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Abstract

Consider an undirected graph G and a subgraph of G, H. A q-backbone k-colouring

of (G,H) is a mapping f : V (G) → {1, 2, ..., k} such that G is properly coloured

and for each edge of H, the colours of its endpoints differ by at least q. The min-

imum number k for which there is a backbone k-colouring of (G,H) is the back-

bone chromatic number, BBCq(G,H).

It has been proved that the backbone k-colouring of (G, T ) is at most 4 if G is a

connected C4-free planar graph or non-bipartite C5-free planar graph or Cj-free,

j ∈ {6, 7, 8} planar graph without adjacent triangles.

In this thesis we improve the results mentioned above and prove that any con-

nected planar graph without adjacent triangles has a 2-backbone k-colouring with

at most 4 colours by using a discharging method.

In the second part of this thesis we further improve these results by proving that

for any graph G with χ(G) ≥ 4, BBC2(G, T ) = χ(G). In fact, we prove the

stronger result that a backbone tree T in G exists, such that ∀uv ∈ T, |f(u) −

f(v)| = 2 or |f(u)− f(v)| ≥ k − 2, k = χ(G).

For the case that G is a planar graph, according to Four-Colour theorem, χ(G) =

4; so, BBC2(G, T ) = 4.
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Chapter 1
Introduction

Graph Theory is the study of graphs, which are discrete structures consisting of

nodes and links between nodes. More specifically, nodes of a graph, called vertices,

are connected by edges. One application of graph theory is the study of social

networks where vertices represent the users of the network and edges represent the

connections between users.

Also, a typical application of graph colouring is the scheduling problem. In this

problem we want to assign a set of jobs to time slots in which jobs with the same

resources do not have conflict with each other.

1.1 Overview

The purpose of the first section of Chapter 2 is to familiarize the reader with com-

monly used notations in the study of graph theory or specifically in this thesis.

While the second section of Chapter 2 is a summary of backbone colouring results
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1.1 Overview 1

that have been previously proved by earlier authors.

In Chapter 3, we prove that every connected planar graph without adjacent tri-

angles has a backbone for which the backbone chromatic number is at most 4 by

using discharging rules. In Chapter 4, we extend these results and prove that every

graph G with χ(G) ≥ 4 has a backbone for which the backbone chromatic number

is equal to χ(G).

Chapter 5 contains the concluding remarks and the discussions about possible

future directions.
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Chapter 2
Preliminaries and Notions

In this chapter we introduce graph theoretical definitions and terminology that

are used in this thesis. For undefined definitions and notations, we use [12] as our

reference.

2.1 Preliminaries

Graph G consists of the vertex set V (G) and the edge set E(G). Each edge has

two endpoints which are adjacent to each other. Vertex v is incident to edge e if v

is an endpoint of e. The order of G is the number of vertices, |V (G)| and the size

of G is the number of edges, |E(G)|.

The graph obtained from G by deleting the edge e, e ∈ E(G) or the set of edges S

are denoted by G− e and G− S, respectively. Similarly, the graph obtained from G

by deleting the vertex v, v ∈ V (G) or the set of vertices S ′ and all incident edges

are denoted by G− v and G− S ′, respectively.
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2.1 Preliminaries 2

The degree of a vertex v is the number of vertices adjacent to v and it is denoted

by d(v); a k-vertex is a vertex of degree k. A leaf is a vertex of graph G with de-

gree 1. A k+-vertex and k−-vertex is a vertex of degree at least k and at most k,

respectively. Let N −G(A) denotes the set of neighbours of vertices in A in graph

G.

Since each edge has two endpoints, we can say that the sum of all degrees is ex-

actly twice the number of edges,

∑
v∈V (G)

d(v) = 2|E(G)|.

If all vertices of graph G have degree k, then G is said to be a k-regular. A con-

nected 2-regular graph is called a cycle. A cycle graph of n vertices is denoted

by Cn. A complete graph is a graph whose vertices are all pairwise adjacent. The

complete graph with n vertices is denoted by Kn. Triangle is a common name for

K3.

The minimum degree of all vertices of graph G is denoted by δ(G) and the maxi-

mum degree is denoted by ∆(G).

A path in a graph is a finite sequence of distinct edges which connect a sequence

of vertices. A graph is connected if there is at least one path between any two

vertices of graph; otherwise, it is a disconnected graph. A tree T is a connected

graph in which there is exactly one path between any two vertices of it.

A component is a largest connected subgraph of a graph. In other words, if G is

disconnected, it has more than one component. The number of components of the

graph G is denoted by comp(G). A cut vertex or cut edge is a vertex or edge of

graph G, respectively, whose deletion increases the number of components of G.
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2.1 Preliminaries 2

Cut edges are commonly called bridges.

A graph H(V,E) is a subgraph of G(V,E) if V (H) ⊆ V (G) and E(H) ⊆ E(G).

A spanning subgraph of G is a subgraph that includes all the vertices of G. A

spanning tree is a spanning subgraph that is a tree.

A graph is called planar if it can be drawn in the plane in such a way that no two

edges intersect. An embedding of a planar graph divides the plane into a number

of connected regions, called faces which are bounded by the edges of the graph.

Vertex v is incident to face f if v is the endpoint of an edge in the boundary of

f . A k-face is a face f with k edges in the boundary. A k+-face and k−-face is a

face with at least k edges in its boundary and at most k edges in its boundary,

respectively.

A k-colouring of graph G is a mapping f : V → {1, 2, ..., k}. If f(u) 6= f(v) for any

two adjacent vertices u and v, f is a proper colouring. The smallest integer k such

that G has a proper k-colouring is called a chromatic number of G and is denoted

by χ(G).

For a graph G and its subgraph H, a q-backbone k-colouring of (G,H) is a map-

ping f : V (G)→ {1, 2, ..., k} such that:

|f(u)− f(v)| ≥


q if uv ∈ E(H)

1 if uv ∈ E(G) \ E(H)

The minimum number k for which there is a q-backbone k-colouring of (G,H) is

the backbone chromatic number of (G,H), denoted by BBCq(G,H). Let u and v

be two endpoints of an edge e ∈ E(G) and f be a colouring of G. If |f(u)− f(v)| ≥

5



2.1 Preliminaries 2
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Figure 2.1: Example of backbone colouring.

q, then the edge e is called an f -edge. For the case that H is spanning tree T we

called T the backbone of G.

A circular q-backbone k-colouring of (G, T ) is a special case of q-backbone k-colouring

of (G,H) which is a proper colouring of vertices with k colours such that q ≤

|f(u)− f(v)| ≤ k − q, for each edge uv ∈ E(H).

