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Abstract

Complex networks are systems of entities that are interconnected through meaningful

relationships. The result of the relations between entities forms a structure that has a

statistical complexity that is not formed by random chance. In the study of complex

networks, many graph models have been proposed to model the behaviours observed.

However, constructing graph models manually is tedious and problematic. Many of

the models proposed in the literature have been cited as having inaccuracies with

respect to the complex networks they represent. However, recently, an approach that

automates the inference of graph models was proposed by Bailey [10] The proposed

methodology employs genetic programming (GP) to produce graph models that ap-

proximate various properties of an exemplary graph of a targeted complex network.

However, there is a great deal already known about complex networks, in general,

and often specific knowledge is held about the network being modelled. The knowl-

edge, albeit incomplete, is important in constructing a graph model. However it is

difficult to incorporate such knowledge using existing GP techniques. Thus, this the-

sis proposes a novel GP system which can incorporate incomplete expert knowledge

that assists in the evolution of a graph model. Inspired by existing graph models,

an abstract graph model was developed to serve as an embryo for inferring graph

models of some complex networks. The GP system and abstract model were used

to reproduce well-known graph models. The results indicated that the system was

able to evolve models that produced networks that had structural similarities to the

networks generated by the respective target models.



Acknowledgements

Thank you to my supervisor Dr. Beatrice Ombuki-Berman, you have been there

for me for a number of years now and have been the compass of my work. Thank

you to my peers, the faculty of the department of Computer Science, and other

mentors. You have been a wealth of knowledge from which to draw inspiration and

have been pivotal in my successes. I especially would like to acknowledge the efforts

of Dr. Mario Ventresca, Alex Bailey, and Kyle Harrison. Thank you, finally, to my

supervisory committee for your efforts in the process of constructing this thesis, it is

undoubtedly better as a result.

M.R.M



Contents

1 Introduction 1

1.1 Main Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Challenges and Contributions . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Abstracting a Graph Model . . . . . . . . . . . . . . . . . . . 4

1.2.2 Function Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Complex Networks 6

2.1 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Biological Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Information Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Representing Complex Networks . . . . . . . . . . . . . . . . . . . . . 9

2.5 Measuring Complex Networks . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Average Geodesic Path Length . . . . . . . . . . . . . . . . . 11

2.5.2 Transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.3 Degree Distribution . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Graph Models 14

3.1 Erdos-Renyi Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Watts-Strogatz Small World Model . . . . . . . . . . . . . . . . . . . 16

3.3 Barabasi-Albert Model . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Growing Random Graph Model . . . . . . . . . . . . . . . . . . . . . 20

3.5 Ageing Preferential Attachment Model . . . . . . . . . . . . . . . . . 20

3.6 Forest Fire Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Modelling Techniques for Graph Models 25

4.1 P ∗ Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iv



4.2 Kronecker Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Chung-Lu graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Evolutionary Modelling Strategies . . . . . . . . . . . . . . . . . . . . 28

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Genetic Programming 30

5.1 The Genetic Programming Algorithm . . . . . . . . . . . . . . . . . . 30

5.1.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.2 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Tree-Based Genetic Programming . . . . . . . . . . . . . . . . . . . . 32

5.3 Linear Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Object-Oriented Genetic Programming . . . . . . . . . . . . . . . . . 35

6 LinkableGP 37

6.1 Facilitation of Expert Knowledge . . . . . . . . . . . . . . . . . . . . 37

6.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3 Structure and Representation . . . . . . . . . . . . . . . . . . . . . . 38

6.3.1 The Abstract Class . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3.2 The Genotype . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3.3 The Phenotype and the Language . . . . . . . . . . . . . . . . 39

6.3.4 Mapping Genotype to Phenotype . . . . . . . . . . . . . . . . 40

6.4 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4.1 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4.2 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Proposed Methodology 47

7.1 Abstract Graph Model . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2 GP Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3 Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8 Experiments – Reproducing Graph Models 54

8.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.2 Growing Random Model . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.3 Barabasi-Albert Model . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.4 Forest Fire Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.5 Ageing Preferential Attachment Model . . . . . . . . . . . . . . . . . 70

8.6 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9 Comparison of Proposed Method 79

9.1 Incorporation of Expert Knowledge . . . . . . . . . . . . . . . . . . . 80

9.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10 Conclusion 84

10.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 89

Appendices 98

A Select Evolved Graph Models 98

B Graph Visualizations of Evolved Model vs. Real Model by Number

of Vertices 103

C Empirical Cumulative Distributions of Fitness Results by Experi-

ment and Objective 116

D GP Convergence Plots 141



List of Tables

5.1 Example of Byte to Instruction Mapping . . . . . . . . . . . . . . . . 34

6.1 Initial Example Language . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Example Language after one instruction . . . . . . . . . . . . . . . . 43

6.3 Example Language after two instructions . . . . . . . . . . . . . . . . 43

6.4 Example Language after four instructions . . . . . . . . . . . . . . . . 44

7.1 Accessible Collections of Functions and Terminals by Abstract Method 52

7.2 Example of Sum of Ranks . . . . . . . . . . . . . . . . . . . . . . . . 53

8.1 LinkableGP Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.3 Final evolved GR models results comparing 1000 graphs produce by

the best-evolved model vs. its target graph . . . . . . . . . . . . . . . 59

8.4 Dcrit Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.5 T-Values of the comparisons between GR evolved models and the grow-

ing random model. The critical T-Statistic for a 0.01 significance test

with 1000 degrees of freedom is 2.326. . . . . . . . . . . . . . . . . . . 62

8.6 Final evolved BA models results comparing 1000 graphs produce by

the evolved model vs. its target graph . . . . . . . . . . . . . . . . . 64

8.7 T-Values of the comparisons between BA evolved models and the

Barabasi-Albert model. The critical T-Statistic for a 0.01 significance

test with 1000 degrees of freedom is 2.326. . . . . . . . . . . . . . . . 65

8.8 Final evolved FF models results comparing 1000 graphs produced by

the evolved model vs. its target graph . . . . . . . . . . . . . . . . . 68

vii



8.9 Results of 1000 KS-tests comparing degree distributions of the evolved

models and the forest fire model. The values in this table are the

proportion of tests that showed that each graph pair had the similar

degree distributions. Values in brackets are the computed p-value of

a one-sided Pearson’s chi-square test which tested the null hypothesis

that the evolved model passed the KS test at least as often as the

target model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.10 Final evolved APA models results comparing 1000 graphs produce by

the evolved model vs. its target graph . . . . . . . . . . . . . . . . . 72

8.11 T-Values of the comparisons between APA evolved models and the

growing random model. The critical T-Statistic for a 0.01 significance

test with 1000 degrees of freedom is 2.326. . . . . . . . . . . . . . . . 72

8.12 Overall Final Fitness Results of GR-100, GR-250, GR-500, and

GR-1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.13 Overall Final Fitness Results of BA-100, BA-250, BA-500, and

BA-1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.14 Overall Final Fitness Results of FF-100, FF-250, FF-500, and FF-

1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



List of Figures

2.1 Small-World Complex Network . . . . . . . . . . . . . . . . . . . . . 9

3.1 Erdos-Renyi G(n, p) Graph . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Erdos-Renyi G(n,M) Graph . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Watts-Strogatz Small World Graph . . . . . . . . . . . . . . . . . . . 18

3.4 Barabasi-Albert Preferential-Attachment Graph . . . . . . . . . . . . 19

3.5 Growing Random Graph . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Ageing Preferential-Attachment Graph . . . . . . . . . . . . . . . . . 22

3.7 Forest Fire Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Singly-typed Tree-based Program . . . . . . . . . . . . . . . . . . . . 33

5.2 Tree-based GP Crossover Operation . . . . . . . . . . . . . . . . . . . 33

5.3 Chromosome Comprised of an Array of Bytes . . . . . . . . . . . . . 34

6.1 Visualization of the genotype to phenotype mapping for an individual

in the LinkableGP system. . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Example Chromosome . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Visualization of the two-phase crossover operation in the LinkableGP

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.1 Graphs from the GR model and the GR-100 model . . . . . . . . . . 58

8.2 Box plots of the average geodesic path length (AGP) and network av-

erage clustering coefficient (CC) for GR experiments (evolved) versus

the growing random model(target). In each chart the four groups of

box plots represent, in order from left to right, graphs with 100 vertices,

250 vertices, 500 vertices, and 1000 vertices . . . . . . . . . . . . . . . 61

8.3 Graphs from the BA model and the BA-250 model . . . . . . . . . . 63

ix



8.4 Box plots of the average geodesic path length (AGP) and network av-

erage clustering coefficient (CC) for BA experiments (evolved) versus

the growing random model(target). In each chart the four groups of

box plots represent, in order from left to right, graphs with 100 vertices,

250 vertices, 500 vertices, and 1000 vertices . . . . . . . . . . . . . . . 65

8.5 Graphs from the FF model and the FF-100 model . . . . . . . . . . 67

8.6 Box plots of the average geodesic path length (AGP) and network

average clustering coefficient (CC) for FF experiments (evolved) versus

the growing random model(target) . . . . . . . . . . . . . . . . . . . 70

8.7 Box plots of the average geodesic path length (AGP) and network aver-

age clustering coefficient (CC) for APA experiments (evolved) versus

the growing random model(target) . . . . . . . . . . . . . . . . . . . 73

8.8 Convergence Plot for FF-500 . . . . . . . . . . . . . . . . . . . . . . 77

8.9 Convergence Plot for BA-250 . . . . . . . . . . . . . . . . . . . . . . 77

B.1 Growing Random Model with 100 Vertices . . . . . . . . . . . . . . . 104

B.2 Evolved Growing Random Model with 100 Vertices . . . . . . . . . . 104

B.3 Growing Random Model with 250 Vertices . . . . . . . . . . . . . . . 105

B.4 Evolved Growing Random Model with 250 Vertices . . . . . . . . . . 105

B.5 Growing Random Model with 500 Vertices . . . . . . . . . . . . . . . 106

B.6 Evolved Growing Random Model with 500 Vertices . . . . . . . . . . 106

B.7 Growing Random Model with 1000 Vertices . . . . . . . . . . . . . . 107

B.8 Evolved Growing Random Model with 1000 Vertices . . . . . . . . . . 107

B.9 Barabasi-Albert Model with 100 Vertices . . . . . . . . . . . . . . . . 108

B.10 Evolved Barabasi-Albert Model with 100 Vertices . . . . . . . . . . . 108

B.11 Barabasi-Albert Model with 250 Vertices . . . . . . . . . . . . . . . . 109

B.12 Evolved Barabasi-Albert Model with 250 Vertices . . . . . . . . . . . 109

B.13 Barabasi-Albert Model with 500 Vertices . . . . . . . . . . . . . . . . 110

B.14 Evolved Barabasi-Albert Model with 500 Vertices . . . . . . . . . . . 110

B.15 Barabasi-Albert Model with 1000 Vertices . . . . . . . . . . . . . . . 111

B.16 Evolved Barabasi-Albert Model with 1000 Vertices . . . . . . . . . . 111

B.17 Forest Fire Model with 100 Vertices . . . . . . . . . . . . . . . . . . . 112

B.18 Evolved Forest Fire Model with 100 Vertices . . . . . . . . . . . . . . 112

B.19 Forest Fire Model with 250 Vertices . . . . . . . . . . . . . . . . . . . 113

B.20 Evolved Forest Fire Model with 250 Vertices . . . . . . . . . . . . . . 113

B.21 Forest Fire Model with 500 Vertices . . . . . . . . . . . . . . . . . . . 114



B.22 Evolved Forest Fire Model with 500 Vertices . . . . . . . . . . . . . . 114

B.23 Forest Fire Model with 1000 Vertices . . . . . . . . . . . . . . . . . . 115

B.24 Evolved Forest Fire Model with 1000 Vertices . . . . . . . . . . . . . 115

C.1 Distribution of Differences in Average Geodesic Path Lengths for GR-

100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

C.2 Distribution of Differences in Clustering Coefficients for GR-100 . . 117

C.3 Distribution of Differences in In-Degree Distributions for GR-100 . . 118

C.4 Distribution of Differences in Out-Degree Distributions for GR-100 . 118

C.5 Distribution of Differences in Average Geodesic Path Lengths for GR-

250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

C.6 Distribution of Differences in Clustering Coefficients for GR-250 . . 119

C.7 Distribution of Differences in In-Degree Distributions for GR-250 . . 120

C.8 Distribution of Differences in Out-Degree Distributions for GR-250 . 120

C.9 Distribution of Differences in Average Geodesic Path Lengths for GR-

500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C.10 Distribution of Differences in Clustering Coefficients for GR-500 . . 121

C.11 Distribution of Differences in In-Degree Distributions for GR-500 . . 122

C.12 Distribution of Differences in Out-Degree Distributions for GR-500 . 122

C.13 Distribution of Differences in Average Geodesic Path Lengths for GR-

1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.14 Distribution of Differences in Clustering Coefficients for GR-1000 . . 123

C.15 Distribution of Differences in In-Degree Distributions for GR-1000 . 124

C.16 Distribution of Differences in Out-Degree Distributions for GR-1000 124

C.17 Distribution of Differences in Average Geodesic Path Lengths for BA-

100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.18 Distribution of Differences in Clustering Coefficients for BA-100 . . 125

C.19 Distribution of Differences in In-Degree Distributions for BA-100 . . 126

C.20 Distribution of Differences in Out-Degree Distributions for BA-100 . 126

C.21 Distribution of Differences in Average Geodesic Path Lengths for BA-

250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.22 Distribution of Differences in Clustering Coefficients for BA-250 . . 127

C.23 Distribution of Differences in In-Degree Distributions for BA-250 . . 128

C.24 Distribution of Differences in Out-Degree Distributions for BA-250 . 128

C.25 Distribution of Differences in Average Geodesic Path Lengths for BA-

500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



C.26 Distribution of Differences in Clustering Coefficients for BA-500 . . 129

C.27 Distribution of Differences in In-Degree Distributions for BA-500 . . 130

C.28 Distribution of Differences in Out-Degree Distributions for BA-500 . 130

C.29 Distribution of Differences in Average Geodesic Path Lengths for BA-

1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

C.30 Distribution of Differences in Clustering Coefficients for BA-1000 . . 131

C.31 Distribution of Differences in In-Degree Distributions for BA-1000 . 132

C.32 Distribution of Differences in Out-Degree Distributions for BA-1000 132

C.33 Distribution of Differences in Average Geodesic Path Lengths for FF-100133

C.34 Distribution of Differences in Clustering Coefficients for FF-100 . . . 133

C.35 Distribution of Differences in In-Degree Distributions for FF-100 . . 134

C.36 Distribution of Differences in Out-Degree Distributions for FF-100 . 134

C.37 Distribution of Differences in Average Geodesic Path Lengths for FF-250135

C.38 Distribution of Differences in Clustering Coefficients for FF-250 . . . 135

C.39 Distribution of Differences in In-Degree Distributions for FF-250 . . 136

C.40 Distribution of Differences in Out-Degree Distributions for FF-250 . 136

C.41 Distribution of Differences in Average Geodesic Path Lengths for FF-500137

C.42 Distribution of Differences in Clustering Coefficients for FF-500 . . . 137

C.43 Distribution of Differences in In-Degree Distributions for FF-500 . . 138

C.44 Distribution of Differences in Out-Degree Distributions for FF-500 . 138

C.45 Distribution of Differences in Average Geodesic Path Lengths for FF-

1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

C.46 Distribution of Differences in Clustering Coefficients for FF-1000 . . 139

C.47 Distribution of Differences in In-Degree Distributions for FF-1000 . . 140

C.48 Distribution of Differences in Out-Degree Distributions for FF-1000 140

D.1 GR-100 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . . 142

D.2 GR-250 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . . 143

D.3 GR-500 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . . 144

D.4 GR-1000 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . 145

D.5 BA-100 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . . 146

D.6 BA-250 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . . 147

D.7 BA-500 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . . 148

D.8 BA-1000 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . 149

D.9 FF-100 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . . 150

D.10 FF-250 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . . 151



D.11 FF-500 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . . 152

D.12 FF-1000 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . 153

D.13 APA-100 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . 154

D.14 APA-250 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . 155

D.15 APA-500 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . . 156

D.16 APA-1000 Convergence Plot . . . . . . . . . . . . . . . . . . . . . . 157



Chapter 1

Introduction

The main contribution of this work is the introduction of a novel genetic program-

ming (GP) technique which is useful for the automation of the inference of complex

networks. GP is an evolutionary computational technique based on the ideas of Dar-

winian evolution. It begins with a population of randomly created programs and

utilizes recombination and mutation operators to evolve fit programs. It has been

shown to be useful in a number of applications such as regression [9, 74, 87], the

development of circuits [45], evolutionary art [16], and the construction of artificial

agents [41], and even the automatic inference of complex networks [11].

A complex network is a system of entities that are interrelated via connections

in meaningful ways [69]. The study of these systems reveals a great deal about the

systems, both natural and artificial, which they represent. For example, Facebook

is a kind of a complex network where the members are entities, and the connections

are friendships [86]. Food webs are examples of natural complex networks wherein

the animals, both prey and predator, are the entities and the transfer of energy from

prey to predator are the connections [69]. Other complex networks might include the

Internet [70], protein interactions [69], citation networks [5, 13, 29], neural pathways

of the brain [12], and even sexual relations between high school students [15].

Understanding complex networks requires that we understand the structure and

dynamics of the networks being investigated. It is only then that the behaviour of

the entities and the processes acting on them can be understood properly. One way

in which complex networks are studied is via graph models [69]. Graph models are

algorithms which, put simply, produce graphs. In the case of complex networks, they

model the behaviours of the network to approximate the structure and dynamics of

a complex network.

There are a number of examples of graph models produced for complex networks

1



CHAPTER 1. INTRODUCTION 2

found in literature [68]. There exist graph models which attempt to identify preva-

lent structural properties found in many complex networks such as power-law degree

distributions [13], small world effect [90], and community structure emergence [54].

These networks properties have been demonstrated in a great number of real-world

examples such as biological networks [84, 88], social networks [86], and technological

networks [37]. However, constructing a graph model requires large amounts of data,

in-depth study into the mechanisms of the network, and a great deal of time. Fur-

thermore, constructed models are often cited for inaccuracies [13, 27, 54, 90] and in

order to construct them one must have a deep understanding of the processes and

behaviours of the network.

In 2012, Bailey et al. [11] proposed a method for the automatic inference of graph

models for complex networks. The method was an important step in the construc-

tion of graph models for complex networks as it helped address the difficulties in the

development of graph models for complex networks. In other words, there is a cir-

cular nature in constructing graph models whereby it is necessary to understand the

complex network at hand to develop a graph model for understanding the network

[10].

In Bailey’s work [10], he also identified that some researchers reuse existing graph

models to produce new models from other data that can lead to inaccuracies of the

models. Nevertheless, this suggests that researchers have some understanding of how

the graph model of the network at hand should behave. As such, work has gone

into identifying classes of complex networks which helps in the manual construction

of models (for example, see [8, 46, 47, 52]). The methods proposed by Bailey et al.

[12] employed additional algorithms, outside of GP, such as community detection

algorithms to assist in producing community structures. These observations suggest

that there is some merit in utilizing the knowledge of the researcher to assist the GP

system in producing models.

