categorical product

It is interesting to know that in category theory, every categorical property, structure, or theorem

has a dual which is known as the duality principle. For example, a morphism f : A Ñ B in

a category C has a dual morphism f op : B Ñ A in the opposite category Cop. The dual of an

initial object is a terminal object. Similarly, the dual of a product is a coproduct.

2.6.2.3 Categorical Sum or Coproduct

Coproduct is the category-theoretic dual notion of product, which means that it has the same

definition as categorical product with all arrows reversed.

The coproduct of two objects A, B P Ob jC is an object A � B together with two morphisms

ι : A Ñ A � B and κ : B Ñ A � B such that, for any object C and morphisms f : A Ñ C

and g : B Ñ C, there exists exactly one morphism r f , gs : A � B Ñ C such that the following

diagram commutes.

A ι //

f

!!

A� B

r f ,gs

��

Bκoo

g

}}
C

Figure 2.19: Categorical sum or coproduct

The morphisms i1 and i2 are called injections. As an exmple, in Set, the coproduct is the disjoint

union of sets. In the category of a poset, the coproduct is the least upper bound, however, if it

exists.

2.6.3 Categories of L-Fuzzy Relations

At the beginning of our study for a suitable categorical framework of L-fuzzy relations, we

present L-Rel, the category of L-fuzzy relations.

Let L be a complete Brouwerian lattice. Then the structure L-Rel is defined as follows:

Chapter 2. Mathematical Preliminaries 46

1. The objects are nonempty sets,

2. A relation R : A Ñ B between two sets A and B is a function A� B Ñ L,

3. For R : A Ñ B and S : B Ñ C, composition is defined by

pR; S qpa, cq :� �
bPB

Rpa, bq [S pb, cq,

4. For R : A Ñ B, the converse is defined by R`pa, bq :� Rpb, aq,

5. Meet and join for R,R2 : A Ñ B are defined by

pR[R2qpa, bq :� Rpa, bq [R1pa, bq
pR\ R2qpa, bq :� Rpa, bq \ R1pa, bq

6. The universal, zero, and the identity elements are defined by

xABpx, yq :� 1, yABpx, yq :� 0

IApa1, a2q �
$&
%0 if a1 , a2

1 if a1 � a2

While L-Rel defines the basic operations on L-fuzzy relations, we need a stronger theory with

suitable axioms to define other algebraic operations and rules. In [4], Freyd and Scedrov intro-

duced and extended “allegories” as a categorical relational calculus.

2.6.3.1 Allegories

As defined in [31], an allegory R is a category that satisfies the following:

1. For all objects A and B the class of morphismsRrA, Bs is a lower semilattice. Meet and the

induced ordering are denoted by [,�, respectively. The elements in RrA, Bs are called

relations.

2. There is a monotone operation ` (called the converse operation) such that for all relations

Q,R : A Ñ B and S : B Ñ C the following holds:

Q; S ` � S `; Q` and pQ`q` � Q

3. For all relations Q : A Ñ B, R, S : B Ñ C we have

Q; pR[S q � Q; R[Q; S

Chapter 2. Mathematical Preliminaries 47

4. For all relations Q : A Ñ B, R : B Ñ C and S : A Ñ C the modular law holds, i.e.,

Q; R[S � Q; pR[Q`; S q

Recalling the operations in 2.4.1 and their properties, it can be proved that the category of L-

fuzzy relations L-Rel with the set theoretic intersection and conversion as respectively the meet

and converse forms an allegory. However, this structure only satisfies properties 1-7 as in 2.4.1.

For the remaining, we need to add the union operation and its associated axioms.

The collection of binary relations on a fixed set, on the other hand, constitutes a distributive

lattice with a least element [31]. Therefore, we intend to use distributive lattices as the order in

allegories replacing the lower semilattices.

A distributive allegory R is an allegory satisfying the following:

1. The classes RrA, Bs are distributive lattices with a least element. Union and the least

element are denoted by \,yAB, respectively.

2. For all relations Q : A Ñ B we have Q;yBC � yAC .

3. For all relations Q : A Ñ B, R, S : B Ñ C we have

Q; pR\ S q � Q; R\ Q; S

Having defined this distributive structure, we can show that the allegory L-Rel of L-fuzzy rela-

tions with set theoretic union is a distributive allegory [31].

A distributive allegory R is said to be locally complete if RrA, Bs is a complete lattice for all

objects A and B and if composition and finite intersection distribute over arbitrary unions: that

is, given Q : A Ñ B,Ri : B Ñ C for i P I, we have Q; p�
iPI

Riq �
�
iPI
pQ; Riq [4].

By adding the abstraction of the division (residual) operation of relation algebra to a distributive

allegory, we get a division allegory.

A division allegory R is a distributive allegory such that ; has an upper left adjoint, i.e., for all

relations R : B Ñ C and S : A Ñ C there is a relation S {R : A Ñ B (called the left residual of

S and R) such that for all Q : A Ñ B the following holds:

Q; R � S ðñ Q � S {R.

Similarly, ; has an upper right adjoint, denoted by QzS and called the right residual of S and Q.

Another important categorical approach to formalize binary relations has been proposed by

Olivier and Sarrato in [22, 23]. They used the name “Dedekind categories” for which they

Chapter 2. Mathematical Preliminaries 48

required the underlying order structure to be complete. As allegories, Dedekind categories are

equivalent to locally complete distributive allegories [4]. In our study, we use Dedekind cate-

gories as the fundamental theory to reason about L-fuzzy relations.

2.6.3.2 Dedekind Categories

A Dedekind category R is a category satisfying the following:

1. For all objects A and B the collection RrA, Bs of morphisms of A into B is a complete

Heyting algebra. Meet, join, the induced ordering, the least element, and the greatest

element are denoted by [,\,�,xAB, and yAB, respectively.

2. There is a monotone operation ` (called converse) mapping a relation Q : A Ñ B to

Q` : B Ñ A such that for all relations Q : A Ñ B and R : B Ñ C the following holds:

Q; R` � R`; Q` and pQ`q` � Q.

3. For all relations Q : A Ñ B, R : B Ñ C and S : A Ñ C the modular law holds, i.e.,

pQ; Rq [S � Q; pR[pQ`; S qq

4. For all relations R : B Ñ C and S : A Ñ C there is a relation S {R : A Ñ B (called the

left residual of S and R) such that for all X : A Ñ B the following holds:

X; R � S ðñ X � S {R.

Recall that the left residual defined for the above structure implies the existence of a right resid-

ual characterized by

Q; Y � S ùñ Y � QzS .

In fact, QzS � pS `{Q`q`. Also, note that both residuals are monotone in one argument and

antitone in the other. This means that, if S � S 1,R1
� R and Q1

� Q, then S {R � S 1{R1 and

QzS � Q1zS 1.

It can be shown that the class of L-fuzzy relations form a Dedekind category. Unfortunately,

this category is too weak to express some standard properties of L-fuzzy relations, particularly,

the 0-1 crispness. By the use of scalar elements with certain assumptions on the underlying

lattice, the authors in [12, 17] attempted to define several notion of crispness for an arbitrary

Dedekind category. Moreover, the author in [32] proved that there is no formula in the theory of

Dedekind categories expressing the fact that a givenL-fuzzy relation is 0-1 crisp. Therefore, we

Chapter 2. Mathematical Preliminaries 49

need an extension of this theory to define a suitable algebraic framework for L-fuzzy relations.

This was done in [35] by means of two arrow operations, the up-arrow (Ò) and the down-arrow

(Ó). These new structures are then called Arrow categories and serve as a complete algebraic

theory of L-fuzzy relations in our study. Recall from Section 2.4.4 that the Ò and Ó operations,

when applied to a relation R, respectively produce the least 0-1 crisp relation containing R and

the greatest 0-1 crisp relation that R contains.

Before switching to the definition of arrow categories, we would like to define some important

constructions within Dedekind categories.

The category Rel of binary relations between sets with the usual definition of the operations

form a Dedekind category. In Rel, the empty set and singleton sets play an important role. We

recall that the empty set is a zero object in Rel (Section 2.6.2.1). Similarly, we call an object 0

of a Dedekind category an zero object iff y00 � x00. Singleton sets in Rel are terminal objects

in the subcategory of maps. In Rel itself they can be characterized as so-called units. A unit 1

is an object of a Dedekind category so that I1 � x11 and xA1 is total for all objects A.

The relational product of two objects A and B in a Dedekind category is the object A�B together

with two relations π : A� B Ñ A and ρ : A� B Ñ B so that the following equations hold

π`; π � IA, ρ`; ρ � IB, π`; ρ � xAB, π; π` [ρρ` � IA�B.

Note that the relational product is equivalent to the categorical product (Section 2.6.2.2) in the

subcategory of maps. Similarly, the notion of relational sum (categorical coproduct in maps) of

two objects A and B is defined to be another object A � B together with two relations ι : A Ñ
A� B and κ : B Ñ A� B with the following axioms being satisfied.

ι; ι` � IA, κ; κ` � IB, ι; κ` � yAB, ι`; ι\ κ`; κ � IA�B

2.6.3.3 Arrow Categories

An arrow categoryA is a Dedekind category with xAB , yAB for all A, B and two operations Ò
and Ó satisfying the following axioms for all Q,R : A Ñ B, S : B Ñ A, and T : B Ñ C.

1. RÒ, RÓ : A Ñ B.

2. pÒ,Ó q forms a Galois correspondence, i.e., QÒ
� R iff Q � RÓ.

3. pS `; T ÓqÒ � S Ò`; T Ó.

4. pQ[RÓqÒ � QÒ [RÓ.

5. If αA , yAA is a non-zero scalar then αÒA � IA.

Chapter 2. Mathematical Preliminaries 50

A relation that satisfies RÒ � R, or equivalently RÓ � R, is called crisp. Notice that the complete

Heyting algebra of scalar relations on each object are isomorphic. In addition, we recall from

Section 2.4.4 that pαzRqÓ is called the α-cut of R while α is a scalar on R.

In fuzzy theory t-norms and t-conorms are essential for defining new operations for fuzzy sets

or relations. For the details of t-norms and t-conorms, we refer to [8]. A generalization of these

operations for arbitrary complete lattices was introduced in [7], called complete lattice-ordered

semigroups.

A semigroup in mathematics is a set S together with a binary operation � : S �S Ñ S such that

for any a, b, c P S , the equation pa � bq � c � a � pb � cq holds.

A complete lattice-order semigroup, as defined in [7], is a complete lattice L which is also a

semigroup with identity under � and which satisfies the following distributive laws,

a �
ª

i

bi �
ª

i

pa � biq and p
ª

i

aiq � b �
ª

i

pai � bq

Given such an operation � : L � L Ñ L we may define a new meet or composition based

operation on L-fuzzy relations Q,R : A Ñ B and S : B Ñ C by

pQ[� Rqpx, yq � Qpx, yq � Rpx, yq and pQ;� S qpx, zq �
§
yPB

Qpx, yq � S py, zq.

In an abstract arrow category we require � to be defined of the complete Heyting algebra of

scalar elements. As shown in [31, 34] the corresponding operations on relations are defined as

follows.

Let Q,R be relations,b P t[, ; u such that QbR is defined, and � be the operation of a complete

lattice-ordered semigroup on the set of scalar relations. Then we define

Qb� R :�
§

α,β scalars
pα � βq; ppαzQqÓ b pβzRqÓq.

We distinguish two kinds of commutative complete lattice-ordered semigroup operations corre-

sponding to either t-norms or t-conorms. If the neutral element of the semigroup is equal to 1

(greatest element of the lattice) we call the operation a t-norm like operation. t-norm like op-

erations will be used together with [and ; to form new operations on relations. If the neutral

element of the semigroup is equal to 0 (smallest element of the lattice) we call the operation a

t-conorm like operation. These operations will only be used together with [.

Notice that we also have residuals based on semigroup operations. They are defined as the left

(resp. right) adjoint of ;�. For more details on these constructions we refer to [31].

Chapter 3

L-Fuzzy Structured Query Language

In this chapter we present a semantics for the query language of lattice-based fuzzy databases,

commonly known as L-fuzzy databases. Arrow categories, as discussed in the previous chap-

ter, comprises a complete algebraic theory to abstractly work with L-fuzzy databases. L-fuzzy

databases extend or, generalize to be precise, classical relational databases by introducing addi-

tional constructs in order to be able to handle inexactness in data. In a similar fashion, the SQL

extension for L-fuzzy databases, LFSQL, captures appropriate linguistic operations to define

and manipulate imprecise data in an L-fuzzy database. Apart from the syntactic additions to

LFSQL, our main concern here is to present a formal semantics of this language in the theory of

arrow categories. In doing so, we will be using the different mathematical theories and primitive

structures that have been discussed in Chapter 2.

