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Abstract 
 
Client-directed long-term rehabilitative goals and life satisfaction following head injury 

emphasize the importance of social inclusion, rather than cognitive or physical, outcomes. 

However, very little research has explored the socio-emotional factors that pose as barriers to 

social reintegration following injury. This study investigates social barriers following head injury 

(i.e., decision-making - Iowa Gambling Task [IGT] and mood – depression) and possible 

amelioration of those challenges (through treatment) in both highly functioning university 

students with and without mild head injury (MHI) and in individuals with moderate traumatic 

brain injury (TBI). An arousal manipulation using emotionally evocative stimuli was introduced 

to manipulate the subject’s physiological arousal state. Seventy-five university students (37.6% 

reporting a MHI) and 11 patients with documented moderate TBI were recruited to participate in 

this quasi-experimental study. Those with head injury were found to be physiologically 

underaroused (on measures of electrodermal activation [EDA] and pulse) and were less sensitive 

to the negative effects of punishment (i.e., losses) in the gambling task than those without head 

injury, with greater impairment being observed for the moderate TBI group. The arousal 

manipulation, while effective, was not able to maintain a higher state of arousal in the injury 

groups across trials (i.e., their arousal state returned to pre-manipulation levels more quickly than 

their non-injured cohort), and, subsequently, a performance improvement was not observed on 

the IGT. Lastly, head injury was found to contribute to the relationship between IGT 

performance and depressive symptom acknowledgment and mood status in persons with head 

injury. This study indicates the possible important role of physiological arousal on socio-

emotional behaviours (decision-making, mood) in persons with even mild, non-complicated head 

injuries and across the injury severity continuum. 
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Background Literature 

Approximately 57 million people worldwide have been hospitalized with one or more 

traumatic brain injuries (TBI; Langlois, Rutland-Brown, & Thomas, 2004), and within Canada 

between 2009 and 2010, 98,440 individuals or 2.4% of the population sustained a head injury, 

the majority of whom are adults (Statistics Canada, 2011). Moreover, it is estimated that TBI 

accounts for approximately nine percent of all trauma-related admissions into hospitals 

(Canadian Institute for Health Information, 2006) and much of the long-term consequences 

associated with TBI have considerable social and economical burden, placing considerable strain 

on both the medical and social resources (Thurman, 2001; Thurman et al., 1999). Injuries on the 

mild end of the TBI continuum (i.e., mild head injury [MHI]) account for approximately 80% to 

90% of all head injuries (Iverson & Lange, 2009; Ruff, 2011; Schoenberg, 2011) and make up 

approximately 44% of the total economic costs associated with TBI in general (Thurman, 2001).  

While much of the literature and applied clinical work has focused on the cognitive and 

physical sequelae following TBI (Schoenberg, 2011), comparatively less attention has been 

allocated to socio-emotional symptomatology that pose as a barrier to socially reintegrating into 

schools, work-places and communities. Moreover, client-directed long-term rehabilitative goals 

and life satisfaction following TBI concern primarily social, rather than cognitive or physical, 

goals (whereas cognitive and physical goals are the primary focus of clients, and rehabilitation 

professionals, immediately following the injury; Burleigh, Farber, & Grillard, 1998; Corrigan, 

Bogner, Mysiw, Clinchot, & Fugate, 2001; LoBello, Underhill, Valentine, Stroud, Bartolucci, & 

Fine, 2003). As a result, the variables that underlie the major barriers to reintegration following 

MHI and TBI are important considerations from a social, interpersonal, rehabilitative, and brain 

and behaviour perspective.  
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While many barriers to social reintegration have been identified (i.e., impairments in 

emotional processing, adherence to social standards, etc.; Anderson, Bechara, Damasio, Tranel, 

& Damasio, 1999; Ietswaart et al., 2007), two major influences on social re-integration include 

impaired decision-making as well as depressive symptomatology following TBI. As a result, this 

thesis investigates these two barriers following mild head injury and compares their sequelae to 

individuals who have sustained moderate TBIs. Lastly, this thesis investigates an arousal-based 

emotional manipulation (i.e., presentation of high arousal stimuli from the International 

Affective Picture System [IAPS]) to determine whether raising physiological arousal may serve 

as a therapeutic target.  

Chapter I: General Overview of Traumatic Brain Injury 

Mild Head Injury 

Despite its considerable prevalence, the definition, diagnostic indictors, and respective 

neurocognitive and neuropsychiatric impairments following injury, as well as the chronicity and 

longevity of these impairments following MHI are hotly debated within the literature. 

Unfortunately, there is a pervasive ideology within the medical and legal communities that those 

who experience a MHI do not suffer persistent, but proportionally less, impairment even one 

year post injury (Buck, 2011; Dikman, McLean, & Temkin, 1986; Hartvigsen, Boyle, Cassidy, & 

Carrol, 2014; Kristman et al., 2014). While there is significant evidence that majority of 

individuals will recover from a MHI (i.e., approximately 85% - 90%; Iverson, Zasler, & Lange, 

2007), there is a considerable number of individuals reporting long-term post-concussive 

symptomatology even years after their injury (Bigler, 2008; King & Kirwilliam, 2013; Ponson, 

Cameron, Fitzgerald, Grant, & Mikocka-Walus, 2011). Unfortunately, as a result, these 
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individuals frequently suffer from residual symptomatology that is left underaddressed as they 

are unable to gain access to appropriate medical and rehabilitative resources.  

Definition of MHI 

For the purposes of this study, the definition of MHI has been adapted from Kay et al. 

(1993) and is synonymous with the term concussion. It is characterized by a closed injury to the 

head caused by any biomechanical forces that results in sufficient neuronal disruption to 

precipitate any of the following symptomatology: an alteration to mental status, a loss of 

consciousness (must less than 30 minutes in duration), post-traumatic amnesia (must less than 24 

hours in duration), and/or focal neurological deficits.  

The pathophysiology and biochemistry of MHI 

 The mechanism of injury behind MHI is not unlike that of more severe TBIs (Matteer & 

D’Arcy, 2000), where linear and/or rotational biomechanical forces act in a acceleration-

deceleration fashion to cause the brain to impact with bones that make up the skull (coupe). 

When these forces are sufficient, they also cause the brain to rebound in the opposite direction, 

causing the brain to impact bones that make up the other side of the skull (counter-coupe; Barth, 

Freeman, Broshek & Varney, 2001; Iverson & Lange, 2009; Lui, 1999). This initial impact can 

cause contusions (i.e., bruising) and edema, and can be accompanied by, albeit uncommonly, 

hemorrhages and hematomas (Iverson & Lange, 2009; Ono et al., 2007). The most common 

areas of the brain implicated in these injuries includes: the posterior portions of the occipital 

lobes, the inferior cerebellum, parietal opercular area, anterior portions of the temporal lobe, 

posterior temporal gyrus, and the orbitofrontal cortex/ventromedial prefrontal cortex (Iverson & 

Lange, 2009). While microstructural damage has been related to disrupted neuronal functioning, 

in MHI, identifiable structural changes are relatively uncommon (using convention imaging 
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technologies; Alexander, 1995; Bigler & Orrison, 2001). However, more subtle impacts such as 

axonal shearing (Alves, Macciocchi, Barth, 1993; Gennareli, 1996; Iverson & Lange, 2009), 

neurochemical (Hayes & Dixon, 1994) and metabolic changes have been implicated in the 

disrupting of cellular function within the brain following MHI (Giza & Hovda, 2001; Giza & 

Hovda, 2004; Lifshitz, Sullivan, Hovda, Weiloch, & McIntosh, 2004).  

 Giza and Hovda (2001; 2004) illustrated in animal models that following MHI, axonal 

shearing, stretching and twisting begins to occur and the resulting tension placed on these cells 

causes membranes to become disrupted and breakdown. This subsequently results in widespread 

non-specific depolarization through the efflux of potassium (K+) into the axon and the 

indiscriminate and uncontrolled release of predominately excitatory neurotransmitters (i.e., 

glutamate and acetylcholine) at the synapse. This release of these neurotransmitters, particularly 

that of glutamate, further magnifies the efflux of K+ efflux by causing widespread depolarization 

by activation of d-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and N-

methyl-D-aspartate (NMDA) receptors. With the cell reaching high states of depolarization, the 

sodium-potassium pump (Na+K+ ATPase) is up-regulated to meet these increased demands to 

repolarize the cell, resulting increased energy requirements (i.e., adenosine triphosphate [ATP]; 

Giza & Hovda, 2001; Giza & Hovda, 2004; Hayes & Dixon, 1994; Lifshitz et al., 2004).  

Unfortunately, at the same time, reduced vascular capacity following the injury results in 

decreased cerebral blood flow, reducing the availability of oxygen and subsequently metabolism 

shifts from oxidative phosphorylation to being centralized and solely dependent on glycolysis. 

With glycolysis being the predominate source of ATP at this time, lactic acid beings to 

accumulate with little capacity to be placed into the electron transport chain and undergo 

oxidative phosphorylation. This build up of lactic acid subsequently further disrupts the 
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mitochondria’s capacity to produce energy. The mitochondria, which is solely responsible for 

creating the proton gradient that drives the phosphorylation of adenosine diphosphate to ATP is 

placed under increased oxidative stress, due to disrupted antioxidant properties which results in 

increased generation of reactivity oxygen species (i.e., free radicals; Lifshitz et al., 2004). The 

increased production of free radicals have unpaired electrons which react with the cell membrane 

of the mitochondria, altering its structure and reducing its functional capacity to produce ATP. 

This is further compounded and exacerbated by the increased activation of glutaminergic NMDA 

receptors that results in a build up of calcium that is toxic to mitochondria (Giza & Hovda, 2001; 

Giza & Hovda, 2004; Hayes & Dixon, 1994; Lifshitz et al., 2004). 

  Together these altered pathways result in a decreased capacity for energy production 

during a time when surviving neurons actually require more energy to meet the demands of over-

excitation and repolarization. The result of this energy crisis in neuronal communication 

disruptions (typically lasting days or weeks) and necrosis (Giza & Hovda, 2001; Giza & Hovda, 

2004) which have been highly implicated in the pathophysiology of diffuse axonal injury (DAI; 

Kushner, 1998). DAI is of particular importance for MHI (already well accepted in the moderate 

and severe TBI literature), as it has been a consistent finding in the advanced neuroimaging 

literature (Kirov, Tal, Babb, Lui, Grossman, & Gonen, 2013; Messe et al., 2011; and has been 

linked to the resulting neuropsychological and cognitive sequelae that follow MHI (Scheid, 

Walther, Guthke, Preul & von Cramon, 2006). This provides considerable support for the notion 

that MHI are not trivial events and require careful clinical assessment and follow-up.  

Diagnostic Indicators and Classifiers of Head Injury 

 Due to the heterogeneity of clinical characteristics and varying pathophysiological 

mechanisms implicated in MHI, there has been little consensus within the empirical literature 
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regarding which diagnostic indicators or series of indicators are most optimal in measuring 

injury severity and predicting long-term rehabilitative outcomes (Gomez, Lobato, Ortega, & De 

La Cruz, 1996). As a result, diagnostic indicators utilized within the medical community vary 

depending on the type of the institute providing the assessment (i.e., family doctors offices and 

urgent care clinics compared to the emergency department, etc.). The most commonly utilized 

tools to classify the severity of an individual’s TBI include (1) Glasgow Coma Scale, (2) 

duration of loss of consciousness, and (3) duration of post-traumatic amnesia (Iverson & Lange, 

2009). Less commonly used, neuropsychological testing and neuroimaging have also illustrated 

predictive validity for rehabilitative outcome (Iverson et al., 2007; Shenton et al., 2012).  

Glasgow Coma Scale.  

Firstly, the Glasgow Coma Scale (GSC) is a behavioural instrument that grossly 

measures an individual’s level of consciousness (Teasdale & Jennett, 1974) on three independent 

domains of arousal, including eyes opening as a response to stimuli, verbal, and motor functions, 

all of which are rated on a scale of one to four, five and six respectively (Teasdale & Jennett, 

1974). The minimal score is three and a maximum score of 15. Mild injuries are typically 

classified when GCS follows within scores of 13 to 15 measured approximately 30 minutes post-

injury; however, many individuals who sustain a MHI meet the criteria for a maximum score of 

15 (Gomez, et al., 1996; Thompson & Irby, 2003), not distinguishing them from uninjured 

controls. Moreover, retrospective examinations of MHI patient samples have illustrated 

considerable heterogeneity in neurological findings in GCSs of 13, 14 and 15. For example, 

Gomez et al. (1996) found in MHI sample of 2000 participants, out of the individuals with GCS 

of 15 upon initial examination, 26% had reported neurological symptoms (i.e., loss of 

consciousness and post-traumatic amnesia, etc.). Moreover, 41% of individuals with a GCS of 13 
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had abnormal computed tomography (CT) findings (i.e., epidural hematoma, subdural 

hematoma, brain contusions, subarachnoid hemorrhage, etc.; Gomez et al., 1996). Moreover, 

GCS has not been found to be predictive of neuropsychiatric or occupational outcome (i.e., 

psychological distress, psychiatric symptomatology, duration before returning to work, etc.; 

McCullagh, Ouchterlony, Protzner, Blair, & Feinstein, 2001) and even its predictive capacity of 

gross indices of ‘recovery’ as measured by the Glasgow Outcome Scale decrease with time since 

injury. Together, these findings suggest that while worsening symptomatology is associated with 

lower GCS scores, the sensitivity of this measure is low resulting in substantial variability 

between symptom presentation and acute and post-acute functional outcomes associated with 

each of the mild GCS ratings (Gomez, et al., 1996; McCullagh et al., 2001; Thompson & Irby, 

2003).  

Loss of Consciousness 

 The duration of post-injury loss of consciousness (LOC) is another commonly used 

indicator of severity (Iverson & Lange, 2009; Kay et al., 1993). From a behavioural standpoint, a 

patient is label as being unconscious if they appear to be in a sleep-like state and cannot be 

immediately aroused by command or physical contact (often referred to duration till responsive 

to commands; Whyte, Cifu, Dikmen, & Tempkin, 2001). In addition to this, during this time 

patients remain unaware of oneself and their respective surroundings (Iverson & Lange, 2009; 

Thompson & Irby, 2003). Within in the past, there has been debate as to whether a LOC of is 

required within the definition of MHI (American Psychiatric Association, 2000; Feinstein & 

Rapoport, 2000); however, considerable evidence has been collected to suggest that neuronal 

functioning can be disrupted even with injuries not involving a LOC but still result in post-injury 

functional impairment (i.e., cognitive, emotional, social and behavioural sequelae; Iverson, 
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Lovell, Smith, & Franzen, 2000; Kay et al., 1993, Kay & Teasdale, 2001). LOC is a positive 

predictor of intracranial abnormalities identified by CT scans with increasing odds-ratios 

associated with greater LOC, particularly in moderate and severe injuries. Individuals without an 

LOC were found to have a quarter of the risk of intracranial pathologies relative to their non-

LOC cohort (Iverson et al., 2000; Ono, Wada, Takahara, & Shirotani, 2007). Smits et al., (2007) 

has suggested, however, that intracranial pathologies may be underrepresented within the 

literature with respect to individuals sustaining MHI and having no LOC, finding that in their 

sample of over two thousand patients almost equal portions of intracranial pathology regardless 

of LOC status. These findings illustrate the importance of including injuries that are without 

LOC in the mild end of the spectrum of injuries. As a result, for head injuries to be considered 

‘mild,’ one must have an LOC shorter in duration than 30 minutes (Kay et al., 1993; Thompson 

& Irby, 2003), whereas ‘moderate’ and ‘severe’ classifications are typically considered when 

LOC is greater than 30 minutes and 24 hours respectively (Thompson & Irby, 2003).    

Post-Traumatic Amnesia 

 Post-traumatic Amnesia (PTA) is the duration of memory disruption immediately 

following the traumatic incident to the time memories can be clear and consecutively recalled 

(Iverson & Lange, 2009). While this measure is not as straightforward as it might seem, given 

that ‘islands’ of memory which can be readily confused with continuous stream of memory may 

make clinical assessment difficult, it has been found to be a strong predictor of functional 

outcome one-year post-injury (van der Naalt, van Zomeren, & Minderhoud, 1999). With respect 

to injury severity, individuals with a PTA duration of less than 24 hours are typically classified 

as having a MHI, whereas PTA durations of one to seven days, and eight days or more, are 
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considered moderate and severe injuries, respectively (Levin, Benton, & Grossman, 1982; 

Iverson & Lange, 2009; Thompson & Irby, 2003).  

Neuroimaging 

Traditional neuroimaging techniques readily available to medical personnel have not 

shown the sensitivity and specificity required to measure the respective pathophysiological 

changes associated with TBIs on the mild end of the spectrum (Bigler, 1999; Bigler & Orrison, 

2001). Computerized tomography (CT) is one of the most commonly used neuroimaging 

methodologies given their relative speed, low costs and patients not requiring medical 

stabilization. While CT imaging has been illustrated particularly effective in delineating bone 

abnormalities (i.e., skull fractures, etc.), hemorrhagic blood (subdural hemorrhage, subarachnoid 

hemorrhage, etc.), and edema (Bigler & Orrison, 2001) and subsequently identifying individuals 

who may require neurosurgical intervention following their head injury (Haydel, et al., 2000; 

Smits et al., 2007; Stiell et al., 2005), they have, however, shown minimal capacity to 

differentiate individuals who have sustained a MHI or provide predictive capacity for functional 

outcomes (Bigler & Orrison, 2001; Iverson et al., 2000; Livingston et al., 2000). Many studies 

have illustrated the limitations in sensitivity that CT imaging possesses, whereby in one study 

16% of 912 patients who had sustained a MHI were found to have abnormalities on CT (Iverson 

et al., 2000), only 5% of over one thousand patients with a MHI had intracranial lesions visible 

(Livingston et al., 2000; Ono et al., 2007), and CT findings are minimally associated of long-

term outcome (Jacobs et al., 2010). 

Magnetic resonance imaging (MRI; T1 and T2-weighted imaging), unlike CT methods, 

have shown considerably greater anatomical resolution with the capacity to pick up subtle 

lesions presentations (Bigler & Orrison, 2001), has an increased sensitivity to lesions typically 
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seen in mild and moderate patients that are hospitalized; however, these lesions correlate poorly 

with neuropsychological profiles (Bigler & Orrison, 2001; Levin, Williams, Eisenber, High, & 

Guinto, 1992). Use of structural imaging techniques in MHI populations has been further 

complicated by the presence of neuropsychological dysfunction in the absence of abnormal 

structural findings (Leninger al., 1990; Voller et al., 1999; Yarnell & Rossie, 1988). Yarnell and 

Rossie (1988) found that individuals suffering from minor whiplash head trauma were impaired 

in cognitive flexibility, non-verbal reasoning, learning and memory, psychomotor agility and 

attention compared to their non-injured counterparts, despite unremarkable findings on the 

neurological examination, neuroimaging and electrophysiological studies. Estimates vary, but 

between 43% to 68% of individuals with MHI have unremarkable MRI findings (Belanger, 

Vanderpleog, Curtiss, & Warden, 2007; Hughes, Jackson, Mason, Berry, Hollis, & Yates, 2004). 

The pathophysiology of MHI, whereby alterations in synaptic, biochemical and metabolic 

processes occur (Alexander, 1995; Giza & Hovda, 2004; Ogden, 2005), may be an underlying 

contributor to the difficulty in identifying structural abnormalities through CT and MRI (Bigler 

& Orrison, 2001). Unfortunately this has been one of the major barriers in having medical 

personnel and third party insurance companies recognize the sequelae following mild injuries 

(Bigler, 1999; Bigler & Orrison, 2001).  

 Susceptibility weighted MR techniques utilize clinical MRI scanning units available 

conventionally to develop sharper and clearer images pertaining to hemorrhages. These 

techniques utilize the paramagnetic properties of deoxygemoglobin and methemoglobin to 

outline micro-bleeding that occurs within tissue at higher rates of sensitivity compared to regular 

MRI (Shenton et al., 2012). Within the brain injury literature, susceptibility weighted imaging 

has been a new avenue for examining diffuse axonal injury which has been elusive utilizing 
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more conventional neuroimaging techniques (Scheid, Ott, Roth, Schroeter, & Cramon, 2007; 

Shenton et al., 2012). Babikian et al. (2007) found that images collected within 10 days 

postinjury illustrated abnormalities indicative of diffuse axonal injury and volumetric indices of 

lesions were predictive of 32% of the variance in neuropsychological performance 1-4 years 

following the injury. This illustrates promising data that begins to link imaging findings to 

functional measures of cognition.  

Diffusion tensor imaging (DTI) is a more novel form of structural MR technology which 

measures diffusion of water molecules to calculate diffusion in three dimensional space (i.e., 

tensor). In white myelinated fiber tracts, myelin surrounding axons is found to have lower 

solubility than the axon, this provides indices of diffusion direction and subsequently of 

structural integrity. Typically this measure is quantified in fractional anisotropy (FA; ranging 

from 0 to 1), an index of the amount of diffusion that occurs in a single direction within each 

three dimensional voxel (Belanger et al., 2007). Deviated FAs outside the norm have been 

associate increased inflammation (high FA values) and neuronal/white matter degradation (low 

FA values) and serves as a proxy for fast and reliable neuronal communication (Bigler & 

Bazarian, 2010).  

Despite its novelty, DTI has already illustrated utility within the literature, whereby 

patients with mild injuries were found to have reduced FA in their corpus callosum, internal 

capsule, and external capsule just 24 hours after injury. Mayer et al. (2010) illustrated that DTI 

was sensitive to cytotoxic edema in semi-acute mild injuries (on average 12 days postinjury). 

Mayor, Mannell, Ling, Gasparovic and Yeo (2011) found reduced connectivity profiles in 

fronto-parietal networks as well as default-mode networks for individuals with a MHI relative to 

matched control subjects. A quantitative review of the DTI literature performed by Kulkower, 
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Poliak, Rosenbaum, Zimmerman, and Lipton (2013) suggests that based on over a 100 articles, 

DTI is has a strong sensitivity to white matter microstructural alterations that follow TBI and 

despite considerable variability in clinical presentations, this advanced imaging technique has the 

capacity to differentiate those with TBI from controls, regardless of injury severity 

characteristics. Moreover, there is increasing evidence that imaging findings collected by DTI 

can be predictive of long-term outcomes (Kulkower et al., 2013).  

 Functional neuroimaging (positron emission tomography [PET] and functional MRI 

[fMRI]) has also shown some promising results for the identification of the neuropathology 

implicated in MHI that relates to impaired neurocognitive functioning (Belanger et al., 2007; 

Bigler  & Orrison, 2001; Jantzen, 2010).  PET imaging techniques measures regional cellular 

metabolism and thus indirectly by detecting changes to regional cerebral blood flow (rCBF). 

rCBT changes as a function of cellular demand for glucose and oxygen (up-regulated based on 

cellular needs). Several studies have illustrated that metabolic abnormalities persist chronically 

in some individuals with MHI. For example, Humayun et al. (1989) illustrated that despite 

normative MRI and CT images of three individuals with MHI, they were found to have abnormal 

metabolic profiles in the temporal (anterior, medial and posterior portions) and the frontal lobes 

(anterior and posterior portions) relative to controls. Chen, Kareken, Fastenau, Trexler and 

Hutchins (2003) illustrated that PET has increased sensitivity to cortical dysfunction that is not 

typically identified through structural imaging techniques and this has been found to correlate 

with neuropsychological profiles (Belanger et al., 2007; Bigler & Orrison, 2001, Chen et al., 

2003).  

Instead of measuring indices of metabolism through glucose, fMRI utilizes measures of 

blood oxygen typically in the form of blood-oxygen-level-dependent (BOLD) techniques. This 
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provides an indirect measure of cellular activity by measuring differential magnetic field 

gradients due to changing deoxyhemoglobin concentrations that result from oxygen consumption 

(i.e., with increasing cellular activity, oxygen consumption increases and local blood flow 

increase reducing the concentration of deoxyhemoglobin; Belanger et al., 2007). fMRI has been 

found to have spatial resolution of several millimeters and a temporal resolution of between one 

and two seconds (Bigler & Orrison, 2001; Jantzen, 2010). While the relationship between 

vascularization and BOLD signal is thought to be nonlinear and is not yet fully understood, 

several authors have found blood flow abnormalities that differentiate those who have had a MHI 

from those with no history of head injury (McAllister et al., 1999; McAllister et al., 2001; 

Jantzen, Anderson, Steinberg, & Kelso, 2004).  

Despite a proliferation of utilization of fMRI techniques in other areas of cognitive 

neuroscience, utilization of fMRI in MHI populations has been relatively minimal comparatively 

(Jantzen, 2010; McDonald, Saykin, & McAllister, 2012). This may be due to a number of 

reasons, but the heterogeneity of symptomatology presenting following head injury (e.g., 

diversity of cognitive impairments, neuropsychiatric symptoms, etc.), sample characteristics 

(e.g., time since injury, severity indictors, age, etc.), genetic variability (see McDonald et al., 

2012) which may contribute to considerable variability that has made looking at group 

differences more challenging (Jantzen, 2010; McDonald et al., 2012). Jantzen (2010) review the 

literature and found that of the 10 studies review examining working memory deficits in those 

with MHI, three illustrated increased BOLD response and five illustrated decreased BOLD 

response. Various explains are given attenuated BOLD amplitude, such that individuals with 

MHI have reduced capacity to recruit or engage neural process for the task demands and 

heightened BOLD response is associated with less efficient processes (Jantzen, 2010). It is clear 
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that more research is required to disentangle the nature of differential BOLD responses to 

decreased performance on cognitive measures following injury. Despite these limitations, fMRI 

has shown considerable promise when combined with other neuroimaging methodologies (i.e., 

DTI, MR spectroscopy, etc.) and appears promising in the diagnosing and monitoring of 

treatment progress following injury (McDonald et al., 2012). Unfortunately, due to the current 

costs and limited availability of these methodologies, they are presently not readily accessible for 

clinical use, which continues to serve as a continued barrier to the acknowledgement of 

impairment following MHI (Jantzen, 2010).  

Post-concussive Syndrome & Neuropsychological Sequelae following MHI  

 Following a MHI, the most common set of symptomatology that presents is typically 

referred to as post-concussive syndrome (PCS), which has been characterized one or more of the 

following: headache, fatigue, photophobia, sensitivity to noise, double vision, tinnitus, dizziness, 

nausea, vomiting, irritability, aggression, alterations in mood (i.e., anxiety, depression, etc.), as 

well as changes in cognition (American Psychological Association, 2000; Binder, 1986; World 

Health Organization, 1993). PCS is highly common in the weeks following an injury but many 

patients report these symptoms persisting even three months postinjury (Mittenberg & Stauman, 

2000). Mittenberg and Stauman (2000) suggested that approximately 30% of untreated patients 

with a MHI will have symptomology sufficient to meet the criteria of PCS six months postinjury.  

 There remains an ongoing debate within the literature about the legitimacy of PCS lasting 

longer than one year in duration postinjury (Mathias, Beall, & Bigler, 2004; Rohling, Binder, 

Demakis, Larrabee, Ploetz, & Langhinrichsen-Rohling, 2011; Wang et al., 2006; Zakzanis & 

Yeung, 2011). Estimates vary from 10 to 50% of individuals report long-term PCS (Alexander, 

1995; Kay et al., 1992; King & Kirwilliam, 2013; McCauley et al., 2008; Ryan, & Warden, 
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2003), but many argue that the etiological contribute of these symptoms may have more to do 

with premorbid personality (e.g., neuroticism), emotional/psychiatric or other neurological 

factors unrelated to the head injury (Clarke, Genat, & Anderson, 2012; Ruff & Grant, 1999; 

Ryan & Warden, 2003). For example, Clarke et al. (2012) found that emotional/affective 

symptoms and personality traits such as neuroticism best predicted symptoms over and above 

neuropsychological test performance for individuals with MHI, spinal cord injury patients and 

health neurological controls. They interpret these findings to suggest that PCS represent 

psychological symptoms and not damage to the nervous system itself (Clarke et al., 2012). Much 

of this debate stems from the fact that PCS symptoms are nonspecific and all can be accounted 

for by other medical and psychiatric disorders (Bigler, 2008; Zakzanis & Yeung, 2011). While it 

is important to understand the premorbid factors that contribute to PCS, it would be facetious to 

state that all of these symptoms are due to premorbid states alone and even if much of this 

symptomatology can be accounted for “psychological” changes post-injury. Neuropsychological 

investigation as means to better understand the respective neural functional changes is required 

(Bigler, 2008). All too often clinicians and scientists appear to be quick to blame these symptoms 

on the individual not “wanting” to get better and not investigating the etiology, perhaps 

reflecting a philosophical approach difference rather than a scientific one.  

 From a neuropsychological standpoint, the clinical presentation of symptoms is 

considerably variable, interacting with many preinjury variables, and is highly complex (i.e., 

varying depending on when testing takes place – e.g., immediately after relative to 3 months and 

6 months postinjury; Bigler, 2008; Bohnen, Jolles, Twinjnstra, 1992; Mathias, Beall, & Bigler, 

2004; Rohling, Binder, Demakis, Larrabee, Ploetz, & Langhinrichsen-Rohling, 2011; Wang et 

al., 2006). However, impairments in processing speed, attention allocation and regulation, 
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memory functions and executive function (including emotional dysregulation) are the most 

common cognitive findings following MHI (Belanger, Curtiss, Demery, Lebowitz, & 

Vanderploeg, 2005; Bigler, 2008; Lezak, Howieson, Bigler & Tranel, 2012; Lundin, De 

Boussard, & Borg, 2006;). Belanger and colleagues (2005) conducted a meta-analysis 

summarizing 39 studies involving almost 1500 cases of MHI compared to 1200 control subjects, 

finding that the impact to neuropsychological function on average was of a moderate effect size 

(d = .54) with some domains of executive functioning and delayed memory processes having 

larger effect sizes (i.e., d = 1.03 and .89). Symptomatology postinjury has been correlated to 

disability and impairment in activities in daily living (Lundin et al., 2006). This suggests that 

there are distinct areas of the nervous system that may be more “vulnerable” to injury than 

others.  

 Even in highly functioning University students, incidents of MHI is relatively high (25 to 

45%; DeBono & Good, 2008; Segalowitz & Lawson, 1995) individuals who have a history of 

MHI have been found to have similar, but proportionally less severe changes in neurocognitive 

functioning (Baker & Good, 2013; Segalowitz et al., 2001; van Noordt & Good, 2011). 

Segalowitz et al. (2001) found that those with a MHI demonstrated less optimal performance on 

measures of a relatively easy attention task, despite normal function in standard cognitive 

batteries. They also gathered altered electrophysiological evidence from ERPs, which was 

interpreted as changes in information processing.  

Chapter II: The Present Study 

 The purpose of the present study is to replicate findings suggestive of decision-making 

changes following MHI and compare this to the presentation of individuals who have sustained 

moderate TBI. Moreover, we will investigate and attempt to replicate an arousal-based emotional 
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manipulation to observe if this can attenuate sequelae observed for individuals who previously 

sustained a head injury. Lastly, this study will explore whether MHI is a possible confound 

within psychopathology literature whereby the depressive symptomatology can be accounted for 

by neurocognitive sequelae.  

Vulnerable Brain Regions in MHI: Prefrontal Cortex 

 While several areas of the brain are particularly vulnerable to the biomechanical forces 

applied during a head injury (see cone of vulnerability; Bigler, 2008; Lezark et al., 2012), the 

prefrontal cortex (PFC) is an area that is implicated in governing, regulating, executing and 

monitoring all of the nervous systems respective activities (Struss & Benson, 1984). Typically 

these processes are referred to as executive function, constituting attention, inhibition, planning 

and sequencing, self-monitoring, memory, and emotion regulation, and initiation of tasks 

(behavioural and cognitive). The PFC is frequently subdivided into four gross subdivisions, 

dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (mPFC), ventromedial 

prefrontal cortex (VMPFC)/orbitofrontal cortex (OFC), and ventrolateral prefrontal cortex 

(VLPFC). These are subdivided based on different sets of behavioural disorders (Lezak et al., 

2012).  

While the functions of these structures are detailed extensively elsewhere, a brief 

summary of respective functions will be described here. The DLPFC is made up of Brodmann 

areas 8, 9, 46 and 10 and it has been implicated in attentional processes, spatial working memory 

tasks, verbal memory retrieval, conditioned learning, and planning among other functions 

(Cabeza & Nyberg, 2000; Kolb & Whishaw, 2009). It has been argued that the DLPFC is 

broadly involved in “on-line” processing of information (Cabeza & Nyberg, 2000). Conversely, 

the mPFC, which involves the anterior cingulate cortex, has been implicated in motivation, drive 
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modulating emotional activity and emotional regulation (Lezak et al., 2012), self-reference 

(Gusnard, Akbudak, Shulman, & Raichle, 2001), and the default mode network (Raichle, 2009). 

Moreover, there is some evidence for its role in the modulating some neuroendocrine functions 

(i.e., hypothalamic-pituitary adrenal axis), having extensive projections with both the 

hypothalamus and other subcortical systems (Diorio, Viau, Meaney, 1993; Kolb & Whishaw, 

2009). The VLPFC has been particularly implicated in cognitive control, motor inhibition, and 

reflexive visual orientation and spatial attention (Badre & Wagner, 2007; Levy & Wagner, 

2011). Lastly, the VMPFC, which is defined by Brodman areas 25, 32, ventral portions of 24, 

and medial portions of 10, 11, and 12 respectively (Bechara, 2004; Bechara, Tranel, & Damasio, 

2000b), has been illustrated to play a role in regulation and monitoring behaviour (i.e., 

particularly social behaviour, as well as integration of salient feedback into decision-making 

processes, among other functions (Bechara, Damasio, Damasio, & Lee, 1999; Bechara et al., 

2000a; Bechara et al., 2000b; Bechara, Damasio, Tranel, & Anderson, 1998; Clark, Cools, & 

Robbins, 2004; Fellows & Farah, 2005; Kolb & Whishaw, 2009; Rolls, 2004; Wheeler & 

Fellows, 2008).  

 The orbitofrontal cortex (OFC) makes up the most ventral and interior areas of the 

VMPFC, being situated immediately posterior to the orbital bones that protect the eyes (Rolls, 

2004; Wallis, 2007). This area is thought to be highly vulnerable to biomechanical injuries (such 

as head injury) due to its close proximity to the boney protrusions of the skull in the surrounding 

area (i.e., cribiform plate and sphenoid bone; Bigler & Orrison, 2001; Wallis, 2007). In addition 

to this, given that the frontal lobe is one of the largest structures in the brain and is furthest from 

support of the brain stem, it is most highly sensitive to rotational forces. This, paired with the 

coup-contre-coup/acceleration-deacceleration forces that often cause portions of the OFC to 
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contact the skull bones, makes this area of the brain one of the most highly susceptible areas in 

TBI-related neural disruption (Alves et al., 1993; Bigler, 2001; Wallis, 2007). Given its 

implicated role in social sequelae following neural injury and its high vulnerability to injury, the 

OFC serves as a good candidate for better understanding symptomatology postinjury. 

The Orbitofrontal Cortex 

Individuals with lesions to the OFC often have a pleura of social difficulties, including 

impairments in decision-making (Bechara, 2004; Bechara et al., 2000b), inability to follow social 

and ethical conventions, antisocial behaviour (Blair, 2004), disinhibition (Berlin, Rolls, & 

Kischka, 2004; Damasio, 1994), impaired identification and appraisal of emotional stimuli 

(Hornak, Rolls, & Wade, 1996), and alterations in reward and punishment processing (Berlin et 

al., 2004; Bechara et al., 1994). Converging evidence suggests that the OFC is implicated in the 

development and production of visceral-based cues (i.e., states of physiological arousal), which 

can guide decision-making in times of uncertainty in the form of “gut-feelings” (Bechara et al., 

2000). Literature from both human and animal neuroanatomy suggests that the OFC is part of a 

highly complex integrative network and has the necessary projections estimated to summate 

neural inputs that guide decision-making processes. The OFC receives dense projections from all 

sensory modalities, including the olfactory cortex, tertiary auditory information from the 

auditory cortex, somatosensory information from secondary somatosensory and parietal cortices 

respectively, and lastly processed visual information from the inferior temporal cortex 

(Carmichael & Price, 1995a; Rolls, 2004; Wallis, 2007). The OFC has bidirectional projections 

with areas from the limbic system and other associated areas, including (1) the amygdala, 

implicated among other areas in high intensity emotion (Barbas, Saha, Rempel-Clower, & 

Ghashghaei, 2003; Carmichael & Price, 1995b; Kolb & Whishaw, 2009); (2) the hypothalamus, 
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implicated, with the amygdala, in the modulation of modulate visceral and autonomic arousal by 

influencing brain stem structures, such as the periaqueductal gray area, reticular formation and 

raphe nucleus (Barbas et al., 2003; Carmichael & Price, 1995b; Kadda, Pribram, & Epstein, 

1949); (3) the cingulate cortex, associated with modulation of attention, emotional and memory 

functions, and modulating behavioural responsiveness, among many functions (Crottaz-Herbette 

& Menon, 2006; Kalat, 2010; Kolb & Whishaw, 2009; Lezark et al., 2012); (4) the hippocampus, 

implicated in the consolidation of memory (Wallis, 2007); and (5) the nucleus accumbens, 

involved in motivational reward processing (Cardinal, Pennicott, Sugathapals, Robbins, & 

Everitt, 2001). 

Damage to areas of the OFC disrupts these connections, and greatly impacts the 

modulation of visceral-arousal based on the accumulation of the various structural inputs, 

thereby compromising one’s ability to be responsible in an optimal fashion to complex 

environmental stimuli (Barbas et al., 2003; Bechara et al., 2000a; Bechara, Tranel, Damasio, & 

Damasio, 1996). Evidence from both the neuroanatomy and neurophysiology literatures supports 

the notion that the OFC is highly implicated in the modulation of emotional and visceral arousal 

based on motivational and environmental inputs, thus providing an influence on behaviours and 

decision-making in the form of “gut-feelings” or “somatic markers”(Bechara et al., 1996; 2000a; 

2000b; Damasio, 1994).  

The ‘Somatic Marker’ hypothesis developed by Damasio, Bechara and colleagues, 

postulates that decision-making processes, particularly in times of uncertainty or ambiguity, are 

informed, and otherwise shaped, by bioregulatory affective or emotional states that are indexed 

by the beholder as changes in visceral states (i.e., galvanic skin response/electrodermal 

activation, blood pressure, respiration, gut motility, etc.). These states serve to provide contextual 
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information that facilitates more optimal learning and decision-making outcomes (Bechara et al., 

1996; Damasio, 1994; Damasio, 1996). Optimal decision-making is hypothesized to be 

dependent on effective and adaptive modulation and regulation of these bioregulatory affective 

states. There is extensive literature on the Somatic Marker’s hypothesis and is one of the major 

neurological theories of decision-making. A complete framework is provided by the most recent 

review provided by Reinmann and Bechara (2010).  