This work is motivated primarily by this final point. Researchers utilizing a tool

for the automation of the inference of graph models do have valuable knowledge to

contribute about the complex network at hand. As such, this thesis is aims to produce

a methodology for evolving graph models using a GP system which

• Allows the incorporation of expert knowledge

• Provides a means of expressing incomplete knowledge that does not hinder the

GP performance

Expert knowledge, in the context of modelling complex networks, is any knowledge
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that is certain about the processes, structure, and properties of the complex network

at hand or in general. As will be shown in Chapter 4, there is much that can be

known about the structure of a complex networks in general. Moreover, sometimes

there are insights based on the context of the network at hand that introduce new

properties of the network. For example, Dorogovtsev and Mendes [27] identifies age

of research papers as an important property in citation networks. No matter the case,

expert knowledge is incomplete about a network being modelled. Thus, a framework

should allow incomplete knowledge to be placed as easily as creating a filling the

blanks puzzle so that a GP system can fill in the blanks without making creating

huge jumps in its problem space.

1.1 Main Goal

This thesis, inspired by the previous work in the automatic inference of graph models,

contends that a new methodology which affords the opportunity of the researcher to

provide expert knowledge about the network being modelled is warranted. Compared

to manual efforts in graph model construction, this reduces the time and effort re-

quired to construct models, and also draws on the knowledge already known about

the network at hand. Incorporating knowledge into automation can assist in pro-

ducing not just reasonable models that replication the structure and dynamics of the

network, but also models that have some essence of semantic encoded by the research.

As a result of this goal, it is necessary to redesign traditional approaches to GP

in order to allow the incorporation of such a system. This thesis proposes a novel

GP system using the object-oriented programming paradigm to facilitate the incor-

poration of a partial program. Using an Object-Oriented GP (OOGP) system which

involves partial implementation of a program facilitates the incorporation of expert

knowledge. Such a facility has benefits that extend beyond this work, provides further

motivation for its development (see [60] for more details).

1.2 Challenges and Contributions

In designing a graph model, there is a great deal of knowledge applied both specif-

ically about the complex network being modelled and complex networks in general.

Incorporating this knowledge into a GP system is a non-trivial task, especially as

much is still unknown about complex networks. Each network type has its a distinc-

tiveness and caveats that researchers who study them are the best aware. Therefore,
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this thesis only begins to identify the utility of the proposed approach.

While this thesis does benefit from previous work in automatic inference of graph

models (see [10, 11, 12]), here directed complex networks are explored and therefore

a new set of challenges encountered. Directed complex networks provide additional

information through the directionality of relations. They provide a sense of flow in

time or in information that is not captured completely by undirected networks. As

a result of the directionality and the information it conveys, this provides a unique

set of challenges. In order to produce a methodology that is capable of handling

the additional challenges of directed complex networks modifications to the previous

approaches.

1.2.1 Abstracting a Graph Model

The OOGP methodology, proposed in this thesis, requires the implementation of an

abstract class as a template for programs produced. In the case of graph models,

a model is required which encapsulates general behaviour of a complex network. If

a model existed that described the general behaviour of all complex networks, then

OOGP would not be beneficial as this would simply be a question of parameter tuning.

Instead, some reliance on the network’s known behaviours must be encoded into the

algorithm. This thesis proposes the first such abstraction for OOGP.

1.2.2 Function Sets

A function set provides the building blocks for the development of a program in GP.

In abstracting the graph model for OOGP, the function set proposed in Bailey [10]

is no longer usable because an abstract class (OOGP’s program) consist of several

functions each with different purposes. Therefore, each function within the abstract

class requires a function set. Each function set relates only to relevant tasks of the

function it is mapped to. The complete set of functions utilized to construct the

program needs be sufficient to express a large variety of models, but not so much that

the OOGP becomes bogged-down finding useful configurations. This thesis proposes

a collection of functions sets specific to the abstract class proposed.

1.2.3 Contributions

In summary, the contributions made by this thesis are
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1. Proposes a new methodology for the automatic inference of graph models for

complex networks that facilitates the incorporation of known behaviours.

2. Proposes a novel OOGP methodology which facilitates the incorporation of

expert knowledge.

3. Proposes an abstraction of graph models for the automatic inference of complex

networks.

4. Proposes an OOGP function set for the construction of graph models.

1.3 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 provides a brief in-

troduction to complex networks in order to provide the reader with the requisite

knowledge for this thesis. In Chapter 3, graph models will be discussed, and an in-

troduction to some well known graph models of complex networks is provided. Then

in Chapter 4, a review of some of the notable techniques model construction is pro-

vided. Chapter 5 provides a background in GP sufficient to understand the proposed

GP system. Chapter 6 presents the proposed OOGP system in detail including the

structure and representation of the population of candidate programs. As well, the

chapter will also provide details about the implementation of genetic operators for

the OOGP. Chapter 7 will describe the exact methods used by the proposed method-

ology. Chapter 8 will show how the system was used to reproduce some known graph

models. Finally, Chapter 10 will provide some conclusions and other inspiration for

future works.



Chapter 2

Complex Networks

A complex network is a system of entities joined together through relations or con-

nections. Governed by underlying processes, complex networks form a structure that

is neither regular nor completely random. There is no definition of complex networks

universally accepted. However, one definition that might be adopted as characteristic

of complex networks is that they have a statistical complexity [48]. That is that there

are patterns within the structure that have observable properties that can be used to

construct probabilistic descriptions of the structure or behaviour of the network.

Complex networks are found everywhere. They are widely studied in many fields

such as social sciences [15, 22, 52], biology [57, 75, 84], computer science [76, 77],

and others [69]. In biology, complex network are often investigated as molecular

systems where protein structure or gene relationships are investigated. In social

sciences, complex networks, often called social network, describe human interactions,

like friendships in Facebook.

The study of complex networks reveals a great deal about the world [69]. Study

of individual classes of network often leads to discoveries outside of the domain of the

network and into general theories of complex networks [5, 68]. Thus, a common form

of representation is useful. A popular representation of complex networks is a graph

[69]. This representation utilizes vertices connect via edges to represent the entities

(vertices) and relations (edges) in complex networks. This representation provides a

means of mathematically analysing the structure of complex networks [30], and thus

facilitates quantitative study of complex networks.

Since complex networks are dynamic systems [70], it is useful to be able to study

their behaviour. A means of representing the dynamic behaviours of complex networks

is through the graph model. In terms of modelling complex networks, graph models

provide an algorithmic means of representing the processes that construct complex

6
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networks. As a result, graph models can be employed to investigate properties of

various complex networks [69]. Many graph models have been proposed for the study

of complex networks [27, 54, 90].

In this chapter, an introduction to some types of complex networks is provided in

Sections 2.1, 2.2, and 2.3. Then, in Section 2.4, a brief introduction to representing

complex networks will be provided. This section will highlight two representations of

complex networks, namely graphs and graph models. With an understanding of these

representations, an introduction to measuring the structural properties of complex

networks will be provided in Section 2.5. For those readers interested, a much more

comprehensive introduction to complex networks can be found in [69].

2.1 Social Networks

Social Networks are networks that are the product of social interactions of people. The

study of social networks can be dated back to the 1920s with works by Almack [7] and

Wellman [91]. However, Moreno and Jennings [66] are often credited as pioneers in

the study of social networks. Moreno and Jennings’s work with sociograms provided

a framework for mapping group interactions. Sociograms are often used to limit

misbehaviour in the classroom [93].

Milgram [63] is another important name in the study of social networks. His

“small world” experiment [85] explored the notion of “six degrees of separation” that

states that any given person is separated by no more than five other people for any

given person. The property was demonstrated using a letter passing exercise. The

exercise had several individuals from Nebraska passing a letter to other people they

knew on a first name basis in another state. The recipients then passed the letter

on to people in yet another state. The data collected from the experiment formed

acquaintance chains showed an average number of intermediate steps of 5.2, and a

great deal of the chains overlapped by the same three people.

Social networks often investigate the relationship of friendships [8, 22, 63] but are

certainly not limited to those relations. Other examples of social networks include

citation networks [25, 90], sexual relations [15], race relations [81], and on-line social

networks [52], i.e. Facebook , Google+, Twitter.
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2.2 Biological Networks

Biological networks are networks that are biological systems. This includes systems

such as protein-protein interactions [57], neural networks [84], and food webs [56].

With increased access to biological information, the study of biological systems as

complex networks is becoming more prevalent [75].

The first molecular networks were characterized by Dagley et al. [24] and with

newer research tools, researchers can characterize protein-protein interactions and

gene regulatory systems with increasing accuracy [75]. These networks are observed to

have many of the same structural properties also shared outside of biological networks,

such as the power-law degree distribution [88].

The study of molecular networks reveals information about the structure of the

networks. The study provides insight into understanding biological processes [75].

Proulx et al. [75] also remarks that while empirical studies of biological networks pro-

vides insight into the theory, application of theory must provide a predictive frame-

work for testing the hypotheses. Such a practice is an important insight about bio-

logical networks that extends into complex networks in general. It provides a strong

motivation for the efforts of this thesis and its related works [10, 11, 12].

2.3 Information Networks

Information networks are complex systems of data linked together in some fashion. It

is thought that all information networks are man-made [69]. Furthermore, networks of

information often have social component [69]. Consider, for example, the social media

site LinkedIn, a social network where members share affiliations together. However,

there is also a flow of information about people observed through the interactions of

endorsement of skills between members.

Arguably, one of the most well-known examples of an information network is the

World Wide Web (WWW). In this network of information, web pages are the linked

together through hyper-links. While the WWW is a man-made collection of web

pages, its growth is largely unregulated and leads to an enormous directed graph

which makes its study challenging [6]. Nevertheless, the WWW has transformed the

way knowledge is transmitted and has an underlying structure [37].

There are a great deal of other types of information networks which have drawn

the attention of researchers such as peer-to-peer networks [77], recommender networks

[40], keyword indexes [76], and citation networks [5, 13, 25, 38]. Of these, the citation
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Figure 2.1: Small-World Complex Network

network has been studied the longest [69]. Citation networks have been well studied

and have informed theories of complex networks (not just information networks) on

structural dynamics of complex networks. Examples include the power-law distribu-

tion of degrees [13], community structure emergence [34], and the dynamics of ageing

cites [27].

2.4 Representing Complex Networks

Having a good way to represent complex networks makes studying them much easier.

One method of representation is a graph. A graph consists of points and links, referred

to, respectively, as vertices and edges. Mathematically, a graph, denoted G = (V,E),

is a set of vertices or nodes, V , and a set of edges, E. Figure 2.1 provides an example

of a complex network in graph form. This graph represents a small-world network.

An interpretation of the graph, used by Watts and Strogatz [90], is that the vertices

are actors and the edges represent two actors having worked together on a movie

[90]. Investigation of graphs of small-world networks shows that the average shortest

distance to any two actors is proportional to logN , where N is the number of vertices

in the network [90].

Investigating complex network through graphs is somewhat limiting. Without a

great deal of observable data, the statistical complexity of a network’s structure and

behaviour might not be revealed. Instead, attention can be turned to graph models.



CHAPTER 2. COMPLEX NETWORKS 10

Graph models are algorithms that produce graphs. Graph models might produce

regular graphs such as the K-regular graph, or they might produce random graphs,

for example, the Erdos-Renyi random graph [28].

With a graph model, the processes that act on the network can be approximated

and used to gather a large amount of data from the graphs it produces. For example,

the network described in Figure 2.1 is produced by Algorithm 1, the Watts-Strogatz

Small World model. This algorithm produces a graph, G = (V,E), which an average

path length proportional to logN . In producing path lengths of approximately logN ,

the Watts-Strogatz Small-World model approximates the observed properties of the

small-world network.

Algorithm 1: Watts-Strogatz Small World Model

Input: n > 0, k > 0, d > 0, 1 ≥ p ≥ 0
Data: Watts-Strogatz Graph, G = (V,E)
begin

G← lattice(n, k, d);
E2 ← ∅;
foreach (i, j) ∈ E do

if random() < p then
E2 ← E2 ∪ (i, random(|V |));

else
E2 ← E2 ∪ (i, j);

end if

end foreach
E ← E2;
return G

end

2.5 Measuring Complex Networks

The title of this section, Measuring Complex Networks, is something of a misnomer.

The reality is that complex networks cannot be measured directly. Instead, the struc-

ture of the network is analysed. Structural analysis is accomplished using statistical

measures that quantify various aspects of the network. There exist a great number

of measures for the structure of complex networks, many of which are identified by

Newman [69]. However, for the purposes of this thesis, a few statistical measures

are selected which identify key characteristics of the structure of networks. These

are statistical measures commonly used in the study of complex networks found in
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literature [5, 8, 13, 14, 17, 25, 27, 63, 90].

Starting from the methods proposed by Bailey [10], immediately three common

structural properties measured in complex networks are identified.

• Geodesic Path Length

• Transitivity

• Degree Distribution

These three measures formed the basis of fitness evaluation of the generated mod-

els in the work done on automating the inference of graph models [10]. In the work of

[10] these measures were used for fitness evaluation to construct graph models with a

high degree of accuracy. Thus, this thesis continue this approach and leave evaluating

the sufficiency of these measures to others [36]. Additionally, the aim was to propose

a methodology for the inference of graph models for directed and unweighted com-

plex networks where Bailey [10] is concerned with undirected and unweighted complex

networks. Directed networks add new information not found in undirected networks

as a result of the directionality of edges. In order to capture this new information,

the procedures used in measuring the above structural properties. For computing the

geodesic path lengths and transitivity of the network, this means that the computa-

tional method should take into account the directionality of the edges. For the degree

distribution, two measures are now required: in- and out-degree.

2.5.1 Average Geodesic Path Length

The average geodesic path length refers to the average length of the shortest path,

di,j, in a graph, G = (V,E), between all vertices i, j ∈ V [26]. Let l be the average

of all geodesic path lengths of a directed graph such that (i, j) are vertex pairs in G

and n is the number of vertices in the graph:

l =
1

n(n+ 1)

∑
i,j∈V |i 6=j

di,j (2.1)

In social networks, persons with a lower mean distance between others might reveal

a high influence of their opinions [69]. This measure is often found in studies related

to types of social networks to illustrate the small path lengths of these networks (see

[13, 54, 90]).



CHAPTER 2. COMPLEX NETWORKS 12

2.5.2 Transitivity

In mathematics, given some relation ◦, transitivity is the implication, a◦b∧b◦c→ a◦c.
In terms of networks transitivity means that if there exists an edge, (a, b), and an

edge, (b, c) that implies that there is an edge (a, c). Transitivity is an important

property of social networks [69].

A graph that is transitive is said to have perfect transitivity [69]. Perfect tran-

sitivity, however, is not a useful metric as only fully connected graphs have such a

perfect transitivity. Instead, it is interesting to determine the amount of transitivity

which occurs in a network, i.e. partial transitivity. One method for computing the

partial transitivity of a network is to compute its clustering coefficient. The clustering

coefficient refers to the probability that a vertex, and its neighbour are connected to

a common vertex.

There exist a number of measures of the clustering coefficient such as the global

clustering coefficient, the local clustering coefficient, and the network average clus-

tering coefficient. This thesis uses the network average clustering coefficient when

considering clustering coefficients as it provides a single value and utilizes to the local

clustering coefficient. The network average clustering coefficient is the average of the

local clustering coefficient over all n vertices in the network (see Equation 2.2). To

compute the local clustering coefficient for each vertex, i, Equation 2.3 is employed,

where Ni is the set of vertices immediately connected vertex vi and ki = |Ni|.

C̄ =

∑n
i=1Ci
n

(2.2)

Ci =
|{ejk : vj, vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
(2.3)

This measure can be used to detect the presence of a small-world network [90]. If C̄ is

higher in a network than the observed C̄ of a random network with a similar average

geodesic path length than this indicates that the network exhibits characteristics of

a small-world network.

2.5.3 Degree Distribution

Degree centrality is a prevalent in research into complex networks [69]. Degree cen-

trality addresses the importance of a vertex within its network. There exist a number

of measures that offer indications of the importance of a vertex in the network. The

simplest of these is the degree of a vertex, that is, the number of edges connected
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to it. In a directed graph, there is also the in-degree and out-degree of a vertex.

This is the number of in-bound edges (in-degree) and the number of out-bound edges

(out-degree) of a vertex.

The distribution of the degrees of vertices in a complex network can reveal im-

portant information about the behaviour of a complex network. In preferential-

attachment networks with a growing number of vertices (i.e., new vertices are added

to the network over time), like the Barabasi-Albert model [13], the distribution of the

degrees follows a power-law distribution. The power-law degree distribution referred

to as a scale-free distribution, describes a distribution where the number of vertices

with small degrees is large, and the distribution is heavily-tailed with only a few ver-

tices having a high degree. More specifically, the probability, P (X) that a vertex will

have a degree, X = d, where α and k are some constants, is

P (X) = αXk (2.4)

In order to compare the degree distributions of two graphs, a statistical method is

required. In the case of this work, the Kolmogorov-Smirnoff test (KS test) [42] is used.

In the two sample form, the KS test is a non-parametric hypothesis test such that the

null hypothesis is that two samples originate from the same distribution function. The

null hypothesis of a two-sample test is rejected at level α if Equation 2.5 is satisfied

where Dn,n′ is computed as in Equation 2.6 where is c(α) is a value determined by

the significance level of the test and the sample sizes of the two samples are n and n′.

In Equation 2.6, F1,n and F2,n′ are the empirical cumulative distributions of sample

1 and 2, respectively and x is common observation point, an arbitrary point in the

range of both functions in the distributions.

Dn,n′ > c(α)

√
n+ n′

nn′
(2.5)

Dn,n′ = max
x∈[0,min(n,n′)]

|F1,n(x)− F2,n′(x)| (2.6)

For computing the empirical cumulative distribution of the degrees in a network,

Fn(x) is the proportion of vertices with degree di that satisfy di ≤ x (see Equation

2.7).

Fn(x) =
1

n

n∑
i=1

di ≤ x (2.7)
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Graph Models

As briefly introduced in Section 2.4 a graph model is an algorithm that produces a

graph that holds certain properties of interest. Graph models help to understand

complex network behaviours as they model the processes that form the network.

Through repeated execution, graph models produce a set of graphs that have some

form of commonality. The commonality of the graphs is dependent on the design of

the graph model. For example, a graph designed to replicate transitivity will produce

graphs that have similar clustering coefficients. However, the clustering coefficients of

two graphs produced by such a model will differ somewhat. In other words, the graphs

will not be isomorphisms, but rather will exhibit certain predictable properties.

A number of graph models have been proposed which are designed to model var-

ious phenomena Barabási and Albert [13], Dorogovtsev and Mendes [27], Leskovec

et al. [54], Watts and Strogatz [90]. Furthermore, the phenomena are not attributable

to random chance and the properties observed, with respect to a phenomenon, are

not found in random graphs. In this chapter, the random graph model will be in-

troduced. This model serves as a starting point for the study of graph models for

complex networks and is important to the comparison of other graph models. Also in

this chapter, a variety of graph models are introduced which model some structural

properties found in real-world networks. Further information about graph models can

be found in Amaral et al. [8], Krapivsky et al. [47], Newman [68, 69], Newman et al.

[70], Watts and Strogatz [90].

3.1 Erdos-Renyi Model

The Erdos-Renyi model is a random graph model that can be represented two ways

[33, 82]: G(n, p) and G(n,m) (illustrated later). The Erdos-Renyi model, specifically

14
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the one introduced by Solomonoff and Rapoport [82], is a well studied model (See,

for example, Boccaletti et al. [17], Diestel [26], Newman [68, 69], Newman et al. [70]).

Popularized by Erdos and Renyi [28], the network is a random graph model containing

n vertices are connected with an independent probability of p.