3.1 L-Fuzzy Databases

Similar to a regular database a table in an L-fuzzy database contains a collection of objects

represented by a set of attributes or columns. A row of attribute-values is also called a tuple.

Each attribute has a set of possible values from where an object or tuple takes values for that

attribute. This value-set is commonly known as the domain of the attribute. Before going further,

we would like to recall the contact-list example from Chapter 1. Let us assume that the following

table contains some of the contact records on Peter’s cell phone.

51

Chapter 3. Semantics of L-Fuzzy Structured Query Language 52

Name Phone no. Address Distance Date of birth Age

John +12222222222 19 York street 3 null null

Kevin +13333333333 null null null null

Linda +14444444444 null null March 15, 1970 45

Richy +15555555555 125 Perfect road 6 August 29, 1998 17

Tijo +16666666666 null null April 4, 1996 19

To make this example simpler and more useful, we shrink the above table to the following by

discarding the columns “Address” and “Date of Birth”. At the same time we introduce fuzzy

constructions like linguistic labels and set of values as table-entries.

Name Phone no. Distance Age
John +12222222222 3 $Old
Kevin +13333333333 $Close t20, 21, 22u
Linda +14444444444 null 45
Richy +15555555555 6 17
Tijo +16666666666 t4, 5, 6u 19

Figure 3.1: L-fuzzy contact list

Algebraically, each construct of an L-fuzzy database is represented by a relation. Eventually,

each table is modelled as a big relation of all the attribute-value pairs whereas a database is an

even bigger relation formed off all of its tables.

Unlike classical databases, every single entry for an attribute at a tuple in an L-fuzzy database

is an L-fuzzy subset of the corresponding attribute-domain. However, a single (crisp) value x

is just an abbreviation for a fuzzy set that has degree 1 for x and 0 otherwise. For example,

the Name attribute in our table has the domain tJohn,Kevin,Linda,Richy,Tijou. However, we

define the domains for Age and Distance to be the sets {1,2,..,120} and {1,2,..,100}, respectively.

This means, for example, that someone could have an age between 1 to 120 and so on. As

mentioned before, a concrete value, “Kevin” for example, would be denoted by the L-fuzzy

subset t0{John, 1{Kevin, 0{Linda, 0{Richy, 0{Tijou or simply t1{Kevinu. A null which means

absence of data, would be represented by the empty set tu. In a similar fashion, the set t4, 5, 6u
indicates that only 4, 5, and 6 of the domain of “Distance” have degrees greater than 0 in it. We

will see some examples later in this chapter.

Each of these domains comes with some comparison operations associated with them. Un-

ordered domains, where elements can not be put into some order, have at least the equality

operation defined on it. As an example of such domain we can consider the Boolean attribute

“Active” in some “Users” table which indicates whether an user account is active or not. This

is clear that in this domain we can compare values for equality only. In our first table above,

Chapter 3. Semantics of L-Fuzzy Structured Query Language 53

the attribute “Address” has an unordered domain. Although, the “Name” field seems to be un-

ordered at first sight, but it can actually be sorted lexicographically. In addition to equality,

ordered domains provide ¤ and the respective strict order such that for any two values v1

and v2, v1 ¤ v2 iff v1 v2 or v1 � v2. All the attributes in Table 3.1 have ordered domains

as the values within a domain are comparable in terms of equality, less than, and less than or

equal. Notice that one could easily obtain the corresponding reverse order, greater than (¡) for

example, by taking complement of the smaller than or equal (¤) relation. Later in this chapter

we will see examples on how to use these operations in queries.

There are some domains that come with even binary approximate equalities (�). Such an op-

eration returns an L-value as the membership degree which indicates the level up to which two

given elements are considered to be equal. To illustrate this, let us say we are interested in

sameness of age. We might say that two people have the same age if their actual ages differ by

not more than one year. In that case, we use a higher lattice value to emphasize on closeness

of the values. As the difference between the two ages grows, we start to assign lower degrees

respectively. Note that an approximate equality is reflexive in nature. This is because any value

is approximately equal to itself with the highest degree of membership i.e., v � v � 1. More-

over, such an approximate equality is needed to be symmetric, i.e., v1 � v2 � v2 � v1 [31].

However, it cannot be transitive. This means that, for example, if an age value v1 approximately

equals to another age v2 and v2 in turn approximately equals to a third age v3, then v1 might not

be approximately equal to v3 because of the cumulative differences.

3.1.1 Metadatabase

Likewise regular databases, L-fuzzy databases use metadatabase to store database configuration

settings supporting metadata management. Typically an L-metadatabase contains the lattice L,

any t-norm and t-conorm like operation on L, and the L-fuzzy sets that represents the linguistic

labels. Throughout this chapter, we choose to use the following lattice called D6 as the target of

all membership functions.

1

c d

a b

0

Figure 3.2: A complete distributive lattice D6

It can be shown that D6 is isomorphic to the product t0, 1u � t0,m, 1u � tp0, 0q, p0,mq, p0, 1q,-
p1, 0q, p1,mq, p1, 1qu of two linear orderings 0 ¤ 1 and 0 ¤ m ¤ 1. This makes D6 an ideal

Chapter 3. Semantics of L-Fuzzy Structured Query Language 54

structure to model two aspects of membership similar to the cell phone example in Section 1.3

of Chapter 1. The first aspect is a “yes-no” and the second aspect a “yes-maybe-no” relationship.

For example, a � p0,mq represents the degree of not being in the set with respect to the first

aspect and “maybe” with respect to the second aspect.

As discussed before, t-norm resp. t-conorm (or s-norm) generalize the union and intersection

on L-fuzzy sets. Such an operation must have these properties: commutativity, associativity,

monotonicity, and border conditions [8]. Some of these operations are listed below. Note that

the minimum function is the largest t-norm while drastic product comprises the smallest. Drastic

sum, on the other hand, is the largest t-conorm with the maximum function being the smallest

t-conorm. Also note that all of these operations are for the unit interval r0, . . . , 1s. However,

some of them work in a more general setting where the min becomes meet, max becomes join

and the drastic product and sum work unmodified.

t-norms Expression (f px, yq) t-conorms Expression (f px, yq)
Minimum minpx, yq Maximum maxpx, yq
Algebraic product x� y Algebraic sum x� y� xy

Drastic product

$'''&
'''%

xy, if y � 1

y, if x � 1

0, otherwise

Drastic sum

$'''&
'''%

x, if y � 0

y, if x � 0

1, otherwise

Einstein product xy
1�p1�xq�p1�yq Einstein sum x�y

1�xy

Some L-metadatabases also contain pre-implemented characteristic functions, i.e., functions

that map from certain domains into the lattice L. These functions facilitate the creation of new

L-fuzzy subsets explicitly. Like ordinary functions, they can be parametric. In addition, they

might be restricted to the lattice they are defined with. Figure 3.3 shows such a function in

Java that accepts two names as parameters and returns a D6 value as the degree of lexicographic

closeness between the two strings. Note the dependency of this function on D6 as it doesn’t

work with a different lattice. If L is the unit interval, then a preimplemented function would

generate triangular or trapezoidal fuzzy subsets of some linear ordered set.

3.1.2 Linguistic Labels and L-Fuzzy Sets

As we know every individual entry in a table of an L-fuzzy database could be modelled as

an L-fuzzy set (L-fuzzy subset of the domain, to be precise), irrespective of whether it is a

single-valued entry or a multivalued set. In our L-database, the entry for Kevin’s age which is

t20, 21, 22u might be represented by the L-fuzzy set td{20, c{21, a{22u. For the two linguistic

labels $Old and $Close which are stored in the metadatabse, we assume that any age greater

Chapter 3. Semantics of L-Fuzzy Structured Query Language 55

public static LatticeValue nameMatching(String name1, String name2){

//convert names into uppercase

name1 = name1.toUpperCase();

name2 = name2.toUpperCase();

//find out the minimum length of the two

int minLength;

if(name1.length() < name2.length())

minLength = name1.length();

else

minLength = name2.length();

float sum = 0;

int diff;

int matches = 0; // count the characters that match

for(int i = 0; i < minLength; i++){ //loop through the strings for the minimum length

diff = Math.abs(name1.charAt(i) - name2.charAt(i)); // lexicographic distance

if(diff == 0) //if same character

matches++;

sum = sum + diff;

}

//if no character matched, divide by 1, otherwise divide by the number of matches

float result = sum/(matches == 0 ? 1 : matches);

// return lattice value accordingly

if(result <= 1)

return ’1’;

else if(result > 1 && result <= 5)

return ’d’;

else if(result > 5 && result <= 15)

return ’b’;

else

return ’0’;

}

Figure 3.3: A Java method as preimplemented function

than 50 would be considered “old” and a distance less than or equal to 5 km would be regarded

as “close”. Furthermore, we define the label $Young for the ages less than 21.

$Old = t. . . , 0{39, 0{40, . . . , b{47, c{48, d{49, 1{50, 1{51, 1{52, . . .u
$Young = t1{1, 1{2, 1{3, . . . , 1{19, 1{20, 0{21, 0{22, . . .u
$Close = t1{1, 1{2, 1{3, 1{4, 1{5, c{6, a{7, 0{8, 0{9, . . .u

In addition to the L-fuzzy subsets in the metadatabase, we can define new L-fuzzy sets either

explicitly or by modifying already existing ones. These newly created sets can then be stored

back to the metadatabase with new names. Also, they can be directly used in query statements.

For an arbitrary domain D � td1, d2, . . . , dnu, an L-fuzzy subset of D is expressed as C �
tl1{d1, . . . , ln{dnu where li P L for 1 ¤ i ¤ n. Such a set has the following membership

function.

χCpxq �

$'''''&
'''''%

l1 iff x � d1,
...

...

ln iff x � dn.

0 otherwise

As mentioned before, preimplemented functions which are stored in the metadatabase can be

used to define L-fzzy sets. For such a function f , we define the corresponding L-fuzzy set to be

Chapter 3. Semantics of L-Fuzzy Structured Query Language 56

f which use f as its membership function.

Obtaining new L-fuzzy sets from previously defined ones could be done in either of the follow-

ing two ways.

1. By taking lower or upper bounds of an L-fuzzy set: In this approach we take the upper

bounds or lower bounds of L-fuzzy sets to produce new ones. It requires the domain

to have the order defined, so it can not be applied to unordered domains. In Chapter 2

we have seen how to compute the lower bounds and upper bounds of some relation R

over the order E (ubdEpRq and lbdEpRq). For an L-fuzzy set m on domain D which has

an order E, we can get the set of upper bounds by computing the meet of the relative

pseudocomplements
�

yPm : dy Ñ dyEm for every x P D where dy is the degree up

to which y is in m and dyEx is the entry py, xq in the relation E. As an example, lets

consider a domain of 1 to 4km for the attribute “Distance” and an arbitrary L-fuzzy set

m � tc{2, b{3u. While computing the upper bounds for m we get, for x � 1, c Ñ 0^b Ñ
0 � 0 ^ a � 0, for x � 2 we get c Ñ 1 ^ b Ñ 0 � 1 ^ a � a, and so on. Eventually,

it produces the new L-fiuzzy set t0{1, a{2, 1{3, 1{4u or simply ta{2, 1{3, 1{4u. Note

that the computation of lower bounds and upper bounds can also be based on a t-norm

like operation (ubdp�,mq) stored in the metadatabase in which case � replaces the meet

in a composition and the lbd and ubd are based on the residual corresponding to that

composition. At the end of Chapter 2, we have seen how to define �-based composition

(;�) where the � represents an operation of a complete lattice-ordered semigroup. As

compositions and residuals are called adjoints to each other, whenever we have ; defined

on a complete lattice structure, the residuals do exist automatically.

2. By intensifying or weakening approximate equality: This approach is applicable to a

domain that provides approximate equality � defined on it. This approximate relation

can be used to modify the notion given by an L-fuzzy set m. In order to intensify it,

we define extremelyp�,mq and veryp�,mq. On the other hand, more or lessp�,mq and

roughlyp�,mq will be used in order for weakening the approximation. Notice that these

sets satisfy the following chain of inclusions

extremelyp�,mq � veryp�,mq � m � more or lessp�,mq � roughlyp�,mq.