Related to the Somatic Marker hypothesis, research conducted in our lab has repeatedly 

found that participants reporting a MHI (as mild as sustaining a hit to the head sufficient to alter 

one’s state of consciousness) are physiologically underaroused compared to their non-injured 

cohort (Baker & Good, 2010; van Noordt & Good, 2011), in a manner similar to that found in 

persons with severe TBI. Expanding on this finding, we have found that decision-making 

processes during conditions of uncertainty, are similarly impacted and diminished (e.g., Robb & 

Good, 2012) using Damasio and colleague’s Iowa Gambling Task (IGT), a task that is widely 

accepted as a measure of OFC functioning (Bechara et al., 1994), and are accompanied by 

impoverished measures of autonomic nervous system (ANS) arousal (i.e., electrodermal 

activation [EDA]). The IGT requires participants to make 100 individual selections from one of 

four unmarked decks of cards (referred to as Decks A through D). The task is designed to mimic 

real-life ‘gambling’ decision-making in a laboratory, whereby choices are made in the context of 

uncertainty since the consequences of decisions cannot be predicted. In this case, the uncertainty 

mimics a gambling situation such that the outcomes vary in both the frequency/schedule and 

magnitude of reward (point gains) and punishment (point losses). Since there is no explicit 

algorithm available to the subjects and, at least initially, subjects must ‘guess’, and otherwise 

(eventually) ‘intuit’ which selection will be more or less advantageous, the situation forces 
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participants to rely more so on their “gut feelings” for their selections (Bechara et al., 1994). 

Typically, individuals without any OFC compromise (either normal controls or lesions 

elsewhere) initially select more from the “high risk” decks, due to their initial high appeal (i.e., 

greater initial gains, but similarly greater losses), but quickly shift to “low risk” decks (i.e., more 

meager gains, but similarly, less pronounced losses) upon learning of the more substantive long-

term costs of the “riskier” decks. Conversely, patients with substantial OFC lesions illustrate a 

pattern of decision-making on this task that reflects a preference for the disadvantageous decks 

that continues throughout the 100 trials despite periodic sampling from all of the decks (Bechara 

et al., 1994; Bechara et al., 2000a, Bechara et al., 2000b), and having opportunity to experience 

the relative outcomes of high or low risks. Moreover, a pivotal study conducted by Bechara et al. 

(1996) illustrated that individuals with OFC lesions have reduced ANS arousal in anticipation of 

making a decision-selection, and despite experiencing significant losses, compared to non-

injured controls, despite fully intact, and heightened, ANS arousal in response to feedback 

following a decision.  

Similar to the research conducted with OFC lesion patients, we (Robb & Good, 2013) 

found that individuals reporting a MHI were found to illustrate a pattern of limited, non-optimal 

decision-making whereby they made a slower transition from high risk deck selections to low 

risk deck selections, ultimately leading to less overall gains. As well, MHI subjects were found 

to be less aversive to high-risk decks, as they would more quickly return to high risk deck 

selections following punishment compared to their non-injured cohort. Moreover, MHI 

participants were physiologically underaroused in anticipation of making a card selection 

compared to their non-MHI cohort. In contrast, non-MHI participants developed increasingly 

noticeable anticipatory arousal states across time. These findings may reflect a neurally-based 
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affective in-sensitivity to consequences of decision outcomes (i.e., prior losses) resulting in 

alterations in behaviour and decision-making as a function of OFC competence (i.e., less 

avoidance of disadvantageous/risky decisions following MHI).  

Replication - Hypothesis I: Underarousal 

Based on the literature presented and our previous findings, it is hypothesized that arousal 

will vary as a function of injury severity at initial testing, whereby individuals reporting 

increasing injury severity (measured by loss of consciousness, post-traumatic amnesia, post-

concussive symptoms, etc.) will be found to be physiologically underaroused relative to their 

age-matched peers. More specifically, at initial testing, individuals who have a moderate TBI 

will present with the least arousal and those reporting a MHI will have lower arousal as 

compared to those without a history of MHI. This pattern of arousal is also expected for 

anticipatory arousal measures observed prior to participants making a selection on the IGT, but 

not in response to selection feedback. These findings would replicate our previous findings of 

underarousal for individuals with a history of MHI, and illustrate the continuum of injury 

severity with respect to physiological underarousal.  

Replication - Hypothesis II: IGT Performance 

IGT performance is expected to vary as a function of injury severity such that individuals 

who have sustained more significant injury to the head will also demonstrate the slowest learning 

transitions. Persons with moderate TBI will be slower at transitioning from disadvantageous 

selections to advantageous selections than individuals who report mild head injuries who, in turn, 

will be slower to transition than their non-injured healthy cohort. Moreover, the rate of return to 

a punishing (disadvantageous) selection will be faster (i.e., fewer trials in returning to a selection 

following a punishment by that same selection on a previous trial) as a function of injury severity 
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(i.e., individuals with moderate TBI, followed by those reporting a MHI and lastly non-injured 

healthy subjects). These findings would replicate our previous findings of decision-making for 

individuals with a history of MHI, and expand the findings to persons living with a moderate 

TBI, illustrating the continuum of injury severity with respect to decision-making during 

conditions of uncertainty.  

Iowa Gambling Task, Executive Functions, Reversal Learning & Explicit Knowledge 

Of the considerable research conducted using the IGT, there are three major critiques of 

the task’s validity that are particularly pertinent to the investigation of barriers to social 

reintegration. These include, firstly, whether the IGT measures a unique and dissociable 

constructive of emotion/cognition that is separable from ‘typical’ executive functions, thereby 

providing a unique contribution of understanding barriers to social reintegration. It has already 

been well documented that executive functions are fundamental for independent functioning, 

activities of daily living, and social and community reintegration (Lezak, Howieson, Bigler & 

Tranel, 2012). Secondly, Fellows and Farah (2004) have illustrated that reversal learning, at least 

in part, is required for successful performance in the IGT. They modified the IGT to eliminate 

the need to overcome immediate gains from the risky decks (i.e., cards one through eight were 

placed at the bottom of the decks for all four decks of cards). VMPFC/OFC patients illustrated 

impairments on the original IGT but not in the modified task. Fellows has suggested this finding 

illustrates that VMPFC/OFC’s impairment in IGT performance is a reversal learning problem 

(i.e., impaired updating of stimulus reward/punishment associative learning) and not reflect of 

impairments in decision-making, somatic markers, or gut feeling (Fellows, 2004; Fellows & 

Farah, 2004). Lastly, whether the IGT is able to measure implicit emotional learning in the form 

of “gut-feeling” or intuition and is not confounded by the development of explicit knowledge 
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prior to the development of implicit markers or behavioural changes (i.e., using implicit learning 

that some things lead to negative outcomes and should be avoided). If explicit knowledge occurs 

prior to the development of implicit markers, then IGT performance may not be tapping the 

construct of gut-feelings in conditions of uncertainty and may not be informative, or indicative, 

of decision-making in social situations.  

Although no neuropsychological measure is expected to measure a single cognitive 

construct, the IGT has been suggested to tap into emotional implicit learning, sometimes referred 

to as intuition or “gut-feelings” and is suggested to do so independently of other executive 

functions typically associated with other regions of the PFC (Bechara et al., 1994; Bechara et al., 

2000a, Bechara et al., 2000b). Bechara et al. (1998) illustrated a dissociation between 

VMPFC/OFC patients and right dorsolateral PFC (DLPFC) patients on measures of decision-

making and working memory. VMPFC/OFC patients were found to have deficits in decision-

making on the IGT and not tasks of working memory whereas DLPFC patients illustrated 

deficits in working memory, but not decision-making. Moreover, IGT performance was not 

found to change with increasing working memory load in healthy control subjects (Turnbull, 

Evans, Bunce, Carzolio, & O’Conner, 2005).  Toplak et al. (2010) performed a systematic 

review of the literature examining the associations of several common executive functions 

hypothesized to be important for performing well on the IGT, including (1) inhibition, (2) 

working memory, and (3) set-shifting. Of the 43 studies examined, the majority of studies 

reported no statistically significant relationships between indices of executive function and IGT 

performance. Of the small number of studies that did find a relationship, effect sizes were 

reported to be small to moderate. Collectively, these findings suggest that intuition or “gut-

feeling”/implicit emotional learning is minimally related to ‘typical’ executive functions and 
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reflects a distinct and separable form of cognition that provides a unique contribution to 

understanding the barriers to social/community reintegration.  

The second criticism of the IGT, where IGT performance has been proposed to be highly 

dependent on the ability to reverse a learned association that initial rewarding of risky decks (A 

and B) and does not lead to the most advantageous outcomes, and thus is not indicative of 

decision-making per se, but simply a learning task requires careful examination. Bechara and 

colleagues (2005) have responded to this critique arguing that reversal learning within the IGT is 

likely to be accounted for by somatic markers theory, whereby gut feeling/somatic states serve as 

the underlying mechanism by which these learned associations can change (i.e., stop signal).  In 

support of this, it is important to distinguish reversal learning from cognitive flexibility or set 

shifting. The latter reflects the ability to move back and forward between several mental sets or 

approaches in response to changing goals (Lezak et al., 2012). It is clear that while the IGT may 

evaluate this skill type to some degree, VMPFC/OFC patients are able to shift away from risky 

decks for some of their trials, they are just more quickly to return to them relative to control 

participants, illustrated by Busemeyer & Stout (2002) utilizing the expectancy valance model 

and we have mimicked in MHI samples utilizing a more simple methods by averaging the 

number of trials it takes to return to a trial that was previously punishing (Robb & Good, 2013). 

These findings collectively suggest that participants with alterations in IGT performance, 

whether they are VMPFC/OFC patients or individuals reporting a MHI, can switch away from 

risky decks, albeit for shorter periods of time. Moreover, these behavioural changes on the IGT 

appear to occur separable from explicit knowledge of strategy regardless of injury status and 

point to a more, or at least predominate, implicit mechanism for behavioural changes. This 

critique, however, does point out the interesting debate about distinguishing where learning ends 
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and decision-making begins, if they can, in fact, be separable. 

Further, there has been considerable controversy within the literature regarding the role 

explicit knowledge plays throughout and during decision-making in the IGT (Bechara, Damasio, 

Tranel & Damasio, 1997; Maia & McClelland, 2004), and that explicit knowledge about 

decision-making outcomes may occur prior to implicit markers (i.e., SCR) and subsequent 

behavioural change (Maia & McClelland, 2004). Bechara et al. (1997) originally examined 

whether decision-making on the IGT is initially driven by explicit knowledge based on overt 

reasoning or whether overt reasoning is preceded by implicit biasing cues. They found that 

individuals developed SCRs in ‘anticipation’ of risky potentially-punishing decisions and 

transitioned to making selections from the less risky/advantageous decks well before they could 

explicitly acknowledge which decks were risky and which were not. However, when Maia and 

McClelland (2004) attempted to re-examine these findings by directly and deliberately asking 

questions about one’s explicit knowledge about the task in a more probing and elaborate fashion 

(i.e., asking subjects to provide a general rating of how ‘good’ each of the decks were, an 

explanation for the conclusions made about deck preference, as well as estimations of average 

punishment values, reward values and net totals for each of the four decks respectively), they 

found support that indeed the subject’s reportable and aware knowledge of the task preceded any 

changes in his/her behavioural selections. That said, an important limitation to this study is that 

the type of questioning that took place throughout the task (i.e., sampled at 10 trial intervals) 

occurred in such a fashion as to promote and induce the active and intentional use of, and meta-

review of, potential solving strategies. In other words, by making participants more explicitly 

aware of tracking, assessing and attending to reward and punishment outcomes, they may have 
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elicited an explicit learning strategy in their subjects that then, indeed, guided behavioural 

performance and response selections.   

Nonetheless, in line with the finding that explicit knowledge may influence IGT task 

performance, Gutbrod et al. (2006) found that individuals who live with an amnesic syndrome 

and, thereby, have deficits in making use of, if not retain, explicit knowledge, had impaired IGT 

performance compared to their non-amnesic counterparts. Further, more recent literature (e.g., 

Guillaume et al., 2009) has found no association between SCRs and explicit knowledge 

measured during the IGT; however, performance on the task and SCRs were positively related, 

and performance differed as a function of one’s conscious awareness of the reward and 

punishment contingencies.  

Collectively, these findings suggest that advantageous decision-making on the IGT may 

be associated with two independent systems, both implicit somatic signals and explicit 

knowledge of strategies. As a result, we sought to investigate explicit knowledge about the IGT 

contingencies at the end of the task as a means to reduce the confound of eliciting, rather than 

witnessing the emergence of explicit strategies and its influence on performance. We found that 

individuals reporting a MHI illustrated a slower transition from high risk/disadvantageous decks 

to low risk/advantageous decks producing fewer overall gains; and this occurred, despite both 

MHI and non-MHI participants reporting a preference for the riskier decks at the end of the task. 

Thus, both groups of subjects illustrated a dissociation between what they thought was 

happening in the task (explicit knowledge) and how they made selections and choices (implicit 

behaviour). This implies that implicit learning, perhaps ‘gut-feelings’ can drive decision-making 

performance independently of explicit knowledge of strategy.   

Replication - Hypothesis III: Explicit Knowledge & IGT 
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Based on the above literature, it is hypothesized that individuals, regardless of head 

injury status, will report both a preference and increased propensity for winning (i.e., will report 

that they prefer the high risk/disadvantageous decks) despite making selection choices during the 

IGT indicative of ‘learning’ that these high-risk decks are disadvantageous (i.e., transition from 

disadvantageous to advantageous selections). Moreover, a dissociation will observed whereby it 

is anticipated there will be no predictive relationship between the participants’ knowledge (i.e., 

reported strategy of selection, understanding of the value of each deck) and their behavioural 

selections. This will replicate previous findings demonstrating the dissociation of “knowing” 

versus “doing”. 

Manipulating Physiological Arousal 

To examine the role of physiological underarousal contributing to decision-making, 

arousal has been manipulated through the presentation of emotionally salient stimuli (e.g., 

classical music). It has been well established within the literature that arousal and cognition are 

related in a curvilinear fashion (i.e., Yerkes-Dodson law), whereby cognitive performance 

increases with increasing arousal, until it reaches an optimal level of performance at which the 

point an individual becomes too aroused and cognitive performance proportionally decreases 

(Yerkes & Dodson, 1908). Classical music has been shown to increase physiological arousal, 

improve learning rates on measures of decision-making and attenuate differences in the rate of 

return to risky selections following punishment feedback for individuals reporting a MHI, but not 

for those who did not report a history of MHI. More specifically, negatively-valenced music 

(e.g., The Planets: Mars (Holdst), Piano Trio #5 – Ghost (Beethoven), etc.) was more effective in 

improving the decision-making performance for MHI participants, whereas positively-valanced 

music (e.g., Scherzo (Dvorak), Largo ma ton tanto (Bach), etc.) was more effective for non-MHI 
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participants. This provided preliminary evidence that the act of elevating arousal may be a 

potential therapeutic option for individuals who have previously sustained a TBI.  

Subsequently, our lab has examined the influence of emotionally-evocative visual stimuli 

from the International Affective Picture System (IAPS), finding that this too can benefit 

cognitive performance in persons with MHI (Baker & Good, 2012). We expect to replicate and 

expand these findings for individuals with mild and moderate TBI by experimentally 

manipulating physiological arousal with visual stimuli and examining whether similar 

improvements in decision-making are observed.  

Replication - Hypothesis IV: Manipulating Arousal 

 Based on the above findings, it is hypothesized that emotionally-evocative imagery used 

for the arousal manipulation will produce a corresponding increase in physiological arousal (as 

reflected by increases in EDA, pulse, etc.). Moreover, increases in arousal will benefit the 

decision-making performance on the IGT for those reporting a head injury (across the injury 

severity continuum) in two ways: by decreasing the number of trials required for transitioning 

from high risk to low risk choices; and by increasing the number of trials before returning to high 

risk decision following punishment feedback. Similarly, persons who do not report a history of 

MHI may be disadvantaged by increased arousal, should their levels of arousal introduce 

distress. 

TBI & Depression 

In addition to altered decision-making, depressive mood has been found to be another 

considerable barrier to social reintegration (Jorge et al., 1993). Depression has been associated 

with saddened mood or irritability, anhedonia, cognitive (i.e., changes to concentration/attention, 

cognitive slowing, etc.) and physical symptoms (i.e., psychomotor retardation or agitation, etc.) 
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as well as a number of cognitive biases (American Psychiatric Association, 2000; 2013, Beck, 

1964). This constellation of symptomatology greatly hinders social reintegration (Brown, 

Gordon, & Spielman, 2003; Gomez-Hernandez, Max, Kosier, Paradiso, & Robinson, 1997). This 

is particularly concerning, as the literature indicates that between 18 and 49% of individuals with 

TBI experience comorbid psychiatric illness (Fann et al., 2004), with a particular emphasis on 

affect disorders (van Reekum et al., 2000). Moreover, between 40 and 90% of individuals who 

have sustained a TBI report some form of depressive symptomatology (Busch & Alpern, 1998; 

Jorge et al., 1993; Mooney & Speed, 2001; Seel et al., 2003). Despite the prevalence of 

depressive symptomatology, the mechanisms by which neural disruption from TBI results in 

greater affective dysregulation have not been well studied, nor is it clear that the 

pathophysiology of major depressive disorder (MDD) following TBI parallels that of typical 

MDD. 

 While the literature has addressed these questions in a limited manner, Maller et al. 

(2010) conducted a meta-analysis of the diffuse tensor imaging (DTI) literature that 

independently examined TBI and MDD. They identified an overlap in the number of brain 

structures involved in the pathophysiology of each of these conditions, including the corpus 

callosum, basal ganglia and frontotemporal structures. Moreover, the connectivity profile of 

individuals with TBI or MDD, which provides an indication of how many axonal connections 

lead to, and from, a particular brain region, indicated that prefrontal structures, and specifically 

that of the medial and lateral OFC were found to be considerably below that of a normative 

cohort (Maller et al., 2010). In addition to this, individuals diagnosed with MDD were found to 

have significantly reduced OFC volume compared to healthy participants (Bremner et al., 2002); 

and functional neuroimaging data has supported the role of the OFC in affective dysregulation 
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that may account for depressive symptomatology (Bremner et al., 1999; Drevets, 2007).  

In addition to structural and functional imaging techniques implicating the OFC in MDD, 

Must et al. (2006) illustrated that individuals with MDD displayed a pattern of decision-making 

indicative of altered reward and punishment processing on the IGT, whereby they did not 

transition from high risk to low risk decks. MDD participants performed similarly to controls on 

a modified version of the IGT which seeks to determine if decision-making problems are due to 

failure of high reward to outweigh immediate punishment (Must et al., 2006). Individuals with 

MDD, like individuals with TBI, may possess a decision-making impairment indicative of a 

hypersensitivity to reward due to a neurally-based affective insensitivity to consequences of 

decision outcomes. This finding was further corroborated by Jollant et al. (2010) who reported 

that previous suicide attempters were found to be impaired on IGT. Further, functional 

neuroimaging indicated that less activation in lateral OFC regions during risky decisions was 

associated with poorer decision-making outcomes which could not be explained by executive 

function capacity (Must et al., 2006).  

These two studies, the only two found to investigate IGT performance in individuals with 

unipolar MDD, both obtained decision-making profiles counter to expectations set much of the 

rest of the depression literature. It has been well established that individuals with MDD often 

have maladaptive responses to punishment, often referred to as being a “catastrophic response to 

perceived failure” (Eshel & Roiser, 2010; Roiser & Sakakian, 2013). For example, Elliott et al., 

(1996) in their landmark study illustrated that using the CANTAB battery of neuropsychological 

tests with individuals with unipolar depression illustrated a pattern whereby failure on one 

neuropsychological problem dramatically increased the likelihood of failure on the following 

problem/item. They postulated that this oversensitivity to negative feedback reflects differential 
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motivational and emotional feedback processing (Elliott et al., 1996). Moreover, considerable 

evidence demonstrates that individuals with MDD illustrate blunted emotional reactivity and 

anticipatory response to reward (albeit much of this data is self-report and very little has 

examined recordings of physiological arousal [GSR, EDA, etc.]; Bylsma, Morris & Rottenberg, 

2008; Eshel & Roiser, 2010; Roiser & Sahakian, 2013). For example, McFarland and Klein 

(2009) had individuals with and without subclinical depression complete a puzzle-based 

neuropsychological measure while being provided positive (rewarded with money) and negative 

(cold pressor task) feedback. Participants higher in depressive symptomatology produced 

diminished self-reported positive emotion in anticipation of , or response to, reward despite no 

differences in self-reported anxiety in anticipation of, or response to, punishment. These findings 

coincide with much of the depression and anhedonia research, whereby one of the core features 

of MDD is the loss of pleasurable feelings associated with tasks or activity that were once found 

pleasurable (American Psychiatric Association, 2012; Bylsma et al., 2008).   

The studies conducted by Must et al. (2006) and Jollant et al., (2010) demonstrating that  

individuals with MDD had impairments on the IGT, whereby immediate gains outweighed larger 

punishment overtime, is a difficult finding to reconcile. It would have been expected (and was 

expected by the authors) that individuals would perform similarly if not in a superior fashion to 

control subjects. However, neither study controlled for, or excluded, participants who had a 

history of MHI. Given the high prevalence of MHI (35-45%; Baker & Good, 2014; Segalowitz 

& Lawson, 1995; van Noordt & Good, 2011) and the association found between MHI and 

impairments in decision-making processes as measured by the IGT (Robb & Good, unpublished 

data; van Noordt & Good, 2011), it is suggested that the results pertaining to MDD and decision-

making on the IGT are possibly confounded by MHI. As a result, this study will serve to provide 
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clarification to these findings.  

To our knowledge, there is no research that has examined decision-making processes as 

measured by the IGT in individuals with and without head injury and examined this in the 

context of associated depressive symptomatology. It is expected that those with head injury will 

illustrate patterns of physiological underarousal and subsequently have reduced capacity to 

regulate, and otherwise modulate, anticipatory bioregulatory somatic/visceral cues which help to 

inform decision-making processes. These changes are thought to reflect functional and structural 

alterations in the OFC which contribute to and influence the way emotionally-salient feedback is 

processed (Berlin et al., 2004), potentially contributing to the development of maladaptive 

cognitive biases typically observed in persons with major depression (Beck, 1963). As a result, 

this study will examine the influence alterations in OFC function (e.g., emotional dysregulation) 

and feedback have on the neuropsychological sequelae of TBI and ongoing affective states.  

Exploratory - Hypothesis V: IGT and Depression 

Based on the above literature, it is possible that previous literature investigating decision-

making processes utilizing the IGT in depressive patients may be confounded by a lack of 

control for a history of MHI. As a result it is hypothesized that learning performance on the IGT, 

and the rate of return to punishing selections, will predict self-reported depressive 

symptomatology in individuals who report previously sustaining an injury (lower performance 

will be associated with higher depression) but not for their non-injured cohort.  

Summary 

Collectively this research will be the first study, to our knowledge, that examines ‘social’ 

decision-making and its relationship to depression as a function of TBI injury severity. As well, 

it will provide further insight regarding the role of physiological (under)arousal in persons who 
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have experienced injuries to the head and the consequent potential for arousal-based therapeutic 

techniques for TBI populations. Such findings will have practical and theoretical implications 

regarding the relationship between cognition and arousal. Lastly, this study will highlight the 

potential role of functional and structural alterations of the OFC and its impact on processing of 

emotionally-salient feedback and depressive symptomatology 

Methods 

Participants 

75 participants (39 females, 36 males) were recruited using Brock University’s 

Psychology Department research website (SONA), in addition to posters placed around the 

university campus1. Of these, 32 participants or 37.6% reported a history of MHI (17 females, 15 

males). An additional 11 persons who have documented traumatic injuries to the brain (4 

females, 7 males) were recruited from various clinical offices within the Niagara community. 

Participants were not recruited on the basis of head injury, but were informed that they would be 

participating in a study examining emotion and cognition. This was done to reduce diagnosis 

threat (Suhr & Gunstad, 2002; 2005) and its affect on expectations and performance. Ages for 

the participants ranged between 18 and 34 years (M = 20.78, SD = 2.68) for University students 

and between 15 and 33 for patients (M = 22.91, SD = 6.07). Table 1 describes means and 

standard deviations for participant’s age and education as well as maternal and paternal 

education as a function of head injury status. As observed, the groups do not differ considerably 

in any of these variables; most participants have one or two years of post-secondary education 

and parents who achieved at least some post-secondary education. With respect to parental 

income, participants do not vary considerably with respect to head injury status and are 
                                                
1 Originally 76 university students participated in the study but unfortunately a single participant 
was not included in any of the statistical analyses as their data (i.e., IGT performance) was lost in 
a computer malfunction.  
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predominately upper middle class. Lastly, the majority of participants, regardless of head injury 

status, identified themselves as being Caucasian.  

Table 1: 

Descriptive statistics of age, and proportions of completion the years of education, parental 
income, and parental education.  
 
 Control  

(n = 43) 
MHI  

 (n = 32) 
Moderate TBI  

(n = 11) 
Variable: M SD M SD M SD 

Age 20.77 2.98 20.78 2.38 22.91 6.07 

Years of Education 
completed 

13.86 1.39 13.91 1.53 14.36 2.11 

Years of Education 
Mother completed 
 

15.00 1.76 14.28 1.97 15.36 1.91 

Years of Education Father 
completed 
 

14.35 2.06 14.56 2.15 15.20 1.69 

Parental Income 
 

Percentage (n) 

 Under $25,000 
 

  2.3 (1)   3.1 (1) 0.0 (0) 

 $25,000 to $49,999 
 

  25.6 (11) 18.8 (6) 18.2 (2) 

 $50,000 to $74,999 
 

16.3 (7) 12.5 (4)   9.1 (1) 

 $75,000 to $99,999 
 

11.6 (5) 21.9 (7) 18.2 (2) 

 $100,000 to $124,000 
 

 25.6 (11) 18.8 (6) 54.5 (6) 

 $125,000 to $149,999 
 

 2.3 (1)   3.1 (1)   0.0 (0) 

 $150,000 or more 
 

16.3 (7) 21.9 (7)   0.0 (0) 

Ethnicity 
 

Percentage (n) 

 Hispanic 
 

4.7 (2) 0.0 (0)   0.0 (0) 

 Caucasian 
 

62.8 (27) 75.0 (24) 81.8 (9) 

 European-born 7.0 (3)  6.3 (2)   0.0 (0) 
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 African 

 
2.3 (1)  3.1 (1)   9.1 (1) 

 East Indian 
 

4.7 (2)  6.3 (2)   0.0 (0) 

 West Indian 
 

2.3 (1)  0.0 (0)   0.0 (0) 

 Chinese 
 

 0.0 (0)  3.1 (1)   0.0 (0) 

 Other 
 

16.3 (7)  6.3 (2)   9.1 (1) 

 

Table 2 describes descriptive statistics with respect to sex, handedness, diagnoses of 

neurological and psychiatric conditions, learning disabilities, use of psychotropic medications, 

and injury characteristics as a function of head injury status. As observed, the majority of the 

participants are right-handed and there were a minimal number of reported psychiatric or 

neurological conditions (n=6; evenly distributed among the groups). More participants from the 

moderate TBI group were taking psychotropic medications than other groups, and these 

medications were reported to be of the selective serotonin re-uptake inhibitor (SSRI) class (i.e., 

Cipralex [escitalopram]) and the serotonin norepinephrine re-uptake inhibitor (SNRI) class (i.e., 

Effexor [venlafaxine]) respectively2. 

For students who reported a history of MHI, the majority indicated that these resulted 

from sports-related injury, followed by falls. Further, 15.5% of these subjects reported sustaining 

more than one head injury. It is interesting to note that a considerable portion of those who 

sustained MHI sought medical attention (40%), which is much higher than previous samples 

from our lab (van Noordt & Good, 2011; Baker & Good, 2014). For patients, the majority of 

individuals identified motor-vehicle collisions, followed by sports-related injury, as being 

                                                
2 Analyses were conducted with and without these participants; no differences in the results were 
obtained as a function of psychotropic medication. 
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responsible for their head injuries. Almost half of these patients required admissions to a hospital 

and 36% of this group sustained multiple head injuries.   

Table 2: 

Descriptive statistics of sex, handedness, diagnoses of interest, and injury characteristics as a 
function of head injury status 
 

Variable:  
Percentage (n) 

Control  
(n = 43) 

MHI  
 (n = 32) 

Moderate TBI  
(n = 11) 

Male 48.8 (21) 46.9 (15) 63.6 (7) 

Right Handed 86.0 (37) 93.8 (30) 90.9 (10) 

Psychiatric Diagnosis 4.7 (2) 6.3 (2) 63.6 (2) 

Taking psychotropic medications 2.3 (1) 3.1 (1) 27.3 (3) 

Neurological condition 7.0 (4) 9.4 (3) 36.4 (4) 

Diagnosed with a learning disability 0.0 (0) 6.3 (2) 0.0 (0) 

Injury Characteristics    

 Symptoms > 20 minutes - 40.6 (13) 100 (11) 

 Loss of consciousness (LOC) - 53.1 (17) 81.8 (9) 

 Duration of LOC    

  Less than 5 minutes - 46.9 (15) 27.3 (3) 

  Less than 30 minutes - 6.3 (2) 27.3 (3) 

  Less than one week - 0.0 (0) 27.3 (3) 

  Unknown - 46.9 (15) 18.2 (2) 

 Where head was struck:    

  Front - 37.5 (12) 36.4 (4) 

  Right - 15.6 (5) 9.1 (1) 
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  Left - 6.3 (2) 9.1 (1) 

  Other - 6.3 (2) 27.3 (3) 

  Cannot recall - 33.4 (11) 18.2 (2) 

 Cause of Injury    

  MVC  3.1 (1) 54.5 (6) 

  Sports-related Injury  56.3 (18) 36.4 (4) 

  Falls  28.1 (9) 0.0 (0) 

  Other  12.5 (4) 9.1 (1) 

 Result in a diagnosed concussion  56.3 (18) 100(11) 

 Required stitches  9.4 (3) 2 (18.2) 

 Receive medical treatment  40.6 (13) 90.9 (10) 

 Stayed overnight in hospital  3.1 (1) 45.5 (5) 

 More than one injury  15.6 (5) 36.4 (4) 

  

Neuropsychological Measures 

 Iowa Gambling Task (IGT). The IGT is a measure of decision-making performed 

during conditions of uncertainty and simulates a ‘gambling’ situation. It assesses one’s ability to 

adapt one’s selections or choices based on longer-term prospects of overall gain. This paradigm 

is made up of a highly complex reward and punishment schedule, previously described (see 

Bechara et al., 1994 for full details) and, as a result, taps into the construct of associative reverse 

learning. The task consists of four decks of cards - Decks A and B are considered 

disadvantageous (i.e., overall, selections from these decks result in losses that outweigh the 

gains); while Decks C and D are considered advantageous (i.e., overall, selections from these 
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decks result in gains that outweigh the losses). Participants complete 100 trials. The reward and 

punishment contingencies vary as a function of both deck and ten-trial blocks. Bechara et al. 

(1997) typically classified the trials into four stages: (1) Trials 0 – 20 represent the ‘learning’ 

phase, whereby participants often sample from all of the decks; (2) Trials 21 – 50 represent the 

‘pre-hunch’ phase, during which individuals often begin developing reactions (as measured by 

skin conductance response increases) in response to selections from the punishing or 

disadvantageous decks; (3) Trials 51 – 80 represents the ‘hunch’ phase, during which 

participants commonly make the transition from selecting cards from the disadvantageous (A and 

B) decks to preferring to select cards from the advantageous (C and D) decks; and lastly, (4) 

Trials 80 – 100, referred to as the ‘conceptual’ phase, participants can often report which decks 

are preferred, if not advantageous, and which are not preferred, if not disadvantageous.  

 While there is an extensive body of literature examining the validity of the IGT and its 

neuropsychological correlates, as well as converging evidence from clinical case studies, 

behavioural reports, and neuroimaging studies indicating that the IGT can provide a measure of 

OFC functionality (Bechara et al., 1994; 2000a; 2000b; Buelow & Suhr, 2009; Domasio, 1994; 

Li et al., 2010), its use in this study was solely to provide a measure of decision-making under 

conditions of uncertainty. It may also reflect ‘group’ differences that may be attributable to OFC 

functionally between persons with and without a history of MHI, but certainly no inference 

regarding an individual’s performance or OFC competency is being confirmed in this study. For 

this study, the computerized version of the IGT was used, in addition to the use of a point system 

of gains and losses (as a facsimile of money), both of which have been illustrated to be 

comparable to the manual/original version of the task (Bechara et al., 2001; Bowman & 

Turnbull, 2003; Buelow & Suhr, 2009).  
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Matrix Reasoning (Wechsler Adult Intelligence Scale-IV [WAIS-IV]). Matrix 

Reasoning is a subtest Wechsler Scales and has been viewed predominately as a measure of fluid 

intelligence, logical reasoning, abstract thought, visuospatial ability, broad visual intellect, and 

perceptual organization (PsychCorp, 2008). Participants are asked to solve a series of 26 

increasingly difficult visual pattern completions. While this has not shown to be highly sensitive 

to the effects of neural injury, it is commonly held as a good measure of premorbid intellectual 

functioning (Tranel, Manzel & Anderson, 2008).  

Social Perception (Faces [Affect Naming], Advanced Clinical Solutions Supplement 

to WAIS-IV and WMS-IV). Affect naming requires that participants look at 18 different faces 

and identify the emotional expression displayed in each (i.e., either happy, sad, angry, fear, 

disgust, surprise, and no feeling/neutral). This test assesses one’s capacity to identify affective 

emotions being expressed by others (Wechler, 2009), a difficulty for individuals who have 

experienced TBI (e.g., Radice-Neumann, Zupan, Babbage, & Willer, 2007). As a result, this test 

is considered to be sensitive to impairments associated with traumatic head injuries.  

Word Reading (Wide Range Achievement Test [WRAT]). Participants are asked to 

read a list of words that increase in vocabulary difficulty across trials. Participants are given a 

maximum of 10 seconds per word and the task is discontinued after 10 incorrect trials. This test 

has been associated with providing a good approximation of reading ability and academic 

achievement (Lezak et al., 2012; Wilkinson & Roberson, 2006) and is included in this study as 

an overall intellectual competency measure. 

Psychophysiological Measures 

 All electrophysiological measures were collected using Polygraph Professional Suite 

Datapac USB 16-bit Data Acquisition equipment and respective version 2.6.0.0 software. 
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Measures of electrodermal activation and pulse oximetry were taken from the non-dominant 

hand, allowing for the dominant hand to be used to manipulate the mouse for the computer-based 

tasks, permitting minimized participant movement on the recording side, thereby reducing the 

prevalence of artifacts.  

 Electrodermal Activation (EDA). Measures of EDA are similar to that of SCR and 

galvanic skin response (GSR), providing a continuous index of autonomic arousal through the 

measurement of skin perspiration. EDA has been illustrated to be highly sensitive to alterations 

in sympathetic nervous system arousal, which in turn affect production of perspiration. Measures 

of skin perspiration are highly common within the literature for examining arousal during 

cognitive, neuropsychological and behavioural tasks (Lykken & Venables, 1971). Like many 

forms of electrophysiology, EDA has excellent temporal resolution.  

 For this study, pure metal alloy electrodes were used and placed on the distal end of the 

index and fourth fingers. Averages were derived for epochs based on amplitude of electrical 

change, measured in microsiemens. EDA was measured in real time throughout the IGT, 

whereby researchers demarcated eight-second anticipatory epochs, prior to each selection a 

participant made, and four-second feedback epochs, after the selection had been made (time 

durations were based on previous literature) (Bechara et al., 1996; van Noordt & Good, 2011).  

 Pulse Oximetry. A pulse oximeter was used to measure pulse rate, in beats per minute, 

throughout the IGT by detecting rates of blood perfusion through the determination of light 

absorption. It was sampled continuously throughout the task whereby the device was placed on 

the distal portion of the middle finger, and epochs were demarcated in the same fashion that was 

described for EDA.  

Endocrine Measures: 
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 Salivary Cortisol – Enzyme-linked Immunosorbent Assays (ELISA). Participants 

provided six saliva samples in total, including three as part of another study outside of the testing 

session and three samples during the testing session as part of the present study as an index of 

emotion and stress responsivity. Participants were asked to passively drool into plastic 

polystyrene culture tubes and these samples were then placed in freezer storage until analyses 

could be conducted. Cortisol (ng/mL) concentrations were obtained using ELISA commercial kit 

and preparation/analysis occurred over two separate days. Samples were defrosted and duplicate 

100 µL of saliva were assayed and optimal densities were determined using a Biotek Synergy 

Plate reader at 450 nm.  

Questionnaire-based Measures 

 Explicit Knowledge Questionnaire. The explicit knowledge questionnaire was 

originally developed by Maia and McClelland (2004) and was used to assess the extent of 

knowledge a participant was aware of, and could report, regarding the reward-punishment 

contingencies of each of the IGT decks. It is administered after completing 100 trials of the IGT. 

Items on the questionnaire include a rating of each deck (-10 = worst deck, +10 = best deck), as 

well as an estimate regarding the average net outcome, average winnings, frequency of losses, 

and average losses for each of the four decks based on 10 trial blocks. Lastly, subjects are asked 

to rate how confident they are in their estimates, and which deck they would prefer to choose if 

they could play again (Maia & McClelland, 2004; See Appendix B). 

Demographics Questionnaire. A demographics questionnaire was used to gather 

information about a person’s educational, medical and social histories, with a particular interest 

in ascertaining a participant’s history of sustaining a MHI (i.e., have you ever hit your head with 

a force sufficient to alter your consciousness [e.g., loss of consciousness, vomiting, dizziness]?). 
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Questions are asked about each subject’s age, education, mother and father’s level of education 

and income, in addition to measures of head injury severity (i.e., LOC, PTA, hospitalization, 

etc.). Variables that may confound or alter test performance, such as the presence of learning 

disabilities, psychiatric or neurological conditions were also measured (See Appendix B).  

 Life Stressors Scale. The life stressors scale was adapted from Holme and Rahe (1967)’s 

social readjustment rating scale, as a measure of self-reported life stressors on overall health. 

This modified version provides participants with a list of 18 highly stressful events and they are 

asked to endorse and rate any of those that have been experienced in past six months. Each 

stressor has an individual rating based on potential life impact (based on norms), providing 

scores for both a weighted total score and a frequency measure of life stressors, indexing the 

amount of readjustment recently experienced by participants (See Appendix B). 

Post-Concussive Syndrome Checklist (PCSC). This modified PCSC consists of a list of 

10 post-concussive symptoms that are commonly experienced by individuals after a head injury 

(i.e., headache, dizziness, irritability, memory problems, difficulty concentrating, fatigue, visual 

disturbance, aggravated by noise, judgment problems, and anxiety). Participants were asked to 

rate the frequency (1 = not at all, 5 = all of the time), intensity (1 = not at all, 5 = crippling) and 

duration (1 = not at all, 5 = constant) of experiencing each of these symptoms for the last two 

months (Gouvier, Uddo-Crane, & Brown, 1988; See Appendix B).  

 Beck’s Depression Inventory (BDI; Beck, Ward, Mendelson, Mock & Erbaugh, 1961). 

The BDI is a self-report measure consisting of depressive criteria frequently reported by 

psychiatric patients but infrequently reported by non-depressed individuals. It is made up of 21 

items, including mood, pessimism, sense of failure, lack of satisfaction, guilt feelings, sense of 

punishment, self-dislike, self-accusation, suicidal thoughts, crying, irritability, social withdrawal, 
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indecisiveness, distorted body image, work inhibition, sleep disturbances, fatigability, loss of 

appetite, weight loss, somatization, procuration, and loss of libido. Items are reported on a scale 

of 0 to 3 in terms of intensity experienced by the participant and their total score is rated as 

indicating either no, mild, moderate or severe depression (Beck, Steer, & Garbin, 1988).  