Algorithm 2: Erdos-Renyi G(n, p) Graph Model

Input: n > 0 0 ≤ p ≤ 1
Data: Erdos-Renyi Graph, G = (V,E)
begin

for i← 1 to n do
V ← V ∪ vi;

end for
for i← 1 to n do

for j ← 1 to n do
if random() < p then

E ← E ∪ (vi, vj);
end if

end for

end for
return G

end

The model introduce by Solomonoff and Rapoport [82], denoted G(n, p), is defined

in Algorithm 2. This is the original random graph model popularized by Erdos-Renyi

[28]. In this model, n vertices are added to a graph. Afterwards, for all potential

edges (i, j), the edge is added with a probability of p. The graphs produced by this

model follow a binomial distribution of number of edges in the graph [29], where it is

expected |E| = p
(
n
2

)
in a produced graph, G = (V,E). An example graph produced

by the G(n.p) model is provided in Figure 3.1.

An alternative representation of the Erdos-Renyi model provided by Gilbert [33]

differs from G(n, p) model as the edges are added randomly using an uniform dis-

tribution. Furthermore, this representation only M edges are added to the graph.

The work of Gilbert [33] and application of the alternative representation, denoted

G(n,M), explores the probability that a path exists between two edges. In the

G(n,M) model, given probability, p, that an edge between two vertices exists, the

probability that two vertices are connected is Pn ∼ 1−n(p−1)n−1 and the probability

that a path exists to all other vertices from a vertex is Rn ∼ 1−2(p−1)n−1. Notably,

the G(n,M) model tends to behave similarly to the G(n, p) when M = p
(
n
2

)
.

In Algorithm 3, the G(n,M) model begins by adding n vertices to the graph.
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Figure 3.1: Erdos-Renyi G(n, p) Graph

Constructed where n = 100, p = 0.05, and self-edges where restricted

Then, m edges are constructed using two vertices randomly selected from the graph.

An example of the output from the G(n,M) model is provided in Figure 3.2.

Algorithm 3: Erdos-Renyi G(n,M) Graph Model

Input: n > 0, M > 0
Data: Erdos-Renyi Graph, G = (V,E)
begin

for i← 1 to n do
V ← V ∪ vi;

end for
for i← 1 to M do

v1 ← select(V );
v2 ← select(V );
E ← E ∪ (v1, v2);

end for
return G

end

3.2 Watts-Strogatz Small World Model

The development of the Small World model proposed by Watts and Strogatz [90],

attempted to address some short-comings of the Erdos-Renyi model in capturing

real-world network properties. The model illustrates a “small world” effect [63] such

that path-lengths to other vertices in the graph are small. [90] proposed that naturally

occurring networks were neither completely random nor completely regular.
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Figure 3.2: Erdos-Renyi G(n,M) Graph

Constructed where n = 100, m = 300, and self-edges where restricted

Networks are considered small world when the average local clustering efficient is

significantly higher than that of a random graph with the same number of vertices

and edges [90]. Many networks have been shown to exhibit the small-world property

Watts and Strogatz [90] such as power grids, collaborative networks, and C. elegans

worms. However, the model proposed by Watts and Strogatz does not generate the

same degree distributions as those of real-world networks Newman [69].

Algorithm 4: Watts-Strogatz Small World Model

Input: n > 0, k > 0, d > 0, 0 ≤ p ≤ 1
Data: Watts-Strogatz Graph, G = (V,E)
begin

G← lattice(n, k, d);
E2 ← ∅;
foreach (i, j) ∈ E do

if random() < p then
E2 ← E2 ∪ (i, random(|V |));

else
E2 ← E2 ∪ (i, j);

end if

end foreach
E ← E2;
return G

end

The Watts-Strogatz model recreates the local clustering and hub formation found

in real-world networks [8]. As described in Algorithm 4, the network begins as lattice.

The lattice has k dimensions, each with n vertices, and each vertex has d neighbours
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Figure 3.3: Watts-Strogatz Small World Graph

Generated where n = 100, k = 5, d = 1, and p = 0.05

to either side. The algorithm then proceeds to rewire each edge with probability p.

Figure 3.3 provides an example of an output graph from the Watts-Strogatz model.

3.3 Barabasi-Albert Model

The Barabasi-Albert (BA) model [13] is a well known model that demonstrates pref-

erential attachment whereby new entities are more likely to attach to well established

entities within the network [13]. Furthermore, it exhibits scale-free growth, that is,

a network with t + m vertices will have mt edges [68]. In this class of networks, it

is observed that the probability a vertex will have degree k is Pk ≈ akα + c, where

α, a, c are some constants [5].

[13] found that real-world networks with scale-free distributions required both

growth and preferential attachment. Their experiments with the BA model and a

random network using only the growing degrees showed that the degree distributions

where divergent.

Algorithm 5 illustrates the BA model. As new vertices are added to the graph,

existing vertices are attached to them. The probability of attachment is determined

by kαj + a as found in Algorithm 5. Vertices with more existing connections have a

higher probability of attaching to the new vertices.

Figure 3.4 provides an output graph of the BA model. In the graph, it can

be observed that there exist hubs, central vertices with a higher in-degree than other

vertices in the graph. These hubs are the characteristic of the effect from preferential-

attachment.
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Algorithm 5: Barabasi-Albert Graph Model

Input: n > 0, m > 0, α > 0, a, c
Output: A completed Barabasi-Albert Network, G = (V,E)
begin

for i← 1 to n do
V ← V ∪ vi;
for j ← 1 to i− 1 do

Pj ← ak−αj + c;

end for
for j ← 1 to m do

s← select(P );
E ← E ∪ (vi, vs);

end for

end for
return G

end
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Figure 3.4: Barabasi-Albert Preferential-Attachment Graph

Constructed where n = 100, m = 1, alpha = 1, a = 1, c = 1
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3.4 Growing Random Graph Model

The Growing Random (GR) model [13] is a model similar to the Barabasi-Albert

model except that it eliminates preferential attachment. This model, as described in

Algorithm 6, was used to demonstrate that the scale-free property does not occur in

growing networks without the presence of preferential attachment. Instead of a power-

law distribution of degrees found in preferential-attachment networks, it is observed

that the probability of degree, k, is exponential [13] as in Equation 3.1.

P (k) ∼ exp(−βk) (3.1)

Algorithm 6: Growing Random Graph Model

Input: n > 0, m > 0
Output: Growing Random Graph, G = (V,E)
begin

for i← 1 to n do
V ← V ∪ vi;
foreach a ∈ RandomV ertices(V − vi,m) do

E ← E ∪ (vi, a);
end foreach

end for
return G

end

Examining Figure 3.5, an output graph from the GR model, the same spanning

trees observed in BA graphs (See Figure 3.4) are observed. However, the high degrees

hubs found in BA graphs are missing in the GR graphs. Instead, several smaller degree

hubs are found scattered throughout the graph.

3.5 Ageing Preferential Attachment Model

The Ageing Preferential Attachment (APA) model [27] is similar in many respects

to the BA model, but it introduces some important differences. Like the BA model,

creation of edges is guided by preferential attachment. The APA model introduces

vertex age to preferential attachment. The idea is that as vertices age there is a

change in their probability of new attachments. de Solla Price [25] remarked that

in scientific citation networks there existed a phenomenon he called the “immediacy

factor.’ That is, as papers age, the number of new citations decreases because the

paper is considered to be obsolete.



CHAPTER 3. GRAPH MODELS 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60
61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

9495

96

97

98

99

100

Figure 3.5: Growing Random Graph

Constructed where n = 100, m = 1

This attachment rule, however, has the ability to break the scale-free behaviour

of the BA model when β ≥ 1 in Equation 3.2, where β, b, d are constants acting

on ti, the age of the ith vertex [27]. The Ageing Preferential Attachment model,

modified from the BA model, is presented in Algorithm 7. The algorithm differs from

Algorithm 5 in the probability calculation and the introduction of the new variables:

β (the exponent for age), b (a constant factor of age preference), and d (the zero age

appeal).

Pi = akαi + c+ blβi + d (3.2)

Algorithm 7: Ageing Preferential Attachment Graph Model

Input: n > 0, m > 0, α > 0, a, c, β, b, d
Output: A completed Barabasi-Albert Network, G = (V,E)
begin

for i← 1 to n do
V ← V ∪ vi;
for j ← 1 to i− 1 do

Pj ← akαj + c+ blβj + d;

end for
for j ← 1 to m do

s← select(P );
E ← E ∪ (vi, vs);

end for

end for
return G

end
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Figure 3.6: Ageing Preferential-Attachment Graph

Constructed where n = 100, m = 1, alpha = 1, a = 1, c = 1, beta = −1, b = 1, d = 0

Output graphs of the Ageing Preferential Attachment model, like found in Figure

3.6, generate hubs similar to those found in BA graphs (See 3.4). The spanning

property observed in the growing networks exemplified in Figures 3.5 and 3.4 is also

present in the Ageing Preferential Attachment. However, it is important to note that

the model presented by [27] only exhibits the power-law degree distributions when

the age exponent, β is less than 1.

3.6 Forest Fire Model

Leskovec et al. [54] observed that many real-world complex networks exhibit prop-

erties of heavily-tailed in and out degrees, formation of communities, and increase

denseness due to the power law distribution of links and a shrinking diameter. As

such, they proposed a model called the Forest Fire Model, which purports to encom-

pass all of these properties.

Algorithm 8 illustrates the Forest Fire model algorithmically. The model begins

each iteration of graph construction with the addition of a new vertex, vi. Then, m

ambassadors are selected and put into A. For each ambassador, a, an edge is created

from vi to a. Also, two numbers, x and y, are chosen randomly from a geometric

distribution with a means of p
1−p , and rp

1−rp , respectively. Using x, and y, x successors

and y predecessors of a are uniformly selected which are not already attached to vi.

The selected vertices are appended to A to act later as ambassadors to vi.

One characteristic important to Forest Fire model is the formation of community

structures, groups of vertices easily formed through dense connections. In Figure
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Algorithm 8: Forest Fire Model

Input: n > 0, m > 0, 1 ≥ p ≥ 0, 1 ≥ r ≥ 0
Output: A completed forest fire graph, G = (V,E)
begin

for i← 1 to n do
V ← V ∪ vi;
A← RandomV ertices(V − vi,m);
foreach a ∈ A do

E ← E ∪ (vi, a);
x← geoProb( p

1−p);

y ← geoProb( rp
1−rp);

W ← RandomV ertices(b ∈ V |b /∈ A ∧ (a, b) ∈ E, x) ∪
RandomV ertices(b ∈ V |b /∈ A ∧ (b, a) ∈ E, y);
A← append(A,W );

end foreach

end for
return G

end
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Figure 3.7: Forest Fire Graph

Constructed where n = 100, m = 1, p = 0.37, r = 0.32
0.37 .

note: Colours represent communities.
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3.7, the communities of a graph derived from the Forest Fire model is illustrated by

assigning a colour to each.



Chapter 4

Modelling Techniques for Graph

Models of Complex Networks

A graph model provides a means of understanding the processes and behaviours that

act on a specific network. It allows the exploration of the structural properties of

the network and the development of predictors for the network. However, in order

to construct a graph model, it is often necessary to have an intimate understanding

of the structural properties and the behaviours of the network. Such a requirement

means that constructing a graph model can present a significant challenge.

Despite challenges in the formation of graph models for complex networks, there

have been approaches proposed to construct graph models. Some of these methods

exploit properties commonly found in graph models, other make assumptions about

the processes that form edges within the network. Moreover, some automate the

entire model construction making few assumptions about the network at all.

In this chapter, a brief overview of works relating to the construction of graph

models is provided. Moreover, the strengths and weaknesses of the techniques pro-

posed by the works review will be presented. Finally, Section 4.5 conducts a discussion

about previous methodologies in contrast to the proposed methodology of this thesis.

4.1 P ∗ Graphs

Exponential random graphs, called p∗ graphs [78], are random graphs consisting of n

nodes and m dyads that can be explained by some statistics s(y). The set of dyads

(edges) are defined in a set Y = {Yi,j : i = 1 . . . n, j = 1 . . . n} where Yi,j = 1 if

vertices i and j are connected via an edge otherwise Yi,j = 0.

The main idea of modelling using the p∗ technique is that the observed values

25
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of structural measures on some given network only captures one of a large number

of possible networks. In order to determine the dyads given n vertices, a likelihood

algorithm is employed to determine the s(y) and construct the dyads sets.

There exist a number of proposed methods for constructing the graphs employ-

ing various likelihood algorithms. Some of these methods include loglikelihood [39],

pseudolikelihood [39], and Markov chains [79]. Exponential random graphs have

been demonstrated to be successful at modelling complex networks [78]. However, p∗

graphs rely heavily on local structures in networks and are therefore very slow and

do not capture the network as a whole [55].

4.2 Kronecker Graphs

The Kronecker graph was proposed by Leskovec et al. [55]. The graphs produced

are said to exhibit properties of real-world networks such as heavily tailed in- and

out-degrees, and small diameters that shrink over time. The model employs a matrix

operation called the Kronecker product.

Kronecker graphs are used to model networks by constructing a Kronecker matrix

containing parameters for the graph model constructed. The parameters are refined

using a maximum likelihood algorithm which runs in linear time. Such a runtime

is considerably quick considering prior efforts at constructing maximum likelihood

algorithms produced asymptotic times that were quadratic [55].

The modelling of a network using the Kronecker graph model begins with an initial

graph K1 containing N1 vertices and E1 edges. Recursively, larger graphs K2, K3, . . .

are produced such that Kk has Nk
1 vertices and Ek

1 edges. This process creates the

Densification power-law observed in real-networks [53] and is accomplished using the

Kronecker product.

There are two types of Kronecker graph models, the first constructs a graph by

successively applying the Kronecker product to the adjacency matrix of the graph

N1. This model is known as the deterministic Kronecker graph model. The other,

the stochastic Kronecker graph model, applies the Kronecker product recursively to a

probability matrix N1. The matrix contains cells such that a cell i, j is the probability

of forming an edge between vertices i and j.

The stochastic version of the Kronecker graph models has been applied to create

supercomputer benchmarks for graph algorithms [72]. The model has also been shown

to replicate real-world networks [51]. Furthermore, the model is simple and fast. How-

ever, it has been suggested that this model has a limited range degree distributions
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[72]. Moreover, the model relies on the assumptions of power-law distributions and

the Densification property.

4.3 Chung-Lu graphs

The Chung-Lu graph model [2] constructs graph with a degree distribution given by

α and β such that y vertices of degree x satisfy

log y = α− β log x (4.1)

In general, to construct a graph the model uses the sequence [3]

1. Form a set L of x distinct copies of vertex v

2. Choose, randomly, a matching of elements from L

3. For vertices u and v, the number of edges formed between u and v is equal to

the number of edges in the matching of L

Aiello et al. [4] present four variations of the Chung-Lu graph model. The first

model(Model A), is considered the basic model and forms the basis of the other three

models. At time t, the out-weight of u is computed as 1 + δoutu,t and the in-weight of

v, 1 + δinv,t. An edge is then formed between u and v with the probability of

α
(1 + δoutu,t )(1 + δinv,t)

t2
(4.2)

The second model (Model B) adds controls that allow independently controlled

in- and out-degrees via the use of new parameters. Model C adds new controls that

allow edge creation via four different mechanisms. These are

1. Edge from u and v randomly selected by probabilities based on the in-degree of

u and the out-degree of v

2. Randomly selected vertex u connected to the newly formed vertex where u is

selected probabilistically based on its out-degree.

3. A newly formed vertex is connected to a randomly selected vertex u such that

its selection is probabilistically based on its in-degree.

4. A loop to the new vertex.
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The final model (Model D) is a variant of Model C such that it constructs undi-

rected networks. All models construct power-law distribution graphs with large com-

ponents in the graph and utilize parameters to fluctuate the degree distributions.

It is said that the range of degree distributions obtainable from these models

are greater than those which can be produced by stochastic Kronecker graphs [72].

Furthermore, [72] argues that the optimization of Chung-Lu graphs is simpler than

that of a Kronecker graph. Regardless, this model assumes that complex networks

follow a power-law distribution.

4.4 Evolutionary Modelling Strategies

In this section, two methods of modelling are presented which utilize evolutionary

strategies, namely Genetic Programming (GP). These strategies are unique to the

previous strategies and make fewer assumptions about the network being modelled

[62]. While both methods employ GP, they do so in very different way.

The first method, proposed by Bailey et al. [11], uses GP to construct a complete

program which when run constructs a graph. Generated models are evaluated based

on their ability to reproduce specific network properties. These measures are the

average geodesic path length, transitivity, and degree distribution of the network.

A graph is provided as an example to the system and used to compare the output

graphs of an evolved program. The methods proposed by Bailey et al. [11] provided

the first attempts in automation of graph modelling using GP. However, the method

utilized priority queues [10], and community detection algorithms Bailey et al. [12] to

construct some types of networks.

Another method, recently proposed in [62], used symbolic regression to construct

networks. The work proposed a model such that at each time step a vertex was

added to the graph and an edge was added to the graph probabilistically from the

possible edges not already constructed. The probability of an edge being formed

from u to v was determined by a probability function which was evolved by the GP.

Experiments were performed on this method using the Erdos-Renyi graph model and

the Barabasi-Albert graph model.

4.5 Discussion

Many of the proposed methodologies for generating graph models infer that specific

properties exist in complex networks. For example, Leskovec et al. [55] explain that
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“Real networks exibit a long list of surprising properties: Heavy tails for the in-

and out-degree distribution, heavy tails for the eigenvalues and eigenvectors, small

diameters, and densification and shrinking diameters over time.” Despite numerous

examples [6, 13, 23, 67] which indicate that such properties hold, there exists no

means to conclude that this is the case in general. A contradiction is found in the

Ageing Preferential Attachment model, in the model there are situations where the

power-law degree distribution does not hold [27].

Despite the specificity of the properties modelled by parametrized models of com-

plex networks, they are important and provide a practical means of evaluating the

theory in complex networks. Their existence suggests that knowledge about complex

networks can be used successfully to construct accurate graph models.

On the other hand, GP methods for the automatic creation of graph models offers

an attractive means for the construction of graph models that do not require the

assumptions made by parametrized models. The evolutionary strategies by Bailey

[10] do not require that a graph model have a heavily tailed degree distribution.

Evidence for this is found in the ability to replicate the Erdos-Renyi model where

the degree distribution is very different from the scale-free property observed in other

networks. The symbolic regression method proposed by Menezes and Roth [62] takes

a step back further from any assumptions of graph models. Graphs are constructed

based on a probability formulas constructed by the system. However, the previous

evolutionary strategies do not make use of what is known about a complex network

being modelled specifically with respect to the process of the network. This means

that regardless of what is known about the processes of a network being modelled the

GP is made to determine all processes in the network.

No matter the method, modelling constructs only one of many possible ways of

constructing a graph model and do not take into account the semantics of the network

at hand [78]. While this thesis does not directly experiment with encoding the se-

mantics of complex networks into solutions, it does leave room for such constructions.

Moreover, it addresses the lack of expert knowledge encoded into GP methodologies

via the proposal of a novel GP technique. Thus, the framework offered by the pro-

posed methodology of this thesis (See Chapter 7) attempts to build upon the strengths

of all modelling techniques. The framework facilitates the research to define the algo-

rithmic structure of the graph model and, thereby, reduces the responsibility of the

GP to evolve all processes of the graph model. Furthermore, it maintains the ability

to construct a very diverse set of graph models as the expert knowledge provided to

the system is varied.



Chapter 5

Genetic Programming

Genetic programming (GP) is a computational intelligence technique inspired by Dar-

winian evolution and introduced by Koza [43]. In genetic programming, a population

of programs is randomly created and evolved using a survival of the fittest approach.

That is, programs that more closely meet a desired criterion have better odds of

passing their genetic code to the next generation.

GP has been used in a number of different applications such as curve fitting

[9, 74, 87], the development of circuits [45], evolutionary art [16], modelling [11, 80],

and the construction of artificial agents [41], among many others [45, 74].