The circular q-backbone k-colouring chromatic number of (G, T ), denoted by CBCq(G, T ),

is the minimum k such that for any spanning trees of G there is a circular q-backbone

k-colouring. We can say that if f is a circular q-backbone k-colouring of (G, T ),

then f is also a q-backbone k-colouring of (G, T ).

For the case that q = 2 we simply say backbone k-colouring and use the notation

BBC(G, T ). Similarly when q = 2 we say circular backbone k-colouring and use

the notation CBC(G, T ).

In Figure 2.1 edges of graph G are shown by black colour and edges of spanning

tree T are shown by red colour. Graph G has a backbone k-colouring with 4 colours.

Similarly, G has a circular k-colouring with 5 colours.
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2.1 Preliminaries 2
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Figure 2.2: Example of (4,2)-Kempe chain.

Breadth First Search is one of the simplest algorithms for searching a graph G with

a distinguished source vertex s. This algorithm explores the neighbours of s first,

before moving to the next level neighbours by computing a shortest path from s to

vertices reachable from s.

Consider a proper colouring of graph G with colour set S containing at least two

distinct colours a and b. If v is a vertex of graph G with colour a then the (a,b)-

Kempe chain of G containing v is the maximal connected subset of vertices of G,

which contains v and whose vertices are all coloured either a or b.

We can use the (a,b)-Kempe chain for switching the colour of vertices in this

subset without changing the colour of all vertices in G. By switching the colour

of vertices in the subset we mean that for a vertex u in (a,b)-Kempe chain of v,

f ′(u) = b if f(u) = a and vice versa. We can observe that by recolouring vertices

in this Kempe chain we did not change the proper colouring because adjacent ver-

tices to any vertex of Kempe chain of V have other colouring rather than a or b;

otherwise, they would be in the (a, b)-Kempe chain of v.

In Figure 2.2, the (4, 2)-Kempe chain of v is set {y, z, v, w, p}. If we switch the

colour of vertices in the (4, 2)-Kempe chain of v, the new colour of vertices will be
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2.2 Related Works 2

f ′(y) = f ′(v) = f ′(p) = 2 and f ′(z) = f ′(w) = 4.

2.2 Related Works

Backbone colouring was firstly motivated by the colouring problems related to fre-

quency assignment and was introduced by Boersma et al. [2] in 2003. In addition

to studying backbone colouring for (G,H), they studied BBC(G,P ) where P is a

Hamiltonian Path, and for the special case of split graphs. Their main result was

that for any connected graph G and spanning tree T , BBC(G, T ) ≤ 2χ(G) − 1.

This result together, with Four-Colour Theorem [1], implies that if G is a planar

graph, then BBC(G, T ) ≤ 7. However, they conjecture that for any planar graph

G, BBC(G, T ) ≤ 6 and by providing an example in which BBC(G, T ) = 6, they

showed that this upper bound, if true, is tight. In 2013, Campos et al. [3] proved

this conjecture when T has diameter at most 4. In [2], the authors proved that if

G is a split graph, BBC(G, T ) = χ(G) + 2 and if ω(G) 6= 3 and G contains a

Hamiltonian path, then for every Hamiltonian path P in G, BBC(G, T ) = χ(G) + 2.

The general case of q-backbone k-colouring when q ≥ 2, was first defined by

Broersma et al. [4] in 2009. They consider the cases that backbone is either a

collection of pairwise disjoint stars or a matching. According to their result, the

minimum k for a star backbone S of G can differ by a multiplicative factor of at

most 2− 1
q
from χ(G).

In [9], Havet et al. showed that BBCq(G,H) ≤ 3q + 1 by Four-Colour Theorem [1]

when G is planar and H is forest. They improve this upper bound by showing that

8



2.2 Related Works 2

BBCq(G,H) ≤ q + 6 and for the special case of q = 3, BBC3(G,H) ≤ 8.

Another way of considering backbone colouring is to show that a spanning tree

T of G exists, such that BBCq(G, T ) ≤ k, instead of showing that this is true

for any spanning tree T of G. In 2011, Bu and Zhang [5] proved that if G is a

connected C4-free planar graph, then there exists a spanning tree T of G such that

BBC(G, T ) ≤ 4. In 2010, Zhang and Bu [6] proved that if G is a connected non-

bipartite C5-free planar graph, then there exists a spanning tree T of G such that

BBC(G, T ) = 4.

Also, in 2011, Bu and Li [7] proved that if G is connected C6-free or C7-free planar

graphs without adjacent triangles, then there is a spanning tree T of G such that

BBC(G, T ) ≤ 4. In 2012, Wang [8] showed that if G is a connected planar graph

without C8 and adjacent triangles, then there is a spanning tree T of G such that

BBC2(G, T ) ≤ 4. In 2015, Bu and Bao [11] showed that if G is a connected C8-free

or C9-free planar graph without adjacent 4-cycles, then there is a spanning tree T

of G such that BBC(G, T ) ≤ 4. The purpose of part one of my thesis is to extend

these results by allowing graph G to have Cj where j = 3, ..., n. Also, in the second

part of my thesis, we improve these results for any graph with χ(G) ≥ 4.

In 2014, Havet et al. [9] defined the concept of circular backbone colouring for the

first time. They showed that even though CBCq(G,H) ≤ q.χ(G), this is not the

best possible upper bound and they proved that CBCq(G,H) ≤ 2q + 4. Also, they

conjectured that CBCq(G,H) ≤ 2q + 3.

In [10], Araujo et al. proved that if G is a planar graph without C4 or C5, then for

any forest H that H ⊆ G, CBC(G,H) ≤ 7. Also, they improve this upper bound

9



2.2 Related Works 2

when H is a path forest. In other words, for the same class of graphs when the

connected components of forest H are paths, CBCq(G,H) ≤ 6.

However, by using discharging method, recently we proved that if G is a con-

nected Cj-free planar graph, j ∈ 4, 5, 6, 7, then for every spanning tree T of

G, CBC(G, T ) ≤ 7.

10



Chapter 3
Backbone Colouring

3.1 Upper bound on the backbone chromatic num-

ber of graphs

Observation 1. Suppose that f and f ′ are two vertex colourings of G and ∀v ∈

V (G), f ′(v) + f(v) = k + 1. Then f is a backbone k-colouring of (G, T ), if and only

if, f ′ is a backbone k-colouring of (G, T ). We call f the symmetric colouring of f ′

and vice versa.

Proof. Assume that f is a backbone k-colouring of (G, T ). According to the defini-

tion of backbone colouring:

If uv ∈ E(T ), |f(u)− f(v)| ≥ 2, f ′(u) = k+ 1− f(u) and f ′(v) = k+ 1− f(v). Thus,

|f ′(u)− f ′(v)| = |f(u)− f(v)| ≥ 2.

If uv ∈ E(G)− E(T ), |f(u)− f(v)| ≥ 1, then |f ′(u)− f ′(v)| ≥ 1.