 Symptom Assessment-45 (SA-45). The SA-45 is a 45 item brief psychological symptom 

checklist that provides an overall rating of psychiatric symptomatology as well as domain 

specific ratings of symptomatology, including anxiety, hostility, obsessive-compulsive, phobia 

anxiety, somatization, depression, interpersonal sensitivity, paranoid ideation, and psychoticism. 

Each of the items are rated on a Likert scale of 1 (not at all) to 5 (extremely). The psychometric 

properties of this measure have been provided elsewhere (e.g., Davison, Bershadsky, 

Silversmith, Maruish, & Kane, 1997) but has been supported in several clinical and research 

environments. Norms for this measure are derived from a database of 18,000 subjects based on 

both nonpatient community samples and inpatient psychiatric samples (Davison et al., 1997; 

Maruish, 1999).  

Emotional Arousal Induction Manipulation: 

 Emotional arousal was manipulated by having participants view and rate pictures derived 

from the International Affective Picture System (IAPS; Lang et al., 2008). The pictures are 

approximately 10” x 8” in size and were presented on a 17” computer screen with a viewing 

distance of approximately 60 cm. 45 pictures were displayed for five seconds and participants 

were asked to rate each in terms of intensity, pleasantness, arousal, and empathy elicitation on a 

scale from 1 (minimal) to 9 (significant). The scenes in the pictures involved either 15 

emotionally-neutral, 15 unpleasant, or 15 pleasant stimuli (as ranked by IAPS ratings based on 
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normative data, Lang et al., 2005; Libkuman et al., 2007; Mikels et al., 2005; and pilot data in 

our lab, Baker & Good, 2014) including pictures of persons, animals, and inanimate objects. 

Procedure 

 Participant testing was completed individually by one of three researchers (one female, 

two male). Each had direct training in the administration of both the neuropsychological 

measures and the electrophysiological measures. This study was part of a collaborative project 

examining emotion and cognition, whereby sessions lasted approximately 150 minutes in 

duration. Only the procedure pertinent to this study will be described below. Brock University 

students and individuals from the community (recruited from clinical practices in Niagara) were 

recruited to participate in this study. With the exception of those individuals who have sustained 

a moderate TBI, subjects were not explicitly recruited as a function of having a history of head 

injury as a means to prevent against diagnosis threat (Suhr & Gunstad, 2002; 2005)3. 

Participants were interviewed via telephone and answered screening questions regarding their 

history of medication use, sleep patterns, age, level of education and gender. Participants were 

excluded if they were shift workers or taking steroid-based inhalers, each of which have been 

shown to have an impact on measures of salivary cortisol. If deemed appropriate for the study, 

participants were provided with a salivary sampling kit and instructions on when and how to 

conduct their samples prior to arriving at the test session.  

 On the test day, and after completing a written informed consent, participants were asked 

for their home-based salivary-samples and then instructed (and assisted as needed) on how to 

administer the physiological activity recording equipment in order to collect heart rate, 

electrodermal activation (EDA) and respiratory rates. The researcher then evaluated the 
                                                
3 Diagnosis threat is defined as the impact that negative expectations about performance given 
being labeled with a particular diagnosis may have on cognitive performance (Suhr & Gundstad 
2002).  
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equipment to ensure it was working correctly, and completed a three-minute initial testing 

measure, delineating time epochs for later comparison. Subjects were then asked to produce a 

salivary sample.  

 Participants were then asked to complete a series of neuropsychological tasks including 

word reading (WRAT-4) and Matrix Reasoning (WAIS-IV), after which measures of 

physiological arousal (i.e., EDA, respiration, and Pulse) and a salivary sample were taken again. 

Participants were randomly assigned to either the pre-exposure (i.e., completion of the imagery 

ratings, followed by the IGT) or the post-exposure (i.e., completion of the IGT, followed by 

completion of imagery ratings) arousal manipulation condition. Participants completed the 

emotional arousal manipulation by viewing, and subsequently rating, 45 images taken from the 

IAPS. The images were displayed for 5 seconds followed by a request to rate each on its 

intensity, pleasantness, arousal, and empathy elicitation on a scale from 1 (minimal) to 9 

(significant). Physiological recordings of arousal were taken throughout. Following the 

manipulation, another three minute measure of physiological arousal and a salivary sample was 

taken.  

 Participants were provided with a set of paper and pencil questionnaires (i.e., BDI, SA-

45, and Everyday Living Demographics) to complete and, then, debriefed about the nature of the 

study. All participants received either research participation credits or money as an honorarium 

for their time.  

Statistical Analyses: 

Hypothesis I (Underarousal): A one-way analysis of variance (ANOVA) was 

conducted on each of the dependent variables (EDA, salivary cortisol) to test whether initial 

testing arousal varies as a function of injury severity (moderate TBI, MHI, no MHI). Post-hoc 
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analyses of least significant difference (LSD; equal-variances assumed) and Dunnett’s C (equal-

variances not assumed) were also conducted in order to investigate group differences. It was 

expected that individuals with no history of head injury would have the highest physiological 

arousal, followed by those reporting a MHI and, less so, those with moderate TBI. In addition, a 

severity index variable was developed to examine the spectrum of injury severity based on 

symptom indicators (i.e., loss of consciousness, post-traumatic amnesia, post-concussive 

symptoms, number of previous injuries, etc.) and a Pearson-r correlation conducted. It was 

expected that an inverse linear relationship would exist, whereby as injury severity increases, 

physiological arousal will decrease.  

Hypothesis II (IGT performance): To test whether IGT performance varied as a 

function of injury severity, a ratio of disadvantageous to advantageous selections was calculated 

(Disadvantageous decks [Deck A + Deck B] – Advantageous decks [Deck C + Deck D]) for each 

of the last 50 trials in 10 trial-blocks, and was examined across time (i.e., the last 50 trials were 

examined in order to permit sufficient selection from, and familiarity with, each of the four 

decks). Thus, a 3 × 5 (Head Injury Status [non-MHI, MHI, moderate TBI] × Trials [trials 51-60, 

trials 61-70, trials 71-80, trials 81-90, trials 91-100] mixed analysis of variance (ANOVA) was 

conducted on the ratio of the decks. Lastly, a 3 × 2 (Head Injury Status [non-MHI, MHI, 

moderate TBI] × Decision Type [Advantageous, Disadvantageous] mixed ANOVA was 

conducted on the number of trials between selecting from a deck that was punished and returning 

to that very same deck. Post-hoc analyses of least significant difference (LSD; equal-variances 

assumed) and Dunnett’s C (equal-variances not assumed) were conducted on the main effect of 

injury severity in order to locate group differences. It was expected that those with no history of 

injury would have the highest ratio of advantageous to disadvantageous selections and the 
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longest return rate (i.e., increased number of trials) between being punished by a selection and 

returning to this same deck, followed by those with MHI and those with a moderate TBI.  

Hypothesis III (Explicit Knowledge & IGT): Hypothesis three is that participants, 

regardless of head injury status, would endorse a preference for disadvantageous selections/risky 

decks, a 3 × 4 (Head injury Status [non-MHI, MHI, moderate TBI] × Deck Type [deck A, deck 

B, deck C, deck D]) mixed ANOVA was conducted. In addition to this, Pearson-r correlations 

were conducted between a participant’s rating of preference for each of the four decks and the 

frequency of selections made. It was expected that there would be an effect of deck type, whereby 

participants endorse a greater preference for disadvantageous decks (A & B) and, further, that 

there would not be any relationship (linear or otherwise) between preference and behaviour.  

Hypothesis IV (Manipulating Arousal): To test whether the emotionally-evocative 

imagery acts as an arousal manipulation, each of the physiological measures (EDA, pulse, 

salivary cortisol) and the IGT performance was compared across groups (i.e., those subjects who 

completed the imagery analysis prior to IGT testing and those who completed the imagery 

analysis post-IGT testing – a between-subject variable) and across head injury status (also a 

between-subject variable). Thus, a 3 (Head Injury Status [non-MHI, MHI, moderate TBI]) x 2 

(Arousal Manipulation [pre-exposure, post-exposure]) mixed ANOVA for each of the 

physiological measures was completed, as well as a 3 × 5 × 2 (Head Injury Status [non-MHI, 

MHI, moderate TBI] × IGT Performance on the last set of 50 Trials [trials 51-60, trials 61-70, 

trials 71-80, trials 81-90, trials 91-100] × Arousal Manipulation status [pre-exposure, post-

exposure]) mixed ANOVA. Further, a 3 × 2 × 2 (Head Injury Status [non-MHI, MHI, moderate 

TBI] × Deck Type [Advantageous, Disadvantageous] × [pre-arousal measures, post-arousal 

measures]) mixed ANOVA was completed on the number of trials between a selection from a 
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deck that was punished and returning to that very same deck as a function of head injury status 

and arousal manipulation. Post-hoc analyses of least significant difference (LSD; equal-variances 

assumed) and Dunnett’s C (equal-variances not assumed) were conducted on the main effects to 

investigate group differences. It was anticipated that a main effect of the emotional arousal 

manipulation would be observed in all three tasks, with physiological arousal increasing, and 

IGT performance improving (e.g., greater selection from advantageous decks) following the 

arousal induction and that performance for the head injury groups would improvement 

particularly, whereas for the non-injured group, performance will decrease.  

Hypothesis V (IGT and Depression). IGT performance for those who have sustained an 

injury will predict self-reported depressive symptomatology (as measured on the BDI and SA-

45). To test this, a simultaneous linear regression was conducted entering the ratio of 

disadvantageous-to-advantageous and head injury status on the first step and then the above 

variables as well as the interaction variables on the second step. It is expected that the second 

step of the model will account for variability over and above that of just IGT performance alone, 

suggesting a moderation effect of head injury status. In addition, Pearson-r correlations were 

conducted between the rate of return to a deck selection following punishment and a participant’s 

depression scores. It was anticipated that decision-making performance would only predict 

depression scores for those with a history of head injury. Lastly, a simultaneous linear regression 

was conducted entering the rate of return to a deck selection following punishment and head 

injury status on the first step and then the above variables as well as the interaction variables on 

the second step. It is expected that the second step of the model will account for variability over 

and above that of just rate of return alone, suggesting a moderation effect of head injury status. 

Results 
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Neuropsychological measures were taken to ensure participants did not differ on 

estimates of (1) academic achievement and general intellectual functioning, as measured by 

Word Reading Subtest (WRAT-4; Figure 1), (2) reasoning capacity and abstract thought, as 

measured by Matrix Reasoning (WAIS-IV; Figure 2), and (3) capacity to correctly identify 

emotional expressions, as measured by affect recognition (Advanced Clinical Solutions 

Supplement to WAIS-IV and WMS-IV; Figure 3). No differences were observed for word 

reading (F (2, 83) = 2.25, p = .11, ns), matrix reasoning (F (2, 82) = 1.58, p = .212, ns), or affect 

recognition (F (2, 83) = 1.35, p = .266, ns), indicating no group differences in reasoning 

capacity, abstract thought or affect recognition as a function of head injury status. In summary, 

there were no differences in academic achievement and general intellectual functioning.  

 

Figure 1: Performance on Word Reading subtest from the Wide Range Achievement Test-
4th Ed (WRAT-4) as a function of head injury status.  

 
Figure 2: Performance on Matrix Reasoning from the Wechsler Adult Intelligence Scale-IV 
[WAIS-IV] as a function of head injury status 
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Figure 3: Performance on Social Perception, subtest Faces (Affect Naming) from the 
Advanced Clinical Solutions Supplement to WAIS-IV and WMS-IV as a function of head 
injury status 
 

To measure self-reported psychiatric symptomatology (i.e., anxiety, depression, 

obsessive-compulsive features, phobias, thought disorders, etc.), participants completed the SA-

45. Table 3 depicts the means and standard deviations for the nine different subscales as well as 

the global severity index. There were no differences observed as a function head injury status 

(Table 3). Neither were there any differences in the Beck’s Depression score, or the number, or 

severity, of life stressors (Table 4) demonstrating that the groups did not differ on psychiatric 

symptomatology or amount of life stress. Post-concussive symptomatology was also assessed 

using the Post-Concussive Syndrome Checklist (Table 5). Participants only differed in the 

number of headaches (trend) reported and their experience of judgment difficulties. Post-hoc 

analyses indicated that those with a moderate TBI reported greater severity for both of these 

symptoms compared to MHI and no-MHI, but the latter two groups did not differ from one 

another. This suggests that with respect to post-concussive symptomatology, these groups only 

differ on two of the ten most commonly reported symptoms following injury.  

 

 

 

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

No-MHI MHI Moderate TBI 

Av
er
ag
e	
  
N
um

be
r	
  
of
	
  

Co
rr
ec
t	
  I
te
m
s	
  



 

 

53 

Table 3: 

Descriptive statistics (means [standard deviations]) of the subscales of the SA-45 as a function 
of head injury status with inferential statistics (one way ANOVAs for each subscale) 
 
SA-45 Control 

 
MHI 

 
Moderate TBI  

 
p value 

Anxiety 8.12 (3.17) 8.71 (3.87) 8.54 (3.29) .75 

Depression 10.30 (4.34) 10.19 (4.65) 10.45 (4.57) .98 

Hostility 6.65 (3.28) 7.06 (2.12) 6.27 (1.90) .67 

Interpersonal 
Sensitivity  
 

10.18 (4.80) 10.65 (4.96) 9.36 (4.43) .74 

Obsessive 
Compulsive 
 

11.37 (4.29) 11.78 (3.25) 11.18 (3.92) .87 

Paranoid 
ideations 
 

9.02 (3.97) 9.22 (4.63) 8.09 (3.36) .74 

Phobic Anxiety 6.60 (2.44) 6.625 (2.62) 7.36 (3.93) .70 

Psychoticism 6.48 (2.21) 6.68 (2.68) 6.36 (3.01) .91 

Somatization 8.90 (3.51) 8.22 (2.52) 7.18 (2.56) .23 

Global Severity 
Index 
 

77.65 (26.06) 79.15 (25.38) 74.81 (25.37) .89 

Note: One-way ANOVAs were conducted to test whether symptoms differed as a function of 
head injury status.  
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Table 4: 

Descriptive statistics (means [standard deviations]) of symptoms from the Life Stressors Scale 
and Beck’s Depression Score as a function of head injury status with inferential statistics (one 
way ANOVAs) 
 
Life Stressors 
Scale 

Control 
 

MHI 
 

Moderate TBI  
 

p value 

Frequency 2.84 (2.02) 3.06 (1.88) 3.00 (1.32) .88 

Total Score 101.49 (80.33) 108.25 (74.13) 118.89 (49.12) .80 

Beck’s 
Depression 
Inventory  
Total Score 

10.49 (8.71) 8.62 (6.99) 8.90 (6.86) .57 

 

Table 5: 

Descriptive statistics (means [standard deviations]) of symptoms (frequency, intensity, duration 
[5 point likert scales] averaged) from the Post-Concussive Syndrome Checklist as a function of 
head injury status with inferential statistics (one way ANOVAs for each symptom) 
 
Post Concussive 
Symptom: 
 

Control 
 

MHI 
 

Moderate TBI  
 

p value 

Headache 2.72 (0.92) 2.52 (1.02) 3.37 (0.56) .06 

Dizziness 1.57 (0.78) 1.71 (0.78) 1.81 (1.04) .62 

Irritability 2.69 (0.84) 2.47 (1.05) 2.66 (1.06) .61 

Memory 
 

2.03 (1.03) 2.02 (0.95) 2.66 (1.11) .21 

Concentration 
Difficulties 
 

2.71 (0.85) 2.82 (0.97) 2.18 (1.16) .20 

Fatigue 
 

2.93 (1.05) 2.85 (1.10) 3.22 (0.8165) .65 

Visual 
Disturbances 
 

1.35 (0.66) 1.38 (0.86) 1.85 (1.15604) .24 

Sensitivity to 
Noises  
 

2.15 (0.88) 1.97 (1.09) 2.18 (1.00154) .71 
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Judgment 
Difficulties 
 

1.65 (0.85) 1.39 (0.60) 2.11 (0.84984) .04 

Anxiety 
 

2.26 (0.99) 2.58 (1.17) 2.37 (0.87312) .44 

 
Replication - Hypothesis I: Underarousal 

 Initial testing measures of physiological arousal were measured by EDA, pulse rate and 

salivary cortisol. Figure 4 illustrates the pattern of arousal for EDA amplitude across injury 

status. A main effect of injury status was obtained (F (2, 83) = 67.82, p < .001, ηp
2 = .62). 

Follow-up post-hoc LSD comparisons illustrated that the no-MHI participants had significantly 

higher EDA amplitude compared to the MHI and moderate TBI groups (p < .001). Further, while 

the means were in the expected direction (i.e., moderate TBI participants having the lowest 

average EDA amplitude), arousal did not differ between the two injury groups (p = .35, ns)4.  

The same pattern of results was obtained for pulse rate (bpm), illustrated in Figure 5 (i.e., 

main effect of injury severity - F (2, 82) = 5.56, p = .005, ηp
2 = .12). The no-MHI group 

produced significantly higher pulse rates compared to the MHI and moderate TBI groups (LSD 

post-hoc: p < .05), but MHI and moderate TBI were not found to differ (p = .36). Interestingly, 

the effect size for EDA amplitude as a function of injury status is considerably larger than for 

pulse rate.  

 

                                                
4 The head injury groups were not found to differ as a function of reported sleep schedule, 
duration of sleep or effectiveness of their sleep.  
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Figure 4. Initial testing physiological arousal (as measured by electrodermal activation 
[EDA]) depicted as a function of head injury status. 
 

Measures of salivary cortisol taken within the testing session did not produce a 

significant difference across the groups (see Figure 6). A trend was observed for the main effect 

of head injury status on salivary cortisol for both the overall effect (ANOVA - F (2, 80) = 2.33, p 

= .10, ηp
2 = .06)5 and the post-hoc analyses, whereby those with a moderate TBI illustrated the 

highest salivary cortisol levels, followed by MHI, and non-MHI (non-MHI differed from MHI 

and moderate TBI p < .10, but the injured groups did not differ from one another p = .56).  

 

Figure 5. Initial testing physiological arousal (as measured by pulse rate) depicted as a 
function of head injury status. 
                                                
5 Degrees of freedom are lower in this analysis as two participants with moderate TBI were 
tested after salivary cortisol assays were performed; one further participant’s results were not 
usable due to contamination.  
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Figure 6. Initial testing physiological arousal (as measured by salivary cortisol 
concentrations) depicted as a function of head injury status. 
 
 A composite variable was calculated only for participants who reported previous injury 

by adding each factor related to injury severity (i.e., symptoms lasting more than 20 minutes [no 

= 0, yes = 1], loss of consciousness [no = 0, yes = 1], duration of LOC [less than 5 minutes = 1, 

less than 30 minutes = 2, less than 24 hours = 3, less than 1 week = 4, less than 1 month = 5, 

greater than 1 month = 6], whether a concussion was diagnosed [no = 0, yes = 1], stitches were 

required [no = 0, yes = 1], medical treatment was sought [no = 0, yes = 1], whether admission to 

the hospital occurred [no = 0, yes = 1], and whether there were multiple injuries [no = 0, yes = 

1]. Scores could range from 0 to 25 (multiple injuries and endorsement of all items). Figure 7 

illustrates a scatter plot of EDA amplitude depicted as a function of injury severity.  
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Figure 7. Initial testing physiological arousal (as measured by electrodermal activation 
[EDA]) depicted as a function of injury severity for each of the head injury groups 
 

Table 6 outlines all of the correlations between injury severity and initial testing 

physiological measures. As observed in Figure 7, significant linear relationships were observed 

between injury severity and initial testing physiological arousal6 as measured by both EDA 

amplitude and pulse rate and demonstrating graduated decreases in arousal across head injury 

groups (from no-MHI to MHI followed by moderate TBI). EDA and pulse rate were also 

correlated, both showing similar arousal activation. EDA and pulse rate collectively accounted 

for 41.4% of the variability of injury severity (F (2, 83) = 29.30, p < .001). Moreover, a similar 

significant linear relationship was obtained for injury severity and PCS. As injury severity 

increases, so does the reporting of symptoms related to concussion. This is the case, despite the 

fact that none of the MHI subjects are ‘complicated’ (i.e., they do not report or complain of 

experiencing any persisting symptoms spontaneously). Interestingly, PCS was not significantly 

correlated with the physiological arousal measures of EDA and pulse rate (Figure 8).  

                                                
6 Linear relationships account for 41%, 10% and 12% of the variance for initial testing 
physiological arousal EDA, pulse and PCS, respectively. 
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Table 6: 

Correlation matrix depicting the relationships between measures of injury severity (i.e., 
composite injury severity) and initial testing physiological arousal (EDA, Pulse, Salivary 
Cortisol) 
 
Variables Injury 

Severity 
 

PCS EDA Pulse Cortisol 

Injury Severity 
 

- .34* -.64* -.32* .08 

PCS Severity - - -.15 .02 .05 

Initial testing 
EDA Amplitude 
 

- - - .37* -.17 

Initial testing 
Pulse Frequency 
 

- - - - .03 

Note: PCS and physiological correlations is completed with both injured and non-injured 
samples (results are the same when analyzed apart); bold and * reflects statistical significance (p 
< .05) 
 

 

Figure 8. Initial testing physiological arousal (as measured by electrodermal activation 
[EDA]) depicted as a function of post-concussive symptoms (PCS) severity and head injury 
status. 
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 Anticipatory arousal prior to making selections on the IGT and during feedback of 

selections was also assessed. Figure 9 depicts a summary of recordings taken at initial testing, 

just prior to task introduction, as well as in anticipation of making a card selection (averaged 

over the 8 seconds preceding each trial), and in response to reward and punishment feedback of a 

selection (averaged over the 4 seconds following a selection) across injury groups. A mixed 

model 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 4 (Arousal Measure [deck A, deck 

B, deck C, deck D]) ANOVA revealed a significant main effect of arousal condition (FG-G (1.81, 

74.22) = 38.33, p < .001, ηp
2 = .48) and head injury status (F (2, 41) = 37.94, p < .001, ηp

2 = .65), 

as well as a significant interaction (FG-G (3.62, 74.22) = 22.05, p < .001, ηp
2 = .52)7.  

 

Figure 9: Physiological arousal measured at initial testing/prior to task and in anticipation 
of, and in response (reward and punishment) to, selections made on the Iowa Gambling 
Task.  
 
                                                
7 Sphericity could not be assumed, as Mauchly’s W was significant. As a result, a Greenhouse-
Geisser correction of degrees of freedom was made. 
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 Follow-up one-way ANOVAs were conducted to explore the effects of the interaction. 

For the pre-task recording, an effect of injury status was observed (F (2, 41) = 32.31, p < .001, 

ηp
2 = .61). Post-hoc analyses illustrate that no-MHI differs from MHI and the moderate TBI 

groups respectively (p < .001), but the two injured groups do not differ (p = .25). Similarly, a 

main effect of injury status was found for anticipatory arousal (F (2, 41) = 19.66, p < .001, ηp
2 = 

.49), whereby, again, no-MHI differs from MHI and the moderate TBI groups (p < .001), but the 

injury groups did not differ from one another (p = .27). Conversely, there were no main effects 

for reward (F (2, 41) = .57, p = .57, ns) or punishment feedback (F (2, 41) = .41, p = .67, ns). 

These results support the prediction that differences in initial physiological arousal would persist 

into anticipatory physiological arousal prior to making selections on the IGT, but no differences 

in response to feedback would be observed.  

 Lastly, a 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 5 (Trial Blocks [trials 

51-60, trials 61-70, trials 71-80, trials 81-90, trials 91-100]) × 2 (Arousal Manipulation status 

[pre-exposure, post-exposure]) mixed model ANOVA was conducted for each of the four decks 

of cards8. Starting with Deck A (Disadvantageous deck; Figure 10; Table 7 – see appendix A), a 

main effect of head injury status, trial blocks, and an interaction between head injury and trial 

blocks was observed. Follow-up analyses revealed that head injury status was not statistically 

significant, albeit a trend, for trials 51 to 60 (F (2, 40) = 2.57, p = .09), but was significantly 

different for trials 61 to 70 (F (2, 39) = 4.24, p = .02), 71 to 80 (F (2, 39) = 8.65, p = .001), 81 to 

                                                
8 This ANOVA includes the arousal manipulation pertinent to hypothesis 4, but also 
encompasses information for hypothesis one (anticipatory arousal for the group of participants 
who did not experience manipulation). This was done to conserve the number of statistical 
analyses done and keep type I error as low as possible. 
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90 (F (2, 40) = 5.86, p = .006), and 91 to 100 (F (2, 40) = 12.13, p < .001)9. Post-hoc analyses 

for these ANOVAs illustrated the same pattern for all five blocks of 10 trials, whereby no-MHI 

differed significantly from MHI and moderate TBI (p < .05), but these injured groups did not 

differ from one another (p > .05). To determine if anticipatory arousal varied across trials, three 

repeated measures ANOVAs were conducted on each of the three groups (no-MHI, MHI and 

moderate TBI), illustrating that arousal increased significantly as the trials progressed only for 

the no-MHI group (FG-G (2.29, 38.99) = 4.67, p = .01, ηp
2 = .22), but not for the MHI (FG-G (2.29, 

38.09) = 1.36, p = .27, ns) or moderate groups (FG-G (1.30, 5.21) = 1.10, p = .37, ns)10. There was 

no effect of the Arousal Manipulation. In summary, the no-MHI illustrate a pattern of 

anticipatory physiological arousal measured by EDA that differs significantly (i.e., larger) from 

injured participants and this anticipatory arousal increases as the number of trials experienced 

increases for Deck A items.  

 

                                                
9 Varying degrees of freedom occurs for these analyses as not all participants selected from a 
particular deck during a 10-trial block. 
10 Paired samples t-tests revealed that trials 51-60 differed from the rest of the last 40 trials and 
trials 61-70 differed (albeit as a trend) in the same pattern. 
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Figure 10: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck A on the Iowa Gambling Task across 
10 trial blocks as a function of head injury status.  
 
 
 Similar to Deck A, a significant main effect for head injury status and for trial blocks was 

found for Deck B (disadvantageous deck; Figure 11; Table 8 – see appendix A), but there was no 

significant interaction. Follow-up analyses revealed that head injury status was statistically 

significant for trial blocks 61 to 70 (F (2, 40) = 3.34, p = .045) and 81 to 90 (F (2, 40) = 5.46, p = 

.008), but not the remaining three blocks (i.e., 51 to 60 (F (2, 41) = 1.26, p = .29, ns), 71 to 80 (F 

(2, 39) = .76, p = .47, ns), 91 to 100 (F (2, 39) = .84, p = .44, ns))11. Post-hoc analyses for trial 

block 61 to 70 illustrated that no-MHI significantly differed from the moderate TBI group (p < 

.05), but the MHI group did not differ from either of the other two (p < .05). For trial block 81 to 

90, however, the no-MHI group differed significantly from both the MHI and moderate TBI 

groups (p < .05), but the injured groups did not differ from one another (p > .05).  

                                                
11 Varying degrees of freedom occurs for these analyses as not all participants selected from a 
particular deck during a 10-trial block. 
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To explore the interaction of head injury status and trial blocks, three repeated measures 

ANOVAs were conducted, finding that, as a trend, arousal increased as the trials progressed for 

the no-MHI (FG-G (2.45, 41.70) = 2.00, p = .10, ηp
2 = .11; trend), and MHI (FG-G (1.81, 30.84) = 

3.14, p = .06, ηp
2 = .16; trend) groups, but not for the moderate group (F (4, 5.12) = .43, p = .79, 

ns). In summary, the no-MHI and MHI groups illustrate a pattern of anticipatory physiological 

arousal measured by EDA that is greater than that of the moderate TBI group and this 

anticipatory arousal increases as the number of trials increases for Deck B. 

 
Figure 11: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck B on the Iowa Gambling Task across 
10 trial blocks as a function of head injury status.  
 
 For Deck C (advantageous deck; Figure 12), a significant main effect of head injury 

status and an interaction between head injury and trial blocks was found for anticipatory arousal 

(Table 9 – see appendix A). Follow-up analyses revealed that head injury status was statistically 

significant for trial blocks 51 to 60 (F (2, 41) = 3.76, p = .032), 61 to 70 (F (2, 40) = 4.06, p = 
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.025), 71 to 80 (F (2, 41) = 2.64, p = .083, trend), and 91 to 100 (F (2, 41) = 44.11, p < .001) 12. 

Trial blocks 81 to 90 were not found to be significant (F (2, 41) = 1.49, p = .24, ns)13. Post-hoc 

analyses for all of these trial blocks illustrated the same pattern, no-MHI significantly differed 

from the MHI and moderate TBI group (p < .05), but the two injury groups were not found to 

differ (p > .05).  

To explore the main effect of trial blocks, three repeated measures ANOVAs were 

conducted and, in contrast to the results for the previous two Decks (A and B), none of the 

groups differed as the trials progressed (no-MHI [FG-G (1.19, 22.56) = 1.64, p = .22, ns), MHI 

(FG-G (1.80, 28.82) = 0.30, p = .72, ns) and moderate groups (FG-G (1, 6.10) = 2.00, p = .21, ns) 

respectively. In summary, the no-MHI group illustrates a pattern of anticipatory physiological 

arousal that is greater than that of MHI and the moderate TBI groups, and this relationship 

remains relatively constant across the trials for Deck C.  

 

                                                
12 Varying degrees of freedom occurs for these analyses as not all participants selected from a 
particular deck during a 10-trial block. 
13 Block trials 81 to 90 have a large standard deviation of 2.15, so despite having the highest 
mean this is being influenced by a select number of participants and as a result is not statistically 
significant. 
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Figure 12: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck C on the Iowa Gambling Task across 
10 trial blocks as a function of head injury status.  
 
 
 For Deck D (advantageous deck; Figure 13), a significant main effect of head injury 

status and an interaction between head injury and trial blocks was found for anticipatory arousal 

(Table 10 – see appendix A). Follow-up ANOVAs revealed that head injury status differed for 

trial blocks 51 to 60 (F (2, 41) = 2.28, p = .12; trend), 81 to 90 (F (2, 40) = 3.93, p = .03), and 91 

to 100 (F (2, 40) = 3.63, p = .04)14, but not trial blocks 61 to 70 (F (2, 41) = .68, p = .51, ns), and 

71 to 80 (F (2, 41) = 1.77, p = .18, ns). Post-hoc analyses for trial blocks 51 to 60 and 91 to 100 

revealed that no-MHI differed from MHI (p < .05), but not the moderate TBI group. For trial 

blocks 81 to 90, the previously reported pattern emerged; no-MHI was found to have greater 

anticipatory physiological arousal than the MHI and moderate TBI groups (p < .05), but the two 

injury groups did not differ from one another (p > .05).  

                                                
14 Varying degrees of freedom occurs for these analyses as not all participants selected from a 
particular deck during a 10-trial block. 
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To explore the interaction between head injury status and trial blocks on anticipatory 

arousal, three repeated measures ANOVAs were conducted and, similar to the results found for 

Decks A and B, it was found that no-MHI had a pattern of steadily increasing arousal as the trials 

progressed (FG-G (2.52, 47.67) = 8.42, p < .001, ηp
2 = .31). No changes across block trials were 

observed for the MHI (FG-G (1.51, 25.70) = 1.42, p = .24, ns) or the moderate TBI groups (FG-G 

(4, 16) = 1.03, p = .42, ns). In summary, the no-MHI illustrate a pattern of anticipatory 

physiological arousal that is higher than that of MHI and the moderate TBI groups, but this 

relationship increases with increasing trial blocks.  

 
Figure 13: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck D on the Iowa Gambling Task across 
10 trial blocks as a function of head injury status.  
 
 
 Thus, it was hypothesized that physiological arousal at initial testing (measured by EDA, 

pulse and cortisol) and in anticipation of making a selection on the IGT (measured by EDA) 

would vary as a function of injury status, with individuals who have a moderate/ TBI presenting 

with the least arousal; and those reporting a MHI will have lower arousal as compared to those 
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without a history of MHI. Conversely, no difference would be observed in physiological arousal 

in response to feedback on the IGT. Lastly, it was predicted that initial testing arousal would 

vary as a function of injury severity indictors. It was found that initial testing arousal (as 

measured by EDA and pulse) did differ as a function of injury status, whereby no-MHI had 

greater initial arousal than those with injuries, but the injury groups did not differ significantly, 

(albeit, descriptively, the average performance was in the predicted direction - MHI had greater 

arousal than the moderate TBI group). Measures of salivary cortisol taken during testing were 

found to produce a significant trend in the opposite direction, with the moderate TBI group 

having the greatest levels, followed by the MHI and non-MHI, respectively. 

 The hypothesis was further supported by a significant linear relationship between initial 

testing arousal (as measured by EDA and pulse) and injury severity. Lastly, a pattern of 

underarousal was observed for the MHI and the moderate TBI group relative to the no-MHI 

group in anticipation of making a selection, although the two injury groups did not differ. This 

pattern was maintained across the four decks of cards, as illustrated for the last 50 trials of 

testing. For three out of the four decks of cards (A, B and D), a pattern was obtained showing 

that the no-MHI group’s heightened anticipatory arousal increased as trials progressed, whereas 

the other two injury groups produced minimal changes in arousal (with the exception that the 

MHI group did have increasing arousal as trials progressed for Deck B). For Deck C, the main 

effect of injury status was observed as well, but this relationship did not increase with the 

progression of trials. Lastly, no differences in the subjects’ physiological response to feedback 

was observed across the groups.  

Replication - Hypothesis II: IGT Performance  

It was predicted that IGT performance would vary as a function of injury status, whereby 
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persons with moderate TBI would be slower at transitioning from disadvantageous selections to 

advantageous selections, than individuals who report mild head injuries who, in turn, will be 

slower to transition than non-injured participants. Figure 14 depicts the ratio of advantageous (C 

and D) to disadvantageous (A and B) selections across 10 trial blocks. A 3 (head injury status 

[no-MHI, MHI, Moderate TBI]) × 5 (Trial Blocks [trials 51-60, trials 61-70, trials 71-80, trials 

81-90, trials 91-100]) × 2 (Arousal Manipulation status [pre-exposure, post-exposure]) mixed 

model ANOVA was conducted to examine the whether learning rates on the IGT varied on the 

last 50 trials as a function of head injury status (Table 11 – see appendix A)15. A significant main 

effect of head injury status and an interaction between head injury status and trial blocks was 

observed  (Table 11).  

To explore the main effect of head injury status and interaction between head injury 

status and trial blocks, follow-up ANOVAs were conducted on each of the five trial blocks, 

finding that trials 51 to 60 (F (2, 41) = 5.99, p = .005) and 91 to 100 (F (2, 41) = 5.02, p = .011) 

differed significantly. A pattern similar to that found for anticipatory physiological arousal was 

observed, whereby no-MHI illustrated a higher rate of advantageous-to-disadvantageous 

selections relative to those with a MHI and a moderate TBI (p < .05). The injured groups were 

not found to differ from one another (p > .05). Moreover, three repeated measures ANOVAs 

were conducted to evaluate the interaction between head injury status and trials blocks. A trend 

for the main effect was observed for the no-MHI group only as the trials progressed (F (4, 76) = 

2.01, p = .10, ηp
2 = .10; trend); no differences were observed for the two other groups (MHI: F 

(4, 68) = .33, p = .86, ns; moderate TBI: F (4, 20) = .21, p = .93, ns)). For the no-MHI group, the 

                                                
15 This ANOVA includes the arousal manipulation pertinent to hypothesis 4, but also 
encompasses information for hypothesis two (IGT performance for those who did not experience 
the arousal manipulation). This was done to conserve the number of statistical analyses done and 
keep type I error as low as possible 
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ratio of advantageous-to-disadvantageous selections during trials 51 to 60 was higher than that 

found for trials 61 to 70; and the ratios for trials 61 to 70 and 71 to 80 were significantly lower 

than that of trials 91 to 100 (p < .05). Thus, as predicted, no-MHI participants selected more 

advantageous selections (relative to disadvantageous) as compared to the MHI and moderate TBI 

groups, but this occurs only at two peaks (trials 51 to 60 and 91 to 100). The prediction that the 

two injury groups would differ was not supported by the results16. Lastly, as predicted, no-MHI 

participants illustrated a greater transition from disadvantageous selections to advantageous 

selections, however it was not observed to be consistent (i.e., there was no difference among 

groups from trials 61 to 90) and it was non-linear in nature17.  

Figure 15 depicts the relationship between overall T-scores18 on the IGT at the 

completion of all 100 trials and measures of injury severity for each of the groups with head 

injury. A linear relationship was observed (r = -.22, p = .03) illustrating that IGT performance 

decreases as injury severity increases, demonstrating that one is less likely to do well on 

measures of decision-making when injuries are more severe19.    

                                                
16 Repeated measures ANOVAS were conducted across all 10 trial blocks for each of the groups 
(i.e., no-MHI, MHI, moderate TBI), finding that main effects of increased selections on 
advantageous (relative to disadvantageous) decisions were observed for no-MHI (F (9, 171) = 
5.08, p < .001, ηp

2 = .21) and MHI (F (9, 153) = 1.93, p = .05, ηp
2 = .10), but not for the 

moderate TBI group (F (9, 45) =.24, p = .99, ns) 
17 Trials 41 to 50 were tested to see if they differed significantly as a function of head injury 
status; a trend was observed (F (4, 41) = 2.37, p = .10, trend), with no-MHI differing from the 
moderate TBI group only (p < .05) in post-hoc tests. 
18 T-scores (i.e., converted normative values such that they have a mean of 50 and a standard 
deviation of 10) reflect overall performance across all 100 trials on the IGT and are based on 
norms derived by Bechara (2007).  
19 The same pattern of results is observed for post-concussive symptoms (PCS). 
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Figure 14: Ratio of advantageous (C + D) to disadvantageous (A + B) selections on the Iowa 
Gambling Task (IGT) as a function of head injury status across 10 trial blocks  

 
 
Figure 15. Overall T-Score on Iowa Gambling Task at task completion depicted as a 
function of injury severity and head injury status 

 
Lastly, it was predicted that the rate of return to a punishing (disadvantageous) selection 

would be faster (i.e., fewer trials in between returning to a selection following being punished by 

that selection previously) as a function of injury severity (i.e., individuals with moderate TBI, 

followed by those reporting a MHI and lastly non-injured healthy subjects). Figure 16 depicts the 

-­‐3	
  

-­‐2	
  

-­‐1	
  

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

T1-­‐10	
   T11-­‐20	
   T21-­‐30	
   T31-­‐40	
   T41-­‐50	
   T51-­‐60	
   T61-­‐70	
   T71-­‐80	
   T81-­‐90	
   T91-­‐100	
  

Ra
ti
o	
  
of
	
  A
dv
an
ta
ge
ou
s	
  
(C
	
  +
	
  D
)	
  t
o	
  

D
is
ad
va
nt
ag
eo
us
	
  (A
+B
)	
  S
el
ec
ti
on
s	
  

No-­‐MHI	
  

MHI	
  

Moderate	
  TBI	
  

R²	
  =	
  0.04566	
  

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

80	
  

90	
  

100	
  

0	
   2	
   4	
   6	
   8	
   10	
   12	
   14	
   16	
  

O
ve
ra
ll	
  
T-­‐
Sc
or
e	
  

Injury	
  Severity	
  

No-­‐MHI	
  
MHI	
  
Moderate	
  TBI	
  



 

 

72 

number of selections taken following a punishment before returning to that same deck (averaged 

as a function of disadvantageous [A and B] and advantageous [C and D] selections). A 3 (head 

injury status [no-MHI, MHI, Moderate TBI]) × 2 (deck type [disadvantageous, advantageous]) × 

2 (Arousal Manipulation status [pre-exposure, post-exposure]) mixed model ANOVA for rate of 

return produced a significant main effect of head injury status, deck type, and an interaction 

between head injury status and deck type (Table 12 – see appendix A)20. Follow-up ANOVAs 

indicated that the return rate for disadvantageous selections (F (2, 40) = 5.82, p = .006), but not 

advantageous selections, differed (F (2, 41) = .52, p = .52, ns) as a function of head injury status. 