In its original form, as proposed by Koza [43], GP forms tree-based programs

which utilize a functional programming paradigm. However, this is not the only

representation for programs in GP. In Sections 5.2, 5.3, and 5.4, a brief review of

three of forms of GP representation will be given. In Section 5.2, the tree-based form

will be discussed. Section 5.3 will provide an alternative to tree-based GP, linear GP.

Finally, Section 5.4 provides a background on Object-Oriented GP, the paradigm

adapted by this thesis.

5.1 The Genetic Programming Algorithm

While there are many approaches to GP, they all share a very general algorithm called

an evolutionary algorithm. This is not to be mistaken with the related evolutionary

computational technique, Genetic Algorithms. Instead, evolutionary algorithms, in

the context of this section, refers to the general algorithm that loosely describes the

processes of both genetic programming and Genetic Algorithms. In the evolutionary

algorithm [35], a population (or sometimes populations) of programs are stochastically

transformed to build new programs. Algorithm 9 provides a loosely constructed

30
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evolutionary algorithm which describes the processes of the Genetic Algorithm.

Algorithm 9: The Evolutionary Algorithm

begin
randomly create a population of individuals;
while acceptable solution not found or other stopping criteria not met do

Determine the fitness of each individual in the population;
Probabilistically select individual(s) from the population base on fitness;
Create new individual(s) using a genetic operator and selected
individual(s);

end while
return best solution

end

Algorithm 9 begins with the random creation of a population of individuals. In

GP, this is a population of randomly constructed programs [74]. The construction

of programs is dependant upon the representation of the GP. In the later sections

of this chapter, some representations available in GP will be discussed. Algorithm 9

also describes at each iteration (or in Genetic Algorithm terms, generation) that the

fitness of each individual must be evaluated. In GP, this is accomplished by executing

each program and evaluating its result [74].

5.1.1 Selection

Selection of individuals, the next step in Algorithm 9, is determined by a probability

based on fitness. That is to say, the probability of selecting a highly fit individual

should be greater than the probability of selecting an individual who is much less fit.

Two methods for selecting individuals probabilistically are tournament selection and

roulette selection.

In tournament selection, for each individual selection k individuals are randomly

chosen from the population and the fittest wins and is selected. roulette selection

selects individuals by determining their proportional fitness in the population and

probabilistically selecting an individual based on their proportional fitness.

5.1.2 Genetic Operators

After having selected individuals. The operations that will be performed on a se-

lected individual is decided by a probability of performing the genetic operator. The
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probability of each operator’s use is a parameter of the Genetic Algorithm. There are

two major operators which are used: crossover and mutation.

crossover is the recombination operator which takes, usually, two individuals and

transforms into one or more new individuals. The common idea of all crossover oper-

ations is that genetic information is taken from multiple individuals and recombined.

mutation is the application of random changes to an individual. This operation,

usually, has a low probability of occurring and when it does occur only small changes

are made to the individual.

In the case of both operations, their implementation is determined in part by the

representation of the GP system at hand. As it will be demonstrated in the following

sections of this chapters, the genetic representations of each approach reviewed are

very different and therefore require different implementations of genetic operators

that can work with the representation being employed.

5.2 Tree-Based Genetic Programming

Genetic programming is a tree-based system and was originally popularized by Koza

[43]. In the vanilla GP proposed by Koza [43], functions used by a GP system were

singly-typed, i.e., all elements of the program had the same type. In this form, the

programs are comprised of functions and terminals. Functions are elements which

have arguments and terminals are elements which do not. Figure 5.1 provides an

example of a tree-based program typical of tree-based GP. In the program a function

is constructed that is equivalent to the expression x× 3x+ 2
x
.

In a tree-based genetic program, crossover operations are used to recombine two

programs to create two new programs. crossover is, usually, performed by selecting a

subtree from each parent and swapping them to form two new programs, the children.

This process is illustrated in Figure 5.2.

A variant of vanilla genetic programming, strongly-typed GP [65], introduces the

ability to represent more sophisticated function definitions by facilitating the con-

struction of program trees with more than one type. Instead of the set of functions

and terminals all having the same type, the set contains functions and terminals which

do not all have the same type. Also, the arguments of functions will require specific

types. With this special consideration must be taken into account when constructing

program trees.

Some users of GP utilize the strongly-typed GP system to control the follow of

the program structure in GP. Recognizing this representation as cumbersome, some
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Figure 5.1: Singly-typed Tree-based Program

Figure 5.2: Tree-based GP Crossover Operation
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researchers developed grammar-guided GP systems (GGGP) [18, 32, 92]. This form of

tree-based system allowed the construction of programs that were built using context-

free grammars (CFGs). Using GGGP, it is also possible to define sub-functions Wong

and Leung [94]. One of the main role that GGGP systems serve, however, is to reduce

the search space of the problem [59].

5.3 Linear Genetic Programming

Linear genetic programming [74] is an alternative to tree-based GP. Linear GP, like

tree-based GP, produces a population of candidate programs to be evolved. However,

programs in linear GP are represented as a linear array of instructions [19], rather

than a tree structure. It is important to understand that linear refers to the structure

of the program representation as an imperative representation and not a linear list of

nodes [20]. In this sense, the building blocks of a linear GP system consist of registers

(variables) and instructions. Many techniques have been proposed for linear GP [71],

each with advantages and disadvantages. However, an important advantage of linear

GP over tree-based GP is the ability to vary the destructiveness of crossover and

mutation [19].

One approach to interpreting the chromosome is to use a function map. The

chromosome representation in this approach is a linear array of bytes like in Figure

5.3. The interpretation of the bytes is determined by a table of instructions, for

example, Table 5.1, which are assigned to the bytes. Similar to the representation of

assembly code.

Figure 5.3: Chromosome Comprised of an Array of Bytes

Byte Code Instruction
0001 1
0110 Add
1001 9
1011 x
1100 Subtract
1111 Multiply

Table 5.1: Example of Byte to Instruction Mapping
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Interpreting Figure 5.3 via Table 5.1, the chromosome’s program is + − 9 × xx1

or using infix notation 9−x2 + 1. However, if not careful both the table used and the

configuration of the chromosome will result in an infeasible program construction. The

solution to this is to use a grammar that guides the construction of the chromosome.

Notably, linear GP systems are said to be fast systems as they consist of low-level

simple instructions and written in languages such as C and C++ [20]. However, this

is not the only reason that linear GP is considered in some applications of GP. It has

been shown by Langdon and Banzhaf [50] that dead code is more readily identified

in linear GP than in tree-based GP.

5.4 Object-Oriented Genetic Programming

In the previous sections, discussion surrounded GP systems which produced programs

which had one behaviour, i.e. a single function. However, in practice, programming

to solve a problem involves multiple functions and data structures. It is possible to

evolve complex programs like this using other forms of GP [44, 64, 94]. However, it

is also possible to construct representations of GP as objects. object-oriented genetic

programming (OOGP) provides a framework with which multiple functions and/or

data structures are evolved.

Object-oriented programming is a widely used programming paradigm where

types are represented as entities with behaviours. In the object-oriented paradigm,

instances of types, known as objects, are mutable by way of methods that are anal-

ogous to behaviours. The OOGP methodology [1] provides a framework to produce

programs in such a paradigm. Past approaches with OOGP made use of a multi-tree

representation, whereby a chromosome’s consisting of several trees, each correspond-

ing to a single method, are evolved. The multi-tree representation used by OOGP

allows the simultaneous optimization of multiple methods, leading to the evolution

of more complex programs.

An example of the application of OOGP can be drawn from [49]. In the work by

Langdon [49], OOGP was employed to evolve data structures such as a stack. A stack

has multiple functions such as pop and push. Simultaneously evolving both of these

behaviours in conventional approaches to GP is not simple as traditional approaches

such as tree-based and linear GP systems are designed to evolve a single function.

Therefore, Langdon [49] proposed a representation that consisted of multiple trees;

one for each function of the stack, for instance.

Other approaches have also been proposed [1, 21, 31]. However, none of these
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proposed methods seem to have been widely adopted as searches on the topic do

not reveal much further uses beyond initial proposals of these systems. This is un-

fortunate, as these systems facilitate an incorporation of additional knowledge not

easily conveyed in other approaches. OOGP allows a specification of the behaviours

of an object to be easily constructed which then in turn can be used to produce data

structures that have multiple behaviours.

In the research of this thesis, such a structure has been adopted. A graph model

is a data structure which has a set of processes that construct a graph. Therefore,

a specification of the model can be constructed, and the implementation evolved

from the specification. However, the current OOGP approaches available employ

tree-based approaches. As explained in Section 5.2, tree-based approaches are often

difficult to use as representation of the problem can be difficult. Furthermore, the

crossover processes of tree-based GP is limiting and destructive [83]. Thus, we arrive

at the motivation for this thesis in the proposal of a new OOGP system (see Chapter

6) that employs a linear-based OOGP and readily incorporates expert knowledge.



Chapter 6

LinkableGP – An Object-Oriented

Linear Genetic Programming

System

LinkableGP is an Object-Oriented Genetic Programming (OOGP) System that is

designed to incorporate expert knowledge. It does so by utilizing an abstract class

definition. The abstract class also provides a means of defining the structure of

the programs evolved and allows some functions of the evolved program to have

implementations a priori.

In the sections to come, the systems construction will be discussed in greater

detail describing how expert knowledge is incorporated. Furthermore, the structure

and representation of individuals as well as the genetic operators used during evolution

will be described.

6.1 Facilitation of Expert Knowledge

To facilitate expert knowledge in GP, proposed is a novel object-orientated linear

GP system, LinkableGP. LinkableGP makes use of 1) an object-orientation method-

ology to construct class-based programs and 2) linear GP to construct imperatively-

defined methods within the class. As a result, LinkableGP allows the use of partially-

implemented classes, i.e., abstract classes, whereby the user may incorporate their

domain knowledge of the problem. The knowledge is embedded into the abstract class

by providing implementation of methods where the desired functionality is known a

priori. The remainder of the functionality is evolved using LinkableGP’s evolutionary

37
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strategies. Finally, LinkableGP produces a .NET-based1 source file corresponding to

the evolved implementation. The resulting source file is structured as expected for

object-oriented, imperative style .NET source code.

6.2 Motivation

The primary motivation for allowing expert knowledge encoded within an evolved

program stems from the difficulties experienced when controlling the flow of programs

using traditional GP approaches. When a program that has several logical stages is

evolved using traditional GP approaches, often it is necessary to construct a collection

of rules for the set of functions and terminals [58]. Handling of the rules is typically

managed by either employing a grammar to define valid program states or via the

manipulation of types. However, decomposition of a program into logical methods,

each with a set of functions and terminals specific to the associated task, will result

in a more natural program structure.

Furthermore, interpretation of the algorithms produced by GP is often difficult

due to the unintuitive program structure evolved. That is, code produced by GP

is typically dissimilar to that of human-created code. Therefore, it is desirable to

generate programs in a paradigm that is both familiar and intuitive. Having such

programs facilitates expert evaluation of the outcome and allows for refinement of

the strategies employed.

6.3 Structure and Representation

Unlike a traditional GP tree structure, which represents a single function, individuals

in the LinkableGP population represent types or classes. The classes are implementa-

tions of a parent type. This parent type is an abstract class which allows the user to

encode expert knowledge elegantly and in a manner familiar to most programmers.

The structure of individuals within a population in LinkableGP is inspired by

both linear GP and OOGP representations. Furthermore, individuals are constructed

using a collection of chromosomes, analogous to a DNA structure. The DNA structure

of an individual defines the physical implementations of abstract methods from the

parent type. That is, each chromosome corresponds to the code sequence of a single

abstract method defined in the parent type. Each chromosome’s genotype is an array

of integers, which directly corresponds to a code sequence that constructs a single

1Refers to Microsoft’s .NET framework
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method in the resulting phenotype. A visualization of the chromosome structure and

genotype to phenotype process is presented in Figure 6.1.

Figure 6.1: Visualization of the genotype to phenotype mapping for an individual in
the LinkableGP system.

6.3.1 The Abstract Class

The abstract class in LinkableGP serves as an embryo for each individual. The class

consists of any number of implemented or abstract methods, as is expected of an

abstract class. Those methods that are marked abstract are to be implemented by

the individuals and evolved by LinkableGP. That is, the genotype of each individual

is defined by the number of abstract methods. The phenotype of the individual is the

implementation of the abstract class as defined by the genotype.

6.3.2 The Genotype

The genotype of an individual is a collection of integer arrays, called chromosomes,

one for each method marked abstract by the defining abstract class. The chromosomes

are of variably-lengthed arrays to allow different lengths of programs. Each value in

the chromosomes represents an element in the construction of the abstract method

it is mapped to. The process that governs the conversion between chromosome to

method implementation is explained in Subsection 6.3.4.

6.3.3 The Phenotype and the Language

The phenotype of an individual is the implementation of the abstract class. It is

resulting source of the program that has been generated by the individual through

the mapping of the genotype to the phenotype. In order to build a method, a language

(i.e., a set of functions, constants, and constant generators) must be defined. Each
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method utilizes a language set as the functions, constants, and other constructs for

building one method and is not necessarily useful to another.

The language, however, is not static. Dependent on the context built-in mapping

the genotype, new values may result. For example, if a function that is used in the

method being implemented has a result either a mutable variable is selected from the

language or a new one might be created. If a new variable is created, it is added to

the instance of the language that is being used by this implementation. This change

in context, however, does not prevail or transfer between chromosomes.

6.3.4 Mapping Genotype to Phenotype

The mapping of a genotype to phenotype transforms each chromosome in the geno-

type to a method in the phenotype. The process of mapping a chromosome to a

method constructs single instructions iteratively. During the mapping of the chromo-

some, an index is maintained to the current position in the chromosome array. The

index is iterated each time a chromosome value is used during construction. The first

step in creating an instruction is to select a function from the language. The selection

of a function from the language is restricted to those functions whose arguments can

be immediately satisfied by the available variables in the variable bag. To determine

which function is used from the subset, the next chromosome value mod the cardinal-

ity of the subset is computed. The computed value provides the index of the selected

function from the subset.

Given the function for the instruction, the arguments of the function must now

be satisfied using variables from the variable bag which have the same type as the

argument. The selection of the variable is determined by the computed value of the

next chromosome value mod the cardinality of the subset of variables. The selected

variable is then the variable at the index of the computed value in the subset. The

assignment of variables to arguments continues until all arguments are satisfied.

If the function in the current instruction has a result type that is not void, a

variable must be selected to store the result. Like with arguments of a function,

a subset is formed from the variable bag such that it contains only those variables

which have the same type as the result type. However, there is an added constraint to

variables in the subset that they also be mutable variables. The only variables which

are mutable in LinkableGP are those that are constructed locally during mapping.

Before a variable is selected from the subset, a new variable is added to the subset with

the same type as the result type of the function. Then, as before, the next chromosome
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Figure 6.2: Example Chromosome

value mod the cardinality of the subset is computed. The selected variable for the

result of the function is the variable at the index equal to the computed value from the

subset of variables. If the variable selected is the newly created variable it is added

to the variable bag. Since this variable was constructed locally, it will be marked as

mutable and, therefore, usable as for future assignments in the construction of the

method.

The process of constructing instructions continues until there the end of the chro-

mosome is reached. If the end of a chromosome is reached during the construction

of an instruction then, the chromosome array is extended with random values from

an uniform distribution to allow the completion of the instruction. This extension

remains as a part of the chromosome. If the method being constructed has a return

value then, one chromosome value is reserved at the end of the chromosome array to

allow the selection of the return variable from the variable bag. This value is selected,

as before, by constructing a subset of variables that have the same type as the return

type of the method. The variable is selected by computing the final chromosome

value mod the cardinality of the subset and selecting the variable at the index equal

to the computed value. If the subset is empty, an instruction is constructed using

the same method as describe for constructing a typical instruction with the added

requirement that the select function has the same return type as the method. In this

case, the chromosome is extended sufficiently to allow the completion of the return

instruction.

Example

In order to clearly understand the mapping process the following example is provided.

Assume an abstract class that contains only one method that is marked abstract and

has the signature void MagicNumber(x:Integer, y:String). A set of functions for

the language in the example is provided in Figure 6.1. The variable bag will initial

only contain inputs variables x and y which are marked as immutable. The method

will be mapped given the chromosome found in Figure 6.2.
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Function Set
Function Name Arguments Return Type
Add a:Integer, b:Integer Integer
Sub b:Integer, b:Integer Integer
ToString a:Integer String
Print a:String void
ToInteger a:String Integer

Variable Bag
Variable Name Mutable Type
x False Integer
y False String

Table 6.1: Initial Example Language

The first instruction of the phenotype will use the chromosome values at indices

[0, 2] which are {29, 46, 124}.2 First the function is selected from the function set.

Given the variable bag, all arguments of all functions are satisfiable, so the subset of

functions is the complete set of functions in the language. The cardinality of the set

is 5 and so the index of the function selected is 29 mod 5 = 4 which is the ToInteger

function. The type of the only argument for the ToInteger function is a String, so

the subset of variables from the variable bag is {y}. The variable y is selected as

the actual parameter of the function because 46 mod 1 = 0. This function has a

result variable so we consider the set {a} as the possible variables for assignment

of the result for the ToInteger instruction. The variable a, is a new variable which

is not added to the variable bag unless it is selected.3 Since the subset of variables

from the variable bag that are mutable and of type Integer is an empty set, no other

variables are added to the set. The variable which will store the result is a because

124 mod 1 = 0 and there is only the one variable. After one instruction, the language

is updated to match Table 6.2.

The next instruction in mapping the chromosome utilizes the chromosome values

at indices [3, 6] which are the values {90, 257, 19, 13}. The subset of functions usable

for this instruction, as was the case with the first instruction, is the complete function

set of the language. The index of the function for this instruction is computed as 90

2Please remark that at this point in the system it is not known how many chromosomes will be
required to for an instruction. However, for the purpose of determining where values are obtained
in the chromosome the values used for each instruction are provided before explaining the result.

3Variable names are determined as the next available letter in the alphabet which does not mask
any other already used variable in the scope of the method. If z is reached in variable naming the
convention is to append is to continue with (aa, ab, ac, . . . , az, ba, . . . )
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Function Set
Function Name Arguments Return Type
Add a:Integer, b:Integer Integer
Sub b:Integer, b:Integer Integer
ToString a:Integer String
Print a:String void
ToInteger a:String Integer

Variable Bag
Variable Name Mutable Type
x False Integer
y False String
a True Integer

Table 6.2: Example Language after one instruction

mod 5 = 0, thus, the function for this instruction is Add. The add instruction has

two arguments both of which are Integers. Therefore, the subset of the variable

bag is {x, a} for both arguments. The variable selected for the first argument is a

(257 mod 2 = 1) as is the second argument (19 mod 2 = 1). The set of variables

considered for the result of the function, Add, is {a, b} such that b is a potential new

variable. The computed value, 13 mod 2 = 1, determines that b is selected to store

the result. As a result of this instruction, the language is updated to reflect the new

variable b as seen in Table 6.3.

Function Set
Function Name Arguments Return Type
Add a:Integer, b:Integer Integer
Sub b:Integer, b:Integer Integer
ToString a:Integer String
Print a:String void
ToInteger a:String Integer

Variable Bag
Variable Name Mutable Type
x False Integer
y False String
a True Integer
b True Integer

Table 6.3: Example Language after two instructions

The next instruction uses the chromosome values from indices [7, 10] which are
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{51, 7, 780, 362} (See Figure 6.2). This instruction uses the function Sub as the index

of the function from the subset of functions is 51 mod 5 = 1. The arguments selected

from {x, a, b} for the function’s invocation are a (7 mod 3 = 1) and x (780 mod 3 =

0). The result of the function is assigned to the variable a (362 mod 2 = 0) from the

set {a, b}. After this instruction, the language as provided in Table 6.3 is unchanged.