11



3.2 Properties of a minimum counterexample 3

Theorem 1. If G is a connected planar graph without adjacent triangles, then there

exists a spanning tree T of G such that BBC(G, T ) ≤ 4.

We will use proof by contradiction in the following two parts. First we assume

for contradiction that there exists a planar graph G without adjacent triangles

such that for a spanning tree T of G, BBC(G, T ) ≥ 5. Then we determine some

properties for the graph G.

In the second part, we show that graph G does not exist using the discharging

method. In other words, by assigning charges to each vertex and to each face of

G, we carefully redistribute those charges such that the total charge of G is non-

negative. However, by using Euler’s formula we can show that initially the total

charge of G was negative. This obvious contradiction states that the assumption of

the existence of graph G was incorrect.

3.2 Properties of a minimum counterexample

Let G(V,E) be a counterexample to Theorem 1 with minimum |V |. So, G is a

connected planar graph without adjacent triangles and for every spanning tree

T of G, BBC(G, T ) ≥ 5. Also, for every G′(V ′, E ′) without adjacent triangles if

|V ′| < |V |, then there is a spanning tree T ′ such that BBC(G′, T ′) ≤ 4. We will

use the color set S = {1, 2, 3, 4}.

Lemma 1. δ(G) ≥ 4.

Proof. We will show that G does not contain a leaf, 2-vertex and 3-vertex. These

three properties are demonstrated separately below.

12



3.2 Properties of a minimum counterexample 3

1. G has no leaf.

Assume for a contradiction that G contains a leaf u adjacent to a vertex x.

Let G′ = G− u with |V ′| number of vertices and |E ′| number of edges. Since

|V ′| = |V | − 1, by the minimality of G there is a spanning tree T ′ of G′ such

that (G′, T ′) has a backbone 4-colouring. For any colouring of x we can find

a proper colour for u. Without loss of generality, assume that f(x) ∈ {1, 2}

(set {3, 4} is a symmetric colouring for {1, 2}). In this case, colour u with

4; so, ux is an f -edge. Let spanning tree T = T ′ ∪ {ux}. Hence there is a

spanning tree T of G such that (G, T ) has a backbone 4-colouring; this is a

contradiction.

2. G has no 2-vertex.

Suppose to the contrary that G contains a 2-vertex u with two neighbours

x, y. Let G′ = G − u. Graph G′ remains connected if u is not a cut vertex.

Consider the cases of u being a cut vertex and u not being a cut vertex sepa-

rately.

(a) u is a cut vertex.

In this case G′ has two components C1 and C2. Without loss of gener-

ality, assume that x ∈ C1 and y ∈ C2. By the minimality of G, there

is a spanning tree Ti of Ci such that (Ci, Ti) has a backbone 4-colouring

for i = 1, 2. Without loss of generality, assume that f(x) ∈ {1, 2} and

f(x) ≤ f(y). If {f(x), f(y)} = {1, 2}, then colour u with 4. For the

other cases, if f(x) 6= f(y) consider the symmetric colouring of C1 and

13



3.2 Properties of a minimum counterexample 3

colour u with 1. If f(x) = f(y), colour u with 4; thus, ux and uy are

f -edges. Suppose that T = T1 ∪ T2 ∪ {ux, uy}. So, T is a backbone of G

such that BBC(G, T ) ≤ 4, contradiction.

(b) u is not a cut vertex.

Here G′ is connected and x, y ∈ G′. by the minimality of G, there is

a spanning tree T ′ of G′ such that (G′, T ′) has a backbone 4-colouring.

Without loss of generality, assume that f(x) ∈ {1, 2}. For any colouring

of x and y, let f(u) = max({1, 2, 3, 4} − {f(x), f(y)}). One can easily

observe that max(|f(u) − f(x)|, |f(u) − f(y)|) ≥ 2. Without loss of

generality, assume that |f(u) − f(x)| ≥ 2; so, ux is an f -edge. Suppose

that T = T ′ ∪ {ux}. Thus, T is a backbone of G such that BBC(G, T ) ≤

4, contradiction.

3. G has no 3-vertex.

Assume for a contradiction that G contains a 3-vertex u with neighbours

x, y, z. Let set A = {x, y, z}. If u is a cut vertex, graph G− u has more than

one component which lead to the following three cases.

(a) u is not a cut vertex.

Here G′ is connected and x, y, z ∈ G′. by the minimality of G, there is

a spanning tree T ′ of G′ such that BBC(G′, T ′) ≤ 4. Without loss of

generality, assume that f(x) ∈ {1, 2}. For any colouring of x, y and

z, let f(u) = max({1, 2, 3, 4} − {f(x), f(y), f(z)}). One can show

that max(|f(u) − f(x)|, |f(u) − f(y)|, |f(u) − f(z)|) ≥ 2. Without

14



3.2 Properties of a minimum counterexample 3

loss of generality, assume that |f(u)− f(y)| ≥ 2. Hence, uy is an f -edge

and for a spanning tree T = T ′ ∪ {uy}, BBC(G, T ) ≤ 4, contradiction.

(b) u is a cut vertex and comp(G′) = 2.

Assume that C1 and C2 are two components of G− uz and let x, y ∈ C1

and z ∈ C2. In graph G− uz we identify x with z and we obtain graph

G′; so, in G′, f(x) = f(z). By the minimality of G, there is a spanning

tree T ′ of G′ such that (G′, T ′) has a backbone 4-colouring. Let Ti be

Ci ∩ T ′ for i = 1, 2.

Without loss of generality, we assume that f(x) = f(z) = {1, 2}. If uz

is an f -edge in G′ then clearly there exists a spanning tree T = T1 ∪

T2 ∪ {uz} such that BBC(G, T )(G, T ) ≤ 4, contradiction. If uz is not an

f -edge, then regarding to the colouring of x, y, u we have the following

three cases:

If f(x) = f(z) = 1 and f(u) = 2.

Consider the symmetric colouring of C2 and f ′(x) = 4. Hence, uz is

an f -edge in G and T = T1 ∪ T2 ∪ {uz}, So for the spanning tree T

in G, BBC(G, T ) ≤ 4, contradiction.

If f(x) = f(z) = 2 and f(u) = 1.

Consider the symmetric colouring of C2 with f ′(x) = 3. Hence, uz

is an f -edge in G and T = T1 ∪ T2 ∪ {uz}, So for the spanning tree T

in G, BBC(G, T ) ≤ 4, contradiction.

If f(x) = f(z) = 2 and f(u) = 3.

15



3.2 Properties of a minimum counterexample 3

Since uy is an f -edge, f(y) = 1 and we can recolour u with 4.