While defining the semantics later in this chapter, we would see an example on how to

compute these approximate equalities componentwise between L-fuzzy sets on the same

domain. For now, if we think of a domain of 1 to 4km for the attribute “Distance” and a

difference of 1km to be considered “roughly equal”, then the following relation might be

Chapter 3. Semantics of L-Fuzzy Structured Query Language 57

one representation the approximation.

�
������

1 2 3 4

1 1 d 0 0

2 d 1 c 0

3 0 c 1 d

4 0 0 d 1

�
�����

3.2 L-Fuzzy Structured Query Language (LFSQL)

As we already know, the language of LFSQL extends the query language for fuzzy databases

(FSQL) in order to deal with lattice-based membership values. Our version of LFSQL is in-

spired by the work on FSQL in [8], [9] and [10]. This section begins with a through investigation

of the syntactic definitions of different DDL and DML operations namely, CREATE, INSERT,

DELETE, and SELECT. In the next section we present a semantics of these statements in the

abstract theory of arrow categories. However, we would like to start with the different binary

comparison operations that are available for L-fuzzy sets.

3.2.1 L-Fuzzy Comparators

A binary comparison operator or comparator on a set A can be thought of a relation C : A Ñ A

which compares two elements of A and produce a Boolean value in the result. Typical examples

of such comparators include �, ¤ and . These comparators are often used in queries to com-

bine multiple conditions as well as in building complex ones. As we know every single entry

of a table in an L-fuzzy database is modelled as an L-fuzzy set irrespective of whether it is a

single value or an explicit set. As a result, for such a comparator to be available for L-fuzzy

database, it needs to be lifted from comparing elements to comparing sets. This can be done in

multiple ways. In our study we adapt the notation used in [8] and define the followings based on

a typical binary comparator C. We would like to use the regular set t4, 5, 6u from our database

which represents the probable distance from Peter’s place to his friend Tijo’s place.

1. Possibility fuzzy comparison, denoted by FC: As the name suggests, this comparator

binds a possibility factor to the condition. As an example, let us say we want to evaluate

the condition t4, 5, 6u F� $Close where $Close is a linguistic label stored in the meta-

database that considers all distances smaller or equal to 5km as Close. That is, we would

like to know if Tijo’s place is possibly close to Peter’s place. In other words, is it possible

that there is a distance value in t4, 5, 6u which is regarded as Close? The answer is yes,

because both 4km and 5km are considered Close.

Chapter 3. Semantics of L-Fuzzy Structured Query Language 58

2. Necessity fuzzy comparison (NFC): This type of comparison produces a “true” if the set of

values on the left hand side of the comparator is essentially a subset of the set on the right.

However, there are exceptions as we would see shortly. In our example, the comparison

t4, 5, 6u NF� $Close would require all the values of 4, 5, and 6 to be in the set Close for

the output to be a “true”. As because 6 is not considered Close, the answer is a “false”

this time.

This is intuitive that for a binary comparator C which is symmetric, a necessity fuzzy

comparator based on that doesn’t required to be so. As an example, the set t2, 3u of

distances is necessarily fuzzy equal to $Close but not the other way around as there are

distances, namely, 1, 4, and 5, which are also considered Close.

From the example above one could easily infer that possibility comparator generalizes necessity

comparator, or in other words, fuzzy-necessity is included in fuzzy-possibility. Eventually this

lead to the fact that a query with a possibility comparator returns more tuples than its necessity

counterpart [9]. But this is true only when the fuzzy sets are total, i.e., sets for which the join

of all degrees equals 1 (the top element) [2]. In FSQL (as in [9]) all fuzzy sets are trapezoidal

and therefore, are normalized. Recall that a normalized fuzzy set is one that has at least one

element with degree 1. From the two definitions it is evident that every normalized fuzzy set is

itself total, but not vice versa. However, if we consider the lattice L for membership degrees to

be the unit interval r0 . . . 1s, then both becomes equivalent. Relation algebraically an L-fuzzy

set expressed as a vector v : 1 Ñ A is total iff IA � vv` and normalized iff vÓ , 0.

In our study not all fuzzy sets are total, so a possibility comparator does not always produce

more tuples. As an example, let us say we want to check if the empty set is necessarily equal

to $Close (i.e., tu NF� $Close). The answer is intuitively “true”. But when the condition uses

possibility comparator instead, i.e., tu F� $Close, then it returns “false” because at least one of

the elements of tu should have to be in Close which is not satisfied.

3.2.2 The CREATE Statement

The CREATE statement does the first step in building a database. It creates a new table with the

attributes specified by the user. Such a table is initially empty, i.e, it has no rows in it. Along

with the attributes, the user has to provide the corresponding domains. Here is the general form

of the CREATE statement.

CREATE TABLE RpA1 : D1, . . . , An : Dnq; ,

where R is the new table to be crated with attributes A1, . . . , An and D1, . . . ,Dn are the corre-

sponding domains. For a CREATE statement to be successful it is required that R is a new name

Chapter 3. Semantics of L-Fuzzy Structured Query Language 59

and the domains are defined. We write R.Ai to indicate the column Ai of R. However, if the

attribute Ai is unique in regard to the context, we remove the prefix R from R.Ai.

3.2.3 The INSERT Statement

Once a table is created we add tuples by using the DML statement INSERT. It has the following

general form.

INSERT INTO R VALUES pm1, . . . ,mnq; ,

where R is an existing table with attributes A1:D1, . . . , An:Dn and m1, . . . ,mn areL-fuzzy subsets

defined on the domains D1, . . . ,Dn, respectively. As mentioned before one can define these

fuzzy sets within the INSERT statement or refer to a linguistic label in the metadatabase.

3.2.4 The WHERE Clause

The WHERE clause is the central part of most SQL queries. In our language LFSQL it is

used to specify a condition in a SELECT statement as we will see shortly. In classical SQL

the WHERE clause is also used in other DML operations, for example the DELETE and the

UPDATE operations, as well as in building more complex queries.

A primitive comparison in such a WHERE clause has the form S LFC S 1 where S , S 1 are either

some attributes of the form R.A or L-fuzzy sets and LFC is an L-fuzzy comparator which

might be a necessity fuzzy (NFC) comparator or a possibility fuzzy comparator (FC) based on

some binary comparator C. Note that, for a comparison S LFC S 1 to be syntactically correct

it is required that the domain of S , S 1, and C are the same. If successfully evaluated, such a

comparison returns a degree from L for each tuple of R indicating up to which it satisfies the

condition.

In LFSQL a comparison can be equipped with a threshold if required. Such a comparison,

C THOLD l for example, returns the degree dC if dC ¥ l in L, otherwise it returns a 0.

Compound comparison can be formed off primitive comparisons by using logical connectives

AND or OR. In LFSQL these refer to the meet and join operation on L, respectively. For ex-

ample, if C1 AND C2 is such a comparison with dC1 and dC2 being the degrees of the individual

comparisons, then the final outcome is the degree pdC1 ^ dC2q P L. In addition, both AND or

OR can be based on a t-norm like or t-conorm like operation, respectively.

Finally, a WHERE clause consists of the keyword WHERE followed by a comparison, either

primitive or compound. Two examples are given below.

Chapter 3. Semantics of L-Fuzzy Structured Query Language 60

WHERE R.Distance NF� $Close THOLD l AND R.Age F $Young,

WHERE R.Age F� S .Age ORp�q R.Height F¡ $S hort,

For each tuple of R the former returns a degree which is the meet of the two individual degrees

resp. indicating up to which its Distance entry is necessarily Close with at least l and its Age

entry is possibly Young.

3.2.5 The DELETE Statement:

As in FSQL we use the DELETE statement in LFSQL to remove tuples from a table. It has the

following simple form.

DELETE FROM R WHERE wh; ,

where R is the name of an existing table and wh is a WHERE clause discussed earlier. Such a

syntactically correct DELETE statement when executed, deletes all tuples from R for which wh

produces a non-zero degree.

3.2.6 The SELECT Statement:

The SELECT statement is the primary Data Manipulation Language (DML) operation used to

retrieve information from a database. It has the following general form.

SELECT A1, . . . , Am FROM R1, . . . ,Rn WHERE wh;

Here A1, . . . , Am are the attributes to be selected from the tables R1, . . . ,Rn and wh is a condition.

The syntactic requirement for a SELECT statement to be executed properly is that each of the

attributes uniquely identify the table it is selected from. In that case it returns a new table with

attributes A1, . . . , Am which is made up off the old ones. Only those tuples from the combined

table that satisfy the condition wh with degree not equal to 0, qualify in the new table. Note that

each column of a tuple in the resultant table takes its value from the respective column in one of

these old tables.

3.2.7 An LFSQL Query Example

For demonstrating the operations in the remaining of this chapter, we consider this example

on our L-database: suppose Peter needs someone’s quick help in lifting some household stuffs

Chapter 3. Semantics of L-Fuzzy Structured Query Language 61

(referring to the Database Table 3.1). In other words, he might be helped by someone who is

young and lives close to him. A SELECT query for this in our LFSQL might be

SELECT Name, Phone no.

FROM CONTACT

WHERE Distance NF�$Close THOLD b AND Age F $Young;

This query when executed returns the names and phone numbers of those who lives close to

Peter, i.e., within 5km of his place, and also whose age is 20 or less. The resultant table is

shown in Figure 3.4.

Name Phone no.
Kevin +13333333333

Figure 3.4: Query output

From the Table 3.1 we find that although John lives close to Peter (3km), he is aged enough not

to qualify the query condition. Kevin, on the other hand, fulfils both the conditions and so is

included in the result. The distance between Peter’s and Linda’s place is unknown and also she

is over aged to be considered. Finally, Richy and Tijo are not listed as their entries in the table

do not satisfy the distance requirement of the query, however, although they are young.

3.2.8 Inner Joins

Database join operations, as the name suggest, are used to combine tables together, unsually

within a SELECT statement. An INNER JOIN in LFSQL has the the following basic form.

R1 INNER JOIN R2 ON R1.A1i � R2.A2 j,

where R1 and R2 are two database tables and A1i and A2 j are attributes of R1 and R2, respectively,

that have the same domain. Therefore, an INNER JOIN creates a new table combining all the

attributes from the two tables and only the tuples having the same value for A1i and A2 j in the

original tables qualify to be in the new table.

One could easily verify that an INNER JOIN is essentially the same as a SELECT statement.

For example, the above INNER JOIN can be expressed by the following LFSQL SELECT

Chapter 3. Semantics of L-Fuzzy Structured Query Language 62

statement.

SELECT R1.A11, . . . ,R1.A1m,R2.A21, . . . ,R2.A1n

FROM R1,R2

WHERE R1.A1i F� R2.A2 j; ,

3.3 Semantics of LFSQL

At this point we are ready to define the semantics of L-fuzzy query language LFSQL in the

abstract theory of arrow categories. In doing so we will require that all injections, projections,

and splittings used are crisp relations. Note that crisp versions of these relational constructions

do exist in most cases [31, 33], and so this type of requirements do not cause any major restric-

tion in our study. As an example let us assume that the projections are not crisp and we have

a database where some attribute A has a single crisp value in it. Now, as the projections are

not crisp when we project on A we would get a non-crisp value although the actual value it has

is crisp. This means that the whole process introduces some sort of fuzziness to a non-fuzzy

context which is not acceptable. The same concept applies to injections as they are simply the

converse of projections in our study.

Now, while defining the semantics for LFSQL, we would need some sort of interpretations for

the lattice L, domains of the attributes, the metadatabase, and so on. Therefore, we require the

followings. For the illustrations we use the arrow category of concrete D6-fuzzy relations as an

example.

1. The algebraic theory that is going to be used is an arrow category, written as A. We

require that A have relational products, relational sums, splittings, a zero object and a

unit, all of which are crisp.

2. From Chapter 2 we know that scalar relations help identify the underlying lattice. In A

the complete Heyting algebra of scalar elements is isomorphic to L. This is because the

corresponding Dedekind category is uniform meaning that x;x � x irrespective of the

source and the destination. As a result, there is a scalar Iplq inA for every l P L. We say

that Iplq is the interpretation of l. For example, if we consider the lattice element c P D6,

then the corresponding scalar Ipcq : A Ñ A on some object A � ta1, a2, . . . , anu has the

Chapter 3. Semantics of L-Fuzzy Structured Query Language 63

following form.