The fourth instruction in the mapping of the examples chromosome uses the chro-

mosome values at indices [11, 13] which are {12, 8, 177}. This function results in the

use of the function ToString (12 mod 5 = 2) using the argument b (8 mod 3 = 2)

from the subset of the variable bag {x, a, b}. The result of the ToString is assigned to

the variable c (177 mod 1 = 0) from the set {c} which contains only a new variable

as the variable bag does not contain a mutable String. The language is updated to

include the new variable c and is provided in Table 6.4.

Function Set
Function Name Arguments Return Type
Add a:Integer, b:Integer Integer
Sub b:Integer, b:Integer Integer
ToString a:Integer String
Print a:String void
ToInteger a:String Integer

Variable Bag
Variable Name Mutable Type
x False Integer
y False String
a True Integer
b True Integer
c True Integer

Table 6.4: Example Language after four instructions

The final instruction in this example uses the last two values of the chromosome

from Figure 6.2 which are {103, 9}. The selected function for this instruction is

determined by the value 103 mod 5 = 3 and is Print. This function, unlike the

functions previously used, has a void return type. Thus, only the single argument is

required to be assigned. For the example this is the String c selected using the value

9 mod 2 = 1 from the set {y, c}.
At this point in the example, all chromosome values have been exhausted. Thus,

the mapping of the chromosome is complete. The resulting implementation of the

chromosome for the method, void MagicNumber(x:Integer, y:String), is found in
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Algorithm 10.

Algorithm 10: Resulting Algorithm of Example Genotype-Phenotype Mapping

Function MagicNumber(int x, int y)
a=ToInteger(y);
b=Add(a, a);
a=Sub(a, x);
c=ToString(b);
print(c);

6.4 Operations

LinkableGP employs a typical, generational genetic algorithm that performs crossover,

mutation, elitism, and selection operations. However, the crossover and mutation op-

erations are modified to work with the DNA structure. A proportion of the best

performing individuals from the previous generation is directly copied to the new

population, via elitism while the remainder of the new population results from off-

spring of the crossover operations.

6.4.1 Crossover

Crossover, visualized in Figure 6.3, is a two-phased operation. Crossover, as per-

formed in LinkableGP, results in the placement of a single new chromosome in the

new population constructed in a generation.

The first phase referred to as mating, selects two parents using a standard tourna-

ment selection operator and constructs a bit-mask to determine the chromosomes that

are to be inherited from each parent. Each bit in the randomly generated bit-mask

acts as parent discriminator. The chromosome value at index i is selected from parent

1 or parent 2 based upon whether the bit at index i is a 0 or 1. The mating phase is

depicted in Figure 6.3a. For some chromosomes of an individual, this might be the

only phase of the crossover performed. A random value, R1 is selected uniformly and

if the value is greater than ρ the second phase will not occur.

During the second phase called mixing, a chromosome in the child is replaced by

the offspring resulting from a one-point crossover operation between the parents. A

random cut-point is selected within the shortest parent chromosome. The mixing

phase occurs in one of two ways, with equal probability: 1) the genetic material up

to the cut-point is taken from parent 1 while the genetic material after the cut-point
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is taken from parent 2, or, 2) the genetic material up to the cut-point is taken from

parent 2 while the genetic material after the cut-point is taken from parent 1. The

selection of the mixing method is determined by the random value, R2 If R2 < 0.5

the first method is used; otherwise the second method is used. The mixing phase is

depicted in Figure 6.3b.

(a) Phase 1: Mating. A mask value of 0 denotes the corresponding chromosome is inherited
from parent 1 while a mask value of 1 denotes the chromosome is inherited from parent 2.

(b) Phase 2: Mixing, with ρ = 0.5. R1 < ρ denotes the mixing phase occurs. R2 < 0.5
denotes the first portion of the genetic material is taken from parent 1, while R2 ≥ 0.5
denotes the first portion of genetic material is taken from parent 2.

Figure 6.3: Visualization of the two-phase crossover operation in the LinkableGP
system.

6.4.2 Mutation

Mutation in LinkableGP is done either by extending/contracting the length of a

chromosome or by randomly changing values within a chromosome. There is a chance

of mutation for every chromosome of every individual added to the population in a

generation. Any chromosome may be affected by any combination of either mutation

approach.

In the extension/contraction mutation, a chromosome has either an integer ap-

pended to it or removed from it. The operation performed is selected uniformly. The

chance of any chromosome of individual having this operation perform is determined

by the system parameter m1.

Alternatively, with probability m2 a chromosome of an individual could have a

value within its array randomly changed. The element that is mutated is determined

uniformly as is its replacement value.



Chapter 7

Proposed Methodology

This thesis proposes a methodology for the automatic inference of graph models

for directed complex networks using Object-Oriented Genetic Programming. This

approach both facilitates and benefits from the incorporation of expert knowledge.

Thus, the methods proposed in this chapter utilize the knowledge gained from the

examination of existing graph models representing complex networks.

In Chapter 3, several models were examined which provide inspiration for the

methods described in this chapter. The examination of these models offers insights

that will form the basis of an abstract graph model (see Section 7.1) that will be used

by LinkableGP to implement models targeted. Also from the examination of the

models, a collection of function sets (the language) will be proposed for LinkableGP,

which will provide the building blocks for the implementation of the abstract methods.

Details of the make-up of the language will be provided in Section 7.2.

When generating a graph model, there is a target complex network. However,

if the complex network was known then modelling it would be trivial. Therefore,

sample data must be relied on. Using a representative graph, a target graph, from the

network being model provides such sample data.

In order for LinkableGP to evaluate how well a program is modelling the complex

network at hand, graphs must be produced by the program. The graph produced by

the program can then be evaluated, statistically, to the target graph. The evaluation

will provide LinkableGP an indication of the fitness of the program. In Section 7.3

the methods for evaluating the graphs produced by programs will be explained in

detail.

Armed with an abstract class, language, and fitness function, the inference of a

graph model begins with the construction of a population of programs. Then each

program is evaluated against the target graph and ranked relative to the population.

47
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The best-performing programs are immediately moved to a new population. In order

to complete the construction of a new population, genetic operators are applied to

the existing population to form new programs. The completed new population then

replaces the old population, and the process begins again from evaluating and ranking.

The algorithm continues the process of construction populations, evaluating and,

ranking for some prescribed number of iterations. The final result is a graph model

which should model the targeted network.

7.1 Abstract Graph Model

In order for LinkableGP to exploit utilize knowledge about the behaviour of complex

networks, an abstract class definition is required as a partial representation of the

knowledge. In this section, one representation will be proposed. It is stressed that

this is only one of many possible representations, and the focus of this representation

is relevant to the models evolved in Chapter 8.

Algorithm 11 presents the abstract class that will be used in this thesis. The first

function, GenerateModel, serves as the calling function to generate a graph produced

by an implementation of the class. In this function, construction of a graph begins

with the creation of an initial graph. For the purposes of this thesis, this is always

an empty graph.

The body of the function in Algorithm 11, iterates over t time steps, each time

adding a new vertex, v, to the graph. The iterations are done this way because all

the complex networks experimented with in Chapter 8 follow a growing behaviour

(assumed to be one vertex each iteration). After vertex addition, a collection of

vertices, W , are selected to form new edges with the new vertex. However, edge

creation has the possibility of being probabilistic and thus there exists a possibility

that no edge will be formed. The process of selecting vertices for edge creation is

something observed in all the graph models found in Chapter 3, however it is a step

that is performed differently depending on the network. Therefore, this function,

named SelectVertices, is marked abstract and to be evolved by LinkableGP.

After the initial creation of W in the function, GenerateModel in Algorithm 11,

an iteration over the W vertices are performed. In this iteration, the current vertex w

from W and v are passed to a function AddEdge which will return an edge. However,

this edge might be an empty edge which gives the effect of no edge being added.

This function is marked abstract and is evolved by LinkableGP because the criteria

in which vertex addition and the direction of the edge is unknown and dependent on
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Algorithm 11: Abstract Graph Model for Complex Networks

Function GenerateModel(int t)return graph
G← InitialiseGraph();
for i← 1 to t do

v ← V ertex();
W ← SelectV ertices(G);
while |W | > 0 do

w ← Next(W );
E ← E ∪ AddEdge(v, w);
SecondaryActions(W,w);

end while
V ← V ∪ v;

end for
return G

abstract Function SelectVertices(Graph g)return vertices

abstract Function AddEdge(Vertex v1,Vertex v2)return edge

abstract Procedure SecondaryActions(Vertex v, Vertices V )

the network. In the Erdos-Renyi model, the creation of edges is probabilistic, while

the Growing Random model’s edge creation given two vertices is definite. There-

fore, LinkableGP should be responsible for determining how edge creation should be

performed.

In the same iteration where the AddEdge function is called, a procedure, Sec-

ondaryAction, is also invoked with the arguments W , the collection of vertices being

iterated, and the vertex, w. The purpose of this procedure is to perform any other

actions that happen as a consequence of the edge creation of w and v. In the Forest-

Fire graph model, this would be where some neighbours of w not already visited by

v (i.e., not already added to W ) would be appended to W . As this procedure is not

apparent in all graph models found in Chapter 3 and would be dependent on the

network being modelled, it is marked abstract.

7.2 GP Language

The functions SelectVertices, AddEdge, and SecondaryActions that were marked as

abstract in the abstract class defined in Section 7.1 each required a function set for

use in LinkableGP. In order to describe all the functions and terminals used by each

abstract function, like functions and terminals are grouped, for convenience, into the
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following collections.

• Arithmetic functions

– Func<Vertex, double>Add(f:Func<Vertex, double>, g:Func<Vertex, double>)

– Func<Vertex, double> Sub(f:Func<Vertex, double>, g:Func<Vertex, double>)

– Func<Vertex, double>Mult(f:Func<Vertex, double>, g:Func<Vertex, double>)

– Func<Vertex, double> Constant(c:double)

– Func<Vertex, double> Pow(f:Func<Vertex, double>, g:Func<Vertex, double>)

• Vertex property evaluators

– Func<Vertex, double> InDegree()

– Func<Vertex, double> OutDegree()

– Func<Vertex, double> Degree()

– Func<Vertex, double> Age() (only in Ageing Preferential Attachment)

• Collection providers

– TabooVertexCollection GetRandomQueue(g:Graph, n:int)

– TabooVertexCollection GetRouletteQueue(g:Graph, n:int, F:Func¡Vertex,double¿)

– TabooVertexCollection GetRandomStack(g:Graph, n:int)

– TabooVertexCollection GetRouletteStack(g:Graph, n:int, F:Func¡Vertex,double¿)

• Edge creation functions

– Edge CreateEdge(v:Vertex, w:Vertex)

– Edge CreateEdgeWithProbability(v:Vertex, w:Vertex, prob:double)

• Vertex providers

– void AddPredecessor(V:TabooVertexCollection, n:int, a:Vertex)

– void AddSuccessor(V:TabooVertexCollection, n:int, a:Vertex)

– void AddNeighbour(V:TabooVertexCollection, n:int, a:Vertex)

• Random value providers

– int GetRandomValue(min:int,max:int)
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– int GetGeometricValue(prob:double)

– int GetBernoulliValue(prob:double)

• Constant Generators

– Floating-Point Number Generator

– Integer Number Generator

The collection of arithmetic functions consists of operations for constructing ex-

pression that evaluate a vertex. These expressions are Add, Multiply, Constant, and

Pow. Add and Multiple both take two expressions and add/multiply their results.

Pow evaluates two expressions and uses the first expression as the base, b, and the

second as the exponent, e then evaluates be. Constant takes in a value, returning the

same value and represents a terminal in the expression tree allowing a value to be

converted to an expression. The conversion is important so that Add, Multiply and

Pow functions can use constants.

The collection of vertex property evaluators serves as a collection of terminals

used in co-operation with the arithmetic functions previously described. The vertex

properties consist of local properties of vertices. These are the in- and out-degrees

of the given vertex as well as the combined in/out degree of the vertex and its local

transitivity. When combined with the arithmetic functions these form an expression

tree where a vertex can be evaluated to a value that can be used for roulette selection

to select vertices probabilistically to pair with a new vertex.

The roulette selection is one of the two base selection methods in the collection

providers, the other being uniform random. The roulette selection uses an expression

given to determine a value for each vertex in the graph. It then selects probabilistically

one or more of the vertices based on the proportional value resultant of the expression

evaluation of each vertices. Whether a roulette selection or a random selection, each

has implemented using a stack and a queue. It is also important to note that these

collections implement a taboo. A vertex may be added at most once into an instance

of a collection even if removed from the collection. The functions, where g is a graph

and n is the number of vertices to add initially to the collection, are

Edge creation functions are simply those functions responsible for creating new

edges. The collection consists of probabilistic edge creation, and definite edge creation

and empty edge creation (handled by the system as no new edge i.e. E ← E ∪ ∅).
The vertex providers take a vertex collection and a vertex, v and add n vertices

related to v by some edge association. These associations consist of predecessor,
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Abstract Method Collections

SelectVertices random value provider, vertex property provider,
vertex collection provider, arithmetic functions,
integer constants, and real constants.

AddEdge edge creation functions, and real constants.
SecondaryActions vertex providers, random value providers,

integer constants, and real constants.

Table 7.1: Accessible Collections of Functions and Terminals by Abstract Method

successor, or neighbour. Since the vertex collections are taboo collections, the n

vertices selected will be distinct to the collection thereby avoiding multi-edges.

Finally, the random value providers are responsible for producing values. These

providers, in contrast to generated constant, provide random values at runtime of

the algorithm. Three providers are implemented serving Integer values from one of

the following: an uniform distribution, geometric distribution, or Bernoulli trials.

Further to these collections, generated constants in the form of Integers, and Real

(double-precision floating-point) numbers are provided to some abstract methods.

Each abstract method is given access to only some collections that have been

described. Table 7.1 outlines the collections accessible to each method.

7.3 Fitness Evaluation

It is not possible to directly compare a program to an unknown complex network,

the target, no matter what is known of the network. Therefore, it is necessary to

compare the program to the target graph using instance graphs of the program being

evaluated. An instance graph refers to a graph generated by an evolved program. The

means of comparison, the fitness evaluation, is established based on previous works

[10] in the inference of graph models and modified for the application in directed

complex networks.

The fitness of the program is the mean difference in average geodesic path length

(Equation 7.1), network average clustering coefficient (Equation 7.2), and degree dis-

tributions (both in- and out-degrees) (Equations 7.3 and 7.4) of m instance graphs

(Xi) against the target graph (T ) (See Chapter 2 for details in computing each value).

In Equations 7.3 and 7.4, the function F refers to the cumulative empirical distribu-

tion function of the in-degree and G to the cumulative empirical distribution function

of the out-degree.
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Solution Fitnesses f1 rank f2 rank f3 rank Sum of Ranks
(3, 2, 2) 3 2 2 7
(1, 3, 4) 2 3 3 8
(0, 0, 1) 1 1 1 3

Table 7.2: Example of Sum of Ranks

F1(X,T ) = | 1
m

m∑
i=1

l(Xi)− l(T )| (7.1)

F2(X,T ) = | 1
m

m∑
i=1

C(Xi)− C(T )| (7.2)

F3(X,T ) =
1

m

m∑
i=1

Dn,n′(Fn(Xi), Fn′(T )) (7.3)

F4(X,T ) =
1

m

m∑
i=1

Dn,n′(Gn(Xi), Gn′(T )) (7.4)

Since this problem is multi-objective in nature, a means of comparing solutions

qualities is necessary. Means of comparison are established using the Sum-of-Ranks

approach to multi-objective optimization. The Sum-of-Ranks algorithm sums the

relative rank of each solution (or in this case graph model) in a population over

each of the established objectives. For example, Table 7.2 describes a population of

three solutions with three objectives where each objective goal is minimization. The

ranking value of each solution is presented in the columns of f1 rank, f2 rank, and f3

rank, respectively. The ranks are summed and shown in the column Sum of Ranks.

In this example, the 3rd solution is determined the best as it has the lowest summed

rank value.

After each new population is constructed, all programs are evaluated over the

objectives: F1, F2, F3, and F4. Then, each program is ranked relative to its population

using the previously described method, Sum-of-Ranks. Moreover, now each program

is comparable relative to the other programs in its population.



Chapter 8

Experiments – Reproducing Graph

Models

In order to determine the utility of the methodology proposed by this thesis, graph

models were evolved from target graphs generated by known graph models. For ex-

perimentation, the models selected were the Growing Random model (GR), Barabasi-

Albert model (BA), the Forest Fire model (FF), and the Ageing Preferential Attach-

ment model (APA) described in Chapter 3. Known models were select as a more

thorough validation can be performed as limitless number of graphs could be used

for comparisons. The GR model was selected as it is a random model with only a

growing property making it the simplest to model. The BA model uses a vertex selec-

tion process which requires the LinkableGP to find a formula to represent it. The FF

model is the most complex of the four models selected. It has complex patterns for

the addition of edges to the graph and makes it the most challenging of the models

for LinkableGP. Finally, the APA adds a new property (age) to the modelling and

therefore requires the system to discover new processes not seen in other models.

For each model, four target graphs were generated with 100, 250, 500, and 1000

vertices, respectively. LinkableGP was run 30 times for each target graph, resulting

in a collection of evolved models. For each target size of each known model, a single

evolved model was chosen from the target’s respective collection of evolved models.

The final evolved model for each target was selected by way of a Sum-of-Ranks test on

the collection of evolved models. The evolved model ranked the highest was selected.

A number of graphs (1000) were generated using each final evolved with the same

number of vertices as its respective target graph and compared to the target graph.

These comparisons provide a means of verifying that the final fitness of the graph

was not a chance occurrence.

54
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The aim of validating the final evolved model is to determine whether it reproduces

the graph model that produced the target graph used. Logically, there exist many

ways that validation schemes might be designed, some more rigorous than other.

One such way is visual examination of the graph model algorithms produced and

the graphs it produces. However, visual inspection is not a very formal approach

to validation but does reveal some information about the model and the graphs it

produces. Therefore, only a brief visual comparison for each set of experiments will

be provided. A complete set of algorithms from the evolved models is found in

Appendix A. Also, side by side visualization of target graphs and graphs produced

by each evolved graph model are found in Appendix B.

The approach of this thesis in the validation of models is to compare the structure

of the graphs produced by evolved model to those of the targeted model statistically.

In order to do so, each final evolved model was used to produce 1000 graphs of each

size (100, 250, 500, 1000 vertices). The same was done with the targeted graph model.

The evolved graph model and the targeted graph model were then compared over each

same-vertices-sized set. Comparison was performed by way of t-tests to compare the

average geodesic path lengths and the clustering coefficients and using KS tests for

the in- and out-degree distributions. The sample sizes were selected as they provided

a sample power of 0.971. The effect size for Welch t-tests was 0.2 with a significance

level of 0.01. The effect size for chi-squared tests was determined to be 0.1 with a

significance level of 0.01. Furthermore, where a t-test was employed, each sample was

tested using the Shapiro-Wilk test and found to be normally distributed.

In the remainder of this chapter, the results of the experiments on each model

will be presented. In Section 8.1, the setup for experimentation will be described.

Thereafter, Sections 8.2, 8.3, and 8.4 will present the results for experimentation in

reproducing the GR, BA, and FF models. Finally, Section 8.6 will provide some

discussion on the overall results of experiments.

