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Abstract

Several species of the insect pathogenic fungus Metarhizium are associated with certain plant types and genome analyses
suggested a bifunctional lifestyle; as an insect pathogen and as a plant symbiont. Here we wanted to explore whether there
was more variation in genes devoted to plant association (Mad2) or to insect association (Mad1) overall in the genus
Metarhizium. Greater divergence within the genus Metarhizium in one of these genes may provide evidence for whether
host insect or plant is a driving force in adaptation and evolution in the genus Metarhizium. We compared differences in
variation in the insect adhesin gene, Mad1, which enables attachment to insect cuticle, and the plant adhesin gene, Mad2,
which enables attachment to plants. Overall variation for the Mad1 promoter region (7.1%), Mad1 open reading frame
(6.7%), and Mad2 open reading frame (7.4%) were similar, while it was higher in the Mad2 promoter region (9.9%). Analysis
of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and
TATA box-like regions, while this level of variation was not found for Mad1. Sequences were also phylogenetically compared
to EF-1a, which is used for species identification, in 14 isolates representing 7 different species in the genus Metarhizium.
Phylogenetic analysis demonstrated that the Mad2 phylogeny is more congruent with 59 EF-1a than Mad1. This would
suggest that Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation, while it
appears that Mad1 has been largely conserved. While other abiotic and biotic factors cannot be excluded in contributing to
divergence, these results suggest that plant relationships, rather than insect host, have been a major driving factor in the
divergence of the genus Metarhizium.
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Introduction

Species within the genus Metarhizium are insect pathogenic fungi

with a broad range of insect hosts. The genus was recently divided

into several separate species based on a multilocus phylogeny [1].

The EF-1a sequence was found to be diagnostic for species

identification. The population biology (and now species associa-

tion) of Metarhizium had been assumed to be influenced primarily

by host insect taxa [2–8]. That is, different species of Metarhizium

were associated with different insect species. However, an

association between Metarhizium species and habitat and/or plant

types has been observed [9,10]. This represents a significant

paradigm shift, in that it demonstrated that habitat/plant

selection, not host insect selection, influenced the population

structure of Metarhizium. In addition, M. robertsii has been shown to

be rhizosphere competent [11–13], further supported by research

demonstrating M. robertsii is an endophyte [14].

Metarhizium is phylogenetically related to the fungal grass

endosymbionts Claviceps and Epichloë [15]. Genomic analyses also

indicated that Metarhizium spp. are more closely related to

endophytes and plant pathogens than to animal pathogens,

suggesting that Metarhizium evolved from fungi that are plant

associates [16].

Two adhesin genes have been identified that are specifically

involved with insect pathogenesis and plant association, Metarhi-

zium adhesin-like protein 1 (Mad1) and Metarhizium adhesin-like

protein 2 (Mad2), respectively [17]. The MAD1 adhesin allows

Metarhizium to adhere to insect cuticle, while the MAD2 adhesin

enables attachment to plants, and were expressed differentially on

their respective hosts [17]. Both proteins contain a middle region

(domain B) that contains Thr-rich tandem repeats.

We propose three possible models of evolution within genus

Metarhizium: (1) insect host has caused divergence among species;

(2) plant host has caused divergence among species; (3) other

abiotic or biotic factors caused the divergence and evolution

among Metarhizium species. In this study, we explored the genetic

differences in 14 Metarhizium isolates, representing 7 different

species, through sequence analysis (open reading frames and

promoter regions) of the Mad1 insect adhesin and Mad2 plant

adhesin genes. Sequences were also compared to the EF-1a gene,

which allows for species identification [1], in order to infer

evolutionary relationships.

PLOS ONE | www.plosone.org 1 March 2013 | Volume 8 | Issue 3 | e59357

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brock University Digital Repository

https://core.ac.uk/display/62647674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Results

Mad1 variability
Inter-isolate, interspecies, and intraspecies variation were

calculated for the open reading frame and promoter regions

through pairwise nucleotide comparisons. The greatest inter-

isolate divergence within the open reading frame of Mad1 was

14.2% found between isolates ARSEF 7486 (M. acridum) and

ARSEF 6238 (M. guizhouense). However, when considering the

average inter-isolate variation between species, the greatest

interspecies divergence was 12.3% between M. acridum and M.

majus, with the least divergence between M. robertsii and M.

brunneum (2.9%). The overall average interspecies variation for the

Mad1 open reading frame for all Metarhizium species examined was

6.7%. The average interspecies variation for the promoter region

was 7.1%. For the open reading frame, the intraspecies variation

was low in M. robertsii (0.2%) and M. brunneum (0.3%), while it was

relatively higher for M. guizhouense (3.9%). Similarly, in the

promoter region, intraspecies variation was low in M. robertsii

(0.1%) and M. brunneum (0.1%), and higher for M. guizhouense

(3.9%). The average estimated nonsynonymous/synonymous

substitution rate ratio (dN/dS) for Mad1 was calculated at 0.20.