Hence, uz is an f -edge in G and there is a spanning tree T = T1 ∪

T2 ∪ {uz} in (G, T ) such that BBC(G, T ) ≤ 4, contradiction.

(c) u is a cut vertex and comp(G′) = 3.

Assume that C1, C2 and C3 are three components of G′ and let x ∈ C1,

y ∈ C2 and z ∈ C3. By the minimality of G, there is a spanning tree

Ti of Ci such that (Ci, Ti) has a backbone 4-colouring for i = 1, 2, 3.

Without loss of generality, assume that f(x) ≤ f(y) ≤ f(z). If any two

vertices in set A have different colours, then f(z) ∈ {3, 4}. In this case

consider the symmetric colouring of C3 and let f(u) = 4.

If there exists two vertices v1 and v2 in A such that f(v1) = f(v2), then

similar to the case 2a we can find a proper colouring for u. Since ux, uy

and uz are f -edges, then T = T1∪ T2∪ T3 ∪ { ux, uy, uz } is a spanning

tree of G such that (G, T ) has a backbone 4-colouring, contradiction.

Lemma 2. Graph G has at most one bridge.

Proof. Assume otherwise and suppose that graph G has at least two bridges, e1, e2.

We remove e1 and G′ is the remaining graph with two components, C1 and C2.

Assume that e2 ∈ C2 with endpoints v1 and v2. According to Lemma 1, δ(G) ≥ 4

which states that δ(G′) ≥ 3. Let {v1, v3, v4} ⊆ N ′G(v2). Spanning tree T ′ of graph

G′ must contain e2 because it does not lie on any cycle. So, assume that in G′,

16



3.2 Properties of a minimum counterexample 3
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Figure 3.1: Examples of Lemma 3, bad triangles.

f(v1) = 2, f(v3) = 1 and f(v4) = 4. Now f(v2) 6∈ {1, 2, 3, 4} and BBC(G′, T ′) ≥ 5,

which is a contradiction.

A 4-face is weak if it is adjacent to four triangles. A [4, 4, 4]-triangle is bad if it is

adjacent to three weak 4-faces. Similarly, a [5, 4, 4]-triangle is bad if it is adjacent

to two weak 4-faces.

Lemma 3. If x, y and z are three mutually adjacent 4-vertices in G, then x, y, z

form a bad triangle, see Figure 3.1a.

Proof. Suppose that G contains three mutually adjacent 4-vertices, x, y and z and

let G′ = G − {x, y, z}. By the minimality of G, there is a spanning tree T ′ of G′

such that (G′, T ′) has a backbone 4-colouring.

For now assume that G′ is connected. At the end we show that if G′ is not con-

nected, we have the choice of expanding the spanning subgraph of G′ to the con-

nected one.

Let v1 and v2 be two neighbours of v, v ∈ A = {x, y, z} which are in B = N(A)− A,
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�
�
�
�

x

y z

1

1 1

1

2

22

2 3

x

y z

w

w w

y z

x

Figure 3.2: Example of graph G′′.

i.e., B = {x1, x2, y1, y2, z1, z2}.

Without loss of generality, assume that f(x1) ≤ f(x2) and f(y1) ≤ f(y2) and

f(z1) ≤ f(z2). For every v ∈ A and v1, v2 ∈ B, list L(v) is a set of available colours

for vertex v which is S − {f(v1), f(v2)}.

For finding the spanning tree T we have the following two cases:

1. L(x) = L(y) = L(z) = {c1, c2}.

In this case, we construct a graph G′′(V ′′, E ′′) by adding two new edges to

G− {x, y, z} which do not create any adjacent triangles in G′′, see Figure 3.2.

Here by adding z1x1 and z1x2 to G − {x, y, z}, G′′ does not contain adjacent

triangles. Since f(z1) is the same as f(x1), for every T ′′, BBC(G′′, T ′′) ≥ 5.

By the minimality of G and the fact that |V ′′| < |V |, there is a spanning tree

T ′′ of G′′, BBC(G′′, T ′′) ≤ 4, which is a contradiction.

The only challenging case is when by adding any two edges to G′, where

BBC(G′′, T ′′) ≥ 5, adjacent triangles are created, as in Figure 3.1a. Accord-
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ing to the definition this case is a bad [4, 4, 4]-triangle.

2. ∃u, v ∈ A,L(u)− L(v) 6= ∅ or ∀u ∈ A, |L(u)| = 3.

If ∃u, v ∈ A,L(u)− L(v) 6= ∅.

Without loss of generality, assume that L(x) − L(y) 6= ∅. In this case

we provide a formula to assign proper colours to x, y and z in order to

expand T ′ to T , spanning tree of graph G.

f(y) = min
(
L(y)− L(x)

)

f(z) =


min

(
L(z)− {f(y)}

)
: 1 ∈ L(z)

max
(
L(z)− {f(y)}

)
: 1 6∈ L(z)

f(x) = max
(
L(x)− {f(z)}

)
One can easily observe that if {1, 4} ⊆ {f(x), f(y), f(z)}, always we can

find a subset of edges for expanding T ′ to spanning tree T . Without loss

of generality, assume that f(x) = 1 and f(y) = 4. According to our

assumption |L(x)| = |L(y)| = 2; so, for any colouring of x1, x2, y1, y2,
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3.2 Properties of a minimum counterexample 3

edges xx2 and yy1 are always f -edges. Also, for any colouring of z, one

of the edges xz or yz is always an f -edge; if f(z) = 2, yz is an f -edge

and if f(z) = 3, xz is an f -edge.

If {1, 4} * {f(x), f(y), f(z)}, the set of colours for x, y, z is either {2, 3, 4}

or its symmetric colouring {1, 2, 3}. Without loss of generality, assume

that f(x) = 2, f(y) = 4 and f(z) = 3. Edges xy and yy1 are f -edges. If

f(z1) = 1, then zz1 is an f -edge. However, if f(z1) 6= 1, it means that

1 ∈ L(z). Since f(z) = 3, min
(
L(z) − {f(y)}

)
6= 1 which is true only

if f(y) = 1; this contradicts the fact that f(y) = 4. So, in this case

f(z1) = 1.

If @u, v ∈ A,L(u)− L(v) 6= ∅ and ∀u ∈ A, |L(u)| = 3.

In this case we provide a formula to assign proper colours to x, y and z

in order to expand T ′ to T .

f(y) = min(L(y))

f(z) = max(L(z))

f(x) =
(
L(x)− {f(y)})− {f(z)}

)
Without loss of generality, assume that ∀u ∈ A, L(u) = {2, 3, 4}

or L(u) = {1, 3, 4}. If ∀u ∈ A, L(u) = {2, 3, 4} then according to

above formula colour y with 2, z with 4 and x with 3. So, edges yz, zz1

and xx1 are f - edges.