�
������

a1 a2 ... an

a1 c 0 0 0

a2 0 c 0 0

... 0 0 c 0

an 0 0 0 c

�
�����

3. A domain D is interpreted by an object IpDq in A and an element d P D, by a crisp

point Ipdq : 1 Ñ IpDq. Note that in our study we denote the unit object 1 by t�u. For

instance the domain of the attribute Name and a value Richy P Name would be interpreted

as follows.

IpNameq � tJohn,Kevin, Linda,Richy,Ti jou

IpRichyq �
� John Kevin Linda Richy T i jo

� 0 0 0 1 0
	

In addition, we have the followings for domains.

• For an ordered domain D the associated order (¤) is interpreted by Ip¤q : IpDq Ñ
IpDq so that dx ¤ dy iff Ipdxq; Ip¤q; Ipdyq` � x11. As an example let us consider

t1, 2, 3, 4, 5u as the domain for Distance and we want to check if 3 ¤ 5.

Ip3q; Ip¤q; Ip5q` �
� 1 2 3 4 5

� 0 0 1 0 0
	

;

�
��������

1 2 3 4 5

1 1 1 1 1 1

2 0 1 1 1 1

3 0 0 1 1 1

4 0 0 0 1 1

5 0 0 0 0 1

�
�������

;

�
��������

�

1 0

2 0

3 0

4 0

5 1

�
�������

�
� 1 2 3 4 5

� 0 0 1 1 1
	

;

�
��������

�

1 0

2 0

3 0

4 0

5 1

�
�������
�

� �

� 1
	
� x11

• If the domain D comes with an approximate equality�, then we have inA a relation

Ip�q : IpDq Ñ IpDq and we say that an element dx is approximately equal to another

element dy with degree l P L, i.e., dx � dy � l iff Ipdxq; Ip�q; Ipdyq` � Iplq. For

the illustration we continue using the same Distance example with the approximate

equality begin defined to be distances that very by less than 1km. If we are interested

Chapter 3. Semantics of L-Fuzzy Structured Query Language 64

in the approximation 3 � 4, then we have the followings.

Ip3q; Ip�q; Ip4q` �
� 1 2 3 4 5

� 0 0 1 0 0
	

;

�
��������

1 2 3 4 5

1 1 c 0 0 0

2 c 1 d 0 0

3 0 d 1 c 0

4 0 0 c 1 d

5 0 0 0 d 1

�
�������

;

�
��������

�

1 0

2 0

3 0

4 1

5 0

�
�������

�
� 1 2 3 4 5

� 0 d 1 c 0
	

;

�
��������

�

1 0

2 0

3 0

4 1

5 0

�
�������
�

� �

� c
	
� Ipcq

Note that, as the Heyting algebra of scalar elements is isomorphic to the lattice L, it is required

that for every t-norm and t-conorm like operation included in the metadatabase, there is a corre-

sponding operation defined on the scalars. We will see these operations later on.

Now if a database table has n rows or tuples, the corresponding relation in A should have a

source which has n elements. We write Ipnq for the object with n elements and we get this by

taking the relational sum of the unit object n times, i.e.,

Ipnq � 1� � � � � 1looooomooooon
n�times

.

Recall that a unit 1 is an object in A for which I1 � x11 and xA1 is total for any other object

A. Note that Ip0q � 0 which is the zero object (i.e., y00 � x00). Also note that the object

Ipm � nq is isomorphic to Ipmq � Ipnq as relational products distribute over relational sums, i.e.,

A� pB�Cq � A� B� A�C.

3.3.1 Semantics of L-Fuzzy Sets

As we know L-fuzzy sets are used to represent the entries of a table and also in the WHERE

clause to form conditions. If m is an L-fuzzy set defined on the domain D, then the semantics of

m is given by the vector ~m� : 1 Ñ IpDq. Also, the part of the metadatabase that stores L-fuzzy

sets is modelled by a function σs which takes the name of an L-fuzzy set, let us say $m, and

returns the corresponding vector relation, i.e., σsp$mq : 1 Ñ IpDq. If such a function is given,

the semantics of basic L-fuzzy sets are given as follows.

Chapter 3. Semantics of L-Fuzzy Structured Query Language 65

• For explicitly given sets:

~tl1{d1, . . . , ln{dnu�pσsq �
n§

i�1

Ipliq; Ipdiq

Example:

~tc{4, 1{5, d{6u�pσsq �
� �

� c
	

;
� 1 2 3 4 5 6 7 ...

� 0 0 0 1 0 0 0 0
	
\

� �

� 1
	

;
� 1 2 3 4 5 6 7 ...

� 0 0 0 0 1 0 0 0
	
\

� �

� d
	

;
� 1 2 3 4 5 6 7 ...

� 0 0 0 0 0 1 0 0
	

�
� 1 2 3 4 5 6 7 ...

� 0 0 0 c 1 d 0 0
	

• For linguistic labels: ~$m�pσsq � σsp$mq
Example:

~$Close�pσsq � σsp$Closeq �
� 1 2 3 4 5 6 7 ...

� 1 1 1 1 1 c a 0
	

• For predefined functions:

~# f �pσsq �
§
dPD

Ip f pdqq; Ipdq

Here, we first use the function f to get the degree of membership l for some d P D. It

then follows the same procedure stated above.

As we know, intensifying and weakening modifiers can be used to define new L-fuzzy sets. In

relation algebra, we use residuals and composition respectively, to compute these modifies [31].

~extremelyp�,mq�pσsq � p~m�pσsqzIp�qqzIp�q,
~veryp�,mq�pσsq � ~m�pσsqzIp�q,

~more or lessp�,mq�pσsq � ~m�pσsq; Ip�q,
~roughlyp�,mq�pσsq � ~m�pσsq; Ip�q; Ip�q,

Chapter 3. Semantics of L-Fuzzy Structured Query Language 66

As an example we consider theL-fuzzy set m � td{4, 1{5, c{6u on the domain of Distance with

the approximate equality being defined as:

Ip�q �

�
����������������

1 2 3 4 5 6 7 ...

1 1 d 0 0 0 0 0 . . .

2 d 1 c 0 0 0 0 . . .

3 0 c 1 c 0 0 0 . . .

4 0 0 c 1 d 0 0 . . .

5 0 0 0 d 1 c 0 . . .

6 0 0 0 0 c 1 d . . .

7 0 0 0 0 0 d 1 . . .

... 0 0 0 0 0

�
���������������

Now, the “more or less” modifier for m can be computed as follows.

~m�pσsq; Ip�q �
� 1 2 3 4 5 6 7 ...

� 0 0 0 c 1 d 0 0
	

;

�
����������������

1 2 3 4 5 6 7 ...

1 1 d 0 0 0 0 0 . . .

2 d 1 c 0 0 0 0 . . .

3 0 c 1 c 0 0 0 . . .

4 0 0 c 1 d 0 0 . . .

5 0 0 0 d 1 c 0 . . .

6 0 0 0 0 c 1 d . . .

7 0 0 0 0 0 d 1 . . .

... 0 0 0 0 0

�
���������������

�
� 1 2 3 4 5 6 7 ...

� 0 0 c 1 1 1 d 0
	

However, as mentioned before, if a t-norm like operation is used, then the corresponding residual

and the composition based on that operation is used instead.

3.3.2 Semantics of Tables

Before you dive into the semantic details for an L-fuzzy table we first demonstrate the usual

way we think of a database table using a simple example. Let us say our table has two attributes

A and B with the corresponding domains being ta, bu and tc, du, respectively. We take L to be

t0,m, 1u for membership values. As each entry is actually an L-fuzzy subset of the correspond-

ing domain, for attribute A a tuple can have one of the |L||A| � 32 � 9 different combinations

(subsets). The set of all the subsets on A is called its L-fuzzy powerset and is written as PpAq
or LA. Here,

Chapter 3. Semantics of L-Fuzzy Structured Query Language 67

LA � tt0{a, 0{bu, t0{a,m{bu, t0{a, 1{bu, tm{a, 0{bu, tm{a,m{bu, tm{a, 1{bu,
t1{a, 0{bu, t1{a,m{bu, t1{a, 1{buu

Similarly LB has |L||B| � 32 � 9 elements. Note that in case of classical sets, i.e., when

L is t0, 1u or ttrue, f alseu, |2A| � 22 � 4 and the same for 2B.

Now, the usual way of modelling a database table is to use a subset of the Cartesian product

of its attributes. For example, the classical database in Figure 3.5a could be represented by

the subset tpa, dq, pb, cqu � 2A � 2B. Similarly, for an L-fuzzy table it would be a subset

of LA � LB which is essentially the relational product of the two objects LA and LB in our

arrow category A. Figure 3.5c shows such a representation for the first tuple of Figure 3.5b.

Therefore, in our example together for the two attributes an arbitrary tuple might be one of

|LA| � |LB| � 9 � 9 � 81 possible L-fuzzy subsets. However, in the algebra of relations,

such a table can be modelled as a crisp function that maps an object or tuple to one of these

81 possibilities. Figure 3.5d provides a conceptual view for such a function where the source

indicates the tuple numbers and the target contains all the subsets, to be precise the pairs of

LA � LB, each of which has the form of Figure 3.5c. Note that in every row of the relation in

Figure 3.5d there is exactly one 1 indicating the L-fuzzy subset for that tuple. We assume that

S 3 � tm{a, 1{b, 0{c,m{du be the subset for the first tuple.

A B
a d
b c

(a) A classical database

A B
{m/a,1/b} {0/c,m/d}
{0/a,m/b} {1/c,0/d}

(b) An L-fuzzy database

� LA � LB

tm{a, t0{c,
1{bu , m{du

(c) A � B L-subset

� S 1 S 2 S 3 S 4 S 5 S 6 ... S 80 S 81

1 0 0 1 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0

(d) The table as a crisp relation (to LA �LB)

$''&
''%

LA�B

m{a
0{c
1{b
m{d

,//.
//-

(e) A � B L-subset

� T1 T2 T3 T4 T5 T6 ... T80 T81

1 0 0 0 0 0 1 0 0 0
2 0 1 0 0 0 0 0 0 0

(f) The table as a crisp relation (to LA�B)

� a b c d

1 m 1 0 m
2 0 m 1 0

(g) The table as an L-relation

Figure 3.5: Modelling a database table

At this point, we become interested in expressing the same L-fuzzy table using relational sum.

As each attribute has two values in our database, the construction A� B has four elements as it

computes the disjoint union. For example, Figure 3.5e shows the first tuple of Figure 3.5b in the

new notation. Now, from [27] we know that LA � LB � LA�B meaning that the pair of subsets

of Figure 3.5c is isomorphic to one subset of the new type shown in Figure 3.5e. However, the

set of all such L-fuzzy subsets will be LA�B which has a total of |L||A|�|B| � 34 � 81 elements

in it. Eventually the final relation for the whole table is still a crisp function as shown in Figure

Chapter 3. Semantics of L-Fuzzy Structured Query Language 68

3.5f. Notice that the A� B L-subset S 3 in Figure 3.5d for example, is isomorphic to the A� B

L-subset T6 in Figure 3.5f.

In the final step, we would like to get rid of the L from the construction LA�B which also

removes the property that the relation in Figure 3.5f is a crisp function. The result is an arbitrary

L-relation from the same source to A � B as shown in 3.5g. Notice that the new relation is

equivalent to the previous two but comparatively simpler and serves our purpose much better.

Now we summarize the whole idea. Let us say R is a table in our database which has r rows

and n-attributes A1, A2, . . . , An with domains D1,D2, . . . ,Dn. If R is non fuzzy, we can view R

as a finite subset of the product of the corresponding domains which is D1 � D2�, . . . ,�Dn.

Relation algebraically this can be modelled in one of the following three ways.

1. As a point relation: ~R� : 1 Ñ PpIpD1q�� � �� IpDnqq, where PpXq is an abstract version

of a power set construction and therefore the whole table is basically a single element of

PpXq.