Initial analysis of the MAD1 proteins showed that M. robertsii

isolates had a conserved protein length at 717 amino acids. The

MAD1 protein for ARSEF 6238 (M. guizhouense) was also 717 a.a.,

while the Ontario isolates of M. guizhouense had proteins that

contained 706 a.a. The MAD1 protein forM. brunneum isolates was

711 a.a., while the M. pingshaense MAD1 was 704 a.a. Overall, M.

acridum had the longest MAD1 protein at 723 a.a., including an

insertion of 11 amino acids within domain B, which contained

Thr-rich tandem repeats. These 11 extra amino acids provided M.

acridum with eight tandem repeats, while all other species contained

six. M. acridum also possessed a variable region in the N-terminal

ligand binding region of the protein, while this region was mostly

conserved among other species.

Mad2 variability
The greatest inter-isolate divergence within the open reading

frame for Mad2 was 15.9% found between isolates ARSEF 7486

(M. acridum) and HKB1-1b (M. robertsii). Similarly, the greatest

interspecies divergence was 15.7% between M. acridum and M.

robertsii, with the least divergence between M. guizhouense and M.

majus (2.5%). The overall average interspecies variation for the

Mad2 open reading frame and promoter region for all Metarhizium

species examined was 7.4% and 9.9%, respectively. The in-

traspecies variation within the open reading frame was low in M.

robertsii (0.2%) and M. brunneum (0.0%), and moderately higher in

M. guizhouense (2.2%). In the promoter region, intraspecies

variation was also low in M. robertsii (0.04%) and M. brunneum

(0.1%), and higher in M. guizhouense (1.5%). The average estimated

dN/dS ratio for Mad2 was 0.31.

The length of the MAD2 proteins was conserved for isolates

within the PARB clade, which includes M. pingshaense, M. robertsii,

and M. brunneum, as well as Ontario isolates of M. guizhouense, with

a length of 306 amino acids. ARSEF 6238 (M. guizhouense) had the

longest MAD2 protein at 310 a.a. M. majus and M. lepidiotae have

a MAD2 protein length of 305 and 307 a.a., respectively. Overall,

M. acridum had the shortest MAD2 protein at 295 a.a., including

a 12 amino acid deletion directly after the Thr-rich tandem

repeats present in domain B. Analysis of the MAD2 protein

sequence revealed a variable region in the N-terminal ligand

binding region, with the variablilty conserved within a species.

Analysis of the Mad2 promoter regions revealed differences in

putative transcriptional elements. A stress responsive element

(STRE) (AGGGG) was present twice within all species, except for

M. robertsii and M. acridum isolates. M robertsii and M. acridum

possessed a post-diauxic shift (PDS) element (AAGGGA) in place

of the second STRE copy (upstream location -109 in M. robertsii).

Interestingly, a degenerative TATA box (TATG) was present in

the promoter of M. robertsii as a repeat sequence, containing five

repeats (upstream location -604). M. pingshaense contained three

repeats in this region, while M. majus and M. guizhouense contained

one. M. brunneum, M. acridum, and M. lepidiotae all lacked a TATG

repeat in this region. This degenerative TATA box was also

present prior to a TATA box-like sequence (TACATA) in isolates

of the PARB clade, which includes M. pingshaense, M. robertsii, and

M. brunneum (upstream location -266 in M. robertsii). The TATA-

box-like sequence was also present within the promoter region of

the MGT isolates, which includes M. majus and M. guizhouense,

although they lacked the degenerative TATA box.M. lepidiotae had

two TATG repeats in this region, whileM. acridum had one TATG

sequence present. M. acridum and M. lepidiotae lacked the TATA-

box-like sequence.

Phylogenetic analysis of 59 EF-1a, Mad1, and Mad2
The 59 EF-1a phylogenetic tree for all fourteen isolates

segregated according to species, including the division of the

PARB clade, which includes isolates of M. pingshaense, M. robertsii,

and M. brunneum, and the MGT clade, which includes isolates of

M. majus, and M. guizhouense (Fig. 1).

The phylogenetic trees for the Mad1 and Mad2 full gene

sequences also formed divisions that were consistent with the

PARB and MGT clades (Fig. 2 and 3). The PARB clade isolates all

formed species-specific nodes consistent with their 59 EF-1a
identification, however, in the Mad1 tree M. pingshaense and M.

brunneum were grouped together (Fig. 2), while M. pingshaense and

M. robertsii grouped together in the 59 EF-1a andMad2 trees (Fig. 1

and 3). In the Mad1 and Mad2 phylogenetic trees, ARSEF 6238

(M. guizhouense) and ARSEF 1914 (M. majus) grouped together to

form a separate node from the Ontario isolates of M. guizhouense

within the MGT clade. Overall, the Mad2 tree had the best

resolution, with the highest bootstrap values for each node.