If ∀u ∈ A, L(u) = {1, 3, 4} then according to above formula colour y

with 1, z with 4 and x with 3. So, edges yz, zz1 and xy are f - edges.
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3.2 Properties of a minimum counterexample 3

As a result, always we can find a subset of edges for expanding T ′ to span-

ning tree T such that BBC(G, T ) ≤ 4. This contradicts the minimality of G.

Now assume that G′ is disconnected. Since G has at most one bridge, G′ cannot

have more that three components, C1, C2 and C3 (three components for the case

that x, y and z are cut vertices of G).

For finding a subset of edges to expand T ′, whether we can use the current colour-

ing of vertices or the symmetric colouring of components with recolouring vertices.

By the minimality of G, backbone colouring of each component is at most 4. If

two edges in the set {xy, yz, xz} are f -edges, then easily we can extend the span-

ning tree of each component to T . However, if just one of the edges in the set

{xy, yz, xz} is an f -edge and by considering the symmetric colouring of one compo-

nent, we cannot find two f -edges in that set, then we have the following case:

∃u, v ∈ A,L(u) = L(v) = {2, 3}.

Without loss of generality, assume that L(y) = L(z) = {2, 3} and xy is an f -

edge. In this case we consider a smaller graph G1 = G− xz. Since yz is not an

f -edge, for any spanning tree T1 of G1, BBC(G1, T1) ≥ 5. This contradicts

the minimality of G. So, this case does not exist.

For the case that ∀u ∈ A,L(u) = {2, 3} or ∀u ∈ A,L(u) = {1, 4}, vertices x, y

and z form a bad [4, 4, 4]-triangle. The proof can also be given with a similar

argument to Case 1.
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Figure 3.4: Example of graph G′′.

Lemma 4. If x, y and z are three mutually adjacent vertices with degrees 5, 4, 4 in

G, then x, y, z form a bad triangle, as shown in Figure 3.1b.

Proof. Suppose that G contains three mutually adjacent vertices with degrees

4, 4, 5 and without loss of generality, assume that d(x) = 5 and d(y) = d(z) = 4.

Let G′ = G− {x, y, z} and for now assume that G′ is connected. By the minimality

of G, there is a spanning tree T ′ of G′ such that BBC(G′, T ′) ≤ 4. Assume that

A = {x, y, z} and set B′ = N(A) − A = {x1, x2, x3, y1, y2, z1, z2}. For finding the

spanning tree T , we consider the following two cases:

1. L(y) = L(z) and L(x) ⊆ L(y) and |L(y)| = 2.

Without loss of generality, assume that f(x1) = f(z1) and f(x2) = f(z2). In

this case, we construct a graph G′′ by adding two new edges to G− {x, y, z}

which do not create any adjacent triangles in G′′, Figure 3.4. Here by adding

x2z1 and x1z1 to G − {x, y, z}, G′′ does not contain adjacent triangles and

for every spanning tree T ′′, BBC(G′′, T ′′) ≥ 5. Since, graph G′′ is smaller
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Figure 3.5: Three mutually adjacent vertices with degrees 5,4,4.

than G, by the minimality of G there exists a spanning tree T ′′ of G′′ such

that BBC(G′′, T ′′) ≤ 4, which is a contradiction.

The only challenging case is when by adding any two edges to G− {x, y, z},

where BBC(G′′, T ′′) ≥ 5, adjacent triangles in G′′ are created, Figure 3.1.

According to the definition, this case is a bad [5, 4, 4]-triangle.

2. ∃u, v ∈ A, |L(u)| ≤ |L(v)|, L(u)− L(v) 6= ∅ or ∃u ∈ A, |L(u)| = 3.

(a) If ∃u, v ∈ A, |L(u)| ≤ |L(v)|, L(u)− L(v) 6= ∅ and ∀u ∈ A, |L(u)| ≤ 2.

If ∀u ∈ A, |L(u)| = 2, we can use the same formula as the Case 2 of

Lemma 3 to assign proper colours to x, y and z. The proof can also be

given with a similar argument to the Case 2 of Lemma 3.

Now, if |L(x)| = 1, we can assign proper colours to x, y and z by using

the following formula and expand T ′ to T .

f(x) = L(x)

f(y) = min
(
L(y)− {f(x)}

)
f(z) = max

(
(L(z)− {f(y)})− {f(x)}

)
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3.2 Properties of a minimum counterexample 3

One can easily observe that if {1, 4} ⊆ {f(x), f(y), f(z)}, always we can

find a subset of edges for expanding T ′ to T . Without loss of generality,

assume that f(x) = 1 and f(z) = 4. As a result, xx3 and zz1 are f -

edges. If f(y) = 2, yz will be an f -edge and if f(y) = 3, xy will be an

f -edge.

If {1, 4} * {f(x), f(y), f(z)}, also we can find a subset of edges for

expanding T ′ to T . Without loss of generality, assume that f(x) =

1, f(y) = 2 and f(z) = 3. So, xx3 and xz are f -edges. If at least one

of the edges in the set {yy1, yy2, zz1, zz2} is an f -edge easily we can

expand spanning tree T ′ to T .

In this case, none of the edges in the set {yy1, yy2, zz1, zz2} are f -edges,

switch the name of y and z in the formula. For example, if f(y1) =

1, f(y2) = 3, f(z1) = 2 and f(z2) = 4, by switching y and z in the

formula, f(y) = 4 and f(z) = 1. Hence, yy1 and zz2 are f -edges and we

can expand T ′ to T .

(b) If ∃u ∈ A, |L(u)| = 3.

Without loss of generality, assume that |L(x)| = 3.

f(y) = min
(
L(y)

)
f(z) = max

(
L(z)

)
f(x) = max

(
(L(x)− {f(y)})− {f(z)}

)
The proof can be given with a similar argument that is discussed in the

previous case.

Now assume that G′ is disconnected. Since G has at most one bridge, G′ cannot
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3.2 Properties of a minimum counterexample 3

have more that four components, C1, C2, C3 and C4. Suppose that xi ∈ C1, x3 ∈

C2, yi ∈ C3 and zi ∈ C4, i = 1, 2 (four components for the case that x, y and z are

cut vertices of G and one of the edges in set {xx1, xx2, xx3} is a bridge).

For finding a subset of edges to expand T ′, whether we can use the current colour-

ing of vertices or the symmetric colouring of components with recolouring vertices.

By the minimality of G, backbone colouring of each component is at most 4. If

two edges in the set {xy, yz, xz} are f -edges, then easily we can extend the span-

ning tree of each component to T . However, if just one of the edges in the set

{xy, yz, xz} is an f -edge and by considering the symmetric colouring of compo-

nents, we cannot find two f -edges in that set, then we have the following case:

∃u, v ∈ A,L(u) ⊆ L(v) ⊆ {2, 3}.