As observed relatively consistently for physiological arousal and IGT performance, post-hoc 

analyses illustrate that for the disadvantageous rate of return, no-MHI was found to significantly 

differ from the MHI and moderate TBI groups (p < .05), but the two injury groups were not 

found to differ from one another (p > .05).  

To investigate the interaction between deck type and head injury status, paired samples t-

tests were conducted for all three injury groups, revealing that the rate of return was significantly 

slower for disadvantageous selections (i.e., more intervening trials before selecting from the 

punishing deck on a subsequent trial) for the no-MHI (t (18) = 3.22, p < .005 CI [1.75, 8.31]), 

but not the MHI (t (18) = 3.22, p = .005 CI [1.75, 8.31]) or moderate TBI (t (17) = .406, p = .69 

CI [1.21, 1.78]) groups. Both the MHI and moderate TBI groups illustrate a faster rate of return 

to a deck that was previously punishing compared to the no-MHI group, whereas no differences 

were obtained for advantageous selections. Lastly, figure 17 depicts a linear relationship between 

rate of return to a selection following a punishing trial on the IGT and measures of injury 

                                                
20 Two non-MHI participants were removed from this analysis as their return rates following 
punishment were extreme outliers (5+ standard deviations away from the mean; scores of 72 and 
74). The results of this ANOVA did not change as a result of removal of these outliers.  
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severity for each of the groups with head injury (r = -.29, p = .007). More specifically, as 

participant’s injury severity increases, how quickly (i.e., number of trials) they return to a 

previous selection following being punished by that selection in the past decreases.  

 

Figure 16. Number of ‘other deck’ selections made following a punishment before 
returning to the punishing deck (grouped by disadvantageous [A and B] and advantageous 
[C and D] decks) as a function of head injury status  
 

 
Figure 17. The relationship between the number of ‘other deck’ selections made following a 
punishment before returning to the punishing deck (grouped by disadvantageous [A and B] 
and advantageous [C and D] decks) as a function of injury severity, grouped by head 
injury status  
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In summary, as predicted, moderate TBI and MHI were found to have slower rate of 

transitioning from disadvantageous selections to advantageous selections and faster rates of 

returning following punishment from a disadvantageous selection (relative to an advantageous 

selection). However, for both of these findings, there were no observed differences between the 

injured groups. An unexpected finding for the moderate TBI group was that that they did not 

display any variations in their decision-making pattern (i.e., the ratio of advantageous to 

disadvantageous selections did not change across the 100 trials). Lastly, indices of decision-

making changed as a function of injury severity, whereby increasing injury severity was 

associated with decreasing performance.   

Injury Severity and Linking Physiological Arousal and Decision-making 

 As cited above, injury severity was found to be predictive of physiological arousal and 

decision-making performance. It was also found that the relationships between physiological 

arousal measured by EDA and decision-making performance were found to be significant 

(Figures 18 and 19), specifically for IGT T-scores (r = .24, p = 0.03) and the rate of return to a 

deck that was previously punishing (r = .33, p = .002). Both of these findings illustrate that as 

participants’ physiological arousal increases, their decision-making performance improves and 

their rate of return to a previously punishing decision decreases (i.e., increased time spent 

selecting from other decks following punishment), indicating a greater response/sensitivity to the 

consequences of previous selections. Furthermore, in both figures, a graduated change to good 

decisions is observed across injury groups, illustrating the continuum of head injury severity.  
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Figure 18. The relationship between overall T-Score on Iowa Gambling Task at task 
completion depicted as a function of physiological arousal (as measured by EDA) and head 
injury status 
 

 

Figure 19. The relationship between the number of ‘other deck’ selections made following a 
punishment before returning to the punishing deck (grouped by disadvantageous [A and B] 
and advantageous [C and D] decks) as a function of physiological arousal (measured by 
EDA), grouped by head injury status  
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To further investigate this further, a post-hoc meditational analysis was conducted to 

determine whether physiological arousal mediated the relationship between injury severity and 

decision-making performance. Two mediation analyses were conducted to explore the nature of 

the relationship between injury severity with IGT overall T-score and rate of return to a 

previously punishing decision. A mediation relationship was not found for physiological arousal 

between injury severity and overall IGT T-score. However, complete mediation was found for 

injury severity and rate of return to a previously punishing decision by physiological arousal 

(Figure 20). When injury severity and physiological arousal measured by EDA were regressed 

on rate of return, physiological arousal continued to be predictive of decision-making 

(accounting for 3.7% of variability; pathway b in Figure 20), whereas injury severity ceased to 

be predictive (pathway c’ in Figure 20). This implies that the mechanism by which injury 

severity predicts decision-making performance occurs through changes to physiological arousal.  

 

Figure 20: A mediation relationship between injury severity and the number of ‘other 
deck’ selections made following a punishment before returning to the punishing deck for 
disadvantageous selections by physiological arousal as measured by EDA 
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Replication - Hypothesis III: Explicit Knowledge & IGT 

 The overall number of selections made from each of the four decks of cards for each of 

the three groups is depicted in Figure 2121. This figure can be compared to the overall ratings of 

preference for each of the Decks in Figure 21. A 3 (head injury status [no-MHI, MHI, Moderate 

TBI]) × 4 (deck [deck A, deck B, deck C, deck D]) × 2 (Arousal Manipulation status [pre-

exposure, post-exposure]) mixed model ANOVA assessing overall explicit deck preference 

(following completion of the IGT) revealed a significant main effect of deck, head injury status 

(trend), and an interaction between deck and head injury status (Table 13 – see appendix A). 

Follow-up analyses demonstrated that only Decks C (F (2, 41) = 5.29, p = .009) and D (F (2, 41) 

= 3.05, p = .06, trend) varied as a function of injury status (i.e., Decks A - F (2, 41) = .73, p = 

.49, ns; and B - F (2, 41) = 1.70, p = .20, ns, did not). Post-hoc analysis revealed that the 

moderate TBI group preferred Deck C (advantageous deck) less than the MHI group and no-

MHI groups and preferred Deck D (advantageous deck) less than the MHI group.  

 To explore the interaction between head injury status and type of deck with respect to 

participants’ ratings of preference for each of the four decks, four repeated measures ANOVAs 

were conducted (Figure 22). The no-MHI (F (2.17, 41.27) = 9.86, p < .001, ηp
2 = .34) and MHI 

(F (2.23, 76) = 6.61, p = .003, ηp
2 = .28) groups produced significantly different ratings for their 

preferences of the decks, whereas the moderate TBI group did not (F (3, 15) = 1.93, p = .21, ns). 

Post-hoc analyses illustrated that advantageous decks (A and B) differed from disadvantageous 

decks (C and D; p < .05), but they did not differ from one another (i.e., A and B did not differ 

from each other, nor did C and D). Thus, for all three groups, their preferences of the decks did 

match their behaviour. No-MHI and MHI groups illustrated a transition from disadvantageous to 

                                                
21 No main effect of head injury status or interactions. The only differences observed was that 
Deck A was selected significantly less than the other decks.  
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advantageous decks and reported a preference for advantageous selections, whereas moderate 

TBI did not differentiate between decks according to their trial selections which was also 

reflected by their ratings of explicit preference. These findings were not supportive of the 

hypothesis. 

 
Figure 21: Number of selections as a function of each of the four decks of cards on the Iowa 
Gambling task and head injury status 
 

 

Figure 22: Explicit knowledge measured by preference rating (-10 = worst, 10 = best) for 
each deck on the Iowa Gambling Task as a function of head injury status 
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Whereas the ratings of preference of IGT decks at the end of the task mimicked the 

participant’s behavioural data, explicit predictions of expected earnings for each deck (as 

calculated by Maia & McClelland, 2004) illustrated a different pattern of results (Figure 23; 

Table 14 – see appendix A). A 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 4 (deck 

[deck A, deck B, deck C, deck D]) × 2 (Arousal Manipulation status [pre-exposure, post-

exposure]) mixed model ANOVA was conducted produced a significant main effect of type of 

deck, but no effect of head injury status or interactions. As follow up, paired sampled t-tests were 

conducted to examine if the decks differed from one another. It was found that Decks A and B 

differed from C and D (A relative to C: t (19) = 2.47, p = .02 CI [44.31, 532.99]; A relative D: t 

(19) = 2.27, p = .04 CI [35.22, 874.28]; B relative to C: t (19) = 1.72, p = .10 CI [-68.52, 697.42], 

trend; B relative to D: t (18) = 2.28, p = .04 CI [38.60, 922.50]). Participants estimated they 

would win more money for disadvantageous decks (A and B), relative to advantageous decks (C 

and D), despite both no-MHI and MHI groups producing a transition from disadvantageous to 

advantageous when actually making trial-to-trial selections. This contrasting behaviour (explicit 

monetary predictions in favour of Decks A and B post-IGT, but performance selections during 

the IGT showing a bias moving away from Decks A and B and towards behavioural choices in 

favour of Decks C and D – in the case of no-MHI and MHI, and no differential trial-to-trial bias 

at all in the case of the moderate TBI group) supports the prediction that there would be a 

dissociation between what participants know about the decks of cards at the end of the task and 

how they behave.  
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Figure 23: Explicit knowledge as reflected by extrapolated total earnings (based on 100 
trials per deck) calculated using Maia & McClelland’s (2004) question set (i.e., estimates 
amount and frequency of wins and losses over 10 trials) as a function of head injury status 
 

Lastly, it was predicted that there would be no linear relationship between participant’s 

knowledge (i.e., preference and expected earnings) and their behaviour. Table 15 illustrates the 

relationships between preference and expected earnings, and total selections of each of the four 

decks of cards on the IGT, as a function of head injury status. For the no-MHI group, a 

significant positive linear relationship was found between preference ratings for Decks C and D 

and their respective total number of trial-to-trial selections, whereby higher ratings of preference 

was associated with a higher number of selections. For the MHI group, positive linear 

relationships were observed between preferences for Decks B and D and their respective number 

of selections. No relationships were observed for moderate TBI preference. There were no 

relationships found between the predicted expected earnings for each deck and the frequency at 

which they selected that deck (Table 15).  
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Table 15 

Correlation matrix depicting the relationships between measures of explicit knowledge (i.e., 
preference of decks and estimated earnings had they chosen a deck for all 100 trials) as a 
function of head injury status 
 
Explicit Knowledge 
Measure 

Total Selections 
of Deck A 

Total Selections 
of Deck B 

Total Selections 
of Deck C 

 

Total Selections 
of Deck D 

Preference  Deck A Deck B Deck C Deck D 

 No-MHI .06 .22 .38* .37* 

 MHI .03 .43* -.12 .31* 

 Moderate TBI 
 

-.47 .14 -.18 -.30 

Estimated Winnings 
of each Deck (per 
100 trials) 
 

Deck A Deck B Deck C Deck D 

 No-MHI -.01 -.05 .00 -.14 

 MHI -.09 .12 -.25 -.12 

 Moderate TBI 
 

.28 .08 -.02 .01 

Note: Bolded and * reflects statistical significance (p < .05) 

In summary, it was found that, regardless of their head injury status, participants’ 

preferences of the decks did match their behaviour and some linear relationships were observed 

between preference and frequency of deck selection (predominately for advantageous decks). As 

a result, the prediction regarding preference as not supported. However, it was also found, as 

expected, that participants overestimated their earnings for the disadvantageous decks (A and B) 

relative to the advantageous decks (C and D), despite both no-MHI and MHI groups illustrating a 

transition from disadvantageous to advantageous deck selections. Lastly, there was no observed 

relationship between expected earnings and frequency of selections on the IGT. This supports the 
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hypothesis that there may be a dissociation between the participant’s explicit knowledge 

regarding preference and expected earnings and the participant’s implicit behaviour for both no-

MHI, and injured, groups.  

Replication - Hypothesis IV: Manipulating Arousal 

It was predicted that emotionally-evocative imagery (i.e., arousal manipulation) will 

produce a corresponding increase in physiological arousal (i.e., as reflected by increases in EDA 

and pulse). Moreover, it was predicted that increases in arousal will benefit the decision-making 

performance on the IGT for those reporting a head injury (across the injury severity continuum) 

in two ways: by decreasing the number of trials required for transitioning from high risk to low 

risk choices; and by increasing the number of trials before returning to high risk decision 

following punishment feedback. Lastly, it was predicted that persons who do not report a history 

of MHI may be disadvantaged by increased arousal, should their levels of arousal introduce 

distress. 

Figure 24 represents physiological arousal as measured by electrodermal activation 

measured at six times during the testing session, including before and after the arousal 

manipulation. A 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 6 (Time [initial testing, 

recording 2, pre-manipulation, post-manipulation, recording 5, end of testing session]) mixed 

model ANOVA for EDA as a function of head injury status was conducted, and produced a 

significant main effect for head injury status, time and an interaction between head injury status 

and time (trend; Table 16 – see appendix A). Post-hoc analyses reveal that, similar to previously 

discussed arousal data, the no-MHI group had significantly greater arousal than the MHI and 

moderate TBI groups (p < .001), but the two injury groups did not differ from one another.  

Follow-up repeated measures ANOVAs examined the interaction between head injury 
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status and time, for each of the head injury groups, and demonstrated that arousal changed as a 

function of time for each (no-MHI: F G-G (1.57, 64.22) = 3932.18, p < .001, ηp
2 = .99; MHI: F G-G 

(2.02, 62.49) = 4597.72, p < .001, ηp
2 = .99; moderate TBI: F G-G (1.69, 16.88) = 1112.02, p < 

.001, ηp
2 = .99). Post-hoc analyses of this illustrates that post-manipulation measures of arousal 

(the recording that takes place immediately following the arousal manipulation) are significantly 

higher than initial testing measures, recording 2, pre-manipulation and the end of the testing 

session for all injury groups (p < .05). However, for the no-MHI group, no differences were 

found between pre-manipulation and post-manipulation (p = .51), whereas for the injury groups, 

the subjects returned to initial testing measures by recording 5 (p < .05). The manipulation of 

arousal by emotionally evocative stimuli lasted longer for the no-MHI participants relative to the 

injury groups (thus the injury groups returned to initial testing levels [i.e., underarousal] more 

quickly). As a result, an increase in physiological arousal was observed, as measured by EDA, 

for all groups in response to the emotionally evocative stimuli, but these changes to arousal were 

short-lived for injury groups, relative to the no-MHI group. Furthermore, the no-MHI group 

differed from injured groups, having greater EDA and this was maintained at all time epochs. 

The two injury groups did not differ (but the descriptive means continued to be in the expected 

direction, i.e., MHI > moderate TBI).  
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Figure 24: Measures of physiological arousal (electrodermal activation [EDA]) across six 
measurements taken throughout the testing session as a function head injury status.  
 

A similar pattern of results is observed for pulse rate (Figure 25) across three collection 

points (i.e., initial testing, just after the arousal manipulation, and at the end of the testing 

session). A 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 3 (Time [initial testing, post-

manipulation, end of testing session]) mixed model ANOVA for measures of pulse rate (BPM) 

was conducted, producing significant main effects of head injury status and time, with no 

interaction (Table 17 – see appendix A). Similar to EDA, the no-MHI group was found to have 

higher pulse rates relative to the MHI and moderate TBI groups (p < .05), whereas the injury 

groups were not different from one another (p > .05). Follow-up analyses revealed that pulse 

differed at initial testing (F (2, 83) = 5.56, p = .005) and at the end of the session (F (2, 82) = 
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3932.18, p = .13, trend). Post-hoc analyses illustrate for both the initial testing and the end of the 

testing session measures, the no-MHI group had higher arousal than both MHI and moderate TBI 

groups (p < .05), who were not different. No differences were observed in post-hoc analysis for 

the arousal manipulation.  

 Follow-up analyses of the main effect for time revealed that each time period differed 

from one another. More specifically, initial testing pulse rate was found to be higher than post-

manipulation measures (t (84) = 12.13, p < .001 CI [5.12, 7.13]) and end of session measures (t 

(84) = 3.03, p = .003 CI [.52, 2.52]); post-arousal manipulation was significantly higher than the 

end of session measure (t (84) = 8.92, p < .001 CI [3.58, 5.64]). In summary, the results parallel 

the results obtained with measures of EDA, demonstrating that the injury groups are 

underaroused relative to the no-MHI group, but all are responsive to the arousal manipulation, 

supporting the predicted results.  

 

Figure 25: Measures of physiological arousal (Pulse) across three measurements taken 
throughout the testing session as a function head injury status.  
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3 (head injury status [no-MHI, MHI, Moderate TBI]) × 3 (Time [initial testing, post-

manipulation, end of testing session]) mixed model ANOVA for measures of salivary cortisol 

was conducted and revealed a significant main effect of head injury status (trend), time, and 

interaction between head injury status and time (trend; Table 18 – see appendix A). Follow-up 

one-way ANOVAs for each of the measurement times illustrated that the salivary cortisol 

measures differed as a function of head injury status for initial testing (F (2, 80) = 2.33, p = .10, 

trend) and post-manipulation (F (2, 81) = 2.03, p = .14, trend), but not at the end of session (F (2, 

80) = .15, p = .86). Post-hoc analyses illustrated that the no-MHI group had lower salivary 

cortisol than the MHI group and moderate TBI group (p < .05), but the two head injury groups 

did not differ. Moreover, it was found that all groups, regardless of head injury status, had 

significantly lowering salivary cortisol as time progressed (no-MHI: F G-G (1.58, 64.85) = 17.77, 

p < .001, ηp
2 = .30; MHI: F G-G (1.14, 34.11) = 13.10, p = .001, ηp

2 = .30; moderate TBI: F (2, 16) 

= 13.71, p < .001, ηp
2 = .63) with each time session differing from one another significantly (p < 

.05). This more rapid decline in cortisol may reflect the quickened return-to-initial testing arousal 

levels and reduced stress/arousal pattern post stress-manipulation observed in other studies (e.g., 

Baker & Good, 2014) for persons with head injuries relative to a matched control cohort.  
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Figure 26: Measures of physiological arousal (salivary cortisol) across three measurements 
taken throughout the testing session as a function head injury status.  
 
 It was predicted that measures of physiological arousal (i.e., EDA) would increase during 

the IGT task for those exposed to the arousal manipulation relative to those who had not been 

exposed to the manipulation prior to completing the IGT. Figures 27, 28 and 29 depict measures 

of EDA just prior to the task, in anticipation of making selections on the IGT and in response to 

feedback (positive and negative) on the IGT as function of the arousal manipulation for the no-

MHI, MHI and moderate TBI groups. As observed in these figures, a 3 (head injury status [no-

MHI, MHI, Moderate TBI]) × 4 (Arousal Type [prior to task, anticipation, positive feedback, 

negative feedback]) × 2 (Arousal Manipulation status [pre-exposure, post-exposure]) mixed 

model ANOVA for measures of EDA during the Iowa Gambling Task (IGT) as a function of 

head injury status and arousal manipulation illustrated no main effects or interactions for the 

arousal manipulation (Table 19 – see appendix A)22. The arousal manipulation did not have an 

effect on measures of EDA. 

   

                                                
22 Other effects in Table 14 are discussed in hypothesis 2 
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Figure 27: Physiological arousal measured prior to the task and in anticipation of, and in 
response (reward and punishment) to, selections made on the Iowa Gambling Task as a 
function of the arousal manipulation for no-MHI participants 

 

Figure 28: Physiological arousal measured prior to the task and in anticipation of, and in 
response (reward and punishment) to, selections made on the Iowa Gambling Task as a 
function of the arousal manipulation for MHI participants 

 

Figure 29: Physiological arousal measured prior to the task and in anticipation of, and in 
response (reward and punishment) to, selections made on the Iowa Gambling Task as a 
function of the arousal manipulation for moderate TBI participants 
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Similar to gross measures of overall anticipation presented in Figures 27 through 29, no 

significant differences were observed when examining anticipatory arousal prior to making 

selections on the IGT for Decks A (no-MHI: Figure 30, MHI: Figure 31, moderate TBI: Figure 

32; Table 7 – see appendix A), B (no-MHI: Figure 33, MHI: Figure 34, moderate TBI: Figure 

35; Table 8 – see appendix A), C (no-MHI: Figure 36, MHI: Figure 37, moderate TBI: Figure 

38; Table 9 – see appendix A) and D (no-MHI: Figure 39, MHI: Figure 40, moderate TBI: 

Figure 41; Table 10 – see appendix A) as a function of the arousal manipulation. Again, this 

shows that while anticipatory arousal differs as a function of head injury status, it was not found 

to increase with the arousal manipulation and, thus, did not support the prediction that 

emotionally-evocative stimuli would increase anticipatory physiological arousal.  

 

Figure 30: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck A on the Iowa Gambling Task across 
10 trial blocks as a function of the arousal manipulation for no-MHI participants.  
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Figure 31: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck A on the Iowa Gambling Task across 
10 trial blocks as a function of the arousal manipulation for MHI participants.  

 

Figure 32: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck A on the Iowa Gambling Task across 
10 trial blocks as a function of the arousal manipulation for moderate TBI participants.  
 

 

Figure 33: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck B on the Iowa Gambling Task across 
10 trial blocks as a function of the arousal manipulation for no-MHI participants.  
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Figure 34: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck B on the Iowa Gambling Task across 
10 trial blocks as a function of the arousal manipulation for MHI participants.  

 

Figure 35: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck B on the Iowa Gambling Task across 
10 trial blocks as a function of the arousal manipulation for moderate TBI participants.  

 

Figure 36: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck C on the Iowa Gambling Task across 
10 trial blocks as a function of the arousal manipulation for no-MHI participants.  
 

R²	
  =	
  0.62031	
  
R²	
  =	
  0.60022	
  

0	
  

0.5	
  

1	
  

1.5	
  

2	
  

T1-­‐10	
   T11-­‐20	
   T21-­‐30	
   T31-­‐40	
   T41-­‐50	
   T51-­‐60	
   T61-­‐70	
   T71-­‐80	
   T81-­‐90	
   T91-­‐100	
  

Av
er

ag
e 

E
D

A
 A

m
pl

itu
de

 
MHI:	
  Deck	
  B	
   Pre-­‐Arousal	
  

Post-­‐Arousal	
  
Expon.	
  (Pre-­‐Arousal)	
  
Expon.	
  (Post-­‐Arousal)	
  

R²	
  =	
  0.46909	
  
R²	
  =	
  0.0003	
  

0	
  

0.5	
  

1	
  

1.5	
  

2	
  

T1-­‐10	
   T11-­‐20	
   T21-­‐30	
   T31-­‐40	
   T41-­‐50	
   T51-­‐60	
   T61-­‐70	
   T71-­‐80	
   T81-­‐90	
   T91-­‐100	
  

Av
er

ag
e 

E
D

A
 A

m
pl

itu
de

 

Moderate	
  TBI:	
  Deck	
  B	
   Pre-­‐Arousal	
  
Post-­‐Arousal	
  
Expon.	
  (Pre-­‐Arousal)	
  
Expon.	
  (Post-­‐Arousal)	
  

R²	
  =	
  0.65747	
  

R²	
  =	
  0.86746	
  

0	
  

0.5	
  

1	
  

1.5	
  

2	
  

T1-­‐10	
   T11-­‐20	
   T21-­‐30	
   T31-­‐40	
   T41-­‐50	
   T51-­‐60	
   T61-­‐70	
   T71-­‐80	
   T81-­‐90	
   T91-­‐100	
  

Av
er

ag
e 

E
D

A
 A

m
pl

itu
de

 No-­‐MHI:	
  Deck	
  C	
  Pre-­‐Arousal	
  
Post-­‐Arousal	
  
Expon.	
  (Pre-­‐Arousal)	
  
Expon.	
  (Post-­‐Arousal)	
  



 

 

92 

 

Figure 37: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck C on the Iowa Gambling Task across 
10 trial blocks as a function of the arousal manipulation for MHI participants.  

 

Figure 38: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck C on the Iowa Gambling Task across 
10 trial blocks as a function of the arousal manipulation for moderate TBI participants.  
 

 

Figure 39: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck D on the Iowa Gambling Task across 
10 trial blocks as a function of the arousal manipulation for no-MHI participants.  
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Figure 40: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck D on the Iowa Gambling Task across 
10 trial blocks as a function of the arousal manipulation for MHI participants.  
 

 

Figure 41: Average anticipatory physiological arousal (as measured by electrodermal 
activation [EDA]) prior to making selections for Deck D on the Iowa Gambling Task across 
10 trial blocks as a function of the arousal manipulation for moderate TBI participants.  
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was predicted that persons who do not report a history of MHI may be disadvantaged by 
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manipulation for no-MHI, MHI and moderate TBI respectively. It was found that the arousal 

manipulation did not affect the ratio of selections on the IGT (Table 11 – see appendix A). In 

summary, there were no observable improvements in decision-making as measured by a ratio of 

advantageous to disadvantageous selections for the injury groups as a result of the arousal 

manipulation.  

 
Figure 42: Ratio of advantageous (C + D) to disadvantageous (A + B) selections on the Iowa 
Gambling Task (IGT) as a function of the arousal manipulation status across 10 trial 
blocks for no-MHI participants 
 
 

 
Figure 43: Ratio of advantageous (C + D) to disadvantageous (A + B) selections on the Iowa 
Gambling Task (IGT) as a function of the arousal manipulation status across 10 trial 
blocks for MHI participants 
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Figure 44: Ratio of advantageous (C + D) to disadvantageous (A + B) selections on the Iowa 
Gambling Task (IGT) as a function of the arousal manipulation status across 10 trial 
blocks for moderate TBI participants 
 

 Finally, as observed in Figures 45, 46 and 47, and in Table 12, there was no main effect 

or interaction with the arousal manipulation. Emotionally evocative stimuli did not have an 

improvement on decision-making as measured by number of trials before returning to high-risk 

selections following punishment feedback.  

 

Figure 45. Number of selections taken following a punishment before returning to that 
deck (averaged into disadvantageous [A and B] and advantageous [C and D] selections) as 
a function of the arousal manipulation for no-MHI participants  
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Figure 46. Number of selections taken following a punishment before returning to that 
deck (averaged into disadvantageous [A and B] and advantageous [C and D] selections) as 
a function of the arousal manipulation for MHI participants  
 

 

Figure 47. Number of selections taken following a punishment before returning to that 
deck (averaged into disadvantageous [A and B] and advantageous [C and D] selections) as 
a function of the arousal manipulation for moderate TBI participants  
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not persist for injury groups, whereas it did for the no-MHI group. However, there were no other 

improvements in decision-making performance as a result of the arousal manipulation. Overall, 

this hypothesis was not supported.  
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Exploratory - Hypothesis V: IGT and Depression 

Figures 48 and 49 illustrate self-reported depressive symptomatology as a function of 

head injury status using the SA-45 and Beck’s Depression Inventory. One-way ANOVAs were 

conducted and no group differences for head injury status were observed on the SA-45 (F (3, 83) 

= .02 p = .98) or the BDI (F (2, 83) = .56 p = .58). As a result, depression symptoms do not vary 

with head injury status. 

A linear regression was conducted to examine whether head injury status and the ratio of 

advantageous-to-disadvantageous selections on the last five 10-trial blocks would predict self-

reported measures of depression as measured by the SA-45 and whether this effect was 

moderated by head injury status. Hierarchal regression demonstrated that head injury status and 

the last five 10-trial blocks accounted for 7.6% of the variance in self-reported depressive 

symptomatology on the SA-45, however the model was not significant (F (6, 79) = 1.08 p = .38). 

When the interaction variables were included on the second step (with the previous variables), 

the model accounted for 20.3% of the variance. This accounted for 12.7% more variable in the 

first model (F (5, 84) = 2.25, p = .03). Table 20 depicts β values, tests of significance and semi-

partial correlations. Simple slopes analysis revealed that this relationship was only present for the 

MHI group, whereby decreasing performance was associated with increasing depression scores. 

This relationship was not observed for the no-MHI or the moderate TBI group.  
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Figure 48. Average self-reported depressive symptomatology ratings as measured by the 
SA-45 as a function of head injury status 
 

 
Figure 49. Average self-reported depressive symptomatology ratings as measured by the 
Beck’s Depression Inventory as a function of head injury status 
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Table 20: 

Results from hierarchical linear regression model predicting self-reported depressive 
symptomatology as measured on the SA-45 
 
 Step 1 Step 2 

Predictors β t p part β t p part 

Head injury 
(centered) 

-.09 -.81 .42 -.09 -0.18 -1.45 0.15 -0.15 

Net Ratio – 
Trials 51 to 60 
(Centered)  

.04 .36 .72 .04 0.18 1.40 0.16 0.15 

Net Ratio – 
Trials 61 to 70 
(Centered) 

-.05 .39 .70 .04 0.05 0.44 0.66 0.05 

Net Ratio – 
Trials 71 to 80 
(Centered) 

-.13 -.99 .33 .11 -0.23 -1.62 0.11 -0.17 

Net Ratio – 
Trials 81 to 90 
(Centered) 

.24 1.83 .07 .20 0.31 2.35 0.02 0.25 

Net Ratio – 
Trials 91 to 100 
(Centered) 
 

-.26 -2.15 .03 -.23 -0.36 -2.81 0.01 -0.30 

Head Injury × 
Net Ratio – 
Trials 51 to 60  

    0.29 2.39 0.02 0.25 

Head Injury × 
Net Ratio – 
Trials 61 to 70  

    0.15 0.94 0.24 0.12 

Head Injury × 
Net Ratio – 
Trials 71 to 80  

    -0.27 -1.20 0.12 -0.16 

Head Injury × 
Net Ratio – 
Trials 81 to 90  

    -0.01 -0.08 0.94 -0.01 

Head Injury × 
Net Ratio – 
Trials 91 to 100  

    -0.20 -1.32 0.19 -0.14 
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 Pearson-r correlations were conducted, indicating that the number of selections 

participants made prior to returning to disadvantageous decks after punishment was predictive of 

their self-reported depressive symptomatology only for the MHI group (r  = -.38, p  = .035), but 

not for either the moderate TBI group (r  = -.33, p  = .33) or no-MHI (r  = .15, p  = .36) groups 

(Figures 50 and 51). No relationships were observed between the number of selections 

participants made prior to returning to advantageous decks following punishment and self-

reported depressive symptomatology (No-MHI: r  = -.04, p  = .81, MHI: r  = -.18, p  = .32, 

moderate TBI: r  = .24, p  = .48; Figures 52 and 53). A linear regression was conducted to 

examine whether head injury status and the rate of return following a punishing selection would 

predict depression scores and whether this effect was moderated by head injury status. Hierarchal 

regression demonstrated that head injury status and rate of return following a punishing selection 

accounted for 0.2% of the variance in self-reported depression, however the model was not 

significant (F (2, 81) = 0.83 p = .92). When the interaction variables were included on the second 

step (with the above variables), the model accounted for 4.4% of the variance. This accounted for 

4.2% more variable in the first model (F (1, 80) = 3.84, p = .05). As observed, with IGT 

performance, simple slopes analysis revealed that this relationship was only present for the MHI 

group, whereby decreasing rate of return following punishment (i.e., less trials in between a 

punishment and returning to that same deck) was associated with increasing depression scores. 

This relationship was not observed for the no-MHI or the moderate TBI group. 
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Figure 50. Scatter plot depicting the relationships between self-reported depressive 
symptomatology on the SA-45 with frequency selecting from disadvantageous decks before 
returning to a deck after being punished for MHI and Moderate TBI groups 

  
Figure 51. Scatter plot depicting the relationships between self-reported depressive 
symptomatology on the SA-45 with frequency selecting from disadvantageous decks before 
returning to a deck after being punished for the no-MHI group 
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Figure 52. Scatter plot depicting the relationships between self-reported depressive 
symptomatology on the SA-45 with frequency selecting from advantageous decks before 
returning to a deck after being punished for MHI and Moderate TBI groups 
 

 
Figure 53. Scatter plot depicting the relationships between self-reported depressive 
symptomatology on the SA-45 with frequency selecting from advantageous decks before 
returning to a deck after being punished for the no-MHI group 
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 In summary, the results illustrate that IGT performance on the last five blocks of 10-trials 

was predictive of self-reported depressive symptomatology and MHI status was found to be 

moderator of this relationship. Secondly, rate of return to a disadvantageous selection following 

punishment was predictive of depressive symptomatology for the MHI group only.  

Supplementary Analyses: 

 To further explore the relationship between IGT performance and depressive 

symptomatology, participants were assigned to one of two groups based on self-reported 

depressive symptomatology intensity (i.e., lower versus higher depressive symptom severity). A 

median split procedure was conducted (no-MHI: Median = 9.00; MHI: Median = 8.50; Moderate 

TBI: Median = 11.00) and IGT performance was plotted as a function of depressive symptoms 

severity and head injury status (Figures 54, 55, and 56). A 3 (head injury status [no-MHI, MHI, 

Moderate TBI]) × 5 (Trial Blocks [trials 51-60, trials 61-70, trials 71-80, trials 81-90, trials 91-

100]) × 2 (Degree of Depression [low, high]) mixed model ANOVA for measures of the ratio of 

advantageous (C + D) to disadvantageous (A + B) selections on the IGT was conducted (Table 

21 – see appendix A). A significant main effect of head injury was observed, in addition to an 

interaction between trial blocks and depressive symptoms severity.  

 Post-hoc analyses were completed. As noted previously, the no-MHI group illustrated a 

greater ratio of advantageous-to-disadvantageous selections relative to MHI and moderate TBI, 

but no differences were observed between injury groups. To explore the interaction between trial 

blocks and depressive symptoms severity, two repeated measures ANOVAs were conducted, and 

showed that those with lower depression improved their performance as trials progressed (F (4, 

164) = 3.56, p = .008, ηp
2 = .08; Figure 57), whereas for individuals reporting higher depression 

(F  (4, 164) = .77, p = .55, ns; Figure 58) no such relationship was obtained. Interestingly, no 
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differences were observed between those reporting lower and higher depression for the no-MHI 

group.  

 
 
Figure 54: Ratio of advantageous (C + D) to disadvantageous (A + B) selections on the Iowa 
Gambling Task (IGT) across 10 trial blocks as a function of higher and lower depression 
symptomatology for no-MHI participants 

 
Figure 55: Ratio of advantageous (C + D) to disadvantageous (A + B) selections on the Iowa 
Gambling Task (IGT) across 10 trial blocks as a function of higher and lower depression 
symptomatology for MHI participants 
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Figure 56: Ratio of advantageous (C + D) to disadvantageous (A + B) selections on the Iowa 
Gambling Task (IGT) across 10 trial blocks as a function of higher and lower depression 
symptomatology for moderate TBI participants 
 

 
 
Figure 57: Ratio of advantageous (C + D) to disadvantageous (A + B) selections on the Iowa 
Gambling Task (IGT) across 10 trial blocks as a function of head injury status for 
participants reporting lower depressive symptomatology 
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Figure 58: Ratio of advantageous (C + D) to disadvantageous (A + B) selections on the Iowa 
Gambling Task (IGT) across 10 trial blocks as a function of head injury status for 
participants reporting higher depressive symptomatology 
 

Lastly, initial testing physiological arousal was found to correlate with self-reported 

affective (measured by SA-45) and somatic (measured by BDI) depression scores for the MHI 
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23 Affective and somatic depression scores were derived from summing items 1, 2, 3, 27 and 42, 
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 Figure 59. Scatter plot depicting the relationships between self-reported affective (SA-45) 
and somatic (BDI) depressive symptomatology with initial testing physiological arousal as 
measured by EDA for the MHI group 
 

 

Figure 60. Scatter plot depicting the relationships between self-reported affective (SA-45) 
and somatic (BDI) depressive symptomatology with initial testing physiological arousal as 
measured by EDA for the no-MHI group 
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Figure 61. Scatter plot depicting the relationships between self-reported affective (SA-45) 
and somatic (BDI) depressive symptomatology with initial testing physiological arousal as 
measured by EDA for the moderate TBI group 
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as a function of injury severity and provide greater insight regarding the role of physiological 

(under)arousal in persons who have experienced injuries to the head. Moreover, this study 

explored whether arousal-based therapeutic techniques for MHI/TBI populations may serve as a 

potential future therapeutic strategy. Lastly, this study attempts to highlight the potential role of 

functional and structural alterations to the OFC using indirect neuropsychological measures of 

decision-making and processing of emotionally-salient feedback, and to examine its impact on 

depressive symptomatology in individuals who have reported neural injuries.  

 Minimal research has been published investigating individuals who have sustained very 

mild injuries, using a liberal definition of MHI such that a loss of consciousness is not required. 

This study serves to map decision-making processes and physiological arousal across the injury 

severity continuum and illustrate that injury severity continues to be a major underlying factor 

contributing to persistence of neurocognitive and emotional sequelae following head injuries 

(Green & Iverson, 2001; Iverson, 2005; Ruff et al., 2009). Much of the literature has examined 

mild TBI by obtaining participants from head injury clinics, hospitals, and 

physician/psychologist’s private practices (Belanger et al., 2005), and the fact that these 

individuals are commonly involved in litigation or other legal precedings (that ultimately pertain 

to financial gains) may confound and/or exacerbate their performance is unfortunately cited as a 

rational to discount the persistence of their postinjury symptomatology (i.e., individuals are 

malingering for greater compensation; e.g., Green & Iverson, 2001; Iverson, Green & Rogers, 

1999; Slick, Iverson, & Green, 2000). An advantage of the present study is that the recruited 

subjects in this study had no knowledge that the study was investigating head injury per se. The 

University sample which makes up the non-injured and MHI cohorts were recruited from a post-

secondary education setting and to our knowledge, were not complaining of any 
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neuropsychological sequelae or involved in legal or compensation procedures. If persistent, 

albeit clinically insignificant, neurocognitive changes can be illustrated in the most mild forms of 

MHI, these finds can provide credence to the findings that those with more substantive injuries 

report persistence in post-concussive symptoms.  

Summary of Findings 

Underarousal.  

It was expected that individuals who have sustained head injuries would illustrate a pattern of 

physiological underarousal as a function of head injury severity (i.e., participants with moderate 

TBIs would illustrate a pattern of lowest arousal, followed by those with a MHI and lastly those 

without an injury). Physiological arousal was measured using several different indices, including 

EDA, pulse and salivary cortisol, measures of sympathetic activation and HPA chronic stress 

activity respectively (Lykken & Venables, 1971).  