The congruency indices (Icong) calculated for both trees derived

from the promoter regions of Mad1 and Mad2 in comparison to 59

EF-1a were each 2.03 (p = 1.6661026) (Table 1). That is, the

phylogenetic trees of the Mad1 and Mad2 promoter regions were

equally congruent to the phylogenetic tree for 59 EF-1a. The

maximum agreement subtree (MAST), for 59 EF-1a and the

phylogenetic trees of the promoter regions each contained 11

terminal nodes in order for perfect congruence to occur (Table 1).

The phylogenetic trees derived from the full gene DNA sequence

of Mad1, as well as trees derived from the open reading frame

DNA sequence and protein sequence were equally congruent to

the 59 EF-1a tree. In each case, the congruency index was 1.66

(p = 2.3161024). In each pairwise tree comparison the maximum

agreement subtree (MAST) for 59 EF-1a and each of the Mad1

trees (full gene DNA sequence, open reading frame DNA

sequence, and protein sequence) all contained 9 terminal nodes.

For the 59 EF-1a tree and Mad2 trees derived from the full gene

DNA sequence, open reading frame DNA sequence, and protein

sequence, Icong for each pairwise comparison was calculated to be

1.84 (p = 1.9661025). The MAST for 59 EF-1a and the Mad2

trees all contained 10 terminal nodes. The topology of the

phylogenetic trees, as well as a higher Icong and MAST (Table 1),

indicated that the Mad2 phylogenetic trees were more congruent

with the 59 EF-1a tree than the Mad1 trees.

Metarhizium Plant and Insect Adhesin Genes
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Discussion

Here, we amplified and cloned the full Mad1 and Mad2 genes in

fourteen isolates of seven different species ofMetarhizium in order to

assess the gene variability.M. acridum, the acridid-specific pathogen

[16,18], was found to have relatively more insertions and deletions

within the open reading frames of Mad1 and Mad2, respectively,

specifically within the Thr-rich tandem repeat region in domain B

of both proteins. Mad2 variability between species was identified

within putative transcriptional elements, including STRE, PDS,

the degenerative TATA box, and TATA box-like regions.

Additionally, phylogenetic analysis of 59 EF-1a, Mad1, and Mad2

revealed that the evolution of the Mad2 gene was more congruent

with the phylogeny of 59 EF-1a than Mad1, suggesting plant host,

rather than insect host, was a probable influence in the divergence

among Metarhizium species.

In general, it was found that Mad1 and Mad2 were largely

conserved within a species. However, intraspecies variation for M.

guizhouense was high in comparison to M. robertsii and M. brunneum.

This was especially notable for the Mad1 open reading frame, in

which variation within M. guizhouense was greater than the

variation between M. robertsii and M. brunneum. However, Ontario

isolates of M. guizhouense had very low intraspecies variation,

similar to that ofM. robertsii andM. brunneum. Additionally, ARSEF

6238 (M. guizhouense) formed a group with ARSEF 1914 (M. majus),

separate from the Ontario isolates ofM. guizhouense in allMad1 and

Mad2 phylogenetic trees. This influenced the incongruencies in the

Mad1 and Mad2 phylogenies when compared to the 59 EF-1a tree.

This may be due to geographic divergence within M. guizhouense,

since ARSEF 1914 and ARSEF 6238 were isolated in the

Philippines and China, respectively [1]. Interestingly, Bischoff et al.

[1] accepted M. majus and M. guizhouense at the species rank due to

congruence between conidial size and the 59 EF-1a phylogeny,

although these species did not meet the molecular genealogical

concordance criteria. However, Japanese isolates demonstrated

that the conidial sizes of M. majus and M. guizhouense were

incongruent with the 59 EF-1a phylogeny [19]. This incongruence

within the MGT clade warrants further investigation in order to

fully resolve species ranks which may be obfuscated by population

genetic differences within a Metarhizium species.

M. acridum, which is a species that displays insect host specificity,

particularly pathogenic to acridids (grasshoppers and locusts)

[16,18], had the longest MAD1 protein. This includes an 11

amino acid insertion that gave the M. acridum MAD1 protein eight

tandem repeats of GKETTPAQQTTP within domain B, as

opposed to the six repeats in all other isolates. This is putatively

a functional difference, as it is presumed that a higher number of

repeats