Without loss of generality, assume that L(x) ⊆ L(z) ⊆ {2, 3} and yz is

an f -edge. In this case we consider a smaller graph G2 = G − xy. Since xz

is not an f -edge, for any spanning tree T1 of G1, BBC(G2, T2) ≥ 5, but this

contradicts our assumption that G is a minimum counterexample. So, this

case does not exist.

For the case that ∀u ∈ A,L(u) ⊆ {2, 3} or ∀u ∈ A,L(u) ⊆ {1, 4}, vertices x, y

and z form a bad triangle. The proof can also be given with a similar argu-

ment to Case 1.

Corollary 1. If a [4, 4, 4]-triangle is bad then in any colouring of G − {x, y, z},

L(y) = L(z) = {p, q} and L(x) ⊆ L(y), {p, q} ⊂ {1, 2, 3, 4}.
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Figure 3.6: Example of sponsor vertices of bad [4, 4, 4]-triangle with degrees 4.

Corollary 2. If a [5, 4, 4]-triangle is bad then in any colouring of G − {x, y, z},

L(y) = L(z) = {p, q} and L(x) ⊆ L(y), {p, q} ⊂ {1, 2, 3, 4} and p 6= q.

3.3 Properties of bad [4, 4, 4]-triangle

We call vertices in set B = {x1, x2, y1, y2, z1, z2} the sponsor vertices of the bad

triangle. Vertices wi, i = 1, 2, 3 in Figure 3.6 are the common neighbours of adja-

cent sponsor vertices. Let w1 be the common neighbour of y1 and z1. According to

Corollary 1, if S−{p, q} = {r, s}, {f(x1), f(x2)} = {f(y1), f(y2)} = {f(z1), f(z2)} =

{r, s}.

Following lemmas will be frequently applied.

Lemma 5. The degree of sponsor vertices is at least 5.

Proof. First we prove it for z1, d(z1) ≥ 5. Assume otherwise, that is, z1 is a 4-

vertex and N(z1) = {z, z2, y1, w1}, see Figure 3.6. Consider a colouring of G −
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Figure 3.7: Example of vertices wi, i = 1, 2, 3 with degrees 4.

{x, y, z}. Assume that f(z1) = r. Since y1 and z1 are connected, f(y1) 6= f(z1). Let

f(y1) = s (r 6= s). By Corollary 1, f(z2) 6= f(z1) and f(y1) = f(z2) = s. So, z

could be coloured with f(w1). As a result, all neighbours of z1 are in two different

colours, s and f(z), and there are two colours for z1, S − {s, f(z)}. This contradicts

our assumption that for every colouring of G, the colour of sponsor vertices is r or

s.

Second with the same argument we can prove that d(v) ≥ 5, v ∈ B.

Lemma 6. If two adjacent vertices in the set B = {x1, x2, y1, y2, z1, z2} are 5-

vertices, then their common vertex in the set {w1, w2, w3} (if there exists any) has

degree at least 5.

Proof. Assume for a contradiction that d(y1) = 5 and d(z1) ≥ 5 and d(w1) = 4.

Consider a proper colouring of graph G′ = G − {x, y, z}. According to Corollary
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3.3 Properties of bad [4, 4, 4]-triangle 3

1, {f(y1), f(y2)} = {f(z1), f(z2)} = {r, s}. Without loss of generality assume that

f(z2) = f(y1) = r and f(y2) = f(z1) = s.

If we can recolour y1 with colour p or q, then vertices x, y and z can be coloured

with the colour set S for which BBC(G, T ) ≤ 4.

According to figure 3.7, N ′G(y1) = {y2, z1, y3, w1} and {z3, z4} ∈ N ′G(z1). Since,

f(z1) = f(y2) = s and the only available colour for y1 is r, then {f(y3), f(w1)} =

{p, q}. Similarly, since f(z2) = f(y1) = r and the only available colour for z1 is s,

then {f(w1), f(z3)} = {p, q}.

If {f(q1), f(q2)} = {r, s}, then we can recolour y1 with {p, q} − {f(y3)} because

graph G does not have adjacent triangles which means that w1 is not connected to

y3, contradiction.

Now if r 6∈ {f(q1), f(q2)} or s 6∈ {f(q1), f(q2)}, then we can recolour w1 with r

or s, f ′(w1) ∈ {r, s}. Hence, y1 or z1 can be coloured with f(w1) which is p or q,

contradiction.

Lemma 7. If the sponsor vertex sponsored more than one bad triangle, then it

should be a 6+-vertex.

Proof. Suppose for a contradiction that z1 is a 5-vertex and it sponsors at least

two bad triangle. Then it should be adjacent to more than three triangles. In this

case two of these triangles are adjacent, the this contradicts our choice of G.
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Figure 3.8: Example of sponsor Vertices of bad [5, 4, 4]-triangle with degree 4.

3.4 Properties of a bad [5, 4, 4]-triangle

According to Corollary 2, if S − {p, q} = {r, s}, {f(y1), f(y2)} = {f(z1), f(z2)} =

{r, s} and {r, s} ⊆ {f(x1), f(x2), f(x3)}. Without loss of generality, assume that

f(x1) = r and f(x2) = s.

Lemma 8. The degree of vertices z1, z2, y1 and y2 is at least 5.

Proof. First we prove it for z1, d(z1) ≥ 5. Assume otherwise, that is, z1 is a 4-

vertex where N(z1) = {z, z2, y1, w1}, as in Figure 3.8. Assume that f(z1) = s.

Since y1 and z1 are connected, f(y1) 6= f(z1) and f(y1) = r; also, f(z2) 6= f(z1)

and f(y1) = f(z2) = r and f(z) could be the same colour as f(w1). As a result,

all neighbours of z1 are in two different colours, r and f(z), and there are two

available colours for z1 in the set S − {f(z)}. This contradicts our assumption that

for every colouring of G, the colour of sponsor vertices is r or s.

Second with the same argument we can prove that d(z2) ≥ 5, d(y1) ≥ 5 and d(y2) ≥ 5.
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3.5 The discharging method 3

Lemma 9. The degree of w1 is at least 5.

The proof is similar to the proof of Lemma 2.

3.5 The discharging method

In this section we will complete our proof by using discharging rules.

Since G is a planar graph, then; according to Euler’s formula, G has the char-

acteristic that |V (G)| − |E(G)| + |F (G)| = 2. Hence, by using the fact that∑
v∈V (G)

d(v) = ∑
f∈F (G)

d(f) = 2|E(G)|, we have the following result:

For every connected planar graph,

∑
v∈V (G)

(d(v)− 4) +
∑

f∈F (G)
(d(f)− 4)

= 2|E(G)| − 4|V (G)|+ 2|E(G)| − 4|F (G)|

= −4(|V (G)| − |E(G)|+ |F (G)|) = −8.