2. As a vector: ~R� : 1 Ñ IpD1q � � � � � IpDnq.

3. As a function: ~R� : Iprq Ñ IpD1q � � � � � IpDnq as we deal with finite database.

However, if R is an L-fuzzy table, then each attribute stores sets for tuples. As a result, the

target object with the last option changes to PpIpD1qq � � � � � PpIpDnqq. We already know that

this object is isomorphic to PpIpD1q � � � � � IpDnqq [27]. This eventually leads to the fact that

having a function of the form ~R� : Iprq Ñ PpIpD1q � � � � � IpDnqq is equivalent to having a

relation of the form ~R� : Iprq Ñ IpD1q � � � � � IpDnq. This final relation thus constitutes the

semantics for the table R. Notice that the n-ary sum can be obtained by iterating binary sums.

However, we denote the injection from IpD1q into IpD1q � � � � � IpDnq by ιi. As projections are

converse of injections in our study, we have ~R.Ai� � ~R�; ι`i .

3.3.3 Semantics of L-Fuzzy Comparators

In Section 3.2.1 we have defined the two types of fuzzy comparator: possibility and necessity.

Relation algebraically they can be computed using composition and residual operations, respec-

tively. In order to demonstrate this, we continue using the same “Distance” example. Recall

that our interest was to check if Tijo’s home is fuzzy (possibly and necessarily) Close to Peter’s

place. We model the entry for “Distance” in Tijo’s record by the L-fuzzy set ta{4, d{5, b{6u. It

is well known that this L-fuzzy as well as the one for the label $Close will be represented by

some vectors in the semantics, let us denote them by T and C, respectively. At first we would

Chapter 3. Semantics of L-Fuzzy Structured Query Language 69

like to consider the non-fuzzy case only. Therefore, for the possibility comparator we have:

Ti jo.Distance F� $Close

� T ; C`

�
� 1 2 3 4 5 6 7 8 ���

0 0 0 1 1 1 0 0 � � �
	

;
� 1 2 3 4 5 6 7 8 ���

1 1 1 1 1 0 0 0 � � �
	`

� p1q

As the result is a 1, we can say that Tijo’s place is possibly Close to Peter’s place. Now, for the

necessity comparator we have the followings.

Ti jo.Distance NF� Close

� pC{T q`

�

�
��� � 1 2 3 4 5 6 7 8 ���

1 1 1 1 1 0 0 0 � � �
	
{
� 1 2 3 4 5 6 7 8 ���

0 0 0 1 1 1 0 0 � � �
	���
`

� p0q

The generalization of these two operations for L-fuzzy case can be found in [31]. For example,

the composition operation will compute the least upper bound of all L values obtained as the

membership degrees of those elements belonging to both sets. This means that, if v1 and v2 are

two vectors on some domain D, then we have

v1; v2
` �

§
xPD

v1pxq [v2pxq.

In our example,

T ; C` �
� 1 2 3 4 5 6 7 8 ���

0 0 0 a d b 0 0 � � �
	

;
� 1 2 3 4 5 6 7 8 ���

1 1 1 1 1 c a 0 � � �
	

� �ta[1, d [1, b[cu � �ta, d, bu � 1

On the other hand, the residual operation which represents the necessity equality, computes

the greatest lower bound of all L-values obtained as the maximal degree of which an element

belongs to the first set implies that it also belongs to the second set. Therefore, we have

v1; v2
` �
�
xPD

v1pxq Ñ v2pxq.

If, however, the underlying binary comparison is not �, then the corresponding relation has to

be added in the composition as well as in the residual operation.

Chapter 3. Semantics of L-Fuzzy Structured Query Language 70

At this point, we define the semantics of a comparison. As discussed in Section 3.2.4, we write

S LFC S 1 for a general comparison where S , S 1 are either some attributes of the form R.A or

some L-fuzzy sets and LFC is either a possibility or a necessity comparator based on the binary

comparator C. Recall that in Section 3.3.1 we defined σs to be the function that takes an L-

fuzzy set $m as input and returns the corresponding vector, i.e., σsp$mq : 1 Ñ IpDq. But if the

selection is some attribute R.A, then we need another construction that maps a table name to its

semantics, i.e., a relation of the form ~R� : Iprq Ñ IpD1q� � � �� IpDnq. Let us name it σt. Note

that σt represents the whole L-fuzzy database in the semantics. We write σtrQ{Rs to denote the

update of σt at table R by the relation Q. We will see an example in Section 3.3.5. Finally, the

semantics of a selection S written as ~S �pσs, σtq : Iprq Ñ IpDiq, is defined by the following

two cases.

• S is an attribute (R.A): ~R.Ai�pσs, σtq � ~R.Ai�pσtq � σtpRq; ι`i
From the example in Figure 3.5

~R.Ai�pσtq � σtpRq; ι`i

�
� a b c d

1 m 1 0 m

2 0 m 1 0

�
;

� a b c d

a 1 0 0 0

b 0 1 0 0

�`

�
� a b c d

1 m 1 0 m

2 0 m 1 0

�
;

�
������

a b

a 1 0

b 0 1

c 0 0

d 0 0

�
�����

�
� a b

1 m 1

2 0 m

�
.

• S is an L-fuzzy set: ~m�pσs, σtq � xIpnq1; ~m�pσsq
As an example, let us deduce semantics for the L-fuzzy set m � tm{a,m{bu on attribute

Chapter 3. Semantics of L-Fuzzy Structured Query Language 71

A. Therefore,

~m�pσs, σtq � xIpnq1; ~m�pσsq

�
� �

1 1

2 1

�
;
� a b

� m m
	

�
� a b

1 m m

2 m m

�
.

Having the interpretations for individual selections, we can now proceed to have a semantics

for a complete L-fuzzy comparison. If S LFC S 1 is a general comparison, then we define its

semantics ~S LFC S 1�pσs, σtq to be a relation of the form Iprq Ñ Iprq which has either of the

following two forms:

~S FC S 1�pσs, σtq � ~S �pσs, σtq; IpCq; ~S 1�pσs, σtq` [IIprq,

~S NFC S 1�pσs, σtq � pp~S 1�pσs, σtq; IpCq`q{~S �pσs, σtqq` [IIprq.

Note that the constructions on the left of [above compare each row of ~S �pσs, σtq with every

row of ~S 1�pσs, σtq. Therefore, in order to make sure that only the corresponding rows are

matched we intersect the result with the identity IIprq.

Now, let us see how it works with our example for the comparison R.A F� tm{a,m{bu.

~R.A F�tm{a,m{bu�pσs, σtq �
� a b

1 m 1

2 0 m

�
;

� a b

a 1 0

b 0 1

�
;

� a b

1 m m

2 m m

�`
[

� 1 2

1 1 0

2 0 1

�

�
� a b

1 m 1

2 0 m

�
;

� 1 2

a m m

b m m

�
[

� 1 2

1 1 0

2 0 1

�

�
� 1 2

1 m m

2 m m

�
[

� 1 2

1 1 0

2 0 1

�

�
� 1 2

1 m 0

2 0 m

�

The resultant matrix indicates that both the tuples satisfy the condition with degree m. Note that

the semantics of an L-fuzzy comparison is a partial identity, i.e., a relation which is smaller or

Chapter 3. Semantics of L-Fuzzy Structured Query Language 72

equal to IIprq.

We want to conclude this section by showing relation algebraically how possibility comparators

generalize necessity comparators. For Q LFC R, we shorthand the semantic expressions for the

two comparators to Q; C; R` and ppR; Cq`{Qq`, respectively. Now, we have

X � ppR; Cq`{Qq` ô X` � R; C`{Q Taking converse

ô X`; Q � R; C`

ô pX`; Qq` � pR; C`q` Taking converse

ô Q`; X � C; R`

ô Q; Q`; X � Q; C; R` Multiplying by Q

Therefore, X � Q; Q`; X � Q; C; R` If Q is total

ô X � Q; C; R`

Also, ppR; Cq`{Qq` � Q; C; R`

From the proof above it is evident that possibility comparisons are more general than necessity

comparisons.

3.3.4 Semantics of WHERE Clause

As mentioned before in LFSQL one or more primitive comparisons can be combined by using

logical AND or OR which are based on [and \, respectively. However, if a t-norm like or

t-conorm like operation � is used instead of the two logical connectives, then we use [� that

covers both the cases. At the end of Chapter 2 we saw how to compute [for a complete lattice-

ordered semigroup operation � componentwisely. In fact, restricting \ to scalar relations and

using it as a t-conorm like operation yields [\ � \ [31].

Also, we know that primitive comparisons in LFSQL may have threshold values specified with

them. In Chapter 2 we have seen that α-cut produces relations that associate elements with

membership degrees of at least α. As this is what a threshold in a comparison operation requires,

we therefore, model such a comparison using α-cut as follows.

~Com THOLD l�pσs, σtq � pIplqz~Com�pσs, σtqqÓ

Chapter 3. Semantics of L-Fuzzy Structured Query Language 73

Using the running example let us evaluate the comparison R.A F� tm{a,m{bu THOLD m.

~R.A F� tm{a,m{bu THOLD m�pσs, σtq � pIpmqz~R.A F� tm{a,m{bu�pσs, σtqqÓ

�

�
������

� 1 2

1 m 0

2 0 m

�
z
� 1 2

1 m 0

2 0 m

�
�
�����

Ó

�
� 1 2

1 1 m

2 m 1

�
Ó

�
� 1 2

1 1 0

2 0 1

�

From the final matrix it is evident that both tuple 1 and 2 satisfy the condition with the threshold

m.

As because partial identities are closed under meets, joins (including the t-norm and t-conorm

based versions) and α-cuts, it is evident that the semantics of a WHERE clause is also a partial

identity.

3.3.5 Semantics of Statements

As mentioned before σtrQ{Rs represents the update of σt at a table R by the relation Q. Mathe-

matically,

σtrQ{RspXq �
$&
%Q, if X � R,

σtpXq, otherwise.

This is necessary particularly for the CREATE and INSERT statements. Such a statement when

executed produces a new relation which is then used to update the database.

3.3.5.1 Semantics of CREATE Statement

The CREATE statements adds a new table to the database. Therefore, the semantics of a CRE-

ATE statement produces a relation which is then added to the database, i.e., modifies the existing

database. We define the semantics of the CREATE statement as follows.

~CREATE TABLE RpA1 : D1, . . . , An : Dnq; �pσtq � σtry0pIpD1q�...�IpDnqq{Rs

Chapter 3. Semantics of L-Fuzzy Structured Query Language 74

It says that we update σt by adding the empty relation y0pIpD1q�...�IpDnqq as R does not already

exist. Graphically this relation ~R� : Iprq Ñ IpD1q � � � � � IpDnq would be an empty matrix

with no rows in it.

3.3.5.2 Semantics of INSERT Statement

As we know every tuple of a table in anL-fuzzy database hasL-fuzzy sets for each attribute. Let

us say tm1, . . . ,mnu are L-fuzzy subsets of the domains pD1, . . . ,Dnq. We define the semantics

for a tuple of that table by

~pm1, . . . ,mnq�pσsq �
n§

i�1

~mi�pσsq; ιi.

Suppose we want to insert a tuple into our example database that has t1{a,m{bu for attribute A

and t0{c, 1{du for attribute B. Now,

~pt1{a,m{bu, t0{c, 1{duq�pσsq � ~t1{a,m{bu�pσsq; ι1 \ ~t0{c, 1{du�pσsq; ι2

�
� a b

� 1 m
	

;

� a b c d

a 1 0 0 0

b 0 1 0 0

�
\

� c d

� 0 1
	

;

� a b c d

c 0 0 1 0

d 0 0 0 1

�

�
� a b c d

� 1 m 0 0
	
\

� a b c d

� 0 0 0 1
	

�
� a b c d

� 1 m 0 1
	

In order to deduce the semantics for the final table where this tuple has been added, we refer to

the following figure.

r
σtpRq

**
ι
��

r � 1
~Rpm1,...,mnq�pσs,σtq// IpD1q � � � � � IpDnq

1

κ

OO

~pm1,...,mnq�pσsq

44

Figure 3.6: Modelling the INSERT statement

In the relational diagram above the table has r rows and thus is interpreted by the relation Iprq Ñ
IpD1q� � � �� IpDnq. As we have already seen in the example, a vector 1 Ñ IpD1q� � � �� IpDnq
represents the tuple to be inserted. The resultant table therefore, has r � 1 tuple and maps from

Chapter 3. Semantics of L-Fuzzy Structured Query Language 75

the object r� 1 to IpD1q � � � � � IpDnq inA. Finally, from Figure 3.6 we get the followings for

the semantics of the resultant table.