8.1 Experimental Setup

For all experiments performed, LinkableGP was configured with the parameters found

in Table 8.1. The system parameters for LinkableGP used in experimentation were

established empirically during small-scale experiments in the earlier stages of exper-

imentation. The resulting evolved models were named based on their target model

and target graph size as listed in Table 8.2.
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Parameter Value

Population 50
Generations 30
Crossover Rate 0.9
Mutation Rate(m1, m2) 0.1
Tournament Size 3
Elitism 0.1
Initial Chromosome Length Ranges
SelectVertex [1, 15]
AddEdge [1, 5]
SecondaryAction [1, 25]

Table 8.1: LinkableGP Parameters

Each target graph was generated using igraph1. The settings used to construct

each target graph within a model only differed by number of vertices. Table 8.2

lists the settings used for each model.2 The m values used in the settings were all

1 and was chosen as to remove the responsibility of the LinkableGP from having

to determine the number of initial vertex candidates. The remaining settings were

chosen based purely upon the example uses provided in the igraph documentation.

Beyond variation of the graph size, no experimentation with graph model parameters

was performed.

8.2 Growing Random Model

The Growing Random model constructs graphs by adding vertices at each time step

and forming an uniform and randomly chosen vertex with which to form an edge.

Of the models experimented with, it is the simplest. However, there are certain

constraints that evolved models must follow if they are to be considered feasible given

the parameters used to construct the target graphs (See Section 8.1 for parameter

details).

• Each vertex must have exactly one out-bound edge except the first vertex added

• A graph produced may not contain any transitivity

1igraph is a library with an implementation in R for applications with graphs. Information about
the library can be found at http://www.igraph.org

2For more details on the implementation and the application of the parameters for each of this
graph models, see Chapter 3.



CHAPTER 8. EXPERIMENTS – REPRODUCING GRAPH MODELS 57

Experiment Id Model Parameters

GR-100 Growing Random Graph Model n = 100, m = 1
GR-250 Growing Random Graph Model n = 250, m = 1
GR-500 Growing Random Graph Model n = 500, m = 1
GR-1000 Growing Random Graph Model n = 1000, m = 1
BA-100 Barabasi-Albert Model n = 100, m = 1, α = 1,

a = 1, c = 1
BA-250 Barabasi-Albert Model n = 250, m = 1, α = 1,

a = 1, c = 1
BA-500 Barabasi-Albert Model n = 500, m = 1, α = 1,

a = 1, c = 1
BA-1000 Barabasi-Albert Model n = 1000, m = 1, α = 1,

a = 1, c = 1
FF-100 Forest Fire Model n = 100, m = 1, p = 0.37,

r = 0.32
0.37

FF-250 Forest Fire Model n = 250, m = 1, p = 0.37,
r = 0.32

0.37

FF-500 Forest Fire Model n = 500, m = 1, p = 0.37,
r = 0.32

0.37

FF-1000 Forest Fire Model n = 1000, m = 1, p = 0.37,
r = 0.32

0.37

APA-100 Ageing Preferential Attachment Model n = 100, m = 1, α = 1,
a = 1, c = 1, β = −1, b = 1,
d = 0

APA-250 Ageing Preferential Attachment Model n = 250, m = 1, α = 1,
a = 1, c = 1, β = −1, b = 1,
d = 0

APA-500 Ageing Preferential Attachment Model n = 500, m = 1, α = 1,
a = 1, c = 1, β = −1, b = 1,
d = 0

APA-1000 Ageing Preferential Attachment Model n = 1000, m = 1, α = 1,
a = 1, c = 1, β = −1, b = 1,
d = 0

Table 8.2: Experiments
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One of the selected best-evolved models, the GR-100, provides an initial per-

spective on the quality of solutions that will be seen in this section. Figure 8.1 shows

the target graph and a graph produced from the GR-100 model. It is observed that

both have similar types of spanning trees and have a number of vertices that have

3 to five in-degrees that serves as a sort-of hub. Examination of Algorithm 12 rep-

resenting the GR-500 model shows that a great deal of benign code was produced

but, importantly, variable b in SelectVertices generates a random selection of vertex

and then an edge is created by AddEdge which is similar to the processes of GR.
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(a) Growing Random Model with 100 Vertices
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Figure 8.1: Graphs from the GR model and the GR-100 model

In examining the results of GR-100, GR-250, GR-500, and GR-1000 found in

Table 8.3, based on fitness objectives F2, and F4, it is found that the constraints are

satisfied. If any of the models produced graphs which violated the out-bound degree

constraint, F4 would show a D-Value that sometimes deviated from 0.

In the case of transitivity, if a model sometimes produced transitivity there would

be some deviation found in the difference in clustering coefficients (F2).
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Algorithm 12: GR-500

Function GenerateModel(int t)return graph
G← InitialiseGraph();
for i← 1 to t do

v ← V ertex();
W ← SelectV ertices(G);
while |W | > 0 do

w ← Next(W );
E ← E ∪ AddEdge(v, w);
SecondaryActions(W,w);

end while
V ← V ∪ v;

end for
return G

override Function SelectVertices(Graph g)return vertices
a← GeometricV alue(0.402696);
b← GetRandomQueue(g);
c← GetLocalTransitivity();
return b

override Function AddEdge(Vertex v1,Vertex v2)return edge
a← CreateEdge(v1, v2);
return a

override Procedure SecondaryActions(Vertex v, Vertices V )

a← GeometricV alue(0.886134);
a← RandomV alue(a, a);
a← BernoulliV alue(0.93379);

F1 F2 F3 F4

Experiment x̄ s x̄ s x̄ s x̄ s

GR-100 0.07 0.342 0 0 0.037 0.014 0 0
GR-250 0.702 0.338 0 0 0.032 0.011 0 0
GR-500 0.339 0.351 0 0 0.024 0.009 0 0
GR-1000 0.08 0.344 0 0 0.016 0.006 0 0

Table 8.3: Final evolved GR models results comparing 1000 graphs produce by the
best-evolved model vs. its target graph
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The results in Table 8.3, with respect to F3, presents the average and standard

deviation of the D-Value of the in-degree distribution of 1000 graphs from the evolved

model versus its respective target graph. The mean results found in Table 8.3 are

fount to be more than 3 standard deviations less than the relevant critical values as

given in Table 8.4. This observation shows that the in-degree distributions produced

by the evolved models are similar to those found in the target graph.

Interpretation of the results for F1 is difficult to interpret via comparison to the

model. The values are optimal relative to the other evolved models not selected to

produce average path lengths similar to those found in the target graph. However,

there is no means of determining if these differences are fit relative to the target graph

and therefore the target model. Instead, it is necessary to defer to the validation of the

evolved models to determine the how well the average geodesic path lengths compare

to the observed average geodesic path lengths of the GR.

In Figure 8.2, the results of the comparison between the best-evolved model for

each GR target is shown for their distribution of average geodesic path length and

network average clustering coefficient. This figure shows that all evolved models pro-

duce the clustering coefficients expected. Comparing the network average clustering

coefficient between the evolved models the growing random model the seem to be sim-

ilar except the GR-1000. The path lengths observed in this evolved model exceed

those observed in the actual growing random model(See Subfigure 8.2d).

n1 \n2 100 250 500 1000
100 0.192 0.161 0.149 0.143
250 0.161 0.122 0.105 0.096
500 0.149 0.105 0.086 0.074
1000 0.143 0.096 0.074 0.061

note: the critical values with a significance of 0.05 are computed by

Dcrit = 1.36
√

n1+n2

n1n2

Table 8.4: Dcrit Values
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(a) GR-100
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(c) GR-500
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(d) GR-1000

Figure 8.2: Box plots of the average geodesic path length (AGP) and network average
clustering coefficient (CC) for GR experiments (evolved) versus the growing random
model(target). In each chart the four groups of box plots represent, in order from left
to right, graphs with 100 vertices, 250 vertices, 500 vertices, and 1000 vertices

A t-test comparing the samples of average geodesic path lengths from the evolved

models and the growing random model was performed, and the results are found in

Table 8.5. The results confirm the previous observations of Figure 8.2, that with

a 99% confidence the average geodesic path lengths of the GR-100, GR-250, and

GR-500 evolved models are similar to those observed in the growing random model.

The final area properties to inspect in validation for the evolved models of the

growing random model are the in- and out-degree distributions. To compare this
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Model \Size 100 250 500 1000

GR-100 1.285 0.322 0.196 0.903
GR-250 0.609 1.287 0.358 0.454
GR-500 0.366 0.125 1.622 0.955
GR-1000 8.486 9.59 7.536 9.524

Table 8.5: T-Values of the comparisons between GR evolved models and the growing
random model. The critical T-Statistic for a 0.01 significance test with 1000 degrees
of freedom is 2.326.

1000 graph pairs were compared at each vertex size for each model. In 100% of cases

all four evolved models were able to replicate the degree distributions observed in the

growing random model for graphs with 100, 250, 500, 1000 vertices.

8.3 Barabasi-Albert Model

The Barabasi-Albert Model is graph model that models growing preferential attach-

ment networks. A highlight of these networks is that the network is scale-free meaning

that the in-degree of the network follows a power law distribution, a common property

of social networks [69].

In the experiments conducted with this model, there are a few constraints which

are resultant of the parameters used in constructing the target graph. As a result,

evolved models that do not observe these constraints can be said to be invalid. For

the target graphs in this section those constraints are

• Each vertex must have exactly one out-bound edge except the first vertex added

• A graph produced may not contain any transitivity

Comparing the graphs produced by the BA model and the BA-250 model found

in Figure 8.3 shows that the graph of the evolved model produces a few high in-degree

vertices like the graph of the BA model. The figure also shows that the spanning trees

expected in a BA graph are also in the evolve model’s graph. The algorithm of the

BA-500 shows that the equation expected to compute the probabilities of selection

are being discovered. BA-500 pseudo-code is found in B as Algorithm 18.

Examination of Table 8.6 confirms that all evolved model satisfied the constraints

of the out-degree and transitivity. It is apparent that the evolved models did not show

deviation from the constraints because the values of F2, F3 are zero for their mean

and standard deviation. The lack of deviation means that the models all showed in
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(a) Barabasi-Albert Model with 250 Vertices
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(b) Evolved Barabasi-Albert Model with 250 Vertices
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Figure 8.3: Graphs from the BA model and the BA-250 model
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F1 F2 F3 F4

Experiment x̄ s x̄ s x̄ s x̄ s

BA-100 0.046 0.338 0 0 0.08 0.025 0 0
BA-250 0.245 0.284 0 0 0.042 0.017 0 0
BA-500 0.311 0.314 0 0 0.018 0.007 0 0
BA-1000 0.314 0.326 0 0 0.014 0.005 0 0

Table 8.6: Final evolved BA models results comparing 1000 graphs produce by the
evolved model vs. its target graph

their 1000 tests that the clustering coefficients and the out-degree distributions were

identical to the target.

For the fitness objective, F3, Table 8.6 provides the mean and standard deviation of

the 1000 comparisons to the target graph. Examination of these values demonstrated

that even +3 standard deviations are below the critical D-Values for the KS test (see

table 8.4). Thus, the evolved model always showed similar in-degree distributions to

the target graph.

As was the case in Section 8.2, comparing the average geodesic path lengths of

the evolved model to the target graph reveals little about the quality of the model.

However, the validation using the target model will help to determine the quality

of the average geodesic path lengths. Comparison of the properties of the average

geodesic path lengths of the actual Barabasi-Albert model and the evolved models

will provide a much more meaningful measure of performance.

Figure 8.4 shows the observations during validation of the evolved models targeting

the Barabasi-Albert model for the average geodesic path length and the clustering

coefficient. The box plots show that the distribution of the observed average geodesic

path lengths of the evolved models compared to those of the Barabasi-Albert model

are quite similar. Validation by way of the t-test reveals that the mean observations

are not statistically different. Table 8.7 shows the results of this test.

As was observed in the initial testing of the evolved model versus the target

graph, validation shows that the constraints with respect to out-degree and clustering

coefficients are respected. The clustering coefficients of all four evolved graph models

were always 0. The out-degree distributions of the evolved models were, also, always

identical to the graphs produced by the Barabasi-Albert model. The KS-test of the

in-degree distributions of the evolved model versus those of the Barabasi-Albert model

showed that 100% of the graphs tested had statistically similar distributions.
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Model \Size 100 250 500 1000

BA-100 0.507 0.538 0.245 0.038
BA-250 1.951 0.993 0.322 0.123
BA-500 1.749 0.429 1.914 1.14
BA-1000 1.898 1.617 0.653 0.029

Table 8.7: T-Values of the comparisons between BA evolved models and the Barabasi-
Albert model. The critical T-Statistic for a 0.01 significance test with 1000 degrees
of freedom is 2.326.
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(a) BA-100
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(b) BA-250
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(c) BA-500

●

● ●

●

● ●

●

● ●

●

● ●

A
G

P
 (

ev
ol

ve
d)

A
G

P
 (

ta
rg

et
)

C
C

 (
ev

ol
ve

d)

C
C

 (
ta

rg
et

)

A
G

P
 (

ev
ol

ve
d)

A
G

P
 (

ta
rg

et
)

C
C

 (
ev

ol
ve

d)

C
C

 (
ta

rg
et

)

A
G

P
 (

ev
ol

ve
d)

A
G

P
 (

ta
rg

et
)

C
C

 (
ev

ol
ve

d)

C
C

 (
ta

rg
et

)

A
G

P
 (

ev
ol

ve
d)

A
G

P
 (

ta
rg

et
)

C
C

 (
ev

ol
ve

d)

C
C

 (
ta

rg
et

)

0.0

0.5

1.0

1.5

2.0

(d) BA-1000

Figure 8.4: Box plots of the average geodesic path length (AGP) and network average
clustering coefficient (CC) for BA experiments (evolved) versus the growing random
model(target). In each chart the four groups of box plots represent, in order from left
to right, graphs with 100 vertices, 250 vertices, 500 vertices, and 1000 vertices
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8.4 Forest Fire Model

The Forest Fire Model presents a new set of challenges in modelling that were not

experienced with the Barabasi-Albert and growing random models. In the Forest

Fire model, there is a clustering coefficient and a non-regular out-degree. This model

presents the greatest challenge in modelling because the processes in the FF model

exhibit recursion, use floating point constants that are very sensitive, and there are

multiple processes that select vertices for attachment. Algorithm 13 shows one of

the most successful and simplest solutions found. This algorithm illustrates that

LinkableGP had to evolve a number of constants in order to be able to construct a

good model.

Algorithm 13: FF-500

Function GenerateModel(int t)return graph
G← InitialiseGraph();
for i← 1 to t do

v ← V ertex();
W ← SelectV ertices(G);
while |W | > 0 do

w ← Next(W );
E ← E ∪ AddEdge(v, w);
SecondaryActions(W,w);

end while
V ← V ∪ v;

end for
return G

override Function SelectVertices(Graph g)return vertices
a← BernoulliV alue(0.02819);
a← GeometricV alue(0.941932);
a← BernoulliV alue(0.347325);
b← GetRandomStack(g);
c← GetRandomQueue(g);
return c

override Function AddEdge(Vertex v1,Vertex v2)return edge
a← CreateEdge(v1, v2);
return a

override Procedure SecondaryActions(Vertex v, Vertices V )

a← GeometricV alue(0.63182);
a← GeometricV alue(0.681023);
AddSuccessor(V, a, v);
AddPredecessors(V, b, v);
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(a) Forest Fire Model with 100 Vertices
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(b) Evolved Forest Fire Model with 100 Vertices
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Figure 8.5: Graphs from the FF model and the FF-100 model

Despite some successes in evolving models that replicated the FF model, not all

solutions were successful. Figure 8.5 shows one such example. The graph produced by

the FF-100 shown in the figure has a noticeable difference from the graph produced

by the FF model. The graph from the FF-100 does not have the same type of dense

connection sets as in the graph from the FF model.

Examination of the evolved models compared to the target graph reveals the

increased difficulty in modelling the Forest Fire. Table 8.8 shows the results of the

comparison between the evolved models and the target graph. This table shows that

the models display a difference in average geodesic path lengths to the target that

is similar to those observed in Tables 8.3 and 8.6 which is a good initial indicator.

However, a more thorough examination of the average geodesic path lengths against

that of the actual model is required. Likewise, the difference in clustering coefficient

values seem good but comparison against the target graph does not add much value

to the model.
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F1 F2 F3 F4

Experiment x̄ s x̄ s x̄ s x̄ s

FF-100 0.182 0.165 0.055 0.054 0.079 0.04 0.081 0.035
FF-250 0.127 0.115 0.082 0.053 0.191 0.069 0.118 0.02
FF-500 0.123 0.123 0.004 0.02 0.045 0.018 0.047 0.02
FF-1000 0.138 0.123 0.001 0.016 0.04 0.018 0.037 0.015

Table 8.8: Final evolved FF models results comparing 1000 graphs produced by the
evolved model vs. its target graph

Fitness objectives F3 and F4, in Table 8.8 do, however, provide some valuable

insights into the model. The mean value of the objectives for each model are below

the relevant critical D-values for the KS test found in Table 8.4. Even one standard

deviation is still below the critical D-value. However, unlike the results of the previous

models, a computed value of +3 standard deviations from the mean values of F3 and

F4 for each model shows that the values exceed the D-critical value. This result

means that sometimes the evolved models can produce degree distributions that are

not similar those observed in the target graph.

In order to validate the ability of the evolved models to replicate the degree distri-

butions expected of the target model, an experiment was designed. In the experiment,

a graph from an FF evolved model was compared to a graph from the FF model using

the KS test. The KS test was perform 1000 times each with a new graph from the

evolved model and the FF model. For each test performed a count of how many

times the KS test found the graphs to have similar degree distributions was recorded.

The same experiment was performed on where both graphs in the KS test came from

the FF model to provide a baseline of how often the model generated statistically

similar degree distributions. The proportion of tests that showed a similar degree

distribution is found in Table 8.9.

A Pearson’s chi-squared test [73] was performed to determine if the number of

occurrences where the evolved model had a similar degree distribution was at least as

much as when the graphs both came from the FF model. The Pearson’s chi-square test

examines categorical variables to determine how likely the difference observed between

groups occurred by chance. Each one-sided Pearson’s chi-squared test performed for

an evolved model compared the differences observed in the frequency of KS test that

should statistically similar degree distributions versus the same for the target model.

The results shown in brackets in Table 8.9 reveals that the FF-100 and FF-250

models often reject the null hypothesis (p-value less than 0.01). The evolved model

differences did not occur by chance and were found to be less than expected by the
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Model \Size 100 250 500 1000

In-Degree
FF-100 0.99 (1) 0.95 (0.963) 0.8 (0) 0.48 (0)
FF-250 0.83 (0) 0.48 (0) 0.14 (0) 0 (0)
FF-500 1 (1) 0.98 (1) 0.96 (1) 0.96 (1)
FF-1000 0.99 (1) 0.95 (0.963) 0.999 (1) 0.89 (1)
Target Model 0.96 0.93 0.87 0.81

Out-Degree
FF-100 1 (1) 0.97 (0.863) 0.92 (0.004) 0.79 (0)
FF-250 0.95 (0.015) 0.69 (0) 0.27 (0) 0 (0)
FF-500 0.99 (0.999) 0.99 (1) 0.96 (0.834) 1 (1)
FF-1000 0.99 (0.999) 1 (1) 0.95 (0.5) 0.99 (1)
Target Model 0.97 0.96 0.95 0.93

Table 8.9: Results of 1000 KS-tests comparing degree distributions of the evolved
models and the forest fire model. The values in this table are the proportion of
tests that showed that each graph pair had the similar degree distributions. Values
in brackets are the computed p-value of a one-sided Pearson’s chi-square test which
tested the null hypothesis that the evolved model passed the KS test at least as often
as the target model.

target model. However, the FF-500 and FF-1000 did show no statistically significant

differences and slightly more often was able to match the degree distributions more

steadily the target model compared to itself.