We define an initial charge function of ω(x) = d(x) − 4 where x ∈ V (G) ∪ F (G).

Then we design appropriate discharging rules and redistribute charges accordingly.

After charges are distributed according to discharging rules, a new charge function

ω′ is produced. When discharging is in progress, the sum of all charges is fixed. On

30



3.6 Proof of Theorem 1 3

the other hand,

∑
v∈V (G)

(d(v)− 4) +
∑

f∈F (G)
(d(f)− 4) =

∑
x∈V (G)∪E(G)

ω′(x).

We denote the amount of charges transformed from x to y by τ(x → y) where

x, y ∈ V (G) ∪ F (G). Our discharging rules are as follows:

Discharging rules:

R1 Every 5+-vertex gives 1
3 charge to each [5+, 5+, 5+]-triangle.

R2 Every 5+-vertex gives 1
2 charge to each [4, 5+, 5+]-triangle.

R3 A sponsor vertex gives its residual charges to a bad triangle.

3.6 Proof of Theorem 1

For each x ∈ V (G) ∪ F (G) we will calculate ω′(x) and we will show that ω′(x) ≥ 0.

Proof. • If x ∈ V (G), according to Lemma 1, δ(G) ≥ 4,

ω′(x) = d(x)− 4 ≥ 0.

• If f ∗ is a [4,4,4]-triangle, f ∗ ∈ F (G).

According to Lemma 3, [4, 4, 4]-triangles in G are always bad, Figure 3.6. Let

f ∗ = [xyz].
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3.6 Proof of Theorem 1 3

All 3-faces of graph G have an initial charge of −1. By Lemma 5 and Lemma 2,

d(v) ≥ 5, v ∈ {w1, y1, z1, z2}. So, by using Rules R1 and R2 we have the fol-

lowing charge distributions:

τ(v → f) = 1
3 , v ∈ {w1, y1, z1}, f = w1y1z1

τ(v → f) = 1
2 , v ∈ {z1, z2}, f = z1z2z

Thus, ω′(z1) = 1
6 . With the same argument we can show that the new charge

of all sponsor vertices of [xyz] is 1
6 . Since bad triangle has six sponsor ver-

tices, by using Rule R3 we have the following result:

ω′[xyz] = 3− 4 + 6.16 = 0

If sponsor vertices are 6+-vertices, they are adjacent to at most three trian-

gles. Let z1 be a 6-vertex, then ω′(z1) = 6− 4− 1
3 −

1
2 = 7

6 . So, z1 can give at

least 1
6 charge to f ∗.

• If f ∗ is a [5,4,4]-triangle, f ∗ ∈ F (G).

According to Lemma 4, [5, 4, 4]-triangle in G are always bad, Figure 3.6. Let

f ∗ = [xyz].

By Lemma 8 and Lemma 9, d(v) ≥ 5, v ∈ {w1, y1, y2, z1, z2}. Also, x is a

5-vertex and ω(x) = 1. So, by using Rules R1 and R2, we have the following

charge distributions:

τ(v → f) = 1
3 , v ∈ {w1, y1, z1}, f = w1y1z1

τ(v → f) = 1
2 , where v ∈ {z1, z2}, f = z1z2z or v ∈ {y1, y2}, f = y1y2y

τ(x→ f ∗) = 1
2
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Figure 3.9: Example of [4,5,5]-triangle.

By Rule R3, ω′(y1) = ω′(z1) = ω′(z2) = 1
6 , that is ω

′(f ∗) = 3− 4 + 3.16 + 1
2 ≥ 0.

If vertex v, v ∈ {y1, y2, z1, z2, w1} is 6+-vertex, it is adjacent to at most three

triangles. Then ω′(v) = 6 − 4 − 1
3 −

1
2 = 7

6 and v can give at least 1
6 charge

to f ∗.

• If f ∗ is a [4+, 5+, 5+]-triangle, f ∗ ∈ F (G).

Let f ∗ = [xyz], Figure 3.9. One can easily observe that, for a k-vertex v

in graph G, v is adjacent to at most bk2c triangles. Let y and z be two 5+-

vertices of [xyz]. So, ω(v) = k − 4, v ∈ {y, z}. By Rule R4,

τ(v → f ∗) = k − 4

bk2c
, v ∈ {y, z}.

If k = 5, v is adjacent to at most two triangle. So, τ(v → f ∗) ≥ 1
2 .

If k ≥ 6, τ(v → f ∗) = k − 4

bk2c
≥ 2− 8

k
≥ 4

6 .

As a result, τ(v → f ∗) ≥ 1
2 , where v ∈ {y, z}; ω

′(f ∗) ≥ 3− 4 + 2.12 ≥ 0.

33



3.6 Proof of Theorem 1 3

• If f ∗ is a 4+-face, f ∗ ∈ F (G),

ω′(f ∗) = d(f ∗)− 4 ≥ 0.

Thus, we proved that ω′(x) ≥ 0 for x ∈ V (G) ∪ F (G) which leads the following

contradiction,

0 ≤
∑

x∈V (G)∪E(G)
ω′(x) = −8.

This contradiction shows that the assumption of existence of a minimum coun-

terexample G was incorrect. As a result, we have succeeded in proving that back-

bone k-colouring of all connected planar graphs without adjacent triangles is at

most 4.
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Chapter 4
Algorithm for Finding a Backbone

In this chapter we will extend the result obtained in Chapter 3 to all classes of

graphs. In Chapter 3, as we coloured all vertices of graph G properly, we made the

backbone of a graph. However, in this chapter, after colouring all vertices of the

graph properly, we will find a backbone tree with the algorithm to be described

below.

4.1 Existence of the backbone of every graph G

with χ(G) ≥ 4

Theorem 2. For every graph G with the chromatic number χ(G) = k, there is a

spanning tree T and a proper k-colouring f such that ∀uv ∈ E(T ), |f(u)−f(v)| = 1.

Proof. Consider a proper colouring of G with a colour function f : V (G)→ S, |S| =

χ(G). An edge uv of the graph G is called good if |f(u)− f(v)| = 1. We also define
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4.1 Existence of the backbone of every graph G with χ(G) ≥ 4 4

an edge uv of the graph G as being bad if |f(u)− f(v)| ≥ 2. Let x be an arbitrary

vertex in G. Let T be the Breadth First Search tree with source x.

If all edges of T are good, simply we consider T as a backbone of G. Otherwise

assume that T has q number of bad edges. Assume that set B is the set of all bad

edges of T , |B| = q. Let e be the first bad edge in T with endpoints u and v where

f(u) = r and f(v) = s, such that |r − s| ≥ 2.