As hypothesized, MHI and moderate TBI participants produced lower arousal prior to 

task EDA and pulse rates relative to non-injured participants, but the two injury groups were not 

shown to be statistically different from one another, despite mean values being in the expected 

direction, such that participants with moderate TBI had less physiological arousal than MHI 

subjects. It is possible that the moderate TBI participants reached a floor effect with respect to 

their EDA, and could not produce a significant difference relative to the MHI group, and the 

small number of subjects considerably limits the amount of power in this analysis. In general, the 

results support the hypothesis that individuals who sustain neural injury experience a pattern of 

dampened physiological arousal, a finding which is consistent with the literature implicating the 

OFC in sustaining subtle functional disruption following head injuries (Bigler & Orrison, 2001; 

Rolls, 2004; Wallis, 2007). The OFC receives extensive projections from all sensory modalities 
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(Carmichael & Price, 1995a; Rolls, 2004; Wallis, 2007) and has bidirectional projections with 

limbic structures (i.e., amygdala and hypothalamus) which serve to modulate autonomic arousal 

through afferent connections to the periaqueductal gray area, reticular formation and raphe 

nucleus, respectively (Barbas et al., 2003; Carmichael & Price, 1995b; Kadda et al., 1949). As a 

result, disruption to the OFC is likely to impair one’s capacity to regulate and modulate 

autonomic arousal in an optimal fashion based on an informed summation of environmental and 

cognitive inputs (Barbas et al., 2003; Bechara et al., 2000a; Bechara et al., 1996). This attenuated 

physiological arousal represents a possible dampening of “physiological preparedness” for one’s 

environment, leaving individuals who have sustained neural injury to be less vigilant with 

respect to their environmental situation and subsequently less capable in responding in optimal 

or proportional fashions (Bechara et al., 1996; 2000a; 2000b; Damasio, 1994). This is a finding 

that we have been able to replicate a number of times in our lab (Baker & Good, 2014; van 

Noordt & Good, 2011; van Noordt, Chiapettia, & Good, in press)24. 

In contrast, the measures of salivary cortisol produced a tendency for hypercortisolemia 

in the moderate TBI and MHI groups relative to their non-injury cohort. While this prediction of 

hypercortisolemia for this sample was exploratory in nature, the heightened result was not 

expected. Instead, it was hypothesized that the cortisol results would mimic other forms of 

underarousal as measured by EDA and pulse. Very little research has examined the impact head 

injury has on subtle pituitary functionality changes. There is, however, evidence that upwards of 

40% of individuals with moderate TBI injuries develop clinical syndromes indicative of pituitary 

challenges (i.e., diabetes incipidus, hypoprolactinemia, growth hormone deficiency, etc.; 

Bondanelli, Ambrosio, Zatelli, Marinis, Uberti, 2005). One study, conducted by Bay and 

                                                
24 This finding has been replicated in a number of unpublished data sets, including various 
projects within the Neuropsychology Cognitive Research Lab.  
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Sikorskii (2009), reported an increase of hypercortisolemia across a 12-hour period postinjury. 

However, this finding of hypercortisolemia is not entirely inconsistent with the underarousal 

hypothesis proposed for other measures of physiological arousal, given that it was not a baseline 

measure, but rather was collected during the testing session. In line with evidence demonstrating 

that individuals who have sustained neural injury and are underaroused (e.g., Bechara & Naqvi, 

2009; Ciaramelli, Muccioli, Ladavas, & di Pelligrino, 2007) their lack of “physiological 

preparedness” may frequently result in less anticipation or expectations (particularly for long-

term consequences), and thereby, greater surprise, and/or distress associated with new 

environments or situations (which is likely to happen more often for this group relative to non-

injured groups; e.g., Baker & Good, 2014). This greater perceived stress could then result in 

greater activation of the hypothalamus-pituitary-adrenal (HPA) axis, resulting in greater release 

of cortisol (e.g., Baker & Good, 2014). This is also potentially confounded with a greater HPA 

axis dysregulation or adrenial hypersensitivity following neural injury, with less capacity to “put 

the brakes” on stress responses and may not in fact reflect increases in subjective stress. These 

possibilities would be the basis for future studies (e.g., baseline cortisol would be expected to be 

low, then rise in reaction to introduced events, and given sufficient time to adjust to the 

environment, should drop again, and at a rate faster and lower than observed for non-injury 

participants)25. Further research is required to disentangle these possible explanations. 

As hypothesized, injury severity measured by a composite variable that puts injury 

severity on a continuum did predict physiological arousal (i.e., EDA and pulse); and a graduated 

impact on arousal was observed across injury groups; however, this was not observed for PCS. 

                                                
25 Unfortunately this cannot be tested in this dataset, as all participants eventually underwent an 
arousal manipulation. Despite this, the pattern of results observed here is all participants had 
decreasing salivary cortisol concentrations with time while the pattern of head injury status 
remained (moderate TBI > MHI > No-MHI).  
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Together, EDA and pulse predicted 41.4% of injury severity. This builds on growing body of 

literature illustrating that severity of injury is predictive of neurocognitive outcome (Dunning et 

al., 2004; Goldstein & Levin, 2001; van der Naalt, van Zomeren, Sluiter, & Minderhoud, 1999; 

Whyte et al., 2001), but now adds to this literature by extending the finding across the spectrum 

of TBI to mild uncomplicated head injury. This implies that indices of injury severity such as 

duration of altered state of consciousness and LOC, among other variables, are more informative 

and predictive of outcome than PCS. Interesting, it was found that injury severity was predictive 

of the amount of PCS reported by participants, with those having greater injuries also reporting 

more PCS. There is an emerging body of literature showing that PCS is not highly predictive of 

outcome (Hukkelhoeven et al., 2005; Ponsford, Draper, & Schoneberger, 2008; Posford et al., 

2011), as the symptomatology is highly common among the non-head injured population (Dean, 

O’Neill, & Sterr, 2012; van Reekum, 2013; Zakzanis, & Yeung, 2011), but is a useful proxy of 

recovery postinjury (King & Kirwilliam, 2011; Silver, 2014).  Interestingly, there is 

accumulating evidence that the relationship between injury severity and measures of emotional, 

behavioural, social, and cognitive capacity is more strongly predicted immediately postinjury, 

but as time progress, more variables, such as access to rehabilitative resources, degree of 

inclusion into social/occupational programs, comorbid psychiatric disorders and many other 

variables, are likely to become increasingly influential and moderate this relationship (e.g., 

Draper, Ponsford, & Schonberger, 2007; Ezrachi, Ben-Yisbay, Kay, Diller, & Rattok, 1991; 

Novack et al., 2001; Walker et al., 2010; Wood & Rutterford, 2006). As a result, injury severity 

becomes less predictive of functional outcome with time as other variables become influential. 

Given the average ‘time since injury’ for our subjects was 7.25 years, it is very likely that had 

participants undergone testing closer to their injury, more variability in outcome measures would 
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have been accounted for by injury severity.  

During the decision-making task (IGT), participants’ physiological arousal was measured 

three times - at initial testing, in anticipation of making selections (i.e., recording of 8-seconds 

prior to a selection) and in response to positive and negative feedback (i.e., recording 4-seconds 

after selection). It was predicted that the underaousal would persist during the anticipation of 

making a selection on the IGT, but no physiological differences would be found during the 

feedback (outcome result as a function of selection made – i.e., win/loss), such that participants 

with moderate TBIs would illustrate a pattern of lowest arousal, followed by those with a MHI 

and lastly those without an injury. This prediction was partially supported. The MHI and 

moderate TBI groups produced lower anticipatory arousal relative to control participants, 

however the injury groups did not differ from one another. The groups did not differ during 

feedback, regardless of whether it was following a reward or punishment trial. These results 

replicate the findings that were observed in our previous studies examining MHI and non-MHI 

university students (Robb & Good, 2011; 2012) and results obtained by van Noordt & Good 

(2011; van Noordt, Chiapettia, & Good, in press) in a similar university population. The present 

study extends these findings to the moderate TBI population.  

Studies in our lab have reproduced findings similar to what was found in the pivotal 

study conducted by Bechara and colleagues (1996) who originally illustrated patients with 

VMPFC lesions had reduced skin conductance responses (SCR) compared to controls in 

anticipation of making selections on the IGT. Bechara, Damasio and colleagues suggest that 

reduced indices of autonomic arousal in anticipation of making a decision reflect a neutrally-

based attenuation of physiological preparedness, which may, in turn, reflect the dampening of 

bioregulatory somatic markers that typically aid in the guiding behaviour in advantageous 
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fashions (Bechara et al., 1996; 2000a; 2000b; Damasio, 1994; 1996).  

To expand on Bechara’s original work, anticipatory physiological arousal was mapped 

across 10-trial blocks and as a function of each deck of cards on the IGT (Decks A through D) 

and head injury status. As predicted, those who had sustained injuries illustrated a consistent 

pattern of underarousal across the last 50 trials, with no differences observed between injury 

groups, whereas no-MHI illustrated increasing anticipatory arousal as trials progressed for all but 

one of the decks of cards (Deck C). For Deck B, the MHI group also demonstrated increasing 

arousal across trials, but remained proportionally less than that of the no-MHI group; the 

moderate TBI group continued to illustrate flattened EDA response. For Deck C, no group 

differences were observed, except at approximately the 40 to 50 trial mark, in which case the no-

MHI produced increasing anticipatory arousal and injured groups remaining consistently 

underaroused. Again, these findings generally replicate our previous findings examining MHI in 

university students (Robb & Good, 2011; 2012). To our knowledge, these two studies that are the 

only ones that have examined anticipatory arousal in 10 trial blocks on the IGT in head injury 

populations.  

Collectively, these findings support the suggestion that head injury groups illustrate a 

pattern of underarousal relative to their non-injured cohort as measured by indices of 

sympathetic nervous system. However, hypercortisolemia, as measured by salivary cortisol, was 

observed for injured groups relative to the non-injury, and may be an indication of ‘reactivity’ to 

unexpected events. Further, individuals who report a history of head injury illustrate a pattern of 

persistent underarousal in anticipation of selections on the IGT across the latter 50 trials of 

decision-making. Thus, this may reflect a reduced capacity for “physiological preparedness” at 

initial testing in participants who reported injuries, leaving them proportionally less vigilant, and 
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having less capacity to produce, or otherwise regulate, bioregulatory states or “somatic markers” 

which help to optimally inform participants about their environmental situation (Bechara et al., 

1996; 2000a; 2000b; Damasio, 1994). Interestingly, statistical differences were not observed 

between the MHI and moderate TBI group, but the TBI group did illustrate less arousal at initial 

testing and less development of anticipatory arousal status relative to their MHI counterparts. 

Lastly, injury severity was partially predictive of measures of arousal at initial testing, which was 

partially consistent with our hypothesis, and, in turn, supports a growing body of literature 

suggesting that outcome, regardless of nature (i.e., physiological, behavioural, emotive, social, 

etc.), is moderated by a great number of factors outside of injury severity.  

IGT Performance 

 It was predicted that performance on the IGT would vary as a function of injury status 

and severity whereby persons with moderate TBI will be slower at transitioning from 

disadvantageous selections to advantageous selections, than individuals who report mild head 

injuries who, in turn, will be slower to transition than non-injured participants. Moreover, the 

rate of return to a punishing (disadvantageous) selection will be faster (i.e., fewer trials in 

returning to a selection after being punished by that selection previously) as a function of injury 

severity.  

A ratio of decision-making performance was computed using Bechara et al. (1996)’s 

calculation, by subtracting disadvantageous selections (decks A + B) from advantageous 

selections (deck C + deck D). As hypothesized, participants with head injuries demonstrated a 

slower rate of learning to adjust their selections towards advantageous decks relative to their 

non-injured cohort. Despite exposure to punishment, those who report a history of MHI 

illustrated an increased propensity for continuing to make a ‘risky’ decision which has been 
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described by Bechara and his colleagues to reflect a less sensitivity to future consequences, 

similar to that found with VMPFC lesioned patients (Bechara et al., 1994; 1996; 1999; 2000a; 

2000b). These results also parallel a number of studies that have found impaired IGT 

performance in catastrophic TBI individuals (Bonatti et al., 2008; Cotrena et al., 2014; Levine et 

al., 2005; Wiederkehr et al., 2005) whose injuries have been related to the structural integrity of 

the VMPFC (Levine et al., 2005). MHI subjects’ impairments to decision-making are subtle 

relative to these groups. They do make the transition from disadvantageous to advantageous 

selections, suggesting that they are learning from decision-making outcomes; however, they just 

do so a slower rate and never reach the same ratio of advantageous to disadvantageous 

selections. It is important to note that these are high functioning, cognitively capable University 

students who have been successful academically suggesting that while these findings are 

statistically significant, they are unlikely to be clinically meaningful. 

While the two injury groups did not differ, there is little variation in selection patterns 

across the trials for the moderate TBI group in particular. Relative to the MHI group, the 

moderate TBI group presented very little variability in their choices and did not appear to learn 

from punishment trials. Their pattern of results most closely resembles that found with 

VMPFC/OFC-lesioned patients (i.e., continued sampling from the disadvantageous decks and 

receiving greater punishment overall – e.g., Bechara et al., 1994; 1996; 1999). Individuals with 

no lesions to this structure or lesions elsewhere do not display these impairments, and instead 

illustrate a pattern of decision-making indicative of “learning” such that selections gradually 

transition from disadvantageous to advantageous selections. Moreover, functional neuroimaging 

studies, using PET and fMRI, have implicated the OFC and various other structures involvement 

in the “somatic marker network” (i.e., ACC, DLPFC, inferior parietal cortex, etc.) in healthy 
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participants (Ernst et al., 2002; Fukui, Murai, Fukuyama, Hayashi, & Hanakawa, 2005; 

Lawrence, Jollant, O’Daly, Zelaya, & Phillips, 2009; Northoff et al., 2006; Windmann et al., 

2006) and have been contrasted with abnormalities in clinical populations with known decision-

making abnormalities under conditions of uncertainty (i.e., substance abusers, mood disorders, 

etc.; e.g., Frangou, Kington, Raymont, & Shergill, 2008; Tanabe et al., 2007; Tucker, Potenza, 

Beauvais, Browndyke, Gottschalk, & Kosten. 2004). Lastly, the extensive neuroanatomical 

literature, as previously reviewed, outline the OFC’s neural connections with neural structures 

presumed necessary for optimal decision-making performance, including sensory information, 

limbic structures/effector structures (implicated in producing somatic states), higher cognitive 

structures (i.e., DLPFC, ACC, etc.; Barbas et al., 2003; Cardinal et al., 2001; Carmichael & 

Price, 1995a; Carmichael & Price, 1995b; Crottaz-Herbette & Menon, 2006; Kalat, 2010; Kolb 

& Whishaw, 2009; Lezark et al., 2012; Rolls, 2004; Wallis, 2007).  

Based on this literature, altered IGT performance in the context of the OFC being 

particularly vulnerable to the biomechanical forces that are applied to the brain during head 

injury suggests that this area of the brain (and possibly related neural circuitry) is implicated in 

the sequelae following head injury, both in the MHI group, albeit more subtly, and the moderate 

TBI group. This coincides with the underarousal observed in head injury groups. Injury groups 

illustrated impaired elicitation and/or maintenance of anticipatory physiological arousal and may 

reflect a neurally-based compromised affective insensitivity, with respect to “somatic markers”, 

to consequences of decision outcomes (i.e., prior losses), resulting in lessened avoidance of 

disadvantageous decisions.  

The underlying bases for these decision-making alterations in injury groups, have been 

speculated based on VMPFC/OFC lesion patients to reflect a lack of sensitivity to future 



 

 

119 

consequences, regardless if they are positive or negative. Bechara et al. (2000b) suggest that 

decision-making by persons with VMPFC/OFC lesions is driven by the immediate context, 

possessing what is commonly referred to as a “myopia for the future” (Bechara et al., 2000b). 

VMPFC-lesioned patients illustrate a hypersensitivity to reward and an insensitivity to 

punishment regardless of the magnitude or frequency of outcome (e.g., Yechiam, Busemeyer, 

Stout, and Bechara, 2005) as described by the expectancy-valence cognitive model with the 

original IGT.  

In line with Bechara’s findings, we found that head injury groups returned to a selection 

equally fast (i.e., frequency of trials) following a punishment trial for both advantageous and 

disadvantageous decks whereas the no-MHI group returned much more slowly (i.e., taking a 

greater number of trials)26. This suggests that head injury participants, similar to that observed 

with VMPFC/OFC-lesioned patients (Bechara et al, 2000b; Yechiam et al., 2005), may have 

increased difficulty in differentiating the relative risk of each of the decks. This finding replicates 

and expands upon a finding that we collected in individuals with and without MHI in a university 

sample (Robb & Good, 2012) and supports the hypothesis that the rate of return to a previously 

punishing selection for disadvantageous decks will be faster as a function of reporting a history 

of traumatic injury to the head, but not of severity per se.  

Further, the relationships observed between injury severity and IGT performance was 

found to be linear, and, as expected, illustrated a negative relationship between learning from 

outcomes in the context of uncertainty as a function of injury severity, even in uncomplicated 

MHI. These results parallel the findings observed with injury severity and measures of 

physiological arousal. These findings extend the existing research, demonstrating that 

                                                
26 This was calculated on the last 80 trials to ensure that participant had an opportunity to sample 
from all of the decks.  
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neurocognitive outcome can be partially accounted for by injury severity, by replicating this in 

the uncomplicated mild high functioning population. Specifically, it was found that a decrease in 

IGT performance is observed as injury severity increases; as injuries become more severe, 

decision-making performance becomes less variable and less advantageous or successful in 

outcome and reflect poor performance. Individuals with reportedly less severe injuries 

demonstrate more variability, and more advantageous outcomes in decision-making. A possible 

interpretation of this is that the relationship is influenced by other variables, such as a more 

optimal reintegration into cognitive and social rewarding activities, which may modulate 

recovery from injury, and performance (Draper et al., 2007; Ezrachi, et al., 1991; Novack et al., 

2001). As previously stated, most individuals who sustain a MHI will recover from their injury, 

but it remains illusive as to which factors best predict which individuals will experience a 

remission of their symptoms and which will continue to experience residual sequelae (Iverson & 

Lange, 2009; Ruff, 2011; Schoenberg, 2011). Further research is required to provide insight into 

these recovery variables.   

Injury Severity, Physiological Arousal, and IGT Performance 

 Given the observed relationships between participants’ retrospective reported 

symptomatology at the time of injury (injury severity) and physiological arousal in terms of (1) 

injury severity being related to both participants’ physiological arousal, as measured by EDA, 

and their performance on measures of IGT decision-making, and (2) physiological arousal being 

predictive of decision-making performance, a meditational analysis was conducted. 

Physiological arousal was found to be a significant mediator between injury severity and 

decision-making performance, posing the possibility that one mechanism by which injury 

severity relates to decision-making is through changes in arousal. This provides indirect 
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additional support for the role of neural disruption in the VMPFC and associated neural 

connections responsible for optimal regulation and maintenance of bioregulatory states in 

changes to decision-making as a function of injury severity (Bechara et al., 1994; 1996; 1999; 

2000a; 2000b; 2005; Reinmann & Bechara, 2010). Of particular interest is that this occurs even 

for very mild, uncomplicated injuries in individuals who are highly functioning university 

students, and remains true across the injury severity spectrum to documented moderate TBI.  

Explicit Knowledge in the IGT 

One of the major criticisms levied by Maia and McClelland (2004) against the Somatic 

Markers Hypothesis is that explicit knowledge about decision-making outcomes on the IGT may 

occur prior to implicit somatic markers reflected in physiological arousal. Limitations to this 

controversial study included the criticism that physiological arousal was not recorded and the 

nature of the questions they asked during the task may have changed the implicit characteristics. 

To clarify these findings, we assessed our subjects’ explicit knowledge about the IGT 

contingencies at the end of the task so as to reduce the confound of eliciting, rather than 

witnessing, the emergence of explicit strategies and its influence on performance. We found that 

both individuals who had sustained a MHI and healthy controls produced a dissociation between 

what they reported was happening in the task (i.e., metacognition, explicit knowledge) and how 

they behaved (i.e., the selections and choices they made; implicit behaviour). This implies that 

implicit learning, perhaps guided by gut-feelings and physiological arousal, can drive decision-

making performance independently of one’s explicit knowledge of strategy (Robb & Good, 

2012).   

 In the present study, we attempted to replicate these findings and predicted that regardless 

of head injury status, subjects’ preferences would be independent of their making selection 
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choices during the IGT indicative of learning that these high risk decks are disadvantageous 

Interestingly, a dissociation was only partially observed - participants’ preferences reported at 

the end of the task was found to match their performance/behavioural data on the IGT. On the 

other hand, participants’ reported propensity for winnings (i.e., expected earnings as calculated 

for a deck had they selected a deck for all 100 trials calculated using Maia and McClelland’s 

(2004) equation did not predict or reflect their behavioural choices. All participants reported that 

they expected to earn more on disadvantageous decks, despite no-MHI and MHI groups 

illustrating a transition from disadvantageous to advantageous, replicating our previous findings. 

 One possible explanation for dissociation between preference and participants’ 

propensity for winnings is that preference taps into the construct of “gut-feeling” that is elicited 

by somatic markers, whereas questions pertaining to propensity for winnings were based on 

objective knowledge (i.e., average amount won and lost, frequency of losses, etc.) and were not 

“informed” by gut feeling. There is evidence that one’s preference frequently diverges from 

cognitive-cold rational reasoning (Connolly & Ordonez, 2003). Another possible explanation is 

that both implicit and explicit knowledge of strategies is required for advantageous decision-

making. This latter explanation has been particularly well supported in the literature, illustrating 

that those with amnestic syndromes perform poorly on the IGT (Guillaume et al., 2009; Gutbrod 

et al., 2006). Overall, a dissociation is observed between participant’s explicit objective 

knowledge of the reward and punishment contingencies of the IGT and their respective 

behavioural performance. This finding provides support for the notion that the IGT is tapping 

into “gut-feeling” processes and thus participants are reliant on bioregulatary cues to guide 

decision-making processes.  

 A study by Persaud et al. (2007) also has since called into question the Maia & 



 

 

123 

McClelland (2004) findings. Using three different approaches, Persaud and his colleagues 

assessed explicit knowledge of IGT performance - a “no interruption” condition, an open 

question condition, and finally an interrupted condition using the Maia & McClelland questions. 

They found no differences between the task with no interruptions and the task with open 

questions which both served to replicate the results obtained by Bechara et al., (1997) supporting 

the indication of somatic markers occur prior to explicit knowledge (Persaud et al., 2007) 

whereas, they supported Maia & McClelland’s results when they used their technique. 

In summary, explicit knowledge reported by participants regarding propensity for 

winnings did not match their behaviour on the IGT, as predicted. Further, participants’ reported 

preference for decks was related to their IGT behaviour, showing that both preference, and card 

selection, as implicit measures of performance, may tap into the construct of “gut feelings”. In 

line with much of the recent literature, our results indicate that advantageous decision-making on 

the IGT is associated with two independent systems, both implicit somatic signals and explicit 

knowledge of strategies. 

Arousal Manipulation on physiological arousal and IGT performance 

 Extensive research has examined the relationship between physiological arousal and 

cognition, finding that these are related in a curvilinear fashion (i.e., Yerkes-Dodson law; 

Hanoch & Vitouch, 2004; Lupien, Maheu, Tu, Fiocco, & Schramek, 2007; McEwen & Sapolsky, 

1995; Salehi, Cordero, & Sandi, 2010; Yerkes & Doson, 1908). While the Yerkes-Dodson law 

generally describes the relationship between arousal and cognitive behaviour, it is likely that a 

complex system of neural processes jointly contribute to the cognitive changes in attentional, 

executive, decision-making, and memory processes, including catecholamine forebrain 

activation (Mair, Onos, & Hembrook, 2011), sympathetic nervous system transmitters (i.e., 
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epinephrine, etc.) and HPA axis hormones (i.e., glucocorticoids, etc., for full review see: Mendl, 

1999). To investigate a sample of this system and examine evidence that physiological 

underarousal results in sub-optimal decision-making in persons with a history of head injury, we 

manipulated arousal by exposing subjects to emotionally-evocative stimuli. Previous studies in 

our lab used classical music as a means to evoke arousal, as it has been shown to elevate 

mesolimbic activation and thalamic arousal in a number of fMRI studies in healthy subjects 

(Chanda & Levitin, 2013). In those studies, classical music did increase physiological arousal 

and accompanied improved learning rates on measures of decision-making and attenuated 

differences in the rate of return to risky selections following punishment feedback for individuals 

reporting a MHI, but not for those who did not report a history of MHI. Negatively-valenced 

music was more effective in improving the decision-making performance for MHI participants, 

whereas positively-valanced music was more effective for non-MHI participants.  

In the present study, emotionally-evocative visual stimuli from the International 

Affective Picture System (IAPS) were used, as these too were found to benefit cognitive 

performance in persons with MHI (Baker & Good, 2012). It was predicted that emotionally-

evocative imagery (i.e., arousal manipulation) would produce a corresponding increase in 

physiological arousal and this enhancement would inform, or otherwise influence, decision-

making performance on the IGT.  

The arousal manipulation did increase measures of physiological arousal (i.e., pulse and 

EDA) immediately following the arousal manipulation, but mirroring other studies (e.g., Baker 

& Good, 2014), the effect did not persist for the head injury groups. Heightened arousal does 

persist for the no-MHI group. These results collectively indicate that following an injury, 

individuals may not maintain the “priming effects” of emotional information for the same length 
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of duration as healthy controls. These findings may reflect the altered connections between the 

OFC and structures implicated in regulation, modulation and maintenance of autonomic arousal 

state, such as the amygdala and hypothalamus (Wallis, 2007).  

 Contrary to our results using classical music as the emotionally-evocative stimuli (Robb 

& Good, 2012), there were no differences observed in anticipatory arousal during the IGT as a 

function of the increasing arousal, nor were there observed improvements in decision-making 

performance on the IGT with either the number of trials required for transitioning from high risk 

to low risk choices or by the number of intervening trials before returning to high-risk decision 

following punishment feedback. The limited findings with respect to the arousal manipulation 

and IGT performance could be accounted for by the differences in stimuli exposure. For 

example, there are important differences between the types of stimuli used to evoke arousal in 

this study as compared to our previous ones. The IAPS pictures presented both positive and 

negative high arousal images within subjects, potentially leading to an ‘averaging’ of the arousal 

manipulation effect, whereas in the music studies, this manipulation (of necessity) was presented 

between subjects (Robb & Good, 2012). This could potentially account for the null finding 

observed here. Secondly, whereas in our earlier study the classical musical was played 

throughout the testing session, in the current study the IAPs pictures were displayed only prior to 

the task and only for 15 minutes in duration. As observed in other studies in which we have 

isolated the evocative stimuli from the testing (e.g., Baker & Good, 2014), longevity of 

emotional activation for persons with more resistant capability of physiological arousal may 

require persistent re-priming. Lastly, this challenge to the duration of evocative stimuli exposure 

was further aggravated by the fact that the IGT was assessed as the last test in a 

neuropsychological battery used to test participants’ cognitive capacity across a variety of 
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domains. It is possible that had the IGT been placed in closer temporal proximity to the arousal 

manipulation, the emotional influence may have been more pronounced.  

In summary, no effect of the arousal manipulation using IAPS was found for either the 

head injury groups or health control groups. Further research is required to investigate arousal-

based therapeutic interventions in attempt to find one that will have more long-standing impacts 

for injured populations and are practically amenable for rehabilitation protocols and day-to-day 

living. Research has illustrated cognitive improvements as a function of increased physiological 

arousal in other populations, including cardiovascular exercise in elderly populations (Gates, 

Fiatarone Singh Kelly et al., 2014; Vaughan, Wallis, Polit, Steele, Shum, & Morris, 2014) and 

psychostimulants (i.e., methylphenidate, amphetamine salts, etc.) in ADHD (Berridge & 

Devilbiss, 2011; Rapport & Kelly, 1991; Spencer, Klein, & Berridge, 2012) and TBI populations 

(Nikles, et al., 2014; Tramontana, Cowan, Zald, Prokop, & Guillamondegui, 2014; Whyte, 

Vaccaro, Grieb-Neff, & Hart, 2002). Perhaps these would serve to improvement decision-

making processes in head injury populations as well.  

Decision-making Performance and Depression 

Depressed mood has been identified as a considerable barrier to social reintegration 

(Brown et al., 2003; Gomez-Hernandez et al., 1997) and there appears to be an increasing link 

between TBI, particularly on the mild end of the injury severity spectrum, and depressive 

symptomatology (Jorge et al., 1993; Mooney & Speed, 2001; Seel et al., 2003). Moreover, 

overlapping neural structures between those vulnerable in traumatic head injury and in 

depression are being reported in the literature (Bremner et al., 1999; Drevets, 2007; Maller et al., 

2010). Unfortunately, very little research has investigated the role that the pathophysiology of 

MHI may play in contributing to depressive symptomatology and whether the respective 
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socioemotional/cognitive sequelae following MHI may be accounting for some of the depressive 

symptomatology.  

Two studies have investigated IGT performance in individuals with unipolar MDD and 

have found decision-making profiles similar to that observed in TBI and VMPFC lesion 

populations, characterized by a lack of transition from disadvantageous to advantageous deck 

selection. Specifically, these studies demonstrate a pattern of decision-making made by MDD 

participants such that immediate gains outweighed the negative impact of larger punishments 

they received overtime and, thus, they continued to make selections from disadvantageous decks 

(and did not transition to advantageous decks; Must et al., 2006; Jollant et al., 2010). This result 

is difficult to reconcile with the MDD literature as there is considerably research showing that 

individuals with MDD are highly sensitive to punishment (Eshel & Roiser, 2010; Roiser & 

Sakakian, 2013) and frequently experience anhedonia, whereby positive valence is less 

rewarding to them (American Psychiatric Association, 2012; Bylsma et al., 2008). Neither of 

these studies examined whether the samples had subjects with a history of MHI, and given that 

IGT performance differences have been observed as a function of MHI (van Noordt, & Good, 

2011; Robb & Good, 2012), it is possible that the results pertaining to MDD and decision-

making are confounded, or otherwise exacerbated, by MHI. As a result, this research served to 

provide clarification to these findings.  

It was hypothesized that learning performance on the IGT, and the rate of return to 

punishing selections, would predict self-reported depressive symptomatology in individuals who 

report previously sustaining an injury but not for their non-injured cohort. MHI status was found 

to be a moderator of IGT performance and self-reported depressive symptomatology, whereby 

this relationship was found only for those who had sustained a MHI, but not for those without a 
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MHI or moderate TBI, accounting for 12.7% more of the variability. This relationship should be 

interpreted with caution, however, as the largest unique variability accounted for by any single 

trial block was 6.25%. Moreover, the rate of return to a disadvantageous selection following 

punishment was predictive of depressive symptomatology for the MHI group only. While these 

findings do not provide conclusive evidence that neuropsychological indices of OFC 

functionality are related to depressive symptomatology for those with a MHI, it does provide 

justification for further exploration as to the role that MHI may be playing in the presentation of 

depression. This finding does relate to the Kweon & Rho (2005) research suggesting that 

depressive symptoms are not uniform across the TBI population (Bahraini et al., 2013). They 

observed that individuals with MHI report more depressive symptomatology, particularly 

suicidal ideation, relative to moderate TBI subjects.  

Supplementary analyses using a median-split procedure was performed to separate 

individuals into two groups based on their respective depression symptoms (based on each injury 

group): lower and higher self-reported depression symptoms. This procedure reflects the 

analyses conducted in the Must et al. (2006) and Jollant et al. (2010) studies. As observed in 

Figure 54, and consistent with the correlation analyses, there were no differences in IGT 

performance for the healthy control participants; IGT performance does not differ as a function 

of depression score. This further supports the notion that the findings reported by Must et al. 

(2006; Jollant et al., 2010) were confounded by a third variable, such as MHI.  

 If these findings are found to be reliable in acute psychiatric populations, , they could 

pose significant ramifications for the treatment literature regarding MDD. It is well 

acknowledged that there is considerable heterogeneity in the MDD population with respect to 

symptomatology and their etiological contributions (Albert & Benkelfat, 2013; Barch, 2013; Mill 
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& Petronis, 2007; Rush, 2007; Villanueva, 2013). Additionally, treatment responses are 

incredibly variable and there is little insight into the mechanisms that can account for this 

variability (Garthlehner et al., 2011; Hansen, Gartiehner, Lohr, Gaynes, & Carey, 2005; Kupfer, 

Frank & Phillips, 2012: Leucht, Hierl, Kissling, Dold, & Davis, 2012; Nemeroff et al., 2003). 

Our findings imply that head injury status may be an important potential contributor to 

variability, that is, MHI history of persons with MDD accounts for, or enhances, the challenged 

decision-making and additionally may reflect “hot” cognitive components associated with the 

depressive symptoms (i.e., decision-making impairments) following head injury. Another 

possibility is that the “underarousal” sequelae following head injury may present like, and 

otherwise appear like, the depressive symptomatology of MDD from a clinical presentation 

standpoint. That is, the emotional blunting (i.e., loss of interest and pleasure) and 

motivational/initiation difficulties that are observed in persons with traumatic head injury, as 

well as the evidence of emotion dysregulation (i.e., irritability, agitation, etc.), may initially 

appear as, and be described by and confusable with, depressive symptoms, but only mimics 

MDD. Interestingly, decreasing physiological arousal was found to relate to increasing self-

reported of somatic but not affective depressive symptoms, suggesting that while individuals 

with MHI may appear “depressed”, it is actually the somatic aspects of depression which are 

pronounced and may just be the behavioural representation of underarousal.  

 Regardless of the exact etiology, whether it reflects a possible “hot” cognitive correlate of 

depression symptoms in head injury populations or is a mischaracterization of underarousal 

sequelae, these findings with replication could have important implications for treatment 

paradigms. These socioemotional cognitive barriers (i.e., hot cognition) may impede treatment 

responses in a number of different ways, including additional etiological contributions (e.g., OFC 
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functionality differences), compliance, engagement in treatment, decision-making outside of 

treatment potentially leading to adverse outcomes, and response to psychotropic medications. 

Considering MHI when investigating MDD (and every psychopathology) may be fundamental to 

better characterizing the contributions to clinical heterogeneity, an area that requires 

considerably more investigation.  

Chapter III: Future Research Implications, Study Limitations and Conclusions 

Future Research Implications 

The observe findings of underarousal and alterations in decision-making and learning on 

the IGT are consistent with the Somatic Marker’s hypothesis proposed by Damasio and 

colleagues (1994, 1996), as this population is likely to have sustained alterations to the OFC and 

related neural processes given its high susceptibility in TBI (Bigler & Orrison, 2001; Wallis, 

2007). This influence on decision-making, especially under conditions of uncertainty, has 

implications for social reintegration for individuals who sustain head injury (Body, 2007; 

Matussal, 2013). The ability to develop and maintain close interpersonal relationships with peers, 

friends and family members is dependent on one’s social competence, or the capacity to maintain 

appropriate and positive social relations and cognitions with others utilizing effective social 

skills in the absence of maladaptive behaviours, regulate one’s emotions and behaviours to meet 

social expectations, and utilize socio-emotional information to interact and respond appropriately 

(Feldman Barrett & Salovey, 2002; Wong, 1998). These social skills require highly complex 

processes and continuous monitoring and adjustment based on contextual feedback, and involve 

a vast number of neural systems (Lezak et al., 2012). VMPFC-lesioned patients (i.e., Phineas 

Gage, E.V.R, etc.) have revealed particular deficits in social competency, decision-making, and 

awareness, despite intact intellectual functioning (Damasio, 1994; Damasio, 1996; Eslinger & 
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Damasio, 1985). Persons with less precise traumatically-induced head injuries also struggle with 

social competency, particularly moderate TBI individuals who have been found to frequently 

lose lateral relationships and challenges with social reintegration (Milders, Fuchs, & Crawford, 

2003; Yeates et al., 2004). Individuals with milder head injuries, on the other hand, are likely to 

experience social difficulties that reflect riskier choices which may lead to less favourable, more 

adverse, outcomes, likely to be attributed to, and confused with, reflecting individual differences, 

“character” flaws (i.e., “bad”, “annoying”, “poorly-mannered” individuals) or personality 

disturbances. 

Study Limitations 

This study has a number of limitations. Firstly, a potential limitation pertaining to the 

MHI sample in this study is a lack of formalized medical evidence to substantiate self-reported 

head injury status provided by participants. However, note that typically medical evidence does 

not exist for these types of injuries since participants do not seek out medical attention (i.e., only 

40% of the MHI sample reported seeking medical attention and this was considerably higher 

than previous studies conducted in our laboratory; Baker & Good, 2014; van Noordt & Good, 

2011) viewing the mild nature of the injury as not requiring medical intervention. When 

participants did seek medical attention, it is a rarity that diagnostic procedures (i.e., 

neuroimaging, neuropsychological assessment, etc.) were employed outside of clinical interview 

strategies since only half of participants reporting a MHI also experience an LOC and Canadian 

guidelines notes that Computerized Tomography (CT) scans are to ordered only if a subject’s 

Glasgow Coma Scale  (GCS) remains less than 15 two hours postinjury (Stiell et al., 2002). 

Furthermore, even if neuroimaging has been undertaken, it would have been unlikely to provide 

any confirmatory results, given that the neuroimaging methodologies used in the majority of 
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medical centers (i.e., CT, MRI, etc.) do not have the specificity to detect neural changes typically 

observed in these mild forms of injury (Bigler, 2010; Bigler, 2013; Bigler, 2014;  Bigler, & 

Bazarian, 2010; Bigler & Maxwell, 2012; Leninger al., 1990; Livingston et al., 2000; Ono et al., 

2007; Voller et al., 1999; Yarnell & Rossie, 1988).  

Furthermore, the cross-sectional nature of this study limits the degree to which causality 

can be attributed to findings of underarousal and decision-making performance following head 

injury. It is possible that physiological underarousal and greater risk-taking (as measured by the 

IGT) may reflect the influence of underlying personality trait(s) in certain individuals that make 

them more prone to sustaining a MHI, and thereby is not reflective of MHI per se (i.e., 

impulsivity is associated with lowered physiological arousal and, as a trait, leads to risk-taking 

behaviour including increased possibility of head injuries). However, one piece of evidence that 

speaks to this is the degree of decision-making changes and underarousal that is observed across 

the injury spectrum from mild to moderate injuries; that is, decreases in optimal decision-making 

and physiological arousal is associated with evidence of increases in severity of head injury  

(Baker & Good, 2014; van Noordt & Good, 2011). Similarly, an interaction between preinjury 

personality traits and the neural disruption to produce the clinical presentation following head 

injury may be contributing to our findings (e.g., Silver, 2014; Silver, McAllister, & Arciniegas, 

2009). Further research is required to clarify this causal relationship and the degree to which 

each of these variables contributes to clinical outcome postinjury and the nature of their 

respective interactions.27  

An additional limitation is the generalizability of these findings since our sample was 

recruited exclusively from the university setting. While having cognitively capable subjects (i.e., 

attained higher education), and those of milder injuries, was intentional, it is also self-selecting 
                                                
27 A current study in our lab is undertaking this project. 
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highly functioning participants who had more minor injuries, or otherwise were resilient and able 

to overcome and/or manage any deleterious effects of traumatic injuries. These subjects may not 

be representative of individuals with MHI who did not, or could not, pursue further formal 

education. Furthermore, our sample reports living in upper middle class families, which may also 

reduce the generalizability of our findings in two ways. Firstly, individuals of low 

socioeconomic status are more likely to sustain head injuries (Bruns & Hauser, 2003; 

Roozenbeek, Maas, & Menon, 2013), and secondly, greater social resources have been well 

established as a protective factor for functional recovery, particularly for pediatric TBI 

(Anderson et al., 2006; Taylor et al., 1995). This does imply that the observed neurocognitive 

sequelae observed in this sample may be a conservative estimate relative to low socioeconomic 

populations. Future research should consider recruiting samples from the broader community to 

increase representativeness. 