Validation of the models by way of the average geodesic path lengths and the

clustering coefficients, provides further evidence that the forest fire model has not

been successfully modelled by the FF-100 and FF-250 evolved models. Figure 8.6

provides box plots of the average geodesic path lengths and clustering coefficients

observed during the validation. The figure shows just how significant the difference

in the average path lengths and clustering coefficients are for the FF-100 and FF-

250.

However, Figure 8.6 also shows that the FF-500 and FF-1000 evolved have sim-

ilar distributions for the average path lengths and clustering coefficients to the forest

fire model. T-Tests performed on these distributions confirm that the means of the

FF-500 and FF-1000 evolved models average geodesic path lengths and clustering

coefficients are not statistically different.
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(a) FF-100
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(b) FF-250
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Figure 8.6: Box plots of the average geodesic path length (AGP) and network average
clustering coefficient (CC) for FF experiments (evolved) versus the growing random
model(target)

note: In each chart the four groups of box plots represent, in order from left to right, graphs with

100 vertices, 250 vertices, 500 vertices, and 1000 vertices

8.5 Ageing Preferential Attachment Model

The preferential attachment is closely related to the Barabasi-Albert model however

it differs as it considers the age of vertices. The vertex property makes this model

very different than the previously examined models of this chapter. In order to
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successfully model the network produced by the ageing preferential attachment model,

it is necessary to add new constructs to the language and the abstract class.

The first construct that needs to be added is in the abstract class. Algorithm 11 is

amended to track time in the graph now and provide vertices with a birth value. The

change is reflected in Algorithm 14. In order for a model to utilize this information,

the language must also be updated. Therefore, the Vertex property evaluators, is

amended to include a function that provides the age of a vertex. The age of a vertex

is computed as the difference in the current time set for the graph and the birth value

of the vertex.

Algorithm 14: Modified Abstract Graph Model for Complex Networks

Function GenerateModel(int t)return graph
G← InitialiseGraph();
for i← 1 to t do

v ← V ertex();
SetBirth(v, i);
SetT ime(g, i);
W ← SelectV ertices(G);
while |W | > 0 do

w ← Next(W );
E ← E ∪ AddEdge(v, w);
SecondaryActions(W,w);

end while
V ← V ∪ v;

end for
return G

abstract Function SelectVertices(Graph g)return vertices

abstract Function AddEdge(Vertex v1,Vertex v2)return edge

abstract Procedure SecondaryActions(Vertex v, Vertices V )

The target graphs produce by the ageing preferential attachment model used the

same settings as the Barabasi-Albert target graphs (see intro of this chapter) and

an age preference exponent of -1. The value of the age preference exponent means

that over time new vertices are less likely to attach to older vertices. Also, the target

graphs produce have a regular out-degree and no clustering coefficients. Thus, evolved

models should also exhibit these characteristics.

Immediately, it is observed in Table 8.10 that the expected out-degree and cluster-

ing coefficients of the targeted models are reproduced. If there were evidence that an

evolved model produced a clustering coefficient or had an out-degree greater than one
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F1 F2 F3 F4

Experiment x̄ s x̄ s x̄ s x̄ s

APA-100 1.38 1.048 0 0 0.23 0.007 0 0
APA-250 1.701 1.198 0 0 0.022 0.008 0 0
APA-500 1.461 0.093 0 0 0.022 0.008 0 0
APA-1000 1.56 0.902 0 0 0.023 0.009 0 0

Table 8.10: Final evolved APA models results comparing 1000 graphs produce by the
evolved model vs. its target graph

Model \Size 100 250 500 1000

APA-100 0.374 0.981 0.223 0.431
APA-250 1.538 0.454 0.341 1.035
APA-500 0.37 1.048 0.782 1.125
APA-1000 0.265 1.836 0.549 1.183

Table 8.11: T-Values of the comparisons between APA evolved models and the grow-
ing random model. The critical T-Statistic for a 0.01 significance test with 1000
degrees of freedom is 2.326.

there would be evidence of a mean or standard deviation different than 0 in columns

F2 and F4 of Table 8.10.

Further examination of Table 8.10 shows that F3, the D-value computed for the

difference in in-degree distributions, for all evolved models is fit to the target. Adding

three standard deviations to the mean over each model is still well below the relevant

critical D-value. However, notably, the difference in average geodesic path lengths

of these evolved models to the target graph is much greater than those reported for

evolved of the GR, BA, and FF.

In the validation, it is discovered that the distribution of average geodesic path

lengths for the ageing preferential attachment model are much wider than the previous

models. Thus, examining the box plots found in Figure 8.7 reveals that the average

path length differences may be acceptable. Table 8.11 shows the results of the t-tests

performed on the observed average geodesic path lengths of each evolved model and

the target model. The analysis confirms that there are no statistically significant

differences in the average geodesic path lengths of the models compared to those of

the target model.
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(a) APA-100
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(b) APA-250
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(c) APA-500
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Figure 8.7: Box plots of the average geodesic path length (AGP) and network average
clustering coefficient (CC) for APA experiments (evolved) versus the growing random
model(target)

note: In each chart the four groups of box plots represent, in order from left to right, graphs with

100 vertices, 250 vertices, 500 vertices, and 1000 vertices

Finally, the KS-tests performed for validation of the in-degree distributions of the

evolved models showed no statistical difference in the in-degree distributions in any

of the four evolved model compared to the target model. Thus, with respect to the

fitness measures employed, it is concluded that the four models are valid replications

of the ageing preferential attachment model.
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8.6 Overall Performance

The results discussed in this chapter have made no remark of the performance of the

average runs produced by the methods of this thesis. In this section, the general

perform of the GP system will be analysed. First, the average final result of trial

runs will be examined. Then, the performance by generation of the system will be

discussed.

Fitness Objective Mean Std. Dev Median 3rd Quantile Skewness Kurtosis

GR-100
F1 6.532 24.853 0.001 0.002 3.474 13.070
F2 0.000 0.000 0.000 0.000 NA NA
F3 0.080 0.155 0.020 0.002 2.124 5.878
F4 0.045 0.131 0.000 0.000 2.646 8.049

GR-250
F1 0.030 0.071 0.007 0.016 1.145 20.502
F2 0.011 0.059 0.000 0.000 5.199 28.034
F3 0.041 0.098 0.012 0.016 3.589 15.240
F4 0.036 0.114 0.000 0.000 3.038 10.650

GR-500
F1 82.817 1888.323 0.007 0.039 1.789 4.200
F2 0.006 0.033 0.000 0.000 5.199 28.034
F3 0.073 0.131 0.010 0.013 1.962 5.894
F4 0.037 0.093 0.000 0.000 3.480 15.83

GR-1000
F1 232.560 428.636 0.0167 0.720 1.261 2.590
F2 0.000 0.001 0.000 0.000 4.967 26.305
F3 0.071 0.104 0.007 0.133 1.108 2.502
F4 0.034 0.077 0.000 0.007 2.762 10.818

Table 8.12: Overall Final Fitness Results of GR-100, GR-250, GR-500, and GR-
1000

In order to have some indication of the average system performance, descriptive

statistics of the final fitness values of each experiment were computed. The descriptive

statistics are reported in Tables 8.12, 8.13, and 8.14. In many of the cases, the mean

performance of LinkableGP at modelling was poor and had a very high standard devi-

ation. However, the skewness of the results indicates that the average performance of

LinkableGP was heavily and positively skewed. Also, the kurtosis of the results show

that the majority of the results were distributed about the median. Thus, the me-

dian fitness values are a much better indication of the average performance. Detailed
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evidence of the skewed distributions and the tendency about the median is provided

in Appendix C via charts of the empirical cumulative distributions of the results.

Fitness Objective Mean Std. Dev Median 3rd Quantile Skewness Kurtosis

BA-100
F1 6.609 25.047 0.004 0.044 3.474 13.071
F2 0.000 0.000 0.000 0.000 NA NA
F3 0.092 0.070 0.050 0.147 1.164 3.640
F4 0.021 0.082 0.000 0.000 3.625 14.510

BA-250
F1 16.701 63.057 0.025 0.370 3.474 13.071
F2 0.030 0.079 0.000 0.000 2.268 6.342
F3 0.086 0.006 0.078 0.156 0.139 1.228
F4 0.130 0.213 0.000 0.291 1.152 2.599

BA-500
F1 55.317 153.011 0.0540 0.135 2.517 7.519
F2 0.005 0.028 0.000 0.000 5.199 28.034
F3 0.112 0.123 0.137 0.146 2.925 14.460
F4 0.046 0.126 0.000 0.000 2.575 8.045

BA-1000
F1 64.879 249.191 0.506 0.898 3.545 13.569
F2 0.092 0.195 0.000 0.011 2.182 6.96
F3 0.109 0.065 0.143 0.153 -0.800 1.857
F4 0.154 0.245 0.000 0.300 1.620 5.388

Table 8.13: Overall Final Fitness Results of BA-100, BA-250, BA-500, and BA-
1000

Tables 8.12, 8.13, and 8.14 show that the median performance is much better.

In most cases the median, and often the 3rd quantile, final fitness values were good

enough to produce fit models, based on observations of the best performing evolved

models. The only exceptions to the number of quality solutions was experiments

with the Forest Fire model. The routine quality of the results shows that the system

can consistently work towards the optimization of graph models given a single target

graph.

When working with evolutionary systems such as GP, it is interesting to examine

if the system is improving over time. In order to determine how well LinkableGP

improved solutions over time, convergence plots were produced. These plots examine

the average fitness values of the best solutions of each trial run over each generation.

Figure 8.8 provides an example of the typical convergence for an experiment. The

figure illustrates that during the first ten generations, solutions improved a great deal
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Fitness Objective Mean Std. Dev Median 3rd Quantile Skewness Kurtosis

FF-100
F1 0.0482 0.143 0.010 0.032 4.856 25.632
F2 0.33 0.062 0.003 0.012 1.722 4.265
F3 0.186 0.219 0.095 0.188 1.725 4.854
F4 0.234 0.239 0.160 0.328 1.267 3.704

FF-250
F1 0.549 2.820 0.011 0.032 5.195 28.002
F2 0.019 0.044 0.005 0.009 3.799 17.792
F3 0.242 0.210 0.220 0.356 1.072 3.489
F4 0.221 0.198 0.212 0.292 1.318 4.656

FF-500
F1 3.329 17.554 0.011 0.094 5.197 28.018
F2 0.094 0.122 0.038 0.153 1.289 3.561
F3 0.208 0.203 0.118 0.328 1.805 6.035
F4 0.342 0.254 0.274 0.448 0.775 2.326

FF-1000
F1 0.192 0.358 0.075 0.197 3.755 17.332
F2 0.146 0.159 0.089 0.261 0.732 1.922
F3 0.248 0.198 0.236 0.315 1.144 4.217
F4 0.355 0.252 0.340 0.471 0.821 2.869

Table 8.14: Overall Final Fitness Results of FF-100, FF-250, FF-500, and FF-
1000

and then came to a slow convergence. However, sometimes the fitness objectives

F1 and F4 will diverge late in the run in exchange for improved values of F2 and

F3. Figure 8.9 provides an example of this phenomenon. Often, individual runs that

experience the divergence of F1 and F4 resulted in infeasible models. The convergence

plots for each experiment is available in Appendix D.

8.7 Summary

In this chapter experiments were conducted with the proposed methodology to repli-

cate several known graph models: the growing random, Barabasi-Albert, Forest Fire,

and Ageing Preferential Attachment. In each experiment, evolved graph models were

compared to a target graph generated by the relevant known graph models by way

of 1000 graphs from the evolved model compared to the target graph. In every case

it was demonstrated, where applicable, that the evolved models matched the target

graph well. However, some measures were not so easily compared such as the cluster-
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Figure 8.8: Convergence Plot for FF-500
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Figure 8.9: Convergence Plot for BA-250

ing coefficient and the average geodesic path length as there was no clear threshold

for determining fitness.

The objective of this chapter was to demonstrate that the proposed methodology

could replicate the model using only a single target graph. Having benefited from

the use of known graph models, the chapter was able to provide a validation of

evolved models against the actual model. Thus, the evolved models were compared

statistically to the respective graph model. It was demonstrated that all evolved
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models, except the FF-100 and FF-250, had statistically similar values to their

target model by way of t-tests comparing the differences in the average geodesic path

lengths and the clustering coefficients.

In the case of the Forest Fire Model, additional statistical test was employed to

demonstrate the fitness of in- and out-degree of the evolved models. It was desired

to know if the frequency at which a graph from the evolved model and a graph from

the target model had similar degree distributions was statistically different. A chi-

squared test was employed to determine if the frequency was less than the frequency

of statistically similar degree distributions between two graphs from the target model.

It was shown that the evolved models trained with more vertices were able to satisfy

all tests however those evolved models trained with 250 or fewer vertices failed.

The flexibility of the proposed methodology and LinkableGP was shown in exper-

imentation with the ageing preferential attachment model. The ageing preferential

attachment model introduces a new characteristic, namely vertex age, which require

modifications to the system not required for experimentation with the other known

graph models. Again through the same statistical approaches used with the other

models it was demonstrated that the proposed methodology was able to produce

statistically similar models respective to the fitness measures employed.

Finally, it was shown in Section 8.6 that the overall results of the trial runs rou-

tinely produced graphs that might have passed the validation criteria employed with

the best models as many of the final fitness values or trial runs were comparable to

the best models. The descriptive statistics of the final fitness values for the trial runs

demonstrated a bias towards producing models that had very similar fitness values

to those observed in the best model. While the results did show that some trial runs

performed poorly, not only was it the case that the poor performance was obvious

but also that the more than 75% of the results were comparable to the best evolved

model.



Chapter 9

Comparison of Proposed Methods

to Other Modelling Approaches

In Chapter 8, the proposed methods were empirically examined by replicating existing

and well-known graph models. The experiments showed that the proposed methods

were able to replicate those models with respect to the fitness measures used. How-

ever, these are not the only fitness measures that can be used. Moreover, in the case

of the forest fire model, the fitness measures did not take into account all properties

of the graph model.

Recently, work has been undertaken to try and determine a framework for de-

ciding which network measures will provide a good fitness of evolved graph models.

This work done by Harrison [36] focusses on a large number of measures of network

properties and provides insights on they prevalence in complex networks.

Harrison [36] utilizes the study on networks measures and the methods proposed

of this thesis. His experiments in replication of existing and well-known undirected

graph models and in the construction of graph models for real-world complex networks

provides further evidence that the proposed methods of this thesis are capable of

producing models for a wide variety of networks. Additionally, his work demonstrates

that the framework proposed by this thesis is flexible as his approach uses a different

version of the abstract class proposed than proposed in this thesis.

Other modelling techniques, as presented in Chapter 4, have also shown promise

in constructing graph models for complex networks. Techniques, such as Kronecker

graphs [55], have also been widely applied in modelling real-world networks. This

is thesis and no other work has yet compared this technique to other in terms of

performance and accuracy. However, it can be said that this technique proposes a

flexible framework for embedding specific knowledge about complex networks that

79
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is not as easily reproduced by other works. Furthermore, when such knowledge is

embedded into solutions it is not as clear what their impact on the network is.

9.1 Incorporation of Expert Knowledge

When constructing a graph model manually, it is necessary to collect a great deal

of knowledge about the network at hand. This knowledge arises from insights about

complex networks in general and the data being explored. In Chapter 7, an abstract

class was introduced that encapsulates knowledge about the complex networks that

would be later experimented with. Some of the abstract class included general knowl-

edge with respect to graph models and other parts were very specific to the types of

graph models that would later be the subject of experimentation.

Knowledge added about graph models in general included:

• Discrete time steps

• Specific placement of vertex selection

• Specific placement of edge creation/modification/removal

Knowledge specific to the models explored included:

• Vertex growth over time

• Restriction to edge creation only

• Allowance additional actions after edge creation

• Addition of age information (only employed in Ageing Preferential Attachment)

This thesis makes no claim that this is the only nor best way to generalize graph

models for complex networks. It is simply an introduction to the concept and a

demonstration of the application. The abstract form utilized is quite rigid and re-

strictive to work with the models relevant to the experiments in Chapter 8. However,

modification to the algorithm is simple and sometimes necessary. In Section 8.5, a

modification of the algorithm was incorporated to handle age of a vertex. In Harrison’s

[36], modifications were made to work with non-growth type algorithms as well as

undirected networks.

The idea of incorporating expert knowledge into solutions is informed a great

deal by the previous automatic inference methods as proposed by Bailey [10]. His
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Algorithm 15: Recreation of Algorithm 3 from Bailey [10]

begin
SET GROW NODES;
for each node n do

CONNECT STUB PERSIST(FLOAT TO PROB(0.02), TRUE);
end for

end

Algorithm 16: BA-500

Function GenerateModel(int t)return graph
G← InitialiseGraph();
for i← 1 to t do

v ← V ertex();
W ← SelectV ertices(G);
while |W | > 0 do

w ← Next(W );
E ← E ∪ AddEdge(v, w);
SecondaryActions(W,w);

end while
V ← V ∪ v;

end for
return G

Function SelectVertices(Graph g)return vertices
b← GetInDegree();
c← Constant(1);
c← Add(b, c);
d← GetRouletteQueue(g, c);
return d

override Function AddEdge(Vertex v1,Vertex v2)return edge
a← CreateEdge(v1, v2);
return a

override Procedure SecondaryActions(Vertex v, Vertices V )
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work utilized a priority queue structure which may have been responsible for creating

the preferential attachment properties in experiments at replicating the Barabasi-

Albert model. Bailey [10] remarks that a function CONNECT STUB PERSIST is

responsible for determining the vertices selected from a priority queue and are re-

sponsible for the preferential attachment. Bailey [10] also explains that a function

SET GROW NODES is responsible for the growth process. In Algorithm 15, a recre-

ation of one of the results from Bailey’s [10] thesis is provided.

The algorithm shows a great deal of knowledge that is being incorporated into the

system as the two instructions of the algorithm each do a great deal of work that is

not a product of the evolutionary algorithm. Algorithm 16, a similar result from this

thesis, shows the growth strategy (implemented a priori) and the preferential attach-

ment (implemented as a roulette selection), also, simplifying the efforts of the GP.

However, Algorithm 16 provides a more transparent understanding of the processes

at work that is easily modifiable and controllable.

In the parametrized models discussed in Chapter 4, a great deal of expert knowl-

edge for the general understanding of complex networks is being employed as they

were formed on from a very intimate understanding of complex networks in general.

However, the techniques do not lend themselves to modification for knowledge of spe-

cific complex networks. The models rely solely on the parameter tuning to determine

the model for a specific complex network. The evolutionary strategy that uses sym-

bolic regression [62] also employs a very specific algorithm that is dependent on the

tuning of an equation.

9.2 Performance

Previous approaches such as those presented in Chapter 4 have been demonstrated to

be successful a modelling both directed and undirected networks with the exception

of Bailey [10] which has only been tested with the latter. Moreover, all have been

demonstrated to work with real-world networks. Application in real-world networks

is an important step for any modelling technique as it is the motivation of all graph

modelling techniques.

In this thesis the proposed method has only been tested with directed networks

produced by well-known graph models. However, the methods of this thesis have

already been applied to work successfully with undirected complex networks and

real-world networks [36]. It cannot be said that this method outperforms or under-

performs compared to any other method in terms of successfully generation of graph
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models. However, it can be said that this method has demonstrated that it works on

a variety of different complex networks.