Let Cx and Cv be two components of T − B where x, u ∈ Cx and v ∈ Cv. In other

words, Cx is the maximal subgraph of T that contains x and no other bad edges.

Our goal is to expand Cx step by step in a way that no other bad edges are left in

Cx.

If there exists one good edge in G between Cx and Cv, simply we add that edge to

T − e. So, it can be seen that the number of vertices in Cx is increased by at least 1.

But if there does not exist any good edge between Cx and Cv in G, we have the

following two cases:

Case I. |r − s| = 2.

Without loss of generality, assume that s − r = 2. In this case we consider

the (s, s− 1)-Kempe chain of v and switch the colour of vertices in the Kempe

chain. So f ′(v) = s− 1 = r + 1 and uv is a good edge; as a result, we add uv

to T − B and it is clear that the number of vertices in Cx is increased by at

least 1.

It is not possible that the (s, s − 1)-Kempe chain of v has any intersection

with Cx. Assume otherwise and let y be an intersection of (s, s − 1)-Kempe

chain of v and Cx. Let z be a neighbour of y in Cv and, also, in (s, s − 1)-
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4.1 Existence of the backbone of every graph G with χ(G) ≥ 4 4

Kempe chain of v. Since both y and z are in (s, s− 1)-Kempe chain of v and

they are adjacent to each other, |f(y) − f(z)| = 1 and yz will be a good

edge. But we assumed that there are not any good edges between Cx and Cv,

contradiction.

Case II. |r − s| ≥ 3.

Let |r − s| = t and without loss of generality, assume that r = s + t. We

consider the following algorithm for recolouring vertices.

Let i be a counter from 1 to t − 1. Consider (s + i − 1, s + i)-Kempe chain

of v and switch the colour of vertices in the Kempe chain; then add 1 to the

counter i. Do this step until i = t − 1. So, f ′(v) = s + t − 1 = r − 1 and uv

is a good edge; then, we add uv to T −B. Also, it is clear that the number of

vertices in Cx is increased by at least 1.

Until here we replace the first bad edge by another good edge and we will re-

peat this step until there are not any more bad edges in T . As a result, ∀uv ∈

E(T ), |f(u)− f(v)| = 1.

Note: The reason that we did not consider (s, r − 1) directly is that it might have

an intersection with Cx.

For example, consider Figure 4.1. In this figure, black edges are edges of graph G

and edges of the spanning tree T are shown by red colour. Let uv be a first bad

edge in T . Since there are no other good edges between Cx and Cv, we should
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4.1 Existence of the backbone of every graph G with χ(G) ≥ 4 4

x

v
u

4 2

1

4

2 4

C x

3

y z

w p

Figure 4.1: Example of (4, 2)-Kempe chain.

consider the Kempe chain of v. If we consider (4, 2)-Kempe chain of v directly,

the subset of vertices in the Kempe chain will be {y, z, v, w, p}. These vertices

are shown by blue colour in Figure 4.1. By switching colours of (4, 2)-Kempe

chain, f ′(v) = 2 and f ′(y) = 2. But we were not allowed to change the colour

of any vertices in Cx.

Corollary 3. For every graph G if χ(G) ≥ 4, then there is a spanning tree T such

that BBC(G, T ) = χ(G).

Proof. Assign vertices of G into k, k = χ(G) colour classes and put these sets in

an increasing order. Next, we add edges of T in between the sets. According to

Theorem 2, there are edges just between two consecutive pair of colour classes.

Next step is to change the permutation of colour classes in the following order:

1, 2, 3, ..., k → 2, 4, ..., 1, 3, ...

It is clear that the colour class k will be in the middle of permutation or at the

end, corresponding to k being even or odd respectively.
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4.2 Example of finding a backbone of graph 4
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Figure 4.2: Example of finding a backbone of graph G with an arbitrary spanning
tree T .

Hence, ∀uv ∈ T, |f(u) − f(v)| ≥ 2 and all edges of T are f -edges. So, we find a

spanning tree T of G such that BBC(G, T ) = χ(G). Also, we prove the stronger

result that ∀uv ∈ T, |f(u)− f(v)| = 2 or |f(u)− f(v)| ≥ k − 2.

4.2 Example of finding a backbone of graph

Here is an example of using this algorithm for finding the backbone tree of graph

G, Figure 4.2. In this figure black edges are edges of graph G. Let x be an arbi-

trary vertex in G and T be the breadth-first tree with source x. Edges of the span-

ning tree T are shown by red colour. Also, green numbers are the vertex colouring

of G.

Let xu is the first bad edge in T . Set of all bad edges in T is B = {xu, vz,mw}.

Graph T − xu has two components, Cx, Cv and there are not any good edges

between Cx and Cv. So, we consider the Kempe(1, 2) of u in G and switch the

colour of vertices. According to Figure 4.2, Kempe(1, 2) = {u, v, y, w} and after
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Figure 4.3: Switching the colour of vertices in the Kempe(1, 2) of u in G.
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Figure 4.4: Replacing the first bad edge of T by another good edge from G.

switching colours, f ′(u) = 2, f ′(y) = f ′(w) = f ′(v) = 1 as we can see in Figure 4.3.

Now xu is a good edge and we keep it in T .

Next step is to find a first bad edge of T in Figure 4.3 which is vz. So, B = {vz}.

Components Cx and Cv are two components of T − B. In graph G, there exists a

good edge vw between Cx and Cv and simply we add vw to T −B.

By using the Breadth First Search algorithm we can see that there are not any

more bad edges in T . So, we find the spanning tree T such that all edges are good

edges, as in Figure 4.4.

After that, we assign vertices of G into the 4 colour classes and put these sets in
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4.2 Example of finding a backbone of graph 4
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Figure 4.5: Recolouring each colour class of G.
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Figure 4.6: The spanning tree T is the backbone of graph G.

an increasing order, as in Figure 4.5. Now we should recolour each colour class of

G in the following order: 1 → 2, 2 → 4, 3 → 1, 4 → 3. Hence, according to the

proper colouring of G in Figure 4.6, all red edges of graph are f -edges. As a result,

spanning tree T is the backbone of G and BBC(G, T ) = 4.
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Chapter 5
Conclusion

In this research it has been proved that for every connected planar graph without

adjacent triangles, backbone k-colouring is at most 4. Also, we proved the stronger

result that for every graph G with χ(G) ≥ 4, a spanning tree T of G exists, such

that BBC(G, T ) = χ(G).

In future work, the following questions could be answered:

• Is it possible to prove that for every connected planar graph and every span-

ning tree T of G, the circular backbone k-colouring of (G, T ) is at most 7?

• Can we find any tight upper bound for the circular q-backbone k-colouring

chromatic number of planar graphs?

• Is it possible to find any tight upper bound for the q-backbone k-colouring

chromatic number of all classes of graphs?
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