Conclusions 

 Despite these limitations, this cross-sectional study illustrates that observable, and 

predictable, differences in physiological arousal (i.e., EDA, pulse, salivary cortisol) and 

decision-making occur as a function of reporting a previous head injury. Alterations in decision-

making processes can accompany even mild forms of head injury and can be mapped along a 

continuum of injury severity. Those with head injury were found to demonstrate reduced 

anticipatory arousal and decreased learning (i.e., slower transition from disadvantageous to 

advantageous elections) on the IGT, with greater impairment observed for persons with more 

serious injury, as in the moderate TBI group. Moreover, both groups demonstrated a propensity 

for continuing to make riskier, less advantageous, decisions despite exposure to punishment as 

compared to their non-injured cohort. Injury severity was found to be highly predictive of 
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outcome, both of physiological arousal and of decision-making performance. Physiological 

arousal was found to mediate the relationship between injury severity and decision-making 

performance. This provides additional support for the role of physiological arousal, and thus 

indirectly the VMPFC and respective neural correlates related to this area, in affecting decision-

making as a function of head injury, akin and consistent with the Somatic Marker Hypothesis 

(Bechara et al., 1996; 2000a; 2000b; Damasio, 1994). Furthermore, this research implies that an 

injury to the head that is sufficient to produce a state of altered consciousness should not be 

considered as a trivial event in one’s medical history and has significant implications for social 

outcomes and choices decision-making and these will serve as significant barriers to social 

rehabilitation and integration.  

In addition, further support for Damasio and colleague’s Somatic Markers Hypothesis 

was observed. Participants’ explicit knowledge of strategy on the IGT could not account for their 

decision-making performance; whereas, similar findings to VMPFC patients and in contrast to 

controls or a no-MHI cohort, injury groups illustrated anticipatory underarousal and poor 

decision-making performance. Unfortunately, the arousal manipulation using emotionally-

evocative picture stimuli was not associated with a performance improvement; however, this 

may be due to the limited persistence of the manipulation. Improving the duration of arousal 

enhancement may in fact alter and optimize performance in decision-making, consistent with the 

Yerkes-Dodson relationship, for this population. Future studies aimed at the endurance of arousal 

manipulations will be pursued. Lastly, evidence that head injury may contribute to the 

relationship between IGT performance and depressive symptomatology was obtained. Further 

research is required to determine whether head injury is a confounding factor in much of the 

depression literature, since while many studies control for significant neural trauma, they do not 
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reportedly control for MHI per se. Given that risky decision-making and depression can be 

significant barriers to social interactions and interpersonal relationships, this study has 

implications for the possible mechanisms influencing these outcomes and, therefore, how to 

address, or possibly improve, successful social reintegration following head injury.   
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Table 7: 
 
Summary of results for a mixed model 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 5 
(Trial Blocks [trials 51-60, trials 61-70, trials 71-80, trials 81-90, trials 91-100]) × 2 (Arousal 
Manipulation status [pre-exposure, post-exposure]) ANOVA for anticipatory EDA amplitude 
prior to selecting Deck A on the IGT across the last 50 trials as a function of arousal 
manipulation condition. 
 
 
Source 

 
Df 

 
F 

 
p 

 
ηp

2 

 Between Subjects Effects 
 

Head Injury Status 
 

2 15.64 < .001 .31 

Arousal Manipulation 
 

1 .88 .35 - 

Head Injury Status × Arousal 
Manipulation 

2 1.31 .28 - 

Error 
 

69    

 Within Subjects Effects 
 

Trial Blocks 
 

2.43 3.15 .02 .04 

Trial Blocks × Head Injury Status 
 

4.86 3.34 .007 .09 

Trial Blocks × Arousal 
Manipulation 
 

2.43 .49 .75 - 

Trial Blocks × Head Injury Status 
× Arousal Manipulation 
 

4.86 .13 .99 - 

Error 
 

167.76    

Note: Sphericity could not be assumed, as Mauchly’s W was significant. As a result, a 
Greenhouse-Geisser correction of degrees of freedom was made. 
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Table 8: 
 
Summary of results for a mixed model 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 5 
(Trial Blocks [trials 51-60, trials 61-70, trials 71-80, trials 81-90, trials 91-100]) × 2 (Arousal 
Manipulation status [pre-exposure, post-exposure]) ANOVA for anticipatory EDA amplitude 
prior to selecting Deck B on the IGT across the last 50 trials as a function of arousal 
manipulation condition. 
 
 
Source 

 
Df 

 
F 

 
p 

 
ηp

2 

 Between Subjects Effects 
 

Head Injury Status 
 

2 9.19 < .001 .20 

Arousal Manipulation 
 

1 .63 .43 - 

Head Injury Status × Arousal 
Manipulation 

2 .29 .75 - 

Error 
 

73    

 Within Subjects Effects 
 

Trial Blocks 
 

3.55 1.74 .02 - 

Trial Blocks × Head Injury Status 
 

7.11 1.55 .15 - 

Trial Blocks × Arousal 
Manipulation 
 

3.55 .44 .65 - 

Trial Blocks × Head Injury Status 
× Arousal Manipulation 
 

7.11 .62 .65 - 

Error 
 

259.46    

Note: Sphericity could not be assumed, as Mauchly’s W was significant. As a result, a 
Greenhouse-Geisser correction of degrees of freedom was made. 
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Table 9: 
 
Summary of results for a mixed model 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 5 
(Trial Blocks [trials 51-60, trials 61-70, trials 71-80, trials 81-90, trials 91-100]) × 2 (Arousal 
Manipulation status [pre-exposure, post-exposure]) ANOVA for anticipatory EDA amplitude 
prior to selecting Deck C on the IGT across the last 50 trials as a function of arousal 
manipulation condition. 
 
 
Source 

 
Df 

 
F 

 
p 

 
ηp

2 

 Between Subjects Effects 
 

Head Injury Status 
 

2 14.57 < .001 .28 

Arousal Manipulation 
 

1 .15 .70 - 

Head Injury Status × Arousal 
Manipulation 

2 .17 .85 - 

Error 
 

75    

 Within Subjects Effects 
 

Trial Blocks 
 

1.79 .58 .54 - 

Trial Blocks × Head Injury Status 
 

3.57 2.49 .05 .06 

Trial Blocks × Arousal 
Manipulation 
 

1.79 .44 .62 - 

Trial Blocks × Head Injury Status 
× Arousal Manipulation 
 

3.57 .30 .49 - 

Error 
 

134.00    

Note: Sphericity could not be assumed, as Mauchly’s W was significant. As a result, a 
Greenhouse-Geisser correction of degrees of freedom was made. 
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Table 10: 
 
Summary of results for a mixed model 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 5 
(Trial Blocks [trials 51-60, trials 61-70, trials 71-80, trials 81-90, trials 91-100]) × 2 (Arousal 
Manipulation status [pre-exposure, post-exposure]) ANOVA for anticipatory EDA amplitude 
prior to selecting Deck D on the IGT across the last 50 trials as a function of arousal 
manipulation condition. 
 
 
Source 

 
Df 

 
F 

 
p 

 
ηp

2 

 Between Subjects Effects 
 

Head Injury Status 
 

2 3.23 .05 .08 

Arousal Manipulation 
 

1 .02 .90 - 

Head Injury Status × Arousal 
Manipulation 

2 .18 .84 - 

Error 
 

76    

 Within Subjects Effects 
 

Trial Blocks 
 

3.06 1.21 .31 - 

Trial Blocks × Head Injury Status 
 

6.12 6.90 < .001 .15 

Trial Blocks × Arousal 
Manipulation 
 

3.06 .21 .94 - 

Trial Blocks × Head Injury Status 
× Arousal Manipulation 
 

6.12 .50 .86 - 

Error 
 

232.62    

Note: Sphericity could not be assumed, as Mauchly’s W was significant. As a result, a 
Greenhouse-Geisser correction of degrees of freedom was made. 
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Table 11: 
 
Summary of results for a mixed model 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 5 
(Trial Blocks [trials 51-60, trials 61-70, trials 71-80, trials 81-90, trials 91-100]) × 2 (Arousal 
Manipulation status [pre-exposure, post-exposure]) ANOVA for ratio of advantageous (C + D) 
to disadvantageous (A + B) selections on the Iowa Gambling Task (IGT) as a function of head 
injury status across 10 trial blocks and manipulation condition. 
 
 
Source 

 
Df 

 
F 

 
p 

 
ηp

2 

 Between Subjects Effects 
 

Head Injury Status 
 

2 3.66 .03 .08 

Arousal Manipulation 
 

1 .94 .34 - 

Head Injury Status × Arousal 
Manipulation 

2 .92 .40 - 

Error 
 

80    

 Within Subjects Effects 
Trial Blocks 
 

4 1.60 .31 - 

Trial Blocks × Head Injury Status 
 

8 6.90 < .001 .15 

Trial Blocks × Arousal 
Manipulation 
 

4 .21 .94 - 

Trial Blocks × Head Injury Status 
× Arousal Manipulation 
 

8 .50 .86 - 

Error 
 

320    
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Table 12: 
 
Summary of results for a mixed model 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 2 
(deck type [disadvantageous, advantageous]) × 2 (Arousal Manipulation status [pre-exposure, 
post-exposure]) ANOVA for rate of return (duration of trials) following punishment on a 
selection before returning to that same deck on the Iowa Gambling Task (IGT) as a function of 
head injury status. 
 
 
Source 

 
Df 

 
F 

 
p 

 
ηp

2 

 Between Subjects Effects 
 

Head Injury Status 
 

2 4.68 .01 .11 

Arousal Manipulation 
 

1 .49 .49 - 

Head Injury Status × Arousal 
Manipulation 

2 .89 .42 - 

Error 
 

78    

 Within Subjects Effects 
Deck Type 
 

1 9.61 .003 .11 

Deck Type × Head Injury Status 
 

2 5.58 .005 .13 

Deck Type × Arousal 
Manipulation 
 

1 .07 .79 - 

Deck Type × Head Injury Status 
× Arousal Manipulation 
 

2 .85 .43 - 

Error 
 

78    
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Table 13: 

Summary of results for a mixed model 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 4 
(deck [deck A, deck B, deck C, deck D]) × 2 (Arousal Manipulation status [pre-exposure, post-
exposure]) ANOVA for preference following completion of the Iowa Gambling Task (IGT) as a 
function of head injury status and arousal manipulation. 
 
 
Source 

 
Df 

 
F 

 
p 

 
ηp

2 

 Between Subjects Effects 
 

Head Injury Status 
 

2 2.3 .11 .05 

Arousal Manipulation 
 

1 1.41 .24 - 

Head Injury Status × Arousal 
Manipulation 

2 .40 .67 - 

Error 
 

80    

 Within Subjects Effects 
 

Deck  
 

2.69 5.25 .002 .06 

Deck × Head Injury Status 
 

5.38 4.36 .001 .10 

Deck × Arousal Manipulation 
 

2.69 1.87 .18 - 

Deck × Head Injury Status × 
Arousal Manipulation 
 

5.38 .53 .77 - 

Error 
 

215.36    

Note: Sphericity could not be assumed, as Mauchly’s W was significant. As a result, a 
Greenhouse-Geisser correction of degrees of freedom was made. 
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Table 14 

Summary of results for a mixed model 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 4 
(deck [deck A, deck B, deck C, deck D]) × 2 (Arousal Manipulation status [pre-exposure, post-
exposure]) ANOVA for estimated earnings had participants chosen a deck for all 100 trials on 
the Iowa Gambling Task (IGT) as a function of head injury status and arousal manipulation. 
 
 
Source 

 
Df 

 
F 

 
p 

 
ηp

2 

 Between Subjects Effects 
 

Head Injury Status 
 

2 .29 .75 - 

Arousal Manipulation 
 

1 .07 .79 - 

Head Injury Status × Arousal 
Manipulation 

2 1.22 .30 - 

Error 
 

79    

 Within Subjects Effects 
 

Deck  
 

2.40 4.81 .006 .06 

Deck × Head Injury Status 
 

4.80 .21 .95 - 

Deck × Arousal Manipulation 
 

2.40 .45 .45 - 

Deck × Head Injury Status × 
Arousal Manipulation 
 

4.80 .53 .77 - 

Error 
 

189.44    

Note: Sphericity could not be assumed, as Mauchly’s W was significant. As a result, a 
Greenhouse-Geisser correction of degrees of freedom was made. 
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Table 16 
 
Summary of results for a 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 6 (Time [initial 
testing, recording 2, pre-manipulation, post-manipulation, recording 5, end of testing session]) 
mixed model ANOVA for measures of electrodermal activation (EDA) throughout the testing 
session as a function of head injury status. 
 
 
Source 

 
Df 

 
F 

 
p 

 
ηp

2 

 Between Subjects Effects 
 

Head Injury Status 
 

2 78.89 < .001 .66 

Error 
 

82    

 Within Subjects Effects 
 

Time 
 

2.29 30.87 < .001 .27 

Deck × Head Injury Status 
 

4.58 2.06 .08 .05 

Error 
 

187.62    

Note: Sphericity could not be assumed, as Mauchly’s W was significant. As a result, a 
Greenhouse-Geisser correction of degrees of freedom was made. 
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Table 17 
 
Summary of results for a 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 3 (Time [initial 
testing, post-manipulation, end of testing session]) mixed model ANOVA for measures of pulse 
rate (BPM) throughout the testing session as a function of head injury status.  
 
 
Source 

 
Df 

 
F 

 
p 

 
ηp

2 

 Between Subjects Effects 
 

Head Injury Status 
 

2 4.03 .02 .09 

Error 
 

82    

 Within Subjects Effects 
 

Time 
 

2 58.16 < .001 .42 

Deck × Head Injury Status 
 

4 .92 .46 - 

Error 
 

164    
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Table 18 
 
Summary of results for a 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 3 (Time [initial 
testing, post-manipulation, end of testing session]) mixed model ANOVA for measures of 
salivary cortisol throughout the testing session as a function of head injury status.  
 
 
Source 

 
Df 

 
F 

 
p 

 
ηp

2 

 Between Subjects Effects 
 

Head Injury Status 
 

2 2.09 .13 .05 

Error 
 

79    

 Within Subjects Effects 
 

Time 
 

1.31 33.57 < .001 .30 

Deck × Head Injury Status 
 

2.62 2.25 .10 .05 

Error 
 

103.46    

Note: Sphericity could not be assumed, as Mauchly’s W was significant. As a result, a 
Greenhouse-Geisser correction of degrees of freedom was made. 
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Table 19: 
 
Summary of results for a mixed model 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 4 
(Arousal Type [initial testing, anticipation, positive feedback, negative feedback]) × 2 (Arousal 
Manipulation status [pre-exposure, post-exposure]) ANOVA for measures of physiological 
arousal (EDA) during the Iowa Gambling Task (IGT) as a function of head injury status and 
arousal manipulation 
 
 
Source 

 
Df 

 
F 

 
p 

 
ηp

2 

 Between Subjects Effects 
 

Head Injury Status 
 

1. 91.71 <.001 .70 

Arousal Manipulation 
 

1 .08 .78 - 

Head Injury Status × Arousal 
Manipulation 

2 .16 .85 - 

Error 
 

80    

 Within Subjects Effects 
 

Arousal Type 
 

1.76 77.86 < .001 .49 

Arousal Type × Head Injury 
Status 
 

3.53 42.93 < .001 .52 

Arousal Type × Arousal 
Manipulation 
 

1.76 .34 .68 - 

Arousal Type × Head Injury 
Status × Arousal Manipulation 
 

3.53 .14 .96 - 

Error 
 

141.12    

Note: Sphericity could not be assumed, as Mauchly’s W was significant. As a result, a 
Greenhouse-Geisser correction of degrees of freedom was made. 
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Table 21: 
 
Summary of results for a mixed model 3 (head injury status [no-MHI, MHI, Moderate TBI]) × 5 
(Trial Blocks [trials 51-60, trials 61-70, trials 71-80, trials 81-90, trials 91-100]) × 2 (Degree of 
Depression [low, high]) ANOVA for measures of ratio of advantageous (C + D) to 
disadvantageous (A + B) selections on the Iowa Gambling Task (IGT) as a function of head 
injury status and degree of depressive symptomatology 
 
 
Source 

 
Df 

 
F 

 
p 

 
ηp

2 

 Between Subjects Effects 
 

Head Injury Status 
 

2 3.31 .04 .08 

Degree of Depression 
 

1 .05 .83 - 

Head Injury Status × Degree of 
Depression 
 

2 .16 .85 - 

Error 
 

80    

 Within Subjects Effects 
 

Trial Blocks 
 

3.58 1.57 .19 - 

Trial Blocks × Head Injury Status 
 

7.16 1.23 .29 - 

Trial Blocks × Degree of 
Depression 
 

3.58 2.71 .03 .03 

Trial Blocks × Head Injury Status 
× Degree of Depression 
 

7.16 .20 .99 - 

Error 
 

286.44    

Note: Sphericity could not be assumed, as Mauchly’s W was significant. As a result, a 
Greenhouse-Geisser correction of degrees of freedom was made 
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Reviewer Disposition  
(For REB Use Only) ► File # :__________  Reviewers:____________________ Due Date:______________  

Decision: Accepted as is □  
Resubmission □  

Approval Pending Revision □  
Full Review □  

Clarification Required □  
Withhold Approval □  

Brock University Research Ethics Board (REB)  
 

Application for Ethical Review of Research Involving Human Participants  
 

 
If you have questions about or require assistance with the completion of this form,  

please contact the Research Ethics Office at (905) 688-5550 ext. 3035, or reb@brocku.ca.  
 

 
 

Selecting a Research Ethics Board  
 

Files will be allocated to one of two REB panels based upon the type of research to be 
undertaken.  
 
If your research involves any of the following, submit to the Bioscience Research Ethics  
Board (BREB):  
 

physiological measures such as EEGs, heart rate, GSR, temperature, blood pressure,  
respiration, vagal tone, x-rays, MRIs, CT or PET scans;  
ingestion or other use of food, beverages, food additives, or drugs, including alcohol and  
tobacco;  

medical techniques or therapies, including experimental medical devices;  
physical exertion beyond normal walking;  

physical movement in participants who have medical vulnerabilities (e.g., spinal cord  
injury, osteoporosis);  
human biological materials (e.g., tissues, organs, blood, plasma, skin, serum, DNA,  
RNA, proteins, cells, hair, nail clippings, urine, saliva, bodily fluids);  
interventions with the potential for physiological effects (e.g., diet, exercise, sleep  
restriction); and/or  

use of medical or official health records (e.g., hospital records).  
 

If none of the above points are characteristic of your research, submit to the Social  
Science Research Ethics Board (SREB)  
 
 

Indicate which REB panel is appropriate for this application:  
 
 

Bioscience (BREB)  OR  Social Science (SREB)  
 
 
 
 
 
 
 
 
 

Research Ethics Office  
Brock University  500 Glenridge Ave  St. Catharines, ON  L2S 3A1  Fax: 905-688-0748  



 

 

Return your completed application and all accompanying material in triplicate to the  
Research Ethics Office in MacKenzie Chown D250A.  

Handwritten Applications will not be accepted  
 

Please ensure all necessary items are attached prior to submission,  
otherwise your application will not be processed (see checklist below).  
 

No research with human participants shall commence prior to receiving approval from the REB.  
 
 
 

DOCUMENT CHECKLIST  
3 complete sets of the following documents (one original + 2 copies)  if applicable  
 
Recruitment Materials  
• Letter of invitation  
• Verbal script  
• Telephone script  
• Advertisements (newspapers, posters, SONA)  
• Electronic correspondence guide  
Consent Materials  
• Consent form  
• Assent form for minors  
• Parental/3rd party consent  
• Transcriber confidentiality agreement  
Data Gathering Instruments  
• Questionnaires  
• Interview guides  
• Tests  
Feedback Letter  
Letter of Approval for research from cooperating organizations, school board(s), or  
other institutions  
Any previously approved protocol to which you refer  
Request for use of human tissue sample in research Please Note: this form is  
required for all research projects involving human tissue, bodily fluids, etc.  
Signed Application Form  
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SIGNATURES  
 
PLEASE NOTE: The title "principal investigator" designates the person who is "in charge" of the  
research. In this position, the principal investigator is assumed to have the abilities to supervise other 
researchers, be responsible for the financial administration of the project, have the authority to ensure  
that appropriate guidelines and regulations are followed, and be competent to conduct the research in the  
absence of faculty supervision. The restriction of the term "principal investigator" to faculty or post-  
doctoral fellows does not have implications for ownership of intellectual property or publication authorship.  

Given the above consideration, a student cannot be identified as a "principal investigator".  
However, for the purpose of recognizing a student's leadership role in the research, a faculty member 
may designate a "principal student investigator" below.  
 
INVESTIGATORS:  
 
Please indicate that you have read and fully understand all ethics obligations by checking the box 
beside each statement and signing below.  
 

I have read Section III: 8 of Brock University's Faculty Handbook pertaining to Research Ethics and  
agree to comply with the policies and procedures outlined therein.  

I will report any serious adverse events (SAE) to the Research Ethics Board (REB).  
Any additions/changes to research procedures after approval has been granted will be submitted to  
the REB.  

I agree to request a renewal of approval for any project continuing beyond the expected date of  
completion or for more than one year.  

I will submit a final report to the Office of Research Services once the research has been completed.  
I take full responsibility for ensuring that all other investigators involved in this research follow the  
protocol as outlined in this application.  
 

Principal Investigator  
 
Signature ___________________________________________ Date:  
 
Principal Student Investigator (optional)  
 
Signature _____________________________________________ Date:  
 
Co-Investigators:  
 
Signature _____________________________________________ Date:  
 
Signature _____________________________________________ Date:  
 
FACULTY SUPERVISOR:  
 
Please indicate that you have read and fully understand the obligations as faculty supervisor 
listed below by checking the box beside each statement.  
 

I agree to provide the proper supervision of this study to ensure that the rights and welfare of all 
human participants are protected.  

I will ensure a request for renewal of a proposal is submitted if the study continues beyond the 
expected date of completion or for more than one year.  

I will ensure that a final report is submitted to the Office of Research Services. I 
have read and approved this application and proposal.  
 

Signature ______________________________________________ Date:  
 

 
 

Research Ethics Office  

Brock University  500 Glenridge Ave  St. Catharines, ON  L2S 3A1  Fax: 905-688-0748  



 

 

SECTION A - GENERAL INFORMATION  
 
1. Title of the Research Project: Emotion & Cognition Study  
 
2. Investigator Information:  
 

Name  Position (e.g.,  Dept./Address  Phone No.  E-Mail  
faculty,  
student, 
visiting  
professor)  

Principal  Dr. Dawn  Associate  Department of  (905) 688-  Dawn.Good@  
Investigator  Good  Professor,  Psychology,  5550 x 3869,  brocku.ca  

Chair Centre  Centre for  3556, 5523  
for  Neuroscience,  
Neuroscience  Brock  

University,  
500 Glenridge Ave.  
St. Catharines,  
ON L2S 3A1  

Principal  Julie Baker  Ph.D.  Department of  (905) 688-  js01cb@brock  
Student  Candidate  Psychology,  5550 x 3034  u.ca  
Investigator  Brock  

University,  
500 Glenridge Ave.  
St. Catharines,  
ON L2S 3A1  

Co-  Sean Robb  M.A.  Department of  (905) 688-  sr07by@brock  
Investigator(s)  Candidate  Psychology,  5550 x 3556  u.ca  

Brock  
University,  
500 Glenridge Ave.  
St. Catharines,  
ON L2S 3A1  

Co-  Amanda  Honours  Department of  (905) 688-  ag09xy@brock  
Investigator(s)  George  Thesis  Psychology,  5550 x 3556  u.ca  

Candidate  Brock  
University,  
500 Glenridge Ave.  
St. Catharines,  
ON L2S 3A1  

Faculty  
Supervisor(s)  
 

3. Proposed Date of commencement:  upon approval, OR  other. Please provide date  
(dd/mm/yyyy)  
 

Proposed Date of completion (dd/mm/yyyy): 01/09/2013  
 

4. Indicate the location(s) where the research will be conducted:  
 

Brock University  
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Community Site  Specify  
School Board  Specify 
Hospital  Specify Other 
 Specify  
 

5. Other Ethics Clearance/Permission:  
 
(a) Is this a multi-centered study?  Yes  No 
(b) Has any other University Research Ethics Board approved this research?  Yes  No  
 
If YES, there is no need to provide further details about the protocol at this time, provided that all of the  
following information is provided:  

Title of the project approved elsewhere:  
Name of the Other Institution:  
Name of the Other Board:  
Date of the Decision:  
A contact name and phone number for the other Board:  
 

Please provide a copy of the application to the other institution together with all accompanying materials, 
as well as a copy of the clearance certificate / approval.  
If NO, will any other University Research Ethics Board be asked for approval?  Yes  No  
Specify University/College  
 
(c) Has any other person(s) or institutions granted permission to conduct this research?  Yes  No  
If yes, specify (e.g., hospital, school board, community organization, proprietor) provide details and 
attach any relevant documentation.  
 
If NO, will any other person(s) or institutions be asked for approval?  Yes  No  
Specify (e.g., hospital, school board, community organization, proprietor)  
 
6. Level of the Research:  
 

Undergraduate Thesis  
Post Doctorate  
Undergraduate Course  
Assignment  
(specify course)  
 

7. Funding of the Project:  

 
Masters Thesis/Project  
Faculty Research  
Graduate Course Assignment  
(specify)  

 
Ph.D  
Administration  
Other (specify course)  

 
(a) Is this project currently being funded  Yes  No  
(b) If No, is funding being sought  Yes  No - from SSHRC special projects grant  

(November 2012)  
 

If Applicable:  
(c) Period of Funding (dd/mm/yyyy):  From: ongoing  To:  
(d) Agency or Sponsor (funded or applied for)  
 

CIHR  NSERC  SSHRC  Other (specify): Faculty funds  
 

(e) Funding / Agency File # (not your Tri-Council PIN) N/A  
 
8. Conflict of Interest:  
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(a)  Will the researcher(s), members of the research team, and/or their partners or immediate family  
members receive any personal benefits related to this study - Examples include financial remuneration, 
patent and ownership, employment, consultancies, board membership, share ownership, stock options. 
Do not include conference and travel expense coverage, possible academic promotion, or other benefits 
which are integral to the general conduct of research.  

Yes  No  
 

If Yes, please describe the benefits below.  
 
 
 

(b)  Describe any restrictions regarding access to or disclosure of information (during or at the end of  
the study) that the sponsor has placed on the investigator(s).  
 
 
 
SECTION B - SUMMARY OF THE PROPOSED RESEARCH  
 
9. Rationale:  
 
Briefly describe the purpose and background rationale for the proposed project, as well as the 
hypothesis(es)/research question(s) to be examined.  
 
Our research focuses on examining the cognitive sequelae and emotional regulation following head  
trauma, especially with high-functioning individuals such as university students. Previous research from  
our lab (Brock University Neuropsychology Cognitive Research Lab) has shown that individuals with self-  
reported mild head injury (MHI; e.g., concussion) are relatively underaroused and less responsive to  
stressors in their environment (both physiologically [e.g., electrodermal skin response] and self-reports)  
as compared to non-MHI students and indeed, in contrast what is typically found, benefit from being  
activated to a higher level of arousal with respect to cognitive performance (e.g., memory tasks: St. Cyr &  
Good, 2007; decision-making tasks: Robb & Good, 2012). Baker & Good (2010) found that using a  
psychosocial stressor to induce arousal had limited effects on cognitive performance perhaps due to the  
nature of the stressor, the dampened response of students with MHI to the stressor, or the limited  
duration of the increased arousal following experimental manipulation. As well, persons with a history of  
head trauma may have a lessened ability to interpret and respond to stressors/emotional events. Another  
study (Baker & Good, 2012) demonstrated that students with a history of mild head trauma elicited  
significantly reduced physiological responsivity (i.e., EDA amplitude) to emotionally-evocative stimuli (i.e.,  
positive, negative, and ambiguous pictures) relative to those with no-MHI. Similarly, a study by Bay and  
colleagues (2009) reported that persons with mild-to-moderate traumatic brain injury (TBI) evidenced  
hypocortisolemia (i.e., decreased salivary cortisol) and flattened diurnal patterns of cortisol. This finding,  
in concert with our previous research, suggests that persons with neurological compromise (e.g., TBI)  
may have dysregulated stress responses. Indices of physiological underarousal, such as  
hypocortisolemia or salivary alpha-amylase levels, implicate hypothalamic-pituitary-adrenal (HPA) axis  
involvement. Measures of the cortisol awakening response (CAR) and salivary cortisol would be  
especially indicative of dysregulated/attenuated stress responses and/or altered diurnal patterns and will 
be examined in this study. CAR is the increased rise in cortisol immediately following awakening and has  
been reported to be an index of one's ability to respond to stressors (Clow et al., 2010). Further,  
numerous studies have demonstrated changes in concentrations of salivary cortisol (e.g., Dickerson & 
Kemeny, 2004; Kirschbaum & Hellhammer, 2000) and salivary alpha-amylase (e.g., Nater & Rohleder, 
2009) following manipulations of arousal (e.g., stressors; emotionally-evocative stimuli).  
 
As such, we have designed a matched-subjects study (N = 60) to examine physiological and self-reported  
stress responsivity as a function of the severity of neural trauma. This study will examine the  
underarousal hypothesis via the following: a) assessment of underarousal and dysregulated arousal in  
persons with neurological compromise via physiological (i.e., Cortisol Awakening Response [CAR],  
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cortisol responsivity, salivary alpha-amylase, EDA, heart rate, and respiration) and self-report indices; b)  
manipulation of ecologically appropriate ways to induce heightened arousal in persons with neurological  
compromise (e.g., emotionally-laden visual stimuli; IAPS, Lang et al., 2008); and c) measuring the effects  
of modified arousal status on cognition (i.e., neuropsychological test battery scores; decision-making 
task). The subjects will consist of participants who vary in terms of individual differences, particularly  
severity of neural injury (i.e., no head trauma [n = 50], minimal [n = 15], mild [n = 15], moderate [n =10], or  
severe [n = 10] TBI), but also personality characteristics including optimism, emotional and social 
competence.  
 
The following hypotheses will be considered: Hypothesis 1 - Persons with prior head injury will be  
underaroused as measured through both physiological and self-report measures, despite reporting  
increased life stressors; Hypothesis 2 - Indices of dysregulated arousal and stress response (i.e., CAR 
and cortisol change scores; physiological recordings of heart rate, EDA, and respiration) will vary as a  
function of neural injury severity (i.e., mild, moderate, and severe) with persons with more severe trauma  
exhibiting more dysregulated arousal and responsivity; atypical diurnal patterns of cortisol are also 
expected; Hypothesis 3 - Induced-stress will heighten physiological arousal and, thereby, improve  
cognitive performance (e.g., neuropsychological test battery summary scores; decision-making task) for 
persons with compromised/lower physiological arousal. Hypothesis 4 - individual differences based on 
personality characteristics will mirror/be mediated by severity of injury.  
 
This research will improve the understanding of emotional and cognitive functioning of persons with and 
without a history of neural disruption, particularly with respect to stress responses, and has implications 
for clinical practice in the fields of neuropsychology and rehabilitative medicine.  
 
 
10. Methods:  
 
Are any of the following procedures or methods involved in this study? Check all that apply.  

Questionnaire (mail)  
Questionnaire (email/web) 
Questionnaire (in person)  
Interview(s) (telephone) 
Interview(s) (in person)  
Secondary Data  
Computer-administered  

tasks  

Focus Groups  
Journals/Diaries/Personal  
Correspondence  
Audio/video taping specify)  
Observations  
Invasive physiological 
measurements (e.g.  
venipuncture, muscle  
biopsies)  

Non-invasive physical  
measurement (e.g.,  
exercise, heart rate, blood  
pressure)  

Analysis of human tissue,  
body fluids, etc. (Request 
for Use of Human Tissue  
Sample must be completed  
and attached)  

Other: (specify)  
neuropsychological testing  

 
Describe sequentially, and in detail, all of the methods involved in this study and all procedures in 
which the research participants will be involved (paper and pencil tasks, interviews, questionnaires,  
physical assessments, physiological tests, time requirements, etc.)  
Attach a copy of all questionnaire(s), interview guides or other test instruments. If reference is 
made to previous protocols, please provide copies of relevant documentation.  
 
University students and persons in the community will be invited to participate in the study and will be  
asked to contact the researcher for a brief telephone interview. Participants will be read an informed  
consent telephone script (see Appendix) and if he/she agrees to participate he/she will be asked a few  
screening questions (e.g.,history of medication use, sleep patterns, head injury history, age, level of  
education, and gender). Participants who meet our inclusion criteria will be invited to participate in two  
testing sessions and convenient dates/times will be scheduled. The first session will be brief (lasting  
approximately 10 minutes) during which they will be asked to sign a written informed consent form (see  
Appendix) as well as pick up salivary sample collection materials with instructions (see Appendix). The 
second session will consist of the data collection and should take approximate 2 hours 20 minutes.  
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Participants will be asked to bring saliva samples (taken at home) to this second session at the  
university.  
 
Participants will be greeted for both sessions, individually, in a private lab setting in the Jack and Nora 
Walker Lifespan Development Centre testing facilities at Brock University. The informed consent form 
will be read aloud to the participant by the researcher for clarification, and the participant can ask any 
questions at that time or any time throughout the study. Participants will be informed that they will be  
asked to personally obtain saliva samples taken by themselves the night before and the day of the 
testing session using the kit provided. They will be advised on how to do this, and provided, explicit 
simple/straight forward instructions on this procedure. All participants will be advised that when they  
return for the second session they will be asked to partake in a data collection session. Participants will  
be asked to engage in a short battery of neuropsychological testing to assess cognitive competency  
(e.g., memory, attentional tasks) and decision-making. The participants will also be advised that one of  
the tasks they will be presented involves the viewing pictures of pleasant, unpleasant, or neutral scenes.  
Participants will be informed that during the testing session physiological measures will be taken for 
electrodermal responses, heart rate, and respiration (via finger bands around two fingers of the non-  
dominant hand, pulse oximeter, and respiration bands, respectively). The participant will be given two  
copies of the written informed consent form to be completed (one copy is given to the participant for  
his/her records and the other copy is for the researcher—see Appendix). Participants will be informed 
that their participation in the study is voluntary, and that he or she is free to leave at any time without  
penalty. Should the participant leave the study early, the researcher will provide him or her with the  
debriefing form before he or she leaves and any data obtained will not be included in the analysis. In the  
event of withdrawal from the study, participants will receive research participation hours or monetary  
compensation for their participation up until that point, will be provided with counseling contact  
information, and will be invited to speak with the principal investigator who is a Registered Psychologist 
should s/he prefer.  
 
After the informed consent process is completed, participants will be provided with a saliva collection kit  
and instructed on how (passive drooling into a plastic tube) and when to collect three saliva samples  
while at home the night before (at least 2 hours after eating and between 22:00 to 23:30), and the  
morning of (immediately upon waking, and 45 minutes later), the longer testing session. (See attached 
instructions which are provided to the participants). Any additional questions the participant may have  
will be answered, followed by a confirmation of when the participant will be returning for the test session.  
 
Upon return to the testing situation, participants will be asked for their collection kit (and samples -  
which will be coded alphanumerically without personal identifiers). They will then be connected to  
physiological recording equipment to collect heart rate, electrodermal activity (EDA), and respiration data  
via Polygraph Professional (2008) software. In order to decrease contact between researcher and  
participant during the application of the physiological recording equipment, the researcher will model the  
application for the participant and ask him/her to make minor adjustments. Note that the physiological 
recordings of arousal state and self-report of arousal state rating (i.e., participant is asked how he/she  
feels on a scale of 1 to 10 with 1 being relaxed and 10 being stressed) will be taken intermittently  
throughout the testing session (e.g., baseline, prior to, during, and after emotional arousal induction). 
Two more saliva samples will be collected from the participants - one at this point in the session, and  
another following the emotional arousal induction. All physiological activity recorded and saliva samples 
will be coded alphanumerically without personal identifiers.  
 
Once the participant is comfortably fitted with the physiological recording equipment, and has provided a  
saliva sample, he/she will participate in neuropsychological tasks that assess cognitive abilities of  
memory, executive functioning, and attention (see Appendix for list and description of  
Neuropsychological Tasks). Matched versions of these neuropsychological tasks will be administered  
prior to, and after, exposure to the emotional arousal induction. For memory and attentional control,  
subtests of the Wechsler Memory Scale (Logical memory, Letter-Number Sequencing, Mental Control  
from WMS-IV, The Psychological Corporation, 2009), as well as a nonverbal memory task (Rey  
Complex Figure - Osterreith, 1944), a nonverbal visual scanning test (Trails - DKEFS, 2002) will be  
used. To test executive functioning, subtests of the Wechsler Adult Intelligence Scale (Matrix Reasoning,  
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Social Cognition - WAIS-IV, 2009) and of the Wide Range Achievement Test (Reading - WRAT-IV,  
2006) will be used. Emotional competence will be assessed with the Emotional Quotient Inventory (Bar- 
On, 1997).  
 
Participants will receive instructions regarding the "emotional arousal induction" by viewing and rating a  
set of pictures derived from the International Affective Picture System (IAPS; Lang et al., 2008) (see  
Appendix for IAPS Verbal Script). The pictures (approximately 10" x 8" in size) will be presented on a 17" 
computer screen with a viewing distance of approximately 60 cm and will be displayed for 5 seconds.  
Each will be rated for intensity, pleasantness, arousal, and empathy elicitation on a scale from 1  
(minimal) to 9 (significant) (mimicking the IAPS procedures). The scenes in the pictures involve either 
neutral, unpleasant, or pleasant stimuli. Physiological activity recordings will be taken throughout the  
viewing and rating of the pictures and will be segmented to provide indices of sympathetic nervous  
system activation during anticipatory phases (i.e., prior to viewing of each picture), during presentation of  
stimuli, and during the response phase (i.e., rating of each picture). Refer to Appendix for Verbal Script of 
IAPS stimuli presentation and rating instructions. A total of 50 pictures have been selected from the  
IAPS stimuli and includes pictures of persons, animals, and inanimate objects that had high arousal (i.e.,  
excited), valence (i.e., positive and negative affect), and emotion (e.g., anger, sadness) ratings as 
indicated by the normative data (Lang et al., 2005; Libkuman et al., 2007; Mikels et al., 2005).  
 
For the second part of the emotional arousal induction, participants will be asked to view these stimuli  
again, but this time, will be asked to generate emotional descriptors/narratives for the picture (i.e.,  
positive - e.g., happy; negative - e.g., sad) before providing a rating. The purpose of the emotional  
arousal induction task is to induce heightened emotional arousal (both physiological and self-report) and  
has been commonly used with university students. The emotional arousal induction will last  
approximately 30 minutes with continuous physiological recording throughout with variable sampling.  
 
Participants will also complete a computerized decision-making task, the Iowa Gambling Task (IGT; 100  
trials, 25 minutes in duration), which consists of being presented four decks of cards (two  
'advantageous' and two 'disadvantages') on a computer screen and being asked to select one card at a time 
from one of the decks with the goal of gaining as many points as possible. Upon completion of the 
decision-making task the participant will be given a set of questions (developed by Maia & McClelland, 
2004 - see Appendix), which measures the subject's awareness and explicit knowledge the strategies s/he 
used during the IGT.  
 