A comparative study of approaches in modelling complex networks is a relevant

future study. However, as an interim comparison, this thesis’ method proposes means

of easily incorporating partial information about the structure and process of a com-

plex network that is not readily incorporated into other approach. The abstract class

representation provides an simple tool unlike any other approach where very little to

a great deal of a priori knowledge can be encoded into solutions. This is a means

that finding a solution is reduced to only what is unknown about the network. It

is not impossible for other techniques to incorporate short-cuts equivalent to those

achieved by the abstract class but the framework offered in this thesis provides an

clear and easy means of doing so.



Chapter 10

Conclusion

In this thesis, a new methodology for the inference of graph models for complex net-

works was proposed. In doing so, the thesis also proposes a novel approach to GP,

Object-Oriented GP (OOGP). The goal of the thesis was to demonstrate the pro-

posed methodology that allowed expert knowledge of complex networks. Moreover,

specific knowledge of a complex network being modelled could be incorporated into

the construction of a fit graph model.

In the experimentation via the replication of known graph models, it was demon-

strated that the methods employed were able to produce fit graph models compared

to the targeted well-known graph models. The selected best-evolve models had final

fitness values that did not occur by random chance as shown by post-run comparisons

to its target graph. It was, also, demonstrated that through validation that the best-

evolved models were able to reproduce certain structural properties expected from an

accurately replicated model.

It was demonstrated, in the graph model replication experiments that trial runs

routinely produced results comparable to those of the best-evolved models. This work

also demonstrated that the final models from trials often had a similar fitness to the

best models. While it was not confirmed with the same rigour employed with best-

evolved models, it is likely that most of the final models would have also been shown

to be accurately replicated models.

An important goal of this work was to develop a methodology that offered flexibil-

ity to the researcher to embed their expert knowledge into the graph model solutions

produced by the system. The development of LinkableGP formed a framework that

was conducive to incorporating knowledge. The methods employed by the system

allows researchers to develop a structure for a graph model, provide it with a gen-

eral algorithm, and restrict the search of LinkableGP in more expressive ways. An
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initial example of how LinkableGP accomplishes this was outlined in Chapter 7. The

chapter introduces a generalized and abstracted form of a graph model for complex

networks with growing degrees that when tested is shown to produce valid models.

Further evidence of the power of LinkableGP’s representation of knowledge is demon-

strated in the adaptations of the graph model abstraction for experiments with the

ageing preferential attachment model. The model was selected as a demonstration of

additional properties of a graph model. LinkableGP was demonstrated to be quickly

and easily adapted to work with the new properties while still producing fit models.

In previous works [10], ad-hoc systems were necessary such as heap structures and

community detection algorithms. Under the traditional GP approaches employed,

these served to convolute the graph model and made it hard to understand their

impact clearly on the evolved algorithm. However, this methodology presents a means

to define the structure and a partial definition of the graph model. Thus, the effects

of additional algorithms are more readily assessable in evolved solutions. This does

not mean that the methods of this thesis are superior nor is there evidence to suggest

it is inferior. The discussion in Chapter 9, instead, suggests that they are different

and that understanding the impact of expert knowledge is easier with the methods of

this thesis. Moreover, it is arguable that the code produced by LinkableGP is much

closer to that expected of a programmer. It has been remarked by reviewers of the

publications produced from this work that the design of LinkableGP has a good focus

on the generation of real code in line with the way programming is done. The code

in solutions is able to be modularized and have a well-defined structure. Having such

code means that when additional strategies are employed that do not rely completely

on evolution, it is clear and easy to understand the role in the resultant model.

While this thesis did not focus on applications of LinkableGP outside the context

of graph model inference, LinkableGP does have application outside complex networks

such as the evolution of data structures [60], and multi-behaviour artificial agents.

This thesis and the publications derived from the development of LinkableGP serve

as evidence that it addresses some shortcomings of other GP approaches. While other

GP approaches can evolve multiple functions simultaneously and incorporate expert

knowledge, LinkableGP provides a means of doing that shares the programming task

with the human that is more accessible. LinkableGP, inspired by object-oriented

programming, introduces the means to define more fluidly a program structure. In

the opinion of this author, the approach, in contrast to other approaches, is more

conducive to solving more complex problems that were tenable before by GP. It

facilitates the incorporation of expert knowledge in a meaningful way and alleviates
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the pressure from the GP to evolve parts of the solution already known. It is the

expectation of this author that continued study will help to further prove the powers

of LinkableGP.

Finally, This thesis has also served as an introduction to the inference of graph

models for direct complex networks. It introduced a modified set of fitness measures

from previous works (see [10]) to accommodate the differences between directed and

undirected networks. It also introduced a new set of functions necessary to construct

directed networks. It was demonstrated that the proposed methodology was able to

work with these changes and still produce models that were accurate to the expected

behaviours of the measures of each evolved model.

10.1 Limitations

In the development of a novel GP system which was well suited for the evolution of

graph models for complex networks, there is much that must be considered. While

this thesis does attempt to address representation and structure of GP in its role for

the evolution of graph models, it has placed little focus on rigorous evaluation of the

evolved models.

The thesis only manages to validate models in the context of the fitness measures

used to construct the model during evolution. It is important to note that the four

measures of fitness do not fully represent each model. For example, the Forest Fire

model is known to produce models with community structures. In validating evolved

models, no attempt was made to examine whether these communities were appropri-

ately formed. The approach of fitness evaluation and validation does not allow the

claim that an evolved model is an accurate replica of its target. Instead, it is only

possible to say that the methods successfully replicated the properties measured of

the models.

Furthermore, this thesis does not explore real-world networks. Insufficient time

was able to be dedicated to experimentation with real-world data and therefore no

analysis of the methods could be conducted on real-world experiments.

In this thesis, an abstract class that embedded some knowledge of graph models

was proposed. This model relied on assumptions that the networks being modelled

were growing networks that only grew one vertex at a time. In general, complex

networks do not behave this way. While other abstract classes were experimented

with, it was decided to use this model as a short-cut to evolution providing it with the

most knowledge that was common between all targeted models. When modelling real-
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world networks it is not likely that such knowledge could be assumed. For examples

of other abstract classes please see [61] and [36].

10.2 Future Work

The results of this work have not been able to address a number of open problems in

the inference of graph models for complex networks. Furthermore, it has also served

to open more questions both in the graph model inference and the study of GP.

Several times through this work, it may have been apparent to the reader that

evolved graph models were only compared based on a limited set of fitness measures

that covered some very general structural properties of complex networks. However,

these measures are not known to be sufficient to model accurately a specific complex

network let alone complex networks in general. For example, the Forest Fire model

generates graphs that are known to contain communities. The methodology for mea-

suring the fitness of graph models used in this work does not incorporate this. Thus,

two questions can be asked

1. Are the fitness measures sufficient to evolve models that produce graphs that

exhibit properties that are not measured during evolution?

2. Are there other fitness measures required to ensure a model is accurate to the

complex network at hand?

Further study into the fitness measure sufficiency is required. Although, a study

has already been completed [36] which identifies which are the most useful measures

found using well known graph models, it is not clear if these are sufficient measures.

Studies should investigate which fitness measures will most accurately capture the

properties of complex networks in general or provide a framework for determining

what fitness measures are necessary for a specific complex network.

It is also necessary to expand efforts in the inference of graph models of complex

networks to other types of networks. So far research has investigated unweighted

networks both undirected and directed. Studies involving complex networks which are

weighted, or where vertices have traits are important areas to investigate. In practical

application for research, complex networks often are weighted and (especially social

networks) have traits. An approach that is demonstrated to model these types of

networks would prove a tool.

With respect to GP, this work has an important contribution as it has introduced

another technique in evolving programs. However, the scope of this work is limited
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to evolving complex networks and, therefore, does not fully investigate the approach

presented. Further study using LinkableGP should investigate its application in other

problems such as evolving data structures or other complex algorithms. Exploration

into the genetic operators should also be conducted which focuses on understanding

the impact on operators in the translation from genotype to phenotype. The mapping

of the genotype to the phenotype is sensitive to the genetic operators but to what

extent is not clearly known.
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Appendix A

Select Evolved Graph Models

The algorithms presented here are selected from the experiments in Chapter 8. They

are implementations of Algorithms 11, or 14 (APA only). These models were chosen

as they were characteristic of the best evolved models for their targeted model.

98
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Algorithm 17: GR-500

Function GenerateModel(int t)return graph
G← InitialiseGraph();
for i← 1 to t do

v ← V ertex();
W ← SelectV ertices(G);
while |W | > 0 do

w ← Next(W );
E ← E ∪ AddEdge(v, w);
SecondaryActions(W,w);

end while
V ← V ∪ v;

end for
return G

override Function SelectVertices(Graph g)return vertices
a← GeometricV alue(0.402696);
b← GetRandomQueue(g);
c← GetLocalTransitivity();
return b

override Function AddEdge(Vertex v1,Vertex v2)return edge
a← CreateEdge(v1, v2);
return a

override Procedure SecondaryActions(Vertex v, Vertices V )

a← GeometricV alue(0.886134);
a← RandomV alue(a, a);
a← BernoulliV alue(0.93379);
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Algorithm 18: BA-500

Function GenerateModel(int t)return graph
G← InitialiseGraph();
for i← 1 to t do

v ← V ertex();
W ← SelectV ertices(G);
while |W | > 0 do

w ← Next(W );
E ← E ∪ AddEdge(v, w);
SecondaryActions(W,w);

end while
V ← V ∪ v;

end for
return G

Function SelectVertices(Graph g)return vertices
a← BernoulliV alue(0.590228);
a← RandomV alue(10, 2);
b← GetInDegree();
c← Constant(1);
c← Add(b, c);
d← GetRouletteQueue(g, c);
return d

override Function AddEdge(Vertex v1,Vertex v2)return edge
a← CreateEdge(v1, v2);
return a

override Procedure SecondaryActions(Vertex v, Vertices V )

a← BernoulliV alue(0.350639);
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Algorithm 19: FF-500

Function GenerateModel(int t)return graph
G← InitialiseGraph();
for i← 1 to t do

v ← V ertex();
W ← SelectV ertices(G);
while |W | > 0 do

w ← Next(W );
E ← E ∪ AddEdge(v, w);
SecondaryActions(W,w);

end while
V ← V ∪ v;

end for
return G

override Function SelectVertices(Graph g)return vertices
a← BernoulliV alue(0.02819);
a← GeometricV alue(0.941932);
a← BernoulliV alue(0.347325);
b← GetRandomStack(g);
c← GetRandomQueue(g);
return c

override Function AddEdge(Vertex v1,Vertex v2)return edge
a← CreateEdge(v1, v2);
return a

override Procedure SecondaryActions(Vertex v, Vertices V )

a← GeometricV alue(0.63182);
a← GeometricV alue(0.681023);
AddSuccessor(V, a, v);
AddPredecessors(V, b, v);
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Algorithm 20: APA-1000

Function GenerateModel(int t)return graph
G← InitialiseGraph();
for i← 1 to t do

v ← V ertex();
SetBirth(v, i);
SetT ime(g, i);
W ← SelectV ertices(G);
while |W | > 0 do

w ← Next(W );
E ← E ∪ AddEdge(v, w);
SecondaryActions(W,w);

end while
V ← V ∪ v;

end for
return G

override Function SelectVertices(Graph g)return vertices
a← GetAge();
b← GetInDegree();
c← Constant();
d← Add(b, c);
e← GeometricV alue(0.347125);
b← Div(d, b);
e← GetRoulleteQueue(g, c);
return e

override Function AddEdge(Vertex v1,Vertex v2)return edge
a← CreateEdge(v1, v2);
return a

override Procedure SecondaryActions(Vertex v, Vertices V )

a← GeometricV alue(0.157924);
a← RandomV alue(a, 1);
b← GeometricV alue(0.785169);
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Figure B.1: Growing Random Model with 100 Vertices
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Figure B.2: Evolved Growing Random Model with 100 Vertices
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Figure B.3: Growing Random Model with 250 Vertices
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Figure B.4: Evolved Growing Random Model with 250 Vertices
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Figure B.5: Growing Random Model with 500 Vertices
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Figure B.6: Evolved Growing Random Model with 500 Vertices
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Figure B.7: Growing Random Model with 1000 Vertices

12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58
59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81
82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122
123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140 141

142

143

144
145

146

147

148

149

150

151

152

153

154

155

156
157

158

159

160

161

162

163

164

165

166

167

168

169

170

171
172

173

174

175

176

177

178

179

180

181

182

183

184

185
186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244
245

246

247

248 249 250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285
286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363364365

366

367

368

369
370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394 395

396

397

398

399

400

401

402
403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433
434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478
479

480

481
482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551
552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646
647

648

649

650

651

652

653

654

655
656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683
684

685

686
687

688

689

690

691

692

693

694

695

696

697
698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774
775

776

777

778

779

780

781
782

783

784

785

786

787

788

789

790
791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807
808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858 859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894
895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919
920921

922923

924

925

926
927

928

929

930

931

932

933

934

935

936

937

938

939
940

941

942

943

944

945

946

947

948

949

950

951

952

953
954

955956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996
997

998

999

1000

Figure B.8: Evolved Growing Random Model with 1000 Vertices
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Figure B.9: Barabasi-Albert Model with 100 Vertices
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Figure B.10: Evolved Barabasi-Albert Model with 100 Vertices
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Figure B.11: Barabasi-Albert Model with 250 Vertices
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Figure B.12: Evolved Barabasi-Albert Model with 250 Vertices
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Figure B.13: Barabasi-Albert Model with 500 Vertices
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Figure B.14: Evolved Barabasi-Albert Model with 500 Vertices
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Figure B.15: Barabasi-Albert Model with 1000 Vertices
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Figure B.16: Evolved Barabasi-Albert Model with 1000 Vertices
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Figure B.17: Forest Fire Model with 100 Vertices
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Figure B.18: Evolved Forest Fire Model with 100 Vertices
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Figure B.19: Forest Fire Model with 250 Vertices
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Figure B.20: Evolved Forest Fire Model with 250 Vertices
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Figure B.21: Forest Fire Model with 500 Vertices
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Figure B.22: Evolved Forest Fire Model with 500 Vertices
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Figure B.23: Forest Fire Model with 1000 Vertices
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Figure B.24: Evolved Forest Fire Model with 1000 Vertices
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Figure C.3: Distribution of Differences in In-Degree Distributions for GR-100
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Figure C.4: Distribution of Differences in Out-Degree Distributions for GR-100
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Figure C.5: Distribution of Differences in Average Geodesic Path Lengths for GR-
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Figure C.6: Distribution of Differences in Clustering Coefficients for GR-250
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Figure C.7: Distribution of Differences in In-Degree Distributions for GR-250
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Figure C.8: Distribution of Differences in Out-Degree Distributions for GR-250
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Figure C.9: Distribution of Differences in Average Geodesic Path Lengths for GR-
500
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Figure C.10: Distribution of Differences in Clustering Coefficients for GR-500
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Figure C.11: Distribution of Differences in In-Degree Distributions for GR-500
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Figure C.12: Distribution of Differences in Out-Degree Distributions for GR-500
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Figure C.13: Distribution of Differences in Average Geodesic Path Lengths for GR-
1000
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Figure C.14: Distribution of Differences in Clustering Coefficients for GR-1000
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Figure C.15: Distribution of Differences in In-Degree Distributions for GR-1000

0.0 0.1 0.2 0.3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Difference in Out−Degree Distribution

F
re

qu
en

cy

●

●

●

●

●

●

●

●

●

Figure C.16: Distribution of Differences in Out-Degree Distributions for GR-1000
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Figure C.17: Distribution of Differences in Average Geodesic Path Lengths for BA-
100
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Figure C.18: Distribution of Differences in Clustering Coefficients for BA-100
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Figure C.19: Distribution of Differences in In-Degree Distributions for BA-100
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Figure C.20: Distribution of Differences in Out-Degree Distributions for BA-100
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Figure C.21: Distribution of Differences in Average Geodesic Path Lengths for BA-
250
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Figure C.22: Distribution of Differences in Clustering Coefficients for BA-250
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Figure C.23: Distribution of Differences in In-Degree Distributions for BA-250
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Figure C.24: Distribution of Differences in Out-Degree Distributions for BA-250
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Figure C.25: Distribution of Differences in Average Geodesic Path Lengths for BA-
500
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Figure C.26: Distribution of Differences in Clustering Coefficients for BA-500
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Figure C.27: Distribution of Differences in In-Degree Distributions for BA-500
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Figure C.28: Distribution of Differences in Out-Degree Distributions for BA-500
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Figure C.29: Distribution of Differences in Average Geodesic Path Lengths for BA-
1000

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Difference in Clustering Coefficient

F
re

qu
en

cy

●

●

●

●

●

●

●

●

●

●

Figure C.30: Distribution of Differences in Clustering Coefficients for BA-1000
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Figure C.31: Distribution of Differences in In-Degree Distributions for BA-1000
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Figure C.32: Distribution of Differences in Out-Degree Distributions for BA-1000
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Figure C.33: Distribution of Differences in Average Geodesic Path Lengths for FF-
100
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Figure C.34: Distribution of Differences in Clustering Coefficients for FF-100
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Figure C.35: Distribution of Differences in In-Degree Distributions for FF-100
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Figure C.36: Distribution of Differences in Out-Degree Distributions for FF-100
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Figure C.37: Distribution of Differences in Average Geodesic Path Lengths for FF-
250
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Figure C.38: Distribution of Differences in Clustering Coefficients for FF-250
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Figure C.39: Distribution of Differences in In-Degree Distributions for FF-250
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Figure C.40: Distribution of Differences in Out-Degree Distributions for FF-250
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Figure C.41: Distribution of Differences in Average Geodesic Path Lengths for FF-
500
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Figure C.42: Distribution of Differences in Clustering Coefficients for FF-500
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Figure C.43: Distribution of Differences in In-Degree Distributions for FF-500
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Figure C.44: Distribution of Differences in Out-Degree Distributions for FF-500
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Figure C.45: Distribution of Differences in Average Geodesic Path Lengths for FF-
1000
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Figure C.46: Distribution of Differences in Clustering Coefficients for FF-1000
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Figure C.47: Distribution of Differences in In-Degree Distributions for FF-1000
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Figure C.48: Distribution of Differences in Out-Degree Distributions for FF-1000



Appendix D

GP Convergence Plots

In this appendix, the average best fitness values by generation are presented for all

runs of each experiment. The fitness values have been normalized using the maximum

and minimum value of the averages. This was done so that each fitness value was

easily plotted in the same chart.

141
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Figure D.1: GR-100 Convergence Plot



APPENDIX D. GP CONVERGENCE PLOTS 143

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generations

N
or

m
al

iz
ed

 F
itn

es
s

●

●

●

●

●
●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

●

●

●

●
●

●

●

●

● ●

●
● ● ●

● ●
● ●

●

● ●

●
●

● ● ● ● ● ● ● ●

●

●

●

●

●

● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

●

●

●

F1
F2
F3
F4

Figure D.2: GR-250 Convergence Plot
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Figure D.3: GR-500 Convergence Plot
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Figure D.4: GR-1000 Convergence Plot
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Figure D.5: BA-100 Convergence Plot
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Figure D.6: BA-250 Convergence Plot
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Figure D.7: BA-500 Convergence Plot
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Figure D.8: BA-1000 Convergence Plot
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Figure D.9: FF-100 Convergence Plot
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Figure D.10: FF-250 Convergence Plot
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Figure D.11: FF-500 Convergence Plot
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Figure D.12: FF-1000 Convergence Plot
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Figure D.13: APA-100 Convergence Plot
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Figure D.14: APA-250 Convergence Plot
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Figure D.15: APA-500 Convergence Plot
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Figure D.16: APA-1000 Convergence Plot