~Rpm1, . . . ,mnq�pσs, σtq � ι`;σtpRq \ κ`; ~pm1, . . . ,mnq�pσsq

As an illustration, let us insert the tuple pt1{a,m{bu, t0{c, 1{duq into the table of Figure 3.5.

~Rpt1{a,m{bu, t0{c, 1{duq�pσs, σtq � ι`;σtpRq \ κ`; ~pt1{a,m{bu, t0{c, 1{duq�pσsq

�
� 1 2 3

1 1 0 0

2 0 1 0

�`
;

� a b c d

1 m 1 0 m

2 0 m 1 0

�
\

� 1 2 3

� 0 0 1
	`

;
� a b c d

� 1 m 0 1
	

�

�
���

1 2

1 1 0

2 0 1

3 0 0

�
��;

� a b c d

1 m 1 0 m

2 0 m 1 0

�
\

�
���

�

1 0

2 0

3 1

�
��;

� a b c d

� 1 m 0 1
	

�

�
���

a b c d

1 m 1 0 m

2 0 m 0 1

3 0 0 0 0

�
��\

�
���

a b c d

1 0 0 0 0

2 0 0 0 0

3 1 m 0 1

�
��

�

�
���

a b c d

1 m 1 0 m

2 0 m 0 1

3 1 m 0 1

�
��

Note that the first injection ι maps from the r-ary relational sum of the unit object to the pr� 1q-
ary relational sum. In our example, as the table already contains 2 tuples and so the final table

would have 3 tuples, ι injects to the object Ip3q.

Based on these definitions we define the semantics of an INSERT statement as follows:

~INSERT INTO R VALUES pm1, . . . ,mnq; �pσs, σtq
� σtr~Rpm1, . . . ,mnq�pσs, σtq{Rs.

From the definition of update function it is clear that the new relation replaces the existing one

for the particular table.

Chapter 3. Semantics of L-Fuzzy Structured Query Language 76

3.3.5.3 Semantics of DELETE Statement

As we know the DELETE operation removes tuples from a database table that satisfy certain

condition specified by a WHERE clause. In the semantics of the DELETE statement this means

that we have to filter out the rows satisfying the condition. For this we can use the splitting of

the semantics of WHERE clause, let us denote it by X for now, i.e., X � ~wh�pσs, σtqÒ. In

[2] it was shown that this splitting can be computed as S � �
iPA

ι`i ; ιi : Ip|A|q Ñ Iprq where

A � ti P t1, . . . , ru | ιi; X; ι`i � y11u. Therefore, we consider injections from the object

of splitting to only those elements of Iprq (tuples of the table-relation) that do not satisfy the

WHERE clause “wh”. With these definitions, we model the complete DELETE statement as

follows [2]

~DELETE FROM R WHERE wh; �pσs, σtq � σtrS ;σtpRq{Rs.

As an example we would like to delete those tuples from our final table which satisfy the con-

dition R.A F� tm{a,m{buTHOLD m. Therefore, the object A of the splitting only contains 2.

So, we get the following.

S �
§
iPA

ι`i ; ιi � ι`1 ; ι1 �
� 1

2 1
	

;
� 1 2 3

1 0 1 0
	

�
� 1 2 3

2 0 1 0
	

Now, for the semantics of the complete DELETE statement, we get

~DELETE FROM R WHERE R.A F� tm{a,m{bu; �pσs, σtq � σtrS ;σtpRq{Rs

� σtr
� 1 2 3

2 0 1 0
	

;

�
���

a b c d

1 m 1 0 m

2 0 m 0 1

3 1 m 0 1

�
��{Rs

� σtr
� a b c d

2 0 m 0 1
	
{Rs.

Therefore, we replace the existing relation for R with the new relation.

Chapter 3. Semantics of L-Fuzzy Structured Query Language 77

3.3.5.4 Semantics of SELECT Statement

As we know the SELECT statement is the basic DML operation found in all types of SQL. In

LFSQL it has the following form.

SELECT S 1, . . . , S m FROM R1, . . . ,Rn WHERE wh;

In order to define the semantics for this SELECT statement we first generate an intermediate

table consisting of all attributes from all the participating tables. If T is the corresponding

relation for the intermediate table, then we have

T �
n�

i�1

πi; ~Ri�pσtq; ιi : Ip
n¹

i�1

riq Ñ
ņ

i�1

IpDi1q � � � � � IpDiki
q

where Di1 , � � � ,Diki
are the domains for the attributes of table Ri and ιi is the injection from

IpDi1q � . . .� IpDiki
q into

n°
i�1

IpDi1q � � � � � IpDiki
q.

Whereas the DELETE statement filters out the tuples that satisfy the WHERE condition and

replaces the original table with the resultant one, the SELECT statement does not update the

table, rather just generate a new table from multiple parent tables consisting of tuples satisfying

the WHERE clause. Thus, as with the DELETE statement, we will be using splitting of the

semantics of the WHERE clause in computing the semantics of the SELECT statement. Let

us denote the splitting of ~wh�pσs, σtqÒ by S : Ipr1q Ñ Ip
n±

i�1
riq. At this point we apply the

splitting to the intermediate table by evaluating the expression Q � S ; T which then produces a

new relation Q : Ipr1q Ñ
n°

i�1
IpDi1q�� � �� IpDiki

q containing the qualified tuples only. Note that

this table contains the selections S 1, . . . , S m as well as the other attributes of the participating

tables. So, in order to get the final result P we do the following.

P �
m§

i�1

Q; ιi`; ιi : Ipr1q Ñ IpD1q � � � � � IpDmq.

Note that in the expression Q; ιi`; ιi the injection in the middle maps from IpDiq to
n°

i�1
IpDi1q �

� � � � IpDiki
q whereas the one on the right has the form ιi : IpDiq Ñ IpD1q � � � � � IpDmq.

Therefore, we define the semantics of the whole SELECT statement by

~SELECT S 1, . . . , S m FROM R1, . . . ,Rn WHERE wh; �pσs, σtq � P.

For the demonstrations, we use the tables in Figure 3.7a and 3.7b. Table R1 has two attributes

A � ta, bu and B � tc, du whereas table R2 has the attributes C � tc, du,D � te, f , gu and

E � th, iu. Note that attribute B in table R has the same domain as the attribute C of table T .

Chapter 3. Semantics of L-Fuzzy Structured Query Language 78

�
�

a b c d

1 m 1 0 m
2 0 m 0 1
3 0 0 0 1

�

(a) Relation for R1

�
���

c d e f g h i

1 m 0 m 1 m 0 m
2 0 1 0 1 m 1 0
3 1 1 1 1 m m m
4 0 m 1 m 0 0 1

�
��

(b) Relation for R2

SELECT R1.A,R1.B,R2.D
FROM R1,R2
WHERE R1.A F� tm{a,m{bu
AND (R1.B F� R2.C THOLD 1)

(c) A query

Figure 3.7: Modelling SELECT statement

As stated above we first generate the temporary table T of all attributes from all the participating

tables as follows. Notice that the attributes inherit their names in the form R.A (for some table R

with an attribute A) from their mother table to the new table T . This will be useful while com-

puting semantics of the WHERE clause, specially if two or more tables share attribute names.

T �

�
���������������������������

a b c d c d e f g h i

1 m 1 0 m m 0 m 1 m 0 m

2 m 1 0 m 0 1 0 1 m 1 0

3 m 1 0 m 1 1 1 1 m m m

4 m 1 0 m 0 m 1 m 0 0 1

5 0 m 0 1 m 0 m 1 m 0 m

6 0 m 0 1 0 1 0 1 m 1 0

7 0 m 0 1 1 1 1 1 m m m

8 0 m 0 1 0 m 1 m 0 0 1

9 0 0 0 1 m 0 m 1 m 0 m

10 0 0 0 1 0 1 0 1 m 1 0

11 0 0 0 1 1 1 1 1 m m m

12 0 0 0 1 0 m 1 m 0 0 1

�
��������������������������

.

Chapter 3. Semantics of L-Fuzzy Structured Query Language 79

Now, for the semantics of the WHERE clause we get the followings.

~T.pR1.Aq F� tm{a,m{bu�pσs, σtq �

�
���������������������������

1 2 3 4 5 6 7 8 9 10 11 12

1 m 0 0 0 0 0 0 0 0 0 0 0

2 0 m 0 0 0 0 0 0 0 0 0 0

3 0 0 m 0 0 0 0 0 0 0 0 0

4 0 0 0 m 0 0 0 0 0 0 0 0

5 0 0 0 0 m 0 0 0 0 0 0 0

6 0 0 0 0 0 m 0 0 0 0 0 0

7 0 0 0 0 0 0 m 0 0 0 0 0

8 0 0 0 0 0 0 0 m 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0

�
��������������������������

and ~T.pR1.Bq F� T.pR2.Cq THOLD 1�pσs, σtq �

�
���������������������������

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 m 0 0 0 0 0 0 0 0 0 0

3 0 0 m 0 0 0 0 0 0 0 0 0

4 0 0 0 m 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 1 0 0 0 0 0 0

7 0 0 0 0 0 0 1 0 0 0 0 0

8 0 0 0 0 0 0 0 m 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0

11 0 0 0 0 0 0 0 0 0 0 1 0

12 0 0 0 0 0 0 0 0 0 0 0 m

�
��������������������������

Ó

Chapter 3. Semantics of L-Fuzzy Structured Query Language 80

�

�
���������������������������

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 1 0 0 0 0 0 0

7 0 0 0 0 0 0 1 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0

11 0 0 0 0 0 0 0 0 0 0 1 0

12 0 0 0 0 0 0 0 0 0 0 0 0

�
��������������������������

Therefore, for the complete WHERE clause we get

~R1.A F� tm{a,m{bu AND R1.B F� R2.C THOLD 1�pσs, σtq
� ~T.pR1.Aq F� tm{a,m{bu AND T.pR1.Bq F� T.pR2.Cq THOLD 1�pσs, σtq

�

�
���������������������������

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 m 0 0 0 0 0 0

7 0 0 0 0 0 0 m 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0

�
��������������������������

.

Now, the splitting would be

S �
� 1 2 3 4 5 6 7 8 9 10 11 12

6 0 0 0 0 0 1 0 0 0 0 0 0

7 0 0 0 0 0 0 1 0 0 0 0 0

�
.

Chapter 3. Semantics of L-Fuzzy Structured Query Language 81

At this point we apply the splitting S to the temporary table T and get the following relation Q.

Q � S ; T

�
� a b c d c d e f g h i

6 0 m 0 1 0 1 0 1 m 1 0

7 0 m 0 1 1 1 1 1 m m m

�

Finally, we select the appropriate selections by

P �
m§

i�1

Q; ιi`; ιi � Q; ι1`; ι1 \ Q; ι2`; ι2 \ Q; ι4`; ι4

�
� a b c d c d e f g h i

6 0 m 0 1 0 1 0 1 m 1 0

7 0 m 0 1 1 1 1 1 m m m

�
;

�
������������������������

a b

a 1 0

b 0 1

c 0 0

d 0 0

c 0 0

d 0 0

e 0 0

f 0 0

g 0 0

h 0 0

i 0 0

�
�����������������������

;

� a b c d e f

a 1 0 0 0 0 0

b 0 1 0 0 0 0

�

\ Q; ι2`; ι2 \ Q; ι4`; ι4

�
� a b

6 0 m

7 0 m

�
;

� a b c d e f

a 1 0 0 0 0 0

b 0 1 0 0 0 0

�
\ Q; ι2`; ι2 \ Q; ι4`; ι4

�
� a b c d e f

6 0 m 0 0 0 0

7 0 m 0 0 0 0

�
\

� a b c d e f

6 0 0 0 1 0 0

7 0 0 0 1 0 0

�
\

� a b c d e f

6 0 0 0 1 0 1

7 0 0 0 1 1 1

�

�
� a b c d e f

6 0 m 0 1 0 1

7 0 m 0 1 1 1

�
.

Therefore,

~SELECT R1.A,R1.B,R2.D

FROM R1,R2

Chapter 3. Semantics of L-Fuzzy Structured Query Language 82

WHERE R1.A F� tm{a,m{bu AND pR1.B F� R2.C THOLD 1q; �pσs, σtq

�
� a b c d e f

6 0 m 0 1 0 1

7 0 m 0 1 1 1

�
.

Chapter 4

Implementations

In the previous chapter we have defined a semantics for the query language LFSQL using the

abstract notion of an arrow category. This chapter includes an implementation of those concepts

in the programming language Haskell. We start with an informal overview of Haskell and its

features that are of interests in our implementation.

4.1 Haskell

Haskell is a purely-functional programming language named after logician Haskell Curry [14,

15]. A functional programming language differs from its imperative counterpart in that rather

than performing operations in sequence it evaluates expressions. Haskell has some advanced

features which have made it an efficient and flexible choice for science and research. In the

basics, a Haskell program is a series of high-level generalizable functions and each function

syntactically is inspired by mathematical notation. In our research from concepts to construc-

tions, everything is very much mathematical, for example the L-fuzzy relations. This is one of

the main reasons lying behind our choice of it.

Haskell is a language with strong static typing. This means that every single expression has a

type determined at the compile time. However, if an explicit type definition is missing, Haskell

system infers the type automatically. Types in Haskell not only guarantee correctness but also

contributes to the clarity and efficiency of the programs.

Lazy evaluation is another important feature inherent in Haskell. It means that expressions in

Haskell are not evaluated unless and until their result is needed by some computations. Laziness

significantly affect the way we write programs in Haskell. Although it is difficult to predict

memory usage in lazy evaluation, it is indeed a very powerful way to write compact and modular

83

Chapter 4. Implementations 84

code. Note that compared to most traditional programming languages, an equivalent program in

Haskell often has less code with fewer bugs and requires less time to develop.

Last but not the least, the latest stable release of Haskell comes with a huge collection of libraries

and packages [14]. Many of these libraries contain type classes with algebraic or category-

theoretic underpinnings. However, we are particularly interested in the library Parsec. Parsec is

a very powerful parser combinator library that has a rich set of basic parsing functions. More

importantly it includes mechanisms by which one can built more complex parsers using those

simple functions.

4.2 Implementation of L-Fuzzy Relations

This section solely describes our implementation with the related concepts in Haskell. We also

include code snippets as required.

4.2.1 Data Types

The most common way of declaring a type in Haskell is by using the data statement. Types

defined in this way are called algebraic types and has the following general form.

data [context =>] Typename tv1 ... tvi = Con1 c1t1 c1t2 ... c1tn

| ...

| Conm cmt1 cmt2 ... cmtq

[deriving]

The data keyword here defines the new type TypeName with an optional context and a num-

ber of type variables tv1 . . . tvi. The definition then includes a variable number of constructors

where each constructor Coni has a name followed by a list of type variables or type constants

cit1 . . . cit j. Finally the deriving keyword allows the newly created type a part of some prede-

fined typeclasses.

In our implementation we have the following major types defined.

data LSet l a = LSet [(a,l)] deriving (Show)

type LRel l a b = LSet l (a,b)

data RelTerm = Comp RelTerm RelTerm -- composition

| Conv RelTerm -- converse

| LeftRes RelTerm RelTerm -- left residuals

| RightRes RelTerm RelTerm -- right residuals

| Var String

deriving (Show)

Chapter 4. Implementations 85

The first statement declares L-fuzzy set to be a list of pairs with ‘a’ being the type of the el-

ements and ‘l’ the corresponding membership degrees from some arbitrary Browerian lattice.

The second statement however, uses the keyword type which gives some types new names.

Therefore, we create a new type for L-fuzzy relations with three type variables: ‘l’ for lattices

values and ‘a’ and ‘b’ are for elements of the participating sets. Essentially an L-fuzzy relation

is an L-fuzzy set with each element in the pair being a pair itself.

Finally, the type RelTerm defines the grammar for relational terms. Note that a term might be

a single variable or the result of some relational operations such as composition, converse, etc.

The expression derivingpShowq makes the type RelTerm representable as a character string.

4.2.2 Type Classes

A type class in Haskell differs from the concept of class in Object Oriented Programming. In

contrast, it is like an interface that defines a set of behaviour for the member types. As an

example, the standard “Eq” class as defined in the “Prelude” library is given below.

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

x == y = not (x /= y)

x /= y = not (x == y)

This definition includes two functions to test equality and inequality each of which takes two

arguments and produces a Boolean output. The last two lines, however, are the default definition

for the two functions in the class.

Once a class is defined we can make a type an instance of the class by using the instance

statement where we define those signature functions for this type. For example, the basic Haskell

type Bool can be made an instance of the equality class as follows:

instance Eq Bool where

True == True = True

False == False = True

_ == _ = False

In our study we limit our implementation to finite cases only. Note that this restriction imme-

diately follows from the fact that a real-world database is always finite in nature. That is, it has

a finite number of tables with a finite number of tuples in each table, each attribute has a finite

domain, and so on. As a result, we define a class for a finite set with a finite list of elements.

class FiniteSet a where

elements :: [a]

data C = A | B

Chapter 4. Implementations 86

instance FiniteSet C where

elements = [A,B]

instance (FiniteSet a, FiniteSet b) => FiniteSet(a,b) where

elements = [(x,y) | x <- elements, y <- elements]

The first two lines define the class FiniteSet which has a set of elements of type ‘a’. Next we

define a type for the finite set C � tA, Bu which is then made an instance of the FiniteSet

class. Lastly, we make an instance for the pairs from two finite sets. This is necessary for

defining L-fuzzy relations.

As we know any lattice which would be used for the membership degrees of the elements, has

several components and operations which resembles the structure of a class. So, we also define

it as a class as follows.

class Lattice l where

bot :: l

top :: l

(&&&) :: l -> l -> l -- meet

(|||) :: l -> l -> l -- join

(-->) :: l -> l -> l -- relative pseudocomplement

membership :: (Eq a, Lattice l) => LSet l a -> a -> l

membership (LSet l) a = maybe bot id (lookup a l)

instance (FiniteSet a, Eq a, Eq l, Lattice l) => Lattice (LSet l a) where

bot = LSet []

top = LSet (map (\x -> (x,top)) elements)

(LSet l) &&& set = LSet [(x,d) | (x,d1) <- l, let d = d1 &&& membership set x, d /= bot]

As we can see in the above code segment the Lattice class consists of a top element, a bottom

element, and three binary functions namely, meet, join, and the relative pseudocomplement.

The membership function takes an L-fuzzy set and an element as the input and returns the

corresponding l-value if exists in the set, otherwise, it returns the bottom element.

We then make FiniteSet an instance of the Lattice class where the bottom element bot is the

empty L-fuzzy set and top being the set of all elements from the corresponding finite set, each

assigned the top element of the lattice. Finally, the last line is a list comprehension defining meet

over two L-fuzzy sets. Note that the expression d{ � bot forces an LSet to contain elements

with a degree greater than the bottom element.

Chapter 4. Implementations 87

4.2.3 L-Fuzzy Relational Operations

Once we FiniteSet and LRel types are defined, we proceed to have an implementation of

the different operations on L-fuzzy relations. However, we are going the include just the com-

position here. Recall from Chapter 2 that the composition of two relations R1 : A Ñ B and

R2 : B Ñ C is another relation R1; R2 : A Ñ C which is defined by

R1; R2 � tpa, cq P A�C | Db P B : pa, bq P R1 and pb, cq P R2u

In our implementation we define composition as follows.

compos :: (FiniteSet a, Eq a,

FiniteSet b, Eq b,

FiniteSet c, Eq c,

Eq l, Lattice l) => LRel l a b -> LRel l b c -> LRel l a c

compos r1 r2 = LSet [((x,z),d) | x <- elements, z <- elements, let d = foldr (|||) bot

[membership r1 (x,y) &&& membership r2 (y,z) | y <- elements], d /= bot]

Notice that the context in the type signature of compos requires that the types ‘a’, ‘b’, and ‘c’

are all instances of both FiniteSet and Eq and ‘l’ an instance of Eq and Lattice classes.

Once again we use list comprehension to compute composition of two LRels. In doing so we

first make pairs of type pa, cq and assign membership degrees produced by taking join of the

individual meets between the pairs pa, bq and pb, cq for every element of type b. However, if the

final degree is something other than bot only then we include it in the resultant LSet.

4.3 Parser

As mentioned earlier, Parsec is fast, simple, and easy to use monadic parser combinator library

for Haskell. Therefore, we can sequence together primitive parsers using the do notation. As an

example let us consider a parser to parse a sentence.

sentence :: Parser [String]

sentence = do { words <- sepBy1 word separator

; oneOf ".?!" <?> "end of sentence"

; return words

}

As shown above this parser if successful, produces a list of words which are of course some

strings. This is done by the combination of three primitive parsers: sepBy1, word, and separator.

It then checks if the next character is one of the legal ending characters for a sentence. If so,

it returns the list of words parsed successfully, otherwise prints the error message “end of sen-

tence”.

Chapter 4. Implementations 88

In our implementation we need a parser to translate a valid relational expression into the con-

struction RelTerm as defined above. An example of valid expressions is R; S {̂T which is sup-

posed to perform the converse on S first, then the composition with R and finally the left residual

of the result with T . Note that we define all the binary operators to be left associative. A part of

the parser is presented below.

opChar = ";/\ˆ"

reservedOp2 :: String -> CharParser st ()

reservedOp2 name = try (string name >> notFollowedBy (oneOf opChar))

relexpr :: Parser RelTerm

relexpr = buildExpressionParser table term <?> "expression"

table = [[postfix "ˆ" Conv]

, [binary ";" Comp AssocLeft]

, [binary "/" LeftRes AssocLeft, binary "\ " RightRes AssocLeft]

]

binary name fun = Infix (do { reservedOp2 name; return fun })

postfix name fun = Postfix (do { reservedOp2 name; return fun })

term = parens relexpr

<|> Var <$> word

<?> "term"

The first line defines the symbols for the four operators. The parser reservedOp2 parses suc-

cessfully a primitive expression if it is not followed by one of those characters. Otherwise, it

pretends like it did not consume any input. We call our parser relexpr which if successful,

produces a parser of type RelTerm.

The function buildExpressionParser builds an expression parser. It has two parameters.

The first one is a table of operators with decreasing priority, meaning that the higher an operator

is in the list, the higher is its priority. Associativity is defined by the following data type.

data Assoc = AssocNone

| AssocLeft

| AssocRight

The second argument of buildExpressionParser is the basic expression term which might

be just a variable or another expression enclosed by parenthesis. For details of parsec we refer

to [21].

Chapter 4. Implementations 89

4.4 The eval Function and the Semantics

Finally, we need a function in order to evaluate a relation algebraic expression into our imple-

mentation of L-fuzzy relations. We define it as follows.

eval :: (Eq l, Lattice l) => RelTerm -> (String -> MyLRel l) -> MyLRel l

eval t f = case t of

Var x -> f x

Comp exp1 exp2 -> composMyLRel (eval exp1 f) (eval exp2 f)

Conv exp1 -> convMyLRel (eval exp1 f)

LeftRes exp1 exp2 -> lresMyLRel (eval exp1 f) (eval exp2 f)

RightRes exp1 exp2 -> rresMyLRel (eval exp1 f) (eval exp2 f)

This function takes a relational term and a function (called the environment, env) that maps a

String variable-name into the actual relation. It then performs the operations in the expression

and produce an L-fuzzy relation. Note that the type of the output relation here depends on the

types of the relational terms. Similarly, env should be a dependent type because depending on

which value is provided, the result type is different. Unfortunately the type system in Haskell

is not flexible enough to define this kind of type dependency. Therefore, we fix some specific

types for our implementation and embed their all possible combinations into a new type and

thus making it untyped in essence. As an example let us say we choose to use Char, Int, and

Float only. Then the new type, we call it MyRel would look like as follows.

data MyLRel l = II (LRel l Int Int)

| IC (LRel l Int Char)

| CI (LRel l Char Int)

| CC (LRel l Char Char)

| IF (LRel l Int Float)

| FI (LRel l Float Int)

| FC (LRel l Float Char)

| CF (LRel l Char Float)

| FF (LRel l Float Float)

deriving (Show)

Now the system is able to infer the type for ‘a’ and ‘b’ in LRellab for an arbitrary relational

term. This type restriction also requires us to have a MyRel version of all theL-fuzzy operations.

Here we include the code for converse as an example.

convMyLRel :: (Eq l, Lattice l) => MyLRel l -> MyLRel l

convMyLRel mlr = case mlr of

II (r) -> II(conv r)

IC (r) -> CI(conv r)

CI (r) -> IC(conv r)

CC (r) -> CC(conv r)

IF (r) -> FI(conv r)

FI (r) -> IF(conv r)

FC (r) -> CF(conv r)

CF (r) -> FC(conv r)

FF (r) -> FF(conv r)

Chapter 4. Implementations 90

From the above definition it is evident that if a relation from Int to Char is provided as the

argument, the converse of it would be a relation from Char to Int, so on and so forth.

Now, using the semantics presented in Chapter 3 we can actually execute such a relational

expression resultant from a LFSQL query. However, as because Haskell does not allow us to

have dependent types which was already a problem with the eval function for the relational

terms, we decide not to proceed doing the semantic implementation.

Chapter 5

Conclusion and Future Works

Databases have become an indispensable part in almost all software applications nowadays.

Their usage can be as vast as the customer database of a bank, at the same time as compact

as the contact list in a cell phone. Fuzzy databases, a generalization of classical databases,

provide a convenient way to deal with imprecision in data. In this thesis we have introduced

lattice based database called L-fuzzy database, which further generalizes a fuzzy database by

replacing the unit interval of r0 . . . 1s by a complete Brouwerian lattice L. Although a Dedekind

category forms a suitable theory to abstractly work on L-fuzzy relations, it is unable to express

the fundamental notion of 0-1 crispness. We proceed to use an extension of it, called the Arrow

category. In this research, we have presented a semantics for the query language of L-fuzzy

database, called LFSQL using the abstract notion of an arrow category. In doing so we have

explained one DDL statement namely the CREATE statement and three most common DDL

operations, SELECT, INSERT, and DELETE. For the demonstrations, examples were included

wherever required.

In addition to that we have developed an implementation of the L-fuzzy relational operations

in the functional programming language, Haskell. The implementation also includes a parser

which translates a relational expression into an abstract data type which could then be executed

using the underlying implementation.

Our work could be extended in multiple directions. The followings are some of them.

1. The formal semantics presented in our study includes four DDL and DML operations.

However, in the future we will extend it to include the other operations like DELETE,

UPDATE, ALTER, DROP and so on. Attempts can also be taken to introduce classical-

SQL clauses like ORDER BY, GROUP BY, etc. into LFSQL which would eventually

strengthen it as a complete query language.

91

Chapter 5. Conclusion and Future Works 92

2. An important design concern for modern relational database is to define functional depen-

dency. Studying functional dependencies based on the semantics we have presented here

might be a potential research direction from here. Note that in case of fuzzy database we

have several generalizations of the notion of a functional dependency. Exploring each of

these possibilities and have a complete set of associated axioms could also be a standard

contribution in the future.

3. As mentioned in the previous chapter our prototype implementation did not include the

semantics part. This is because working with dependent types is not allowed in Haskell.

By using a language with dependent types, the implementation would be much nicer and

easy. In addition, a real implementation in terms of a programming language or even

using a database system much more efficient and faster than Haskell might be considered

a standard next step.

4. Furthermore, it would be very useful to introduce features of practical significance to the

language we have presented here. One such direction might be to investigate compatibility

degree in LFSQL. In fuzzy-SQL this is achieved by the CDEG function that applies to

attributes and computes the compatibility degree of conditions involving these attributes

[2]. As the compatibility degree is already available in the semantics of the WHERE

clause in our thesis, its semantics follows immediately.

Bibliography

[1] Adjei E.: L - Fuzzy Structural Query Language, MSc Thesis, Brock University 2015.

[2] Adjei E., Chowdhury W., and Winter M.: L-Fuzzy Databases in Arrow Categories. 15th In-

ternational Conference on Relational and Algebraic Methods in Computer Science, 2015.

[3] Birkhoff G.: Lattice Theory. American Mathematical Society Colloquium Publications

Vol. XXV, 3rd edition (1940).

[4] Freyd P., Scedrov A.: Categories, Allegories. North-Holland (1990).

[5] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support.

Kluwer Academic Publishers (1994)

[6] Grätzer, G.: General Lattice Theory. 2nd edition, Birkhäuser, Basel, Switzerland (1998).

[7] Goguen J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145-157 (1967).

[8] Galindo J., Urrutia A., Piattini, M.: Fuzzy Databases: Modeling, Design and Implementa-

tion. Idea Group Publishing Hershey, USA, (2006).

[9] Galindo J., Medina J.M., Pons O., Cubero J.C.: A Server for Fuzzy SQL Queries. In:

Andreasen T., Christiansen H., Larsen H.L.(Eds.): Flexible Query Answering Systems.

LNAI 1495, 164-174 (1998).

[10] Galindo J.: New Characteristics in FSQL, a Fuzzy SQL for Fuzzy Databases. WSEAS

Transactions on Information Science and Applications 2(2), 161-169 (2005).

[11] H. Furusawa: A representation theorem for relation algebras: Concepts of scalar relations

and point relations, DOI Technical Report DOI-TR-139, 1997.

[12] H. Furusawa: Algebraic formalisations of fuzzy relations and their representation theo-

rems, Ph.D. Thesis, Kyushu University, 1998.

[13] Heyting, A.: “Die formalen Regeln der intuitionistischen Logik. I, II, III”, Sitzungsberichte

Akad. Berlin: 42–56, 57–71, 158–169 (1930).

[14] Haskell homepage: https://www.haskell.org/

93

Bibliography 94

[15] Haskell wiki site: https://wiki.haskell.org/Haskell

[16] Jónsson B., Tarski A.: Boolean algebras with operators, I, II, Amer. J. Math. 73, 891-939

(1951), 74, 127-162 (1952)

[17] Kawahara, Y., Furusawa H.: Crispness and Representation Theorems in Dedekind Cate-

gories. DOI-TR 143, Kyushu University (1997).

[18] Kawahara, Y., Furusawa H.: An algebraic formalization of fuzzy relations. Elsevier, Fuzzy

Sets and Systems, Volume 101, Issue 1, 125–135 (1999).

[19] Kitainik, L.: Fuzzy Decision Procedures with Binary Relations - Towards a United Theory.

Kluwer Academic Press (1993).

[20] Lejeune-Dirichlet, P.G., Vorlesungen über Zahlentheorie, fourth edition, edited and with

supplements by R. Dedekind; Vieweg: Braunschweig (1893); reprinted by Chelsea: New

York, 1968.

[21] Leijen D.: Parsec, a fast combinator parser. Dept. of Computer Science, University of

Utrecht, PO.Box 80.089, 3508 TB Utrecht, The Netherlands. October 4, 2001.

[22] Olivier J.P., Serrato D.: Catégories de Dedekind. Morphismes dans les Catégories de

Schröder. C.R. Acad. Sci. Paris 290, 939-941 (1980).

[23] Olivier J.P., Serrato D.: Squares and Rectangles in Relational Categories - Three Cases:

Semilattice, Distributive lattice and Boolean Non-unitary. Fuzzy sets and systems 72, 167-

178 (1995).

[24] Peirce C. S.: ”Description of a Notation for the Logic of Relatives, Resulting from an

Amplification of the Conceptions of Boole’s Calculus of Logic”, Memoirs of the American

Academy of Arts and Sciences 9 (1870), 317–378

[25] Richard J. W. Dedekind: Sur la Théorie des Nombres Entiers Algébrique, Gauthier-

Villars: Paris (1877); reprinted in Dedekind (1930–32), Vol. 3, pp. 262–296; English trans.

Dedekind (1996b).

[26] R. Hirsch and I. Hodkinson.: Relation Algebras by Games. Volume 147 of Studies in Logic

and the Foundations of Mathematics, North Holland, 2002.

[27] Schmidt G.: Relational Mathematics. Encyclopaedia of Mathematics and Its Applications

(2011).

[28] Schmidt G., Ströhlein T.: Relationen und Graphen. Springer (1989); English version: Re-

lations and Graphs. Discrete Mathematics for Computer Scientists, EATCS Monographs

on Theoret. Comput. Sci., Springer (1993)

Bibliography 95

[29] Schmidt G., Hattensperger C., Winter M.: Heterogeneous Relation Algebras. In: Brink

C., Kahl W., Schmidt G. (eds.), Relational Methods in Computer Science, Advances in

Computer Science, Springer Vienna (1997).

[30] Terano T., Asai K., Sugeno M.: Fuzzy Systems Theory and Its Applications. Academic

Press, Inc. (1992).

[31] Winter M.: Goguen Categories - A Categorical Approach to L-fuzzy relations. Trends in

Logic 25, Springer (2007).

[32] Winter M.: A new Algebraic Approach to L-Fuzzy Relations Convenient to Study Crisp-

ness. INS Information Science 139, 233-252 (2001).

[33] Winter M.: Relational Constructions in Goguen Categories. in: de Swart, H. (Eds.): Re-

lational Methods in Computer Science, 6th Int. Conf. RelMiCS. LNCS 2561, 212-227

(2002).

[34] Winter M.: Derived Operations in Goguen Categories. TAC Theory and Applications of

Categories 10(11), 220-247 (2002).

[35] Winter, M.: Arrow Categories. Fuzzy Sets and Systems 160, 2893-2909 (2009).

[36] Zadeh L.A.: Fuzzy sets. Information and Control 8, 338-353 (1965).

	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 Introduction
	1.2 Databases
	1.2.1 Relational Database
	1.2.2 Missing or Imprecise Data in Relational Databases
	1.2.3 Fuzzy Database
	1.2.4 Querying a Database

	1.3 L-Fuzzy Database
	1.4 Motivation
	1.5 Main Contribution of the Thesis

	2 Mathematical Preliminaries
	2.1 Classical Relations
	2.1.1 Set Theoretic Operations on Relations
	2.1.2 Relational Operations
	2.1.3 Composite Operations on Relations
	2.1.4 Properties of Relations

	2.2 Orders and Lattices
	2.2.1 Equivalence Relation, Quotient Set, and Splitting a Relation
	2.2.2 Partial Order and Total Order
	2.2.3 Hasse Diagram
	2.2.4 Lower and Upper Bounds: Meet and Join
	2.2.5 Lattices
	2.2.5.1 Distributive lattice
	2.2.5.2 Bounded lattice

	2.3 Fuzzy Sets and Relations
	2.4 L-fuzzy Sets and Relations
	2.4.1 Operations on L-Fuzzy Relations
	2.4.2 Crispness in L-Fuzzy Relations
	2.4.3 Scalar Relations
	2.4.4 -Cuts and Arrow Operations

	2.5 Algebra of Relations
	2.5.1 Algebra of Classical Relations
	2.5.2 Algebra of Fuzzy Relations

	2.6 Categories of Relations
	2.6.1 Categories
	2.6.2 Categorical Terminologies
	2.6.2.1 Initial, Terminal, and Null Objects
	2.6.2.2 Categorical Product
	2.6.2.3 Categorical Sum or Coproduct

	2.6.3 Categories of L-Fuzzy Relations
	2.6.3.1 Allegories
	2.6.3.2 Dedekind Categories
	2.6.3.3 Arrow Categories

	3 L-Fuzzy Structured Query Language
	3.1 L-Fuzzy Databases
	3.1.1 Metadatabase
	3.1.2 Linguistic Labels and L-Fuzzy Sets

	3.2 L-Fuzzy Structured Query Language (LFSQL)
	3.2.1 L-Fuzzy Comparators
	3.2.2 The CREATE Statement
	3.2.3 The INSERT Statement
	3.2.4 The WHERE Clause
	3.2.5 The DELETE Statement:
	3.2.6 The SELECT Statement:
	3.2.7 An LFSQL Query Example
	3.2.8 Inner Joins

	3.3 Semantics of LFSQL
	3.3.1 Semantics of L-Fuzzy Sets
	3.3.2 Semantics of Tables
	3.3.3 Semantics of L-Fuzzy Comparators
	3.3.4 Semantics of WHERE Clause
	3.3.5 Semantics of Statements
	3.3.5.1 Semantics of CREATE Statement
	3.3.5.2 Semantics of INSERT Statement
	3.3.5.3 Semantics of DELETE Statement
	3.3.5.4 Semantics of SELECT Statement

	4 Implementations
	4.1 Haskell
	4.2 Implementation of L-Fuzzy Relations
	4.2.1 Data Types
	4.2.2 Type Classes
	4.2.3 L-Fuzzy Relational Operations

	4.3 Parser
	4.4 The eval Function and the Semantics

	5 Conclusion and Future Works
	Bibliography