At this point, the subject will be asked to complete a set of questionnaires that will assess emotional  
status (BarON Emotional Quotient Inventory, BarON EQ-I, Bar-on, 1997; State-Trait Anxiety Inventory,  
STAI, Spielberger, 1983; Emotional Intelligence, Barchard, 2001; Symptom Assessment-45  
Questionnaire, SA-45, Strategic Advantage, 1998; Toronto Empathy Questionnaire, Spreng et al., 2009)  
and demographics to gather information on individual differences. The questions should take  
approximately 30 minutes to complete (see Appendix for a description). After completion of the self-  
report measures, a final physiological activity recording and self-report of arousal state will be obtained to 
verify return to baseline status.  
 
Physiological equipment will then be removed by the participant with simulated modeling provided by the  
experimenter; the participant will be given sanitary wipes to remove any residual electrode gel from  
his/her hands. They will then be debriefed as to the nature of the study, and thanked for their  
cooperation (see Appendix for Debriefing form). Overall, participation in this study (including time for  
acquisition of informed consent and debriefing procedures) will not exceed 2.5 hours. Also included in  
the debriefing form (see Appendix) will be counselling contact information for Brock University  
Counselling Services should any negative emotions surface as a result of participating in this study.  
Participants will also receive contact information for the principal investigator/faculty supervisor. Finally,  
participants will be thanked for their time and participation in the study, and will be invited to view the 
results of the study at its completion (by September 2013).  
 
 

11. Professional Expertise/Qualifications:  
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Does this procedure require professional expertise/recognized qualifications (e.g., registration as a  
clinical psychologist, first aid certification)?  

Yes specify:  No  
The neuropsychological testing materials are protected, standardized psychological tests that require  
professional expertise for their use. Administration of the tests will be monitored by Dr. Dawn Good 
(principal investigator) who is a Registered Psychologist.  
 
If YES, indicate whether you, your supervisor, or any members of your research team have the  
professional expertise/recognized qualifications required?  Yes  No  
Dr. Dawn Good (principal investigator) is a Registered Psychologist.  
 
12. Participants:  
 
Describe the number of participants and any required demographic characteristics (e.g., age, gender).  
 
One-hundred individuals will participate in this study. The participants will include Brock University  
students (n = 60; 15 no history of head trauma non-varsity participants, 15 mild head injury non-varsity 
participants; 15 no history of head trauma varsity participants, 15 mild head injury varsity participants)  
and members from the Niagara community (n=40; persons who have sustained moderate [n=10] or  
severe [n = 10] brain injuries; 20 persons who have not sustained head/brain injury). Participants will be 
matched for age, sex, and if possible, level of education.  
 

13. Recruitment:  
 
Describe how and from what sources the participants will be recruited, including any relationship between  
the investigator(s), sponsor(s) and participant(s) (e.g., family member, instructor-student; manager- 
employee).  
Attach a copy of any poster(s), advertisement(s) and/or letter(s) to be used for recruitment.  
 
One hundred participants will be recruited for the study by volunteering their participation through the  
online Brock University Psychology Department Research Website (i.e., SONA see Appendix for  
advertisement) and poster advertisements. Poster advertisements for the study will be posted on the 
Psychology Research Board (see Appendix for poster) and in the Athletic Therapy Building (Harrison  
Hall), and Trainers Room (Walker Complex) - the latter in an attempt to recruit varsity athletes. Note we  
will not be asking varsity athletes to participate via individual recruitment, anyone who views the poster  
advertisement and wishes to participate will be considered for the study with the poster advising them on  
how to contact us. Community centers that provide support and services to individuals living with 
acquired brain injury (i.e., the Ontario Brain Injury Association and the Brain Injury Assocation of  
Niagara) will be contacted to recruit an additional 40 participants (i.e., persons who have sustained  
moderate or severe traumatic brain injury, and matched community cohorts). Participants will complete a  
brief informed consent and telephone interview to select participants based on study characteristics,  
mainly age, sex, and history of neural disruption. Participants will be excluded if they are shift workers. In  
addition, eligible participants will be excluded once the number of participants for that group (e.g., mild 
TBI group) has been fufilled.  
 

14. Compensation:  
 
a) Will participants receive compensation for participation?  Yes  No  
b) If yes, please provide details.  
 
Participants will have the opportunity to receive research participation hours for applicable courses at the 
university or receive a small monetary honorarium for their research participation (i.e., $12 per hour of 
participation). The participants may be credited at the rate of one half credit per half hour of 
participation which is the standard rate associated with participation. Community participants will receive 
a small monetary honorarium (i.e., $12 per hour of participation plus transportation).  
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SECTION C - DESCRIPTION OF THE RISKS AND BENEFITS OF THE PROPOSED  
RESEARCH  
 
15. Possible Risks:  
 
1) Indicate if the participants might experience any of the following risks:  
 

a) Physical risks (including any bodily contact, physical stress, or administration of any substance)?  
Yes  No  
 

b) Psychological risks (including feeling demeaned, embarrassed worried or upset, emotional stress)?  
Yes  No  
 

c) Social risks (including possible loss of status, privacy, and / or reputation)?  Yes  No  
 
d) Are any possible risks to participants greater than those that the participants might encounter in  

their everyday life?  Yes  No  
 

e) Is there any deception involved?  Yes  No  
 
f) Is there potential for participants to feel obligated to participate or coerced into contributing to this  
research (because of regular contact between participants and the researcher, relationships that  
involve power-dynamics, etc.)?  Yes  No  
 

2) If you answered Yes to any of 1a - 1f above, please explain the risk.  
 
a) Participants will be connected to physiological activity recording equipment to collect physiological  
data (i.e., heart rate, electrodermal activity, and respiration). To collect this data, two electrodes (placed  
on separate fingers of the non-dominant hand) will be used to record electrodermal activity, two  
respiration bands (placed around the participant's chest and lower abdomen), and a pulse oximeter  
(placed on the participant's finger) to collect heart rate data. Although the equipment is not invasive, the 
application of the electrodes, pulse oximeter, and respiration bands involves minor physical contact from  
the researcher to the participant. In order to minimize any discomfort participants may feel during the 
placement of the physiological recording equipment, participants will be clearly asked for consent and  
the process of applying the physiological recording equipment will be fully explained and modeled for the 
participants by the researcher prior to application. In addition, participants will be asked to complete/and  
directed as to how to make any adjustments of the equipment on his/her body to minimize physical  
contact between his/herself and the researcher. Participants will be asked to self-identify any dermal 
sensitivities they may have as it is possible, but unlikely, that participants may have sensitivity to the  
electrode conductive gel. Participants will be provided with sanitary moist wipes to remove the  
conductive gel. Participants will also be providing salivary samples via passive drooling into a plastic 
storage tube for approximately 2 minutes both at their home and in the testing setting (for a total of 5  
samples). Explicit instructions for all procedures will be provided to the participant (directly and through  
modeling in terms of the polygraph equipment; directly and through written instructions for the saliva  
collection kit) and sanitary procedures will be explained and implemented (e.g., use of gloves, cleansed 
and disinfected equipment, etc.).  
 
b (i) It is expected that participants will experience mild distress during the heightened arousal induction  
manipulation due to discomfort of viewing emotionally-arousing stimuli (i.e., emotionally-provocative  
pictures International Affective Picture System [IAPS]). However, the level of stress experienced is  
deemed to be no greater, and/or not unlike the type of stress encountered in everyday life (e.g., pictures  
from news reports, magazines). Arousal manipulations using the IAPS stimuli have shown to be  
sufficient to produce noncritical physiological changes in heart rate and EDA (e.g., Sanchez-Navarro et  
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al., 2006) and these stimuli are commonly used with university students. The emotionally-arousing  
pictures will be used in order to provide, or otherwise produce, a heightened level of stress vigilance 
which is the precise effect being investigated.  
 
b (ii) Participants often feel the psychological pressure of being evaluated when doing psychological  
tests (e.g., personality questionnaires, tests of reasoning) due to their association with overall  
competency. As a result, they may by slightly embarrassed, or disquieted, by their performance or  
otherwise stressed as to what their performance means in terms of capacity or ability. Participants will  
be reminded that the researchers are interested in group, rather than individual, responses, and that the 
cognitive tests are intentionally challenging in order to avoid ceiling effects, rather than it reflecting their 
cognitive capacity. Participants will have been previously informed during the informed consent process 
that the questionnaires may involve questions of a sensitive or personal nature and are at liberty to omit 
any answer/response should they choose.  
 
b (iii) Female participants may feel that their privacy has been invaded due to one of the questions  
asked during the demographic questionnaire regarding their use of birth control medication. We must  
ask about this because the literature indicates a relationship between estrogen  
supplements/medications (such as oral contraceptives) and the elevation of cortisol levels. Participants 
are informed that they can choose to answer/not answer any question.  
 
e) Finally, informed consent procedures for university students and community participants do not  
explicitly state the researchers' interests in head injury/brain injury as a primary variable in this study.  
Research has shown that informing participants that head injury/brain injury is one of the study variables  
of interest can influence subsequent performance (Suhr & Gunstad, 2002; 2005). Subjects will be fully 
debriefed upon study completion.  
 

3) Describe how the risks will be managed and include the availability of appropriate medical or clinical 
expertise or qualified persons. Explain why less risky alternative approaches could not be used.  
 
a) Subjects will be asked about any allergies or skin sensitivities they may have and will be screened to 
not participate in the study as appropriate. In the unlikely event that participants may have an unknown  
sensitivity to the electrode conductive gel, participants will be provided with sanitary wipes to remove the  
gel. Further, to ensure sanitary conditions, the researcher will provide the participant with antibacterial  
lotion prior to application of electrodes; for any procedures during with the researcher will need to  
minimally assist the participant through contact (e.g., application of the electrodes), s/he will wear gloves 
and use sanitary procedures.  
 
b) To manage psychological risk, participants will be fully informed during the informed consent process  
that they will be asked to view and rate pictures that may induce an emotional response. They will also  
have knowledge that cognitive/neuropsychological testing will take place. The subject's freedom to  
withdraw from the study at the time of consent, or any other time throughout testing, will be reinforced.  
Furthermore, the researcher will answer any questions that the participant may have initially, and  
throughout the testing session, and participants will be fully debriefed verbally by the researcher at the  
end of the study. The researcher will reinforce that the tests do not reflect the capacity of the participant 
and that they are intentionally challenging to ensure the ceiling effects are avoided for data collection. The 
heightened arousal manipulation and the completion of the cognitive tasks and questionnaires are  
considered to be of low risk since these tests simulate the experiences students would otherwise 
have/be familiar with in a university setting (e.g. writing tests, viewing pictures on the news/media, 
providing demographic information).  
 
During debriefing the participants will be advised of our interest in, amongst other things, head and brain  
injuries. For persons who have experienced a brain injury, it will be clear to them that they are in the  
brain injury group, and not alarmed to this fact; for persons who have experienced milder neural  
complications (impact to the head causing an altered state of consciousness, repeated concussions), it 
will be clear that they are of particular interest as well, but they be more concerned due to the questions  
they may have as to 'why' they would be of interest to researchers - is there something permanently  
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wrong with their brains. We will explain that neural changes after concussions are mostly temporary and  
otherwise subtle, but can be more permanent, as has been witnessed in the popular press for some  
sports celebrities. We will reinforce our intention to understand the implications on function (emotional, 
cognitive), if any, of these possible neural changes, subtle or otherwise, and ultimately, assist/optimize 
functioning for any person with traumatic injuries to the head and brain.  
 
The researcher will also confirm with the participants their comfort and/or concerns upon testing  
completion (with confirmation of return-to-baseline physiological indices at test completion) and provided  
with counseling and research ethics contact information should they feel they have any negative  
experience or emotion (e.g., feeling uncomfortable, etc.) as a result of participating in the study that  
would need to be addressed outside of the 'study' setting. Participants will also be provided with  
resources should they like more information/support regarding head trauma (The Ontario Brain Injury 
Association (OBIA): www.obia.ca; The Ontario Neurotrauma Foundation (ONF): www.onf.org); Brain 
Injury Association of Niagara (BIAN): www.bianiagara.org).  
 
e) Participants are not informed in advance about head injury/brain injury as a focus for the study  
because research has shown that informing participants head injury is a study variable of interest can  
influence subsequent performance (Suhr & Gunstad, 2002; 2005). This phenomenon of 'diagnosis  
threat' is similar to the social psychological phenomena known as stereotype threat; individuals have 
schemas and representations of what their group membership involves and may behave in ways that 
confirm these representations (i.e., head injuries are associated with limitations in functional capacity  
and this may negatively affect how individuals approach and respond to task demands). However,  
participants will be fully informed of our interest in head and brain injuries at the completion of the study.  
 

16. Possible Benefits:  
 
Discuss any potential direct benefits to the participants from their involvement in the project. Comment  
on the (potential) benefits to the scientific community/society that would justify involvement of participants in 
this study.  
 
Both student and community participants can benefit from participation in this study by gaining insight  
into neuropsychological and physiological research and empirical methods relevant to psychology,  
assessment of capacity, and neuroscience. Additionally, through their efforts, this study will benefit the 
scientific community by contributing to our knowledge of the possible mechanisms (e.g., underarousal) 
or correlates (e.g., personality characteristics) associated with one's cognitive and emotional function in  
individuals with varying amounts of neural disruption (from none, to minimal, to mild, to moderate, to  
severe injury). In addition, the study will identify how modifying arousal state (i.e., via viewing  
emotionally-arousing pictures) can influence cognitive abilities. Furthermore, this research will improve  
the understanding of stress responsivity, and has implications for clinical practice in the fields of 
neuropsychology and rehabilitative medicine.  
 

SECTION D - THE INFORMED CONSENT PROCESS  
 
17. The Consent Process:  
 
Describe the process that the investigator(s) will be using to obtain informed consent. Include a  
description of who will be obtaining the informed consent. If there will be no written consent form, explain 
why not.  
For information about the required elements in the letter of invitation and the consent form, as well as  
samples, please refer to: http://www.brocku.ca/researchservices/forms/index.php  
 
If applicable, attach a copy of the Letter of Invitation, the Consent Form, the content of any  
telephone script, and any other material that will be utilized in the informed consent process.  
 
The participants involved in this study will be invited to participate in the study and will be asked to  
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contact the researcher for a brief telephone interview. Participants will be read an informed consent  
telephone script and if he/she agrees to participate he/she will be asked a few screening questions  
(e.g.,history of medication use, caffeine use, sleep patterns, head injury history, age, level of education, 
and gender). If participants meet inclusion criteria, they will be invited to participate in a testing session  
and a date/time will be scheduled. Participants will attend two sessions - one of which they will be asked to 
sign a written informed consent form (see Appendix) and pick up salivary sample collection materials  
and instructions (see Appendix) (this session should only take 10 minutes). The second session will 
consist of the data collection.  
 
 

18. Consent by an authorized party:  
 
If the participants are minors or for other reasons are not competent to consent, describe the proposed  
alternative source of consent, including any permission form to be provided to the person(s) providing the 
alternative consent.  
 
An individual will be presumed to be capable unless the person has been deemed to have incapacity.  
Both the host organization and/or host facility will know who has capacity (it is their  
responsibility). Should direct observation (e.g., the person is confused, disoriented, unable to  
make a decision, etc.) or information provided by caregivers/rehabilitation workers provide 
evidence of incapacity, then the individual's legally authorized substitute decision-maker or 
legal guardian will be contacted and/or otherwise the person will not participate in the study  
(e.g., similar to Ontario's Health Care Consent Act [HCCA]). All participant involvement in the  
study will be monitored by Dr. Dawn Good, Registered Psychologist who specializes in  
Neuropsychology, and particularly working with persons who have experienced ABI. All 
individuals will be reviewed for capacity through their host Association.  
 
 
 

19. Alternatives to prior individual consent:  
 
If obtaining individual participant consent prior to commencement of the research project is not  
appropriate for this research, please explain and provide details for a proposed alternative consent 
process.  
 
N/A  
 

20. Feedback to Participants:  
 
Explain what feedback/ information will be provided to the participants after participation in the project.  
This should include a more complete description of the purpose of the research, and access to the results 
of the research. Also, describe the method and timing for delivering the feedback.  
 
At the end of testing session, participants will be given a debriefing statement (see Appendix) and will 
also be given a verbal description of the study. The purpose of the study, the manipulation introduced  
(i.e., viewing of emotionally-arousing pictures), and a verification of the stabilization of their stress state  
(emotional and physical) will be discussed. It will be explained to participants that the heightened 
arousal induction was used in order to provide, or otherwise produce, a heightened level of stress  
vigilance which is the precise effect being investigated. All participants will be informed that the data 
collected will be summarized, used as thesis data, presented as a publishable report and conference  
study. All individual data will remain confidential and anonymous. Participants will be invited to view the  
results of the study by date of completion (September 2013) and may contact the investigators either  
directly or via e-mail. Contact information will be provided to the participant on the debriefing form should  
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the participant wish to contact the researchers at any time.  
 

21. Participant withdrawal:  
 

a) Describe how the participants will be informed of their right to withdraw from the project. Outline 
the procedures that will be followed to allow the participants to exercise this right.  
 

Participation in this study is voluntary. Participants can choose to withdraw any time during the  
telephone interview, brief instructional or experimental sessions. The participants will be informed of 
their freedom to withdraw in both the verbal and written informed consent processes (see Appendix).  
Also, the consent form will be read aloud to the participants to reiterate their freedom to withdraw without  
penalty. It will be explained that if the participant should choose to withdraw their participation, they will  
receive participation credit commensurate with their participation and their data will be destroyed and  
disposed of in a professional and confidential manner. Participants will be informed that he/she can  
verbally inform the researcher at any time during the sessions of their choice to withdraw participation. 
Furthermore, they will be reminded of the services available that they can consult should they have any 
questions (Brock University Counselling Services; Research Ethics Officer; Principal Investigator).  
 

b) Indicate what will be done with the participant's data should the participant choose to withdraw. 
Describe what, if any, consequences withdrawal might have on the participant, including any effect 
that withdrawal may have on participant compensation.  
 

If participants choose to withdraw, the researcher will provide them with a written debriefing form (see 
Appendix), and also answer any questions. If a participant withdraws at any time during the telephone 
screening, instructional or experimental sessions, any data collected from him or her will be destroyed  
(shredded; biological measures will be appropriately disposed) and not used in data analysis. If the 
participant choosing to withdraw is receiving research participation credit, the length of the student's  
participation will be credited for appropriate participation hours up to the maximum length of the study.  
 

SECTION E - CONFIDENTIALITY & ANONYMITY  
 
Confidentiality: information revealed by participants that holds the expectation of privacy. This means  
that all data collected will not be shared with anyone except the researchers listed on this application.  
 
Anonymity of data: information revealed by participants will not have any distinctive character or  
recognition factor, such that information can be matched (even by the researcher) to individual  
participants. Any information collected using audio-taping, video recording, or interview cannot be  
considered anonymous. Please note that this refers to the anonymity of the data itself and not the 
reporting of results.  
 
22. Given the definitions above:  
 
a) Will the data be treated as confidential?  Yes  No b) 
Are the data anonymous?  Yes  No  
 
c) Describe any personal identifiers that will be collected during the course of the research (e.g.,  
participant names, initials, addresses, birth dates, student numbers, organizational names and titles etc.).  
Indicate how personal identifiers will be secured and if they will be retained once data collection is 
complete.  
 

Participant names will be collected through the informed consent process, however, informed consent  
forms are kept entirely separate from collected data. All data collected (questionnaires, test forms, 
physiological measures) will be alphanumerically coded with no personal identifiers. There will be a  
master list to which only the principal investigators have access so that we are able to link the  
participant's data from multiple sessions (e.g., informed consent/info session to testing session) and  
 

 
 

Research Ethics Office  



 

 

from multiple sources (i.e., the saliva collections completed at home, in the lab, the physiological data,  
the computer responses, and the questionnaires). Informed consent forms will be retained for a period of 
five years after which time they will be shredded.  
 

d) If any personal identifiers will be retained once data collection is complete, provide a comprehensive 
rationale explaining why it is necessary to retain this information, including the retention of master lists 
that link participant identifiers with unique study codes and de-identified data.  
 

Master lists that link participant identifiers with study codes will be retained until all data has been 
analyzed. Master lists will be destroyed after such time.  
 

e) State who will have access to the data.  
 
Dr. Dawn Good (principal investigator), Julie Baker (principal student investigator), Sean Robb (student  
co-investigator) and research assistants associated with Dr. Good's laboratory will have access to the 
data. Only the principal investigators will have access to the participant identifier master list.  
 

f) Describe the procedures to be used to ensure anonymity of participants and/or confidentiality of data 
both during the conduct of the research and in the release of its findings.  
 
To insure confidentiality, informed consent forms will be kept separate from the data collected from the 
participants. Also, all data will be alphanumerically coded to ensure confidentiality. No information that  
could potentially reveal a participant's identity will be used in discussion, or in the reporting, of the  
findings. Participants will be informed that all data collected will be kept strictly confidential in a locked,  
safe lab to which only the principal investigator, student investigator and the research assistants will  
have access. To further ensure confidentiality, researchers and research assistants have signed 
confidentiality agreements (see Appendix).  
 

g) If participant anonymity and/or confidentiality is not appropriate to this research project, explain, in 
detail, how all participants will be advised that data will not be anonymous or confidential.  
 
Note that because participants are initially screened via telephone interview, the data is not considered  
to be anonymous. The researcher will code each telephone screening interview alphanumerically and  
should the participant meet the inclusion criteria and consent to participate, this code will be used for all  
future data collection references. During the consent and debriefing sessions, participants will be  
advised that while anonymity will not be preserved due to the fact that there will be a Master list advising  
the Principal Researchers of the participants' identity (having their name and their assigned  
alphanumeric code) due to the multiple contacts (phone, two test sessions) and multiple sources of data 
collection (home, lab; saliva collections, physiological measures, task performance), this list will be held in 
a separate, secure and locked location away from any data per se - with access restricted to only the 
Principal Investigators. During these times, the confidentiality of their data will be confirmed - that it will  
be secured, it will be coded alphanumerically in a database, and it will never be used individually, but 
instead will be used only within the context of group statistical findings.  
 

h) Explain how written records, video/audio tapes, and questionnaires will be secured, and provide  
details of their final disposal or storage, including how long they will be secured and the disposal method to 
be used.  
 
All raw data collected will be kept in the secure and locked file in the Principal Investigator's lab (PL  
621) for a period of five years. Note that saliva samples will be disposed of into the general waste  
system after enzyme-linked-immunoassays have been conducted. After the five year period, data will be 
shredded and/or destroyed.  
 

SECTION F -- SECONDARY USE OF DATA  
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23.  
a) Is it your intention to reanalyze the data for purposes other than described in this application?  

Yes  No  
 

b) Is it your intention to allow the study and data to be reanalyzed by colleagues, students, or other 
researchers outside of the original research purposes? If this is the case, explain how you will allow  
your participants the opportunity to choose to participate in a study where their data would be  
distributed to others (state how you will contact participants to obtain their re-consent)  
 

N/A  
 

c) If there are no plans to reanalyze the data for secondary purposes and, yet, you wish to keep the 
data indefinitely, please explain why.  
 

N/A  
 

SECTION G -- MONITORING ONGOING RESEARCH  
 
It is the investigator's responsibility to notify the REB using the "Renewal/Project Completed" 
form, when the project is completed or if it is cancelled.  
http://www.brocku.ca/researchservices/forms/index.php  
 
24. Annual Review and Serious Adverse Events (SAE):  
 
a) MINIMUM REVIEW REQUIRES THE RESEARCHER COMPLETE A "RENEWAL/PROJECT 
COMPLETED" FORM AT LEAST ANNUALLY.  
Indicate whether any additional monitoring or review would be appropriate for this project.  
 
Additional review may be required for this project depending on the subject response, but it is intended 
for the study to be completed by September 1, 2013. REB will be notified when the final research report 
is completed.  
 

*Serious adverse events (negative consequences or results affecting participants) must be reported to 
the Research Ethics Officer and the REB Chair, as soon as possible and, in any event, no more than 3 
days subsequent to their occurrence.  
 
25. COMMENTS  
 
If you experience any problems or have any questions about the Ethics Review Process at Brock  
University, please feel free to contact the Research Ethics Office at (905) 688-5550 ext 3035, or  
reb@brocku.ca  
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Principal Student Investigator:  
Julie Baker, Ph.D. Candidate  
Psychology Department  
Brock University  
St. Catharines, ON  
L2S 3A1  
js01cb@brocku.ca  
(905) 688-5550 x 3556  
 
Student Co-investigator:  
Sean Robb, M. A., Candidate  
Psychology Department, Brock University  
(905) 688-5550 x 3556  
 
INVITATION  

 
 
Principal Investigator:  
Dr. Dawn Good, Ph.D., C. Psych.  
Psychology Department & Centre for Neuroscience  
Brock University  
St. Catharines, ON  
L2S 3A1  
Dawn.good@brocku.ca  
(905) 688-5550 x 3556, 3869  
 
Student Co-investigator:  
Amanda George, B. A. Candidate  
Psychology Department, Brock University  
(905) 688-5550 x 3556  

You are invited to participate in a study that involves research. The purpose of this study is examine emotional  
experiences and emotional functioning and how these may contribute to differences in cognitive abilities or overall 
emotional functioning.  
 
WHAT'S INVOLVED  
Participation will take approximately 2.5 hours of your time. As a participant in this study we will ask you to be 
involved in providing us with physiological measures (i.e., saliva samples, measures of heart rate and skin response) 
and self-report measures (i.e., questionnaires) of emotional responses. We will ask you to meet with us for a brief 
instruction session to obtain saliva collection kits prior to your testing session. You will be provided with saliva 
sample kits to take home in order to provide two samples: one prior to bedtime on the night prior to your 
testing session, and another sample when you wake up in the morning on the day of your testing session. 
Instructions for providing the saliva samples will be provided - i.e., passively drool into a plastic tube. Please bring 
saliva samples to your testing session. We will be measuring hormones such as cortisol from your saliva samples.  
 
During the testing session, we will collect physiological measures of emotional responses which will be recorded via  
electrodes and other recording equipment. The application of the recording equipment will be described to you during  
the application process and will involve the placement of two electrodes on your fingers, placement of a pulse  
oximeter on your finger to record your heart rate, and respiration bands will be placed on your upper chest and lower  
abdomen. Your hands and the researcher's hands will be cleansed prior to, and after, electrode placement. Please 
advise the researcher if you have any skin sensitivity. In order to reduce physical contact between yourself and the 
researcher you will be asked to assist in the placement and adjustment of the physiological recording equipment.  
 
You will be asked to participate in cognitive tasks (e.g., paper and pencil tasks; computerized tasks), to view pictures  
on a computer and provide ratings of these pictures, and to complete questionnaires. Each task will be described in  
detail as they are introduced. You will be asked to complete tasks that involve memory abilities and cognitive skills  
(e.g., switching between two tasks, reading words aloud, drawing items on paper, and so forth). Two of the tasks will  
be viewed on a computer and will involve you making responses with a mouse. You will be asked to view and rate  
pictures that will include pleasant, unpleasant, and neutral scenes. You will also be asked to complete various  
questionnaires. Some of the questions are personal and sensitive in nature. You will be asked to provide background 
information about yourself such as sex, age, and level of education. Once you have completed the tasks, the specific 
purposes of the study will be explained to you by the researcher and you will be provided a debriefing form.  
 
POTENTIAL BENEFITS AND RISKS  
Possible benefits of participation include providing a better scientific understanding of factors involved in emotional 
experiences. There also may be risks associated with participation Although there are no foreseeable risks for 
participating in this study it is possible that you may feel uncomfortable during the testing session. For example, you 
may experience test performance anxiety or you may feel uncomfortable when viewing pictures of an unpleasant 
nature. You are welcome to ask the researcher questions, or you may contact any of the counselling contact services 
(listed on your debriefing form), or contact the principal investigator, Dr. Dawn Good, Registered Psychologist, should 
you choose.  



 

 

CONFIDENTIALITY  
Your name will be associated only with this form. All information collected will be confidential and kept separately 
from this consent form, and coded by a number assignment. A master list will be kept linking data codes to individuals 
until data collection for the study is complete (September 2013) after which time the master list will be destroyed. 
Only Dr. Dawn Good and the principal student investigator will have access to this the master list. The master list is 
necessary to link participant's data as we are using clinical measures that may require follow-up if scores on any 
measures indicate that the individual is at risk of self-harm we will need to follow appropriate procedures which 
involve contacting the participant. Other task data and notes taken will be kept in a locked, secure lab at all times and 
will be destroyed after 5 years. Only Julie Baker, Dr. Good, and research assistants will have access to this data. All 
research assistants have completed confidentiality agreements. In addition, any information gathered from this study 
that is presented at conferences or is published is summarized and group results (rather than individuals) are 
emphasized which preserves anonymity.  
 
VOLUNTARY PARTICIPATION  
Participation in this study is voluntary. If you wish, you may decline to answer any questions or participate in any  
component of the study. Further, you may decide to withdraw from this study at any time and may do so without any 
penalty or loss of benefits to which you are entitled. If you choose to withdraw at any time please verbally inform the 
researcher.  
 
PUBLICATION OF RESULTS  
This study forms part of a Ph.D. research project, a Master's project, and an undergraduate thesis. Results of this 
study may be published in professional journals and presented at conferences. Feedback about this study will be  
available after September 2013. Please contact the principal faculty or student investigators (Dr. Dawn Good or Julie 
Baker) via the contact information provided on this form.  
 
CONTACT INFORMATION AND ETHICS CLEARANCE  
If you have any questions about this study or require further information, please contact Dr. Dawn Good or Julie  
Baker at Brock University using the contact information provided above. This study has been reviewed and received 
ethics clearance through the Research Ethics Board at Brock University. If you have any comments or  
concerns about your rights as a research participant, please contact the Research Ethics Office at (905) 688-5550 
Ext. 3035, reb@brocku.ca.  
 
Thank you for your assistance in this project. Please keep a copy of this form for your records.  
 
CONSENT FORM  
I agree to participate in this study described above. I have made this decision based on the information I have read in  
the Information-Consent Letter. I have had the opportunity to receive any additional details I wanted about the study 
and understand that I may ask questions in the future. I understand that I may withdraw this consent at any time.  
 
Name: __________________________________________________________________  
 
Signature: __________________________________________________ Date: ___________________________  
 
 
[ ] I acknowledge that I am participating in this study for a maximum of 2.5 research participation hours in a  
psychology course (see below)  
 
COURSE (please circle only one course):  
 
PSYC  1F90  2P12  2P20  2F23  2P36  2P37 3P39  Other:  
 

O
R  

 
[ ] I acknowledge that I am receiving monetary compensation for participation in this study  
 
[ ] I have explained this study to the participant  
 
Researcher's signature  Date:  
 

THANK YOU FOR YOUR TIME AND PARTICIPATION IN THIS STUDY!!!!  



 

 

Emotion & Cognition Study  
 

 
DEBRIEFING FORM  
 

PURPOSE  
Thank you for your participation in this research study. As you are aware, this research study was  
conducted by Dr. Dawn Good, and her students, in the Psychology Department at Brock University. The 
purpose of this study is to examine individual differences in emotional experience and how this may vary 
for persons with a history of head trauma relative to persons with no history of head trauma. We are also 
examining stress responses of persons with and without a history of head trauma. To induce heightened 
arousal, you were asked to view and rate pictures of an unpleasant, pleasant, or neutral nature. We will 
investigate responses to life stressors and laboratory stressors as a function of a history of head trauma  
via physiological (i.e., cortisol response, electrodermal activation, and heart rate) and self-reported  
indices (e.g., questionnaires). Cortisol, a stress hormone measured from saliva, is hypothesized to be 
different for those with and without a history of head trauma. We are collecting data from persons who 
have no history of head trauma and those with mild, moderate, or severe traumatic brain injury. We did  
not tell you about our interest in whether or not there is any indication of you having sustained a previous 
head trauma (e.g., concussion, moderate brain injury) because there is published research that suggests  
that informing participants that head trauma is a study variable of interest can influence subsequent 
performance (Suhr & Gunstad, 2002; 2005) i.e., may negatively affect how individuals approach and  
respond to task demands. As a result, we did not advertise our interest in a history of head trauma, nor 
tell you about it prior to your participation.  
 

BACKGROUND  
Previous research has shown that between 25% and 45% of undergraduate students have sustained a  
mild head injury. Research from our lab (Brock University Neuropsychology Cognitive Research Lab) has  
shown that individuals with mild head injury demonstrate 'underarousal' (i.e., they are less stressed)  
relative to their peers, despite reporting increased life stressors such as financial or relationship  
difficulties. Our research has suggested that when higher levels of arousal are reported by individuals 
with mild head injury, their cognitive performance has shown to be optimally enhanced. Thus, we are 
examining whether certain stimuli can modify emotional arousal levels in persons who have/have not 
sustained previous head trauma and if cognitive performance can be modified.  
 
Therefore we modified arousal through a 'stressor' - type task in which we asked you to view and rate 
pictures that were highly arousing. You completed various neuropsychological tests and psychological  
questionnaires were administered to examine cognitive, emotional, social, personality and health factors. 
For example, the questionnaires you completed provided indices of anxiety, optimism, empathic abilities, 
emotional-social capabilities, and morningness-eveningness traits. The standardized neuropsychological  
tests chosen for this study were subtests of the Wechsler Memory Scale-IV (2009), Wechsler Adult  
Intelligence Scale - IV (2009), the Delis Kaplan Executive Function System (2002), and the Iowa 
Gambling Task (Bechara et al., 1994). These tests were used as they involve executive functions  
including abstract reasoning, decision making, memory, cognitive flexibility, attention, and planning.  
 

FINAL REPORT  
Your participation is important for us to be able to understand the relationships between subtle brain  
functions and everyday responses to social/environmental stimuli. This research will improve the 
understanding of emotional functioning of persons with and without a history of neural disruption,  
particularly with respect to stress responses, and has implications for clinical practice in the fields of 
neuropsychology and rehabilitative medicine.  



 

 

You are invited to view the results of the study by its completion (September, 2013). Findings from this  
research study form parts of a Ph.D. thesis, a M.A. thesis, as well as an undergraduate research project  
and may be presented at conferences and/or in published format. Group, not individual, responses will be 
emphasized. It is important that you not discuss the procedures of participating in this study (until the end  
of term academic year 2012-2013) with other students or friends as it may effect our results. We 
appreciate your cooperation.  
 
If you are interested in obtaining a copy of the final report of this study, contact the NCR lab at Brock  
University (905) 688-5550 ext. 3556, or 5523 - the lab offices of the primary investigator, Dr. Dawn Good 
(dawn.good@brocku.ca).  
 

CONTACT  
If you have any questions regarding this study, its purpose or procedures, please feel free to contact us!  
 
If you experienced any negative emotions as a result of participating in this research study and wish to 
speak with a counsellor please contact: Brock University Counselling Services, ST 400, (905) 688- 
5550 extension 3240 or the principal investigator Dr. Dawn Good, Registered Psychologist.  
 
Should you like more information regarding head trauma please visit the following websites: The  
Ontario Brain Injury Association (OBIA): http://www.obia.ca/ , The Ontario Neurotrauma Foundation 
(ONF): http://www.onf.org/ or the Brain Injury Association of Niagara (BIAN): www.bianiagara.org).  
 
If you feel you have not been treated according to the descriptions in this form, or your rights as a  
participant in research have been violated during the course of this project, you may contact the 
Research Ethics Officer at (905) 688-5550, extension 3035, please cite REB  
 

Thank you again for your time and participating in this study!!!  
If you have any questions or concerns please feel free to contact us at the Brock University  

Neuropsychology Cognitive Research Lab:  
 
 

Principal Student Investigator:  
Julie Baker, Ph.D. Candidate  
Department of Psychology,  
Brock University, St. Catharines, ON L2S 3A1  
js01cb@brocku.ca  
(905) 688-5550 ext. 3556  
 
Student Co-investigators: Sean Robb, M.A. Candidate  
Amanda George, B.A. Psychology Candidate  
Department of Psychology,  
Brock University, St. Catharines, ON L2S 3A1  
(905) 688-5550 ext. 3556  
 
 
 
 
 
Principal Investigator:  
Dr. Dawn Good, Ph.D., C. Psych.  
Department of Psychology, Centre for Neuroscience  
Brock University, St. Catharines, ON L2S 3A1  
Dawn.Good@brocku.ca  
(905) 688-5550, ext. 3869  



 

 

For	
  research	
  investigating	
  
	
  

EMOTION	
  AND	
  COGNITION	
  
	
  

As	
  a	
  participant	
  you	
  will	
  be	
  eligible	
  for:	
  
2.5	
  research	
  participation	
  hours	
  or	
  	
  

monetary	
  compensation	
  
	
  

Participation	
  in	
  this	
  study	
  will	
  involve:	
  
§ Completion	
  of	
  questionnaires	
  and	
  cognitive	
  tasks	
  during	
  
different	
  arousal	
  states	
  (i.e.	
  increased	
  vigilance)	
  

§ Physiological	
  measurement	
  recording	
  such	
  as	
  heart	
  rate,	
  
blood	
  pressure,	
  and	
  electrodermal	
  response.	
  Saliva	
  samples	
  
will	
  be	
  collected.	
  

§ To	
  participate	
  in	
  this	
  study	
  you	
  must	
  be	
  fluent	
  in	
  English	
  and	
  
meet	
  eligibility	
  requirements	
  via	
  a	
  short	
  telephone	
  interview.	
  

For	
  more	
  information	
  or	
  to	
  participate	
  please	
  contact:	
  	
  
Julie	
  Baker	
  

Ph.D.	
  Candidate	
  	
  	
  	
  	
  	
  	
  	
  
Psychology	
  Department	
  	
  

(js01cb@brocku.ca)	
  
	
  

Supervisor:	
  Dr.	
  Dawn	
  Good	
  Dawn.Good@brocku.ca	
  (ext.	
  3556)	
  
This	
  study	
  has	
  been	
  reviewed	
  by	
  and	
  received	
  ethics	
  clearance	
  through	
  the	
  Office	
  of	
  Research	
  

Ethics,	
  Brock	
  University	
  905-­‐688-­‐5550	
  ext.	
  3035	
  
	
  
	
  
	
  



 

 

	
  
  

 E
m

ot
io

n 
an

d 
C

og
ni

tio
n 

St
ud

y 
 

C
al

l e
xt

. 3
55

6 
fo

r J
ul

ie
 B

ak
er

  
Em

ai
l: 

js
01

cb
@

br
oc

ku
.c

a 
 

E
m

ot
io

n 
an

d 
C

og
ni

tio
n 

St
ud

y 
C

al
l e

xt
. 3

55
6 

fo
r J

ul
ie

 B
ak

er
  

Em
ai

l: 
js

01
cb

@
br

oc
ku

.c
a 

 
  E

m
ot

io
n 

an
d 

C
og

ni
tio

n 
St

ud
y 

C
al

l e
xt

. 3
55

6 
fo

r J
ul

ie
 B

ak
er

  
 E

m
ai

l: 
js

01
cb

@
br

oc
ku

.c
a 

 
 E

m
ot

io
n 

an
d 

C
og

ni
tio

n 
St

ud
y 

C
al

l e
xt

. 3
55

6 
fo

r J
ul

ie
 B

ak
er

  
Em

ai
l: 

js
01

cb
@

br
oc

ku
.c

a 
 

 E
m

ot
io

n 
an

d 
C

og
ni

tio
n 

St
ud

y 
C

al
l e

xt
. 3

55
6 

fo
r J

ul
ie

 B
ak

er
  

Em
ai

l: 
js

01
cb

@
br

oc
ku

.c
a 

 
  E

m
ot

io
n 

an
d 

C
og

ni
tio

n 
St

ud
y 

C
al

l e
xt

. 3
55

6 
fo

r J
ul

ie
 B

ak
er

 
 E

m
ai

l: 
js

01
cb

@
br

oc
ku

.c
a 

 
 E

m
ot

io
n 

an
d 

C
og

ni
tio

n 
St

ud
y 

C
al

l e
xt

. 3
55

6 
fo

r J
ul

ie
 B

ak
er

  
 E

m
ai

l: 
js

01
cb

@
br

oc
ku

.c
a 

 
 E

m
ot

io
n 

an
d 

C
og

ni
tio

n 
St

ud
y 

C
al

l e
xt

. 3
55

6 
fo

r J
ul

ie
 B

ak
er

  
Em

ai
l: 

js
01

cb
@

br
oc

ku
.c

a 
 

 E
m

ot
io

n 
an

d 
C

og
ni

tio
n 

St
ud

y 
C

al
l e

xt
. 3

55
6 

fo
r J

ul
ie

 B
ak

er
  

Em
ai

l: 
js

01
cb

@
br

oc
ku

.c
a 

 
 



 

 

Everyday Living Questionnaire - Revised (2012) 

Please fill in or circle an answer for each of the following. If you have any questions regarding 
clarification please ask the researcher. Thank you for your time and effort: 

1. How	
  old	
  are	
  you?	
  _____	
  
2. Gender?	
  M____	
  	
  F____	
  
3. What	
  is	
  the	
  highest	
  level	
  of	
  education	
  you	
  have	
  presently	
  completed?	
  

a. Less	
  than	
  high	
  school	
  
b. High	
  School/Grade	
  12	
  
c. College	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  5+	
  (Years)	
  
d. University	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  5+	
  (Years)	
  

4. What	
  is	
  the	
  highest	
  level	
  of	
  education	
  your	
  father	
  has	
  received?	
  
a. Less	
  than	
  high	
  school	
  
b. High	
  School/Grade	
  12	
  
c. College	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  5+	
  (Years)	
  
d. University	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  5+	
  (Years)	
  

5. What	
  is	
  the	
  highest	
  level	
  of	
  education	
  your	
  mother	
  has	
  received?	
  
a. Less	
  than	
  high	
  school	
  
b. High	
  School/Grade	
  12	
  
c. College	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  5+	
  (Years)	
  
d. University	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  5+	
  (Years)	
  

6. What	
  is	
  the	
  overall	
  average	
  income	
  your	
  parents/guardians	
  (If	
  divorced,	
  income	
  of	
  both	
  
parents	
  combined)?	
  

a. Under	
  $25,000	
  
b. $25,000	
  -­‐	
  $49,999	
  
c. $50,000	
  -­‐	
  $74,999	
  
d. $75,000	
  -­‐	
  $99,999	
  
e. $100,000	
  -­‐	
  $124,999	
  
f. $125,000	
  -­‐	
  $149,000	
  
g. $150,000	
  or	
  more	
  

7. What	
  ethnicity	
  do	
  you	
  identify	
  most	
  with:	
  
a. Hispanic	
  
b. Caucasian	
  
c. European	
  
d. African	
  
e. Chinese	
  
f. East	
  Indian	
  
g. West	
  Indian	
  
h. Japanese	
  
i. Other	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Specify:	
  _________________	
  
8. In	
  elementary	
  school	
  what	
  were	
  your	
  career	
  goals	
  (what	
  did	
  you	
  want	
  to	
  be	
  when	
  you	
  grow	
  

up)?	
  ______________________________________________________________________________	
  



 

 

9. In	
  high	
  school	
  what	
  were	
  your	
  career	
  goals?	
  
______________________________________________________________________________	
  

10. Have	
  you	
  switched	
  your	
  major	
  during	
  university?	
  	
  	
  Yes	
  	
  	
  	
  	
  No	
  
If	
  yes,	
  please	
  describe	
  the	
  change	
  __________________________________________________	
  

11. What	
  is	
  your	
  major	
  affiliated	
  with	
  (eg,	
  Social	
  Science,	
  Humanities,	
  etc.)	
  
a. Social	
  Science	
  
b. Humanities	
  
c. Maths	
  and	
  Sciences	
  
d. Education	
  
e. Applied	
  Health	
  Science	
  
f. Business	
  
g. Undeclared	
  

12. Are	
  you	
  currently	
  pursuing	
  an	
  undergraduate	
  or	
  graduate	
  degree?	
  
a. Undergraduate	
  
b. Graduate	
  

13. If	
  you	
  answered	
  ‘a’	
  to	
  question	
  12,	
  are	
  you	
  planning	
  on	
  pursuing	
  graduate	
  studies	
  after	
  
your	
  undergraduate	
  degree?	
  

a. Yes	
  
b. No	
  
c. Not	
  sure	
  yet	
  

14. What	
  do	
  you	
  currently	
  hope	
  to	
  achieve	
  with	
  your	
  education/what	
  career	
  do	
  you	
  want	
  to	
  
pursue?	
  
_________________________________________________________________________________________________________
___________________________________________________	
  

15. Are	
  you	
  currently	
  working	
  while	
  attending	
  school?	
  	
  	
  Yes	
  	
  	
  	
  	
  No	
  
16. If	
  you	
  answered	
  yes	
  to	
  question	
  15,	
  how	
  many	
  hours	
  per	
  week	
  do	
  you	
  work?	
  

a. Less	
  than	
  5	
  
b. 6	
  to	
  10	
  
c. 11	
  to	
  15	
  
d. 16	
  to	
  20	
  
e. More	
  than	
  20	
  per	
  week	
  

17. If	
  you	
  answered	
  yes	
  to	
  question	
  15,	
  why	
  do	
  you	
  work	
  during	
  school?	
  
a. Need	
  the	
  money	
  
b. Because	
  you	
  enjoy	
  the	
  job	
  
c. To	
  fill	
  spare	
  time	
  
d. Other	
  __________________________________________________	
  

18. Do	
  you	
  work	
  a	
  summer	
  job	
  when	
  school	
  is	
  not	
  in	
  session?	
  	
  	
  Yes	
  	
  	
  	
  	
  No	
  
19. If	
  you	
  answered	
  yes	
  to	
  question	
  18,	
  how	
  many	
  years	
  have	
  you	
  had	
  this	
  job?	
  ________________	
  
20. Which	
  hand	
  is	
  your	
  dominant	
  hand	
  (i.e.	
  are	
  you	
  right	
  or	
  left-­‐handed)?	
  

a. Right	
  
b. Left	
  
c. Both	
  

21. Have	
  you	
  ever	
  been	
  hospitalized	
  for	
  (circle	
  any	
  that	
  apply):	
  



 

 

a. Fractures	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
b. Illness	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
c. Surgery	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
d. Neurological	
  Complications	
  	
  	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
e. Other	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  

If	
  you	
  answered	
  Y	
  to	
  any	
  of	
  the	
  above,	
  briefly	
  please	
  provide	
  details	
  (e.g.	
  How	
  old	
  
were	
  you?	
  How	
  did	
  it	
  happen)	
  
_________________________________________________________________________________________________
_________________________________________________________________________________________________
______________________	
  

22. Have	
  you	
  ever	
  been	
  diagnosed	
  with	
  a	
  neurological	
  condition?	
  	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
23. Have	
  you	
  ever	
  been	
  diagnosed	
  with	
  a	
  psychiatric	
  condition?	
  	
  	
  	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
24. Are	
  you	
  currently	
  taking	
  any	
  prescribed	
  medications	
  for	
  a	
  neurological	
  or	
  psychiatric	
  

condition?	
  	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
a. If	
  Yes,	
  if	
  you	
  wish	
  to	
  disclose	
  what	
  medications	
  please	
  do	
  so:	
  ______________________	
  

25. 6.	
  [If	
  female]	
  Are	
  you	
  currently	
  taking	
  contraceptive	
  pills	
  or	
  contraceptive	
  injections	
  (e.g.,	
  
birth	
  control	
  pill	
  or	
  Depo-­‐Provera)?	
  	
  Y	
  [	
  	
  ]	
  	
  N	
  	
  [	
  	
  ]	
  
	
  

26. Have	
  you	
  ever	
  sustained	
  an	
  injury	
  to	
  your	
  head	
  with	
  a	
  force	
  sufficient	
  to	
  alter	
  your	
  
consciousness	
  (e.g.	
  dizziness,	
  vomiting,	
  seeing	
  stars,	
  or	
  loss	
  of	
  consciousness,	
  or	
  confusion)?	
  	
  	
  	
  	
  	
  	
  
Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
[If	
  you	
  answer	
  No	
  to	
  this	
  question	
  you	
  may	
  move	
  ahead	
  to	
  question	
  40]	
  

If yes to question 26, please answer the following questions (if you have had more than one 
injury, please refer to the most recent time you injured your head): 

27. If	
  you	
  answered	
  yes	
  to	
  question	
  26,	
  did	
  you	
  experience	
  these	
  symptoms	
  for	
  more	
  than	
  20	
  
minutes?	
  	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  

28. Did	
  you	
  experience	
  a	
  loss	
  of	
  consciousness	
  associated	
  with	
  the	
  head	
  injury?	
  	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
i. If	
  so,	
  how	
  long	
  was	
  the	
  loss	
  of	
  consciousness?	
  

1. [	
  	
  	
  ]	
  <5	
  minutes	
  
2. [	
  	
  	
  ]	
  <30	
  minutes	
  
3. [	
  	
  	
  ]	
  <24	
  hours	
  
4. [	
  	
  	
  ]	
  <1	
  week	
  
5. [	
  	
  	
  ]	
  <1	
  month	
  
6. [	
  	
  	
  ]	
  >1	
  month	
  

29. If	
  applicable,	
  where	
  did	
  you	
  strike	
  your	
  head?	
  
a. Front	
  of	
  the	
  head	
  
b. Right	
  side	
  of	
  the	
  head	
  
c. Left	
  side	
  of	
  the	
  head	
  
d. Other	
  	
  	
  	
  	
  Provide	
  brief	
  details:	
  _______________________________________________	
  
e. I	
  can’t	
  remember	
  

30. How	
  did	
  you	
  injure	
  your	
  head?	
  
i. [	
  	
  	
  ]	
  Motor	
  vehicle	
  collision	
  



 

 

ii. [	
  	
  	
  ]	
  Sports-­‐related	
  injury	
  
iii. [	
  	
  	
  ]	
  Falling	
  
iv. [	
  	
  	
  ]	
  Other	
  	
  	
  Please	
  Specify:	
  ____________________________________________	
  

31. Please	
  briefly	
  describe	
  the	
  incident	
  during	
  which	
  the	
  head	
  injury	
  occurred:	
  
_________________________________________________________________________________________________________
_________________________________________________________________________________________________________
________________________	
  

32. Please	
  answer	
  the	
  following	
  questions:	
  
a. Did	
  the	
  head	
  injury	
  result	
  in	
  a	
  concussion?	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
b. Did	
  it	
  require	
  stitches?	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
c. Did	
  you	
  receive	
  medical	
  treatment	
  for	
  your	
  injury?	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
d. Did	
  you	
  stay	
  overnight	
  at	
  a	
  medical	
  care	
  facility?	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
e. Approximately	
  how	
  old	
  were	
  you	
  at	
  the	
  time?	
  	
  	
  _____	
  
f. How	
  many	
  months	
  or	
  years	
  have	
  passed	
  since	
  you	
  hit	
  your	
  head?	
  _____	
  

33. Have	
  you	
  sustained	
  more	
  than	
  one	
  injury	
  to	
  your	
  head	
  with	
  a	
  force	
  sufficient	
  to	
  alter	
  your	
  
consciousness	
  (e.g.	
  dizziness,	
  vomiting,	
  seeing	
  stars,	
  or	
  loss	
  of	
  consciousness,	
  or	
  confusion)?	
  	
  	
  	
  	
  	
  	
  	
  
Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  

34. If	
  you	
  answered	
  yes	
  to	
  question	
  33,	
  did	
  you	
  experience	
  these	
  symptoms	
  for	
  more	
  than	
  20	
  
minutes?	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  

If you responded yes to question 33, please answer the following with respect to your least 
recent head injury: 

35. Did	
  you	
  experience	
  a	
  loss	
  of	
  consciousness	
  associated	
  with	
  the	
  head	
  injury?	
  	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
i. If	
  so,	
  how	
  long	
  was	
  the	
  loss	
  of	
  consciousness?	
  

1. [	
  	
  	
  ]	
  <5	
  minutes	
  
2. [	
  	
  	
  ]	
  <30	
  minutes	
  
3. [	
  	
  	
  ]	
  <24	
  hours	
  
4. [	
  	
  	
  ]	
  <1	
  week	
  
5. [	
  	
  	
  ]	
  <1	
  month	
  
6. [	
  	
  	
  ]	
  >1	
  month	
  

36. If	
  applicable,	
  where	
  did	
  you	
  strike	
  your	
  head?	
  
a. Front	
  of	
  the	
  head	
  
b. Right	
  side	
  of	
  the	
  head	
  
c. Left	
  side	
  of	
  the	
  head	
  
d. Other	
  	
  	
  	
  	
  Provide	
  brief	
  details:	
  _______________________________________________	
  
e. I	
  can’t	
  remember	
  

37. How	
  did	
  you	
  injure	
  your	
  head?	
  
i. [	
  	
  	
  ]	
  Motor	
  vehicle	
  collision	
  
ii. [	
  	
  	
  ]	
  Sports-­‐related	
  injury	
  
iii. [	
  	
  	
  ]	
  Falling	
  
iv. [	
  	
  	
  ]	
  Other	
  	
  	
  Please	
  Specify:	
  ____________________________________________	
  

38. Please	
  briefly	
  describe	
  the	
  incident	
  during	
  which	
  the	
  head	
  injury	
  occurred:	
  
_________________________________________________________________________________________________________



 

 

_________________________________________________________________________________________________________
________________________	
  

39. Please	
  answer	
  the	
  following	
  questions:	
  
a. Did	
  the	
  head	
  injury	
  result	
  in	
  a	
  concussion?	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
b. Did	
  it	
  require	
  stitches?	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
c. Did	
  you	
  receive	
  medical	
  treatment	
  for	
  your	
  injury?	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
d. Did	
  you	
  stay	
  overnight	
  at	
  a	
  medical	
  care	
  facility?	
  	
  	
  Y	
  	
  	
  	
  	
  	
  	
  	
  N	
  
e. Approximately	
  how	
  old	
  were	
  you	
  at	
  the	
  time?	
  	
  	
  _____	
  
f. How	
  many	
  months	
  or	
  years	
  have	
  passed	
  since	
  you	
  hit	
  your	
  head?	
  _____	
  

**********If you were instructed to move ahead to question 40 please begin here********** 

40. Have	
  you	
  ever	
  experienced	
  any	
  other	
  neural	
  trauma	
  (e.g.	
  stroke,	
  anoxia)?	
  	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
a. If	
  yes,	
  please	
  explain	
  

_________________________________________________________________________________________________
_______________________________________________	
  

41. Do	
  you	
  smoke	
  cigarettes?	
  	
  	
  	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
a. If	
  yes,	
  approximately	
  how	
  many	
  a	
  day?	
  _____	
  

42. Do	
  you	
  regularly	
  engage	
  in	
  consuming	
  alcohol?	
  	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
a. If	
  yes,	
  how	
  many	
  drinks	
  per	
  week	
  do	
  you	
  consume?	
  _____	
  
b. On	
  average	
  how	
  many	
  drinks	
  would	
  you	
  consume	
  in	
  one	
  outing?	
  _____	
  

43. Do	
  you	
  engage	
  in	
  recreational	
  drug	
  use	
  (e.g.	
  smoke	
  marijuana,	
  drop	
  ecstasy,	
  etc.)?	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
44. Did	
  you	
  consume	
  caffeine	
  today	
  (e.g.	
  coffee,	
  tea,	
  energy	
  drink,	
  chocolate)?	
  	
  Y	
  	
  	
  	
  	
  N	
  

a. If	
  yes,	
  how	
  much?	
  
	
  	
  	
  	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  	
  	
  	
  more	
  than	
  3	
  

b. If	
  yes,	
  how	
  much	
  time	
  has	
  passed	
  since	
  you	
  last	
  consumed	
  caffeine	
  today?	
  
	
  	
  	
  	
  	
  Less	
  than	
  1	
  hour	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  More	
  than	
  1	
  hour	
  

45. Do	
  you	
  have	
  sensitivity	
  to	
  perfume	
  or	
  scents?	
  	
  	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
If	
  yes,	
  please	
  rate	
  your	
  sensitivity:	
  
Not	
  at	
  all	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Very	
  
	
  	
  	
  	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  5	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  6	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  7	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  8	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  9	
  

46. Do	
  you	
  have	
  a	
  valid	
  driver’s	
  license?	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
a. If	
  yes,	
  how	
  long	
  have	
  you	
  had	
  a	
  driver’s	
  license?	
  	
  1-­‐3	
  years	
  	
  	
  	
  	
  4-­‐6	
  years	
  	
  	
  	
  	
  7+	
  years	
  

47. Do	
  you	
  wear	
  glasses	
  or	
  contacts?	
  	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
48. Do	
  you	
  live:	
  	
  	
  	
  	
  on	
  your	
  own	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  roommates	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  other	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  parents/guardians	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  partner	
  
49. During	
  elementary	
  school,	
  what	
  were	
  your	
  average	
  grades?	
  

a. A-­‐	
  to	
  A+	
  
b. B-­‐	
  to	
  B+	
  
c. C-­‐	
  to	
  C+	
  
d. D-­‐	
  to	
  D+	
  
e. Other	
  _________________________	
  

50. During	
  high	
  school,	
  what	
  were	
  your	
  average	
  grades?	
  
a. A-­‐	
  to	
  A+	
  



 

 

b. B-­‐	
  to	
  B+	
  
c. C-­‐	
  to	
  C+	
  
d. D-­‐	
  to	
  D+	
  
e. Other	
  _________________________	
  

51. Currently	
  in	
  University,	
  what	
  are	
  your	
  average	
  grades?	
  
a. 90	
  to	
  100	
  
b. 80	
  to	
  89	
  
c. 70	
  to	
  79	
  
d. 60	
  to	
  69	
  
e. 50	
  to	
  59	
  
f. Other	
  _________________________	
  

52. How	
  many	
  university	
  credits	
  are	
  you	
  taking	
  this	
  semester?	
  
0	
  	
  	
  	
  	
  0.5	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  1.5	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  2.5	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  3.5	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  4.5	
  	
  	
  	
  	
  5	
  	
  	
  	
  	
  5.5	
  	
  	
  	
  	
  6	
  

53. How	
  many	
  hours	
  per	
  week	
  (on	
  average)	
  do	
  you	
  attend	
  lectures/seminars/tutorials?	
  
Less	
  than	
  5	
  	
  	
  	
  	
  6	
  –	
  9	
  	
  	
  	
  	
  10	
  –	
  12	
  	
  	
  	
  	
  13	
  –	
  16	
  	
  	
  	
  	
  17	
  –	
  20	
  	
  	
  	
  	
  21+	
  

54. How	
  many	
  hours	
  per	
  week	
  (on	
  average)	
  do	
  you	
  spend	
  doing	
  course	
  readings	
  for	
  
lecture/seminar/tutorial?	
  
Less	
  than	
  3	
  	
  	
  	
  	
  4-­‐6	
  	
  	
  	
  	
  7-­‐9	
  	
  	
  10+	
  

55. How	
  many	
  hours	
  per	
  week	
  (on	
  average)	
  do	
  you	
  spend	
  doing	
  homework/assignments	
  for	
  
lecture/seminar/tutorial?	
  
Less	
  than	
  3	
  	
  	
  	
  	
  4-­‐6	
  	
  	
  	
  	
  7-­‐9	
  	
  	
  10+	
  

56. On	
  a	
  scale	
  of	
  1	
  to	
  9	
  rate	
  your	
  enjoyment	
  of	
  academics:	
  
Not	
  at	
  all	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Very	
  
	
  	
  	
  	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  5	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  6	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  7	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  8	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  9	
  

57. Have	
  you	
  ever	
  received	
  any	
  extra	
  assistance	
  during	
  your	
  educational	
  history?	
  	
  	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
Please	
  circle	
  any	
  that	
  apply	
  and	
  indicate	
  when	
  you	
  received	
  the	
  assistance:	
  
E	
  =	
  Elementary	
  school	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  H	
  =	
  High	
  school	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  U	
  =	
  University	
  

a. Learning	
  resource	
  teacher	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  E	
  	
  	
  	
  	
  	
  	
  	
  H	
  	
  	
  	
  	
  	
  	
  	
  U	
  
b. Tutor	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  E	
  	
  	
  	
  	
  	
  	
  	
  H	
  	
  	
  	
  	
  	
  	
  	
  U	
  
c. Educational	
  assistant	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  E	
  	
  	
  	
  	
  	
  	
  	
  H	
  	
  	
  	
  	
  	
  	
  	
  U	
  
d. Speech	
  language	
  pathologist	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  E	
  	
  	
  	
  	
  	
  	
  	
  H	
  	
  	
  	
  	
  	
  	
  	
  U	
  
e. Occupational	
  therapist	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  E	
  	
  	
  	
  	
  	
  	
  	
  H	
  	
  	
  	
  	
  	
  	
  	
  U	
  
f. Physical	
  therapist	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  E	
  	
  	
  	
  	
  	
  	
  	
  H	
  	
  	
  	
  	
  	
  	
  	
  U	
  
g. Other:	
  Please	
  Specify	
  ___________________________________	
  E	
  	
  	
  	
  	
  	
  	
  	
  H	
  	
  	
  	
  	
  	
  	
  	
  U	
  

58. Have	
  you	
  ever	
  been	
  diagnosed	
  or	
  classified	
  as	
  having	
  a	
  Learning	
  Disorder?	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
59. Do	
  you	
  consider	
  yourself	
  a	
  musician?	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
60. Have	
  you	
  ever	
  considered	
  yourself	
  to	
  be	
  a	
  musician?	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
61. If	
  you	
  answered	
  yes	
  to	
  either	
  question	
  41	
  or	
  42,	
  did	
  you	
  play/perform:	
  

a. Professionally	
  
b. Recreationally	
  

62. If	
  you	
  answered	
  yes	
  to	
  either	
  question	
  X	
  or	
  X,	
  how	
  long	
  did	
  you	
  play/perform	
  for?	
  _________	
  
63. What	
  age	
  did	
  you	
  start	
  playing/performing	
  at:	
  	
  	
  _____________	
  years	
  
64. How	
  often	
  do	
  you	
  listen	
  to	
  music?	
  	
  _______	
  hours	
  per	
  week	
  



 

 

65. Please	
  indicate	
  the	
  type	
  of	
  music	
  you	
  listen	
  to	
  most	
  often	
  (can	
  circle	
  more	
  than	
  one):	
  
a. Country	
  
b. Classical	
  
c. Rock	
  
d. R&B	
  
e. Blues	
  
f. Independent	
  
g. Jazz	
  
h. Pop	
  
i. Electronic	
  (house/dance)	
  
j. Folk	
  
k. Opera	
  
l. Other:	
  	
  Provide	
  brief	
  details:	
  ________________________________________________	
  

66. On	
  a	
  scale	
  of	
  1	
  to	
  9	
  rate	
  your	
  enjoyment	
  of	
  your	
  life	
  situation	
  
Not	
  at	
  all	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Very	
  
	
  	
  	
  	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  5	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  6	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  7	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  8	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  9	
  

67. On	
  a	
  scale	
  of	
  1	
  to	
  9	
  how	
  stressful	
  would	
  you	
  rate	
  your	
  day-­‐to-­‐day	
  life:	
  
Not	
  at	
  all	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Very	
  
	
  	
  	
  	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  5	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  6	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  7	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  8	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  9	
  

68. Do	
  you	
  consider	
  yourself	
  to	
  be	
  an	
  athlete?	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
69. What	
  extracurricular	
  sport(s)	
  did	
  you	
  play	
  in:	
  

a. Elementary	
  school:	
  
i. Please	
  describe	
  (e.g.	
  skating,	
  baseball,	
  etc.)	
  –	
  indicate	
  if	
  it	
  was	
  recreational	
  

(R)	
  or	
  competitive	
  (C)	
  

____________________________________________________________________________
_________ 

ii. How	
  often	
  did	
  you	
  play	
  sports	
  (per	
  week)?	
  ______________________________	
  
b. High	
  school:	
  

i. Please	
  describe	
  (e.g.	
  skating,	
  baseball,	
  etc.)	
  –	
  indicate	
  if	
  it	
  was	
  recreational	
  
(R)	
  or	
  competitive	
  (C)	
  

____________________________________________________________________________
_________ 

ii. How	
  often	
  did	
  you	
  play	
  sports	
  (per	
  week)?	
  ______________________________	
  
c. University:	
  

i. Please	
  describe	
  (e.g.	
  skating,	
  baseball,	
  etc.)	
  –	
  indicate	
  if	
  it	
  was	
  recreational	
  
(R)	
  or	
  competitive	
  (C)	
  

____________________________________________________________________________
_________ 

ii. How	
  often	
  did	
  you	
  play	
  sports	
  (per	
  week)?	
  ______________________________	
  



 

 

70. In	
  university,	
  do	
  you	
  participate	
  in	
  any	
  organized	
  teams/sports?	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
If	
  no,	
  please	
  skip	
  to	
  question	
  81	
  
If	
  yes,	
  please	
  list	
  the	
  sports	
  below	
  and	
  indicate	
  if	
  they	
  are:	
  
Community/Recreational	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Intermural	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Varsity	
  
____________________	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  ____________________	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ____________________	
  
____________________	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  	
  ____________________	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ____________________	
  
____________________	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  ____________________	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ____________________	
  
____________________	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  ____________________	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ____________________	
  

71. How	
  many	
  consecutive	
  years,	
  including	
  the	
  current	
  season,	
  have	
  you	
  participated	
  in	
  each	
  
sport?	
  
_________________________________________________________________________________________________________
_________________________________________________________________________________________________________
________________________	
  

72. How	
  many	
  practices	
  do	
  you	
  attend	
  per	
  week	
  (per	
  sport)?	
  
_________________________________________________________________________________________________________
_________________________________________________________________________________________________________
________________________	
  

73. How	
  long	
  in	
  duration	
  is	
  the	
  average	
  practice	
  (per	
  sport)?	
  
_________________________________________________________________________________________________________
_________________________________________________________________________________________________________
________________________	
  

74. What	
  does	
  the	
  typical	
  practice	
  consist	
  of?	
  	
  
_________________________________________________________________________________________________________
_________________________________________________________________________________________________________
_________________________________________________________________________________________________________
_________________________________________________________________________________________________________
________________________________________________	
  

75. In	
  the	
  last	
  season,	
  did	
  you	
  participate	
  in	
  any	
  organized	
  tournaments?	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
If	
  yes,	
  for	
  which	
  sport(s)?	
  _________________________________________________________	
  
If	
  no,	
  why	
  not?	
  _________________________________________________________________	
  

76. Do	
  you	
  plan	
  to	
  attend	
  any	
  organized	
  tournaments	
  this	
  season?	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
If	
  yes,	
  for	
  which	
  sport(s)?	
  _________________________________________________________	
  
If	
  no,	
  why	
  not?	
  __________________________________________________________________	
  

77. Do	
  any	
  of	
  your	
  sports	
  continue	
  over	
  the	
  summer	
  months	
  when	
  school	
  is	
  not	
  in	
  session?	
  	
  	
  Y	
  	
  	
  	
  	
  
N	
  
If	
  yes,	
  please	
  describe	
  any	
  differences	
  between	
  the	
  in	
  season	
  (school	
  year)	
  and	
  off	
  season	
  
(summer	
  months)	
  practices	
  or	
  workouts.	
  
_________________________________________________________________________________________________________
_________________________________________________________________________________________________________
_________________________________________________________________________________________________________
___________________________________________________________________________	
  

78. Do	
  you	
  exercise	
  on	
  a	
  regular	
  basis?	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  



 

 

79. Outside	
  of	
  organized	
  practices	
  for	
  sports/teams,	
  how	
  many	
  times	
  per	
  week	
  do	
  you	
  
exercise/work	
  out?	
  ______________________________________________________________________________	
  

80. Outside	
  of	
  organized	
  practices	
  for	
  sports/teams,	
  how	
  long	
  in	
  duration	
  is	
  the	
  average	
  
exercise/work	
  out?	
  _____________________________________________________________________________	
  

81. Outside	
  of	
  organized	
  practices	
  for	
  sports/teams,	
  what	
  types	
  of	
  activities	
  do	
  you	
  typically	
  do	
  
to	
  exercise/work	
  out?	
  
_________________________________________________________________________________________________________
_________________________________________________________________________________________________________
______________________________________________________________________________________________________	
  

82. Do	
  you	
  participate	
  in	
  any	
  non-­‐athletic	
  extracurricular	
  activities,	
  clubs	
  or	
  groups?	
  
_________________________________________________________________________________________________________
_________________________________________________________________________________________________________
________________________	
  
If	
  yes,	
  how	
  many	
  hours	
  a	
  week	
  (combined)	
  do	
  you	
  spend	
  at	
  these	
  activities?	
  ________________	
  

83. When	
  you	
  ride	
  a	
  bike/skate/etc.	
  do	
  you	
  wear	
  a	
  helmet?	
  	
  	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  	
  	
  	
  	
  	
  	
  not	
  applicable	
  
84. Do	
  you	
  regularly	
  engage	
  in	
  relaxation	
  techniques	
  (e.g.	
  deep	
  breathing	
  or	
  yoga):	
  	
  Y	
  	
  	
  	
  	
  N	
  

a. If	
  yes,	
  how	
  many	
  times	
  a	
  week	
  do	
  you	
  engage	
  in	
  relaxation	
  methods?	
  ______	
  
b. Please	
  describe:	
  _________________________________________________________	
  

85. Was	
  last	
  night’s	
  sleep	
  typical	
  for	
  you?	
  	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
If	
  No,	
  what	
  was	
  different	
  (better,	
  worse)?	
  ____________________________________________	
  
Why	
  was	
  it	
  different?	
  (stress,	
  room	
  temperature,	
  noise,	
  etc.)	
  
______________________________________________________________________________	
  

86. Please	
  indicate	
  how	
  well	
  you	
  slept	
  last	
  night	
  by	
  circling	
  a	
  number:	
  
Worse	
  Possible	
  	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  5	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  6	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  7	
  	
  	
  	
  	
  Best	
  Possible	
  
Sleep	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Sleep	
  

87. Please	
  indicate	
  how	
  you	
  feel	
  right	
  now	
  by	
  circling	
  a	
  number	
  
Very	
  Sleepy	
  	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  5	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  6	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  7	
  	
  	
  	
  	
  Very	
  Alert	
  

88. Have	
  you	
  had	
  anything	
  out	
  of	
  the	
  ordinary	
  occur	
  in	
  the	
  past	
  day	
  or	
  so?	
  	
  	
  Y	
  	
  	
  	
  	
  N	
  
If	
  yes,	
  please	
  explain:	
  
_________________________________________________________________________________________________________
___________________________________________________	
  

89. Circle	
  any	
  of	
  the	
  following	
  that	
  apply	
  to	
  your	
  experience	
  over	
  the	
  past	
  6	
  months:	
  
Moved	
  	
  	
  	
  	
  	
  
New	
  Job	
  	
  	
  	
  	
  	
  
Loss	
  of	
  Job	
  	
  	
  	
  	
  
Loss	
  of	
  Relationship	
  	
  	
  	
  	
  	
  
New	
  Relationship	
  	
  	
  	
  	
  	
  
Reconciliation	
  with	
  Partner	
  	
  	
  	
  	
  	
  
Reconciliation	
  with	
  Family	
  	
  	
  	
  	
  	
  
Divorce	
  (of	
  self	
  or	
  parents)	
  	
  	
  	
  	
  
	
  Entered	
  1st	
  year	
  at	
  university	
  	
  	
  	
  	
  	
  
Death	
  of	
  a	
  family	
  member	
  	
  	
  	
  	
  	
  
Death	
  of	
  a	
  close	
  friend	
  	
  	
  	
  	
  	
  

Financial	
  Difficulties	
  	
  	
  	
  	
  
	
  Illness	
  of	
  someone	
  close	
  to	
  you	
  	
  	
  	
  	
  	
  
Personal	
  Illness/Injury	
  	
  	
  	
  	
  
New	
  Baby	
  	
  	
  	
  	
  	
  
Wedding/Engagement	
  (self)	
  	
  	
  	
  	
  	
  
Vacation	
  	
  	
  	
  	
  	
  
Disrupted	
  Sleep



 

 

90. Please	
  indicate	
  how	
  your	
  day	
  has	
  been	
  so	
  far	
  by	
  circling	
  a	
  number:	
  
	
  	
  	
  	
  Calm	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  5	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  6	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  7	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  8	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  9	
  	
  	
  	
  	
  	
  	
  	
  	
  10	
  	
  	
  	
  	
  Busy	
  
	
  	
  Pleasant	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  4	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  5	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  6	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  7	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  8	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  9	
  	
  	
  	
  	
  	
  	
  	
  	
  10	
  	
  	
  	
  	
  Unpleasant	
  
NOT	
  Stressful	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
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91. Please	
  rate	
  each	
  of	
  the	
  following	
  symptoms	
  based	
  on	
  how	
  you	
  may	
  have	
  been	
  affected	
  
during	
  the	
  past	
  2	
  months	
  according	
  to	
  the	
  following	
  scale.	
  

FREQUENCY 

1 = Not at all 

2 = Seldom 

3 = Often 

4 = Very often 

5 = All of the time 

INTENSITY 

1 = Not at all 

2 = Seldom 

3 = Clearly Present 

4 = Interfering 

5 = Crippling 

DURATION 

1 = Not at all 

2 = A Few Seconds 

3 = A Few Minutes 

4 = A Few Hours 

5 = Constant 

 

 FREQUENCY INTENSITY DURATION 

Headache    

Dizziness    

Irritability    

Memory Problems    

Difficulty 
Concentrating 

   

Fatigue    

Visual Disturbance    

Aggravated by Noise    

Judgment Problems    

Anxiety    

 

Question 89 format adapted from Holmes & Rahe (1967); Question 91 from Gouvier et al. (1992). 

Thank you for your time and consideration in completing this questionnaire! J



 

 

EK QUESTIONNAIRE  

 

 

1. Rate, on a scale of -10 to +10, how good or bad you think deck A is, where -10 means that it is terrible 

and +10 means that it is excellent. _____________ 

2. Why did you rate deck A with...(your rating from question 1)? 

__________________________________________________________________________________________
__________________________________________________________________________________________ 

3. Rate, on a scale of -10 to +10, how good or bad you think deck B is, where -10 means that it is terrible 

and +10 means that it is excellent. _____________ 

4. Why did you rate deck B with...(your rating from question 3)? 

__________________________________________________________________________________________
__________________________________________________________________________________________ 

5. Rate, on a scale of -10 to +10, how good or bad you think deck C is, where -10 means that it is terrible 

and +10 means that it is excellent. _____________ 

6. Why did you rate deck C with...(your rating from question 5)? 

__________________________________________________________________________________________
__________________________________________________________________________________________ 

7. Rate, on a scale of -10 to +10, how good or bad you think deck D is, where -10 means that it is terrible 

and +10 means that it is excellent. _____________ 

8. Why did you rate deck D with...(your rating from question 7)? 

__________________________________________________________________________________________
__________________________________________________________________________________________ 

 

 



 

 

9. In answering the questions that follow, consider the following definitions. Your “winning amount” for 

a trial is the amount you won that trial. Your “loss” on a trial is the amount you lost on that trial. Your 

“net result” for a trial is the amount you won minus the amount you lost on that trial. Do you 

understand these definitions and the differences between the three terms? If not please contact the 

research assistant.  

 

 

 

 

a. Now suppose you were to select 10 cards from deck A 

i. What would you expect your average net result to be? _________________ 

ii. What would you expect your average winning amount to be? _________________ 

iii. In how many of the 10 trials would you expect to get a loss (not necessarily a net loss)? 

_________________ 

iv. For those trials in which you would get a loss, what would you expect the average loss to 

be? _________________ 

b. Now suppose you were to select 10 cards from deck B 

i. What would you expect your average net result to be? _________________ 

ii. What would you expect your average winning amount to be? _________________ 

iii. In how many of the 10 trials would you expect to get a loss (not necessarily a net loss)? 

_________________ 

iv. For those trials in which you would get a loss, what would you expect the average loss to 

be? _________________ 

c. Now suppose you were to select 10 cards from deck C 

Winning Amount – amount you won during that trial 

Loss – amount you lost on that trial 

Net Result – the amount you won minus the amount you lost on that trial 



 

 

i. What would you expect your average net result to be? _________________ 

ii. What would you expect your average winning amount to be? _________________ 

iii. In how many of the 10 trials would you expect to get a loss (not necessarily a net loss)? 

_________________ 

iv. For those trials in which you would get a loss, what would you expect the average loss to 

be? _________________ 

d. Now suppose you were to select 10 cards from deck D 

i. What would you expect your average net result to be? _________________ 

ii. What would you expect your average winning amount to be? _________________ 

iii. In how many of the 10 trials would you expect to get a loss (not necessarily a net loss)? 

_________________ 

iv. For those trials in which you would get a loss, what would you expect the average loss to 

be? _________________ 

10. On a scale of 0 to 100, how much do you think that you know what you should do in this game in order 

to win as much money as possible (or, if you can’t win, to avoid losing money as much as possible)? 0 

means that you have no idea of what you should do and feel that you still need to explore the game more 

and 100 means that you know exactly what you should do and have no doubts that would be the best 

strategy. _________________ 

0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -100 

 

 

 

No idea what I should do 
and feel that I still need to 

explore the game more 

 

I know exactly what I should 
do and have no doubt that it 

is the best strategy 

 



 

 

11. Now suppose I told you that you could only select cards from one of the decks until the end of the game, 
but that you were allowed to choose now the deck from which you draw your cards. Which of the four 

decks would you pick (A, B, C, or D)? _________________ 



 

 

Participants Ratings of Conscious knowledge of advantageous strategy Scoring Key: 

• Question 9 (Ai), (Bi), (Ci) and (Di) – participants provide the highest average expected 
net (The amount you won minus the amount you lost averaged across trials) to one of the 
two best decks  

• Question 9 (Aii-iv), (Bii-iv), (Cii-iv) and (Dii-iv) – provides an indication of participant’s 
knowledge about outcomes for each deck in terms of each deck’s reward value, 
probability of getting a loss and mean loss value.  

o The respective questions allow one to calculate the mean net that a participant 
should expect, based on their knowledge about outcomes of each deck.  

o Formula 
§ Calculated net = Q9 (Aii) + (Q9 (Aiii) / 10) × Q9 (Aiv) 

• Q9 (Aii) – Asks about average winnings 
• Q9 (Aiii) – in 10 trials, how many times would one expect a loss 

(not necessarily a net loss)  
• Q9 (Aiv) – Asks about average loss 

§ Please note that the A represents the respective deck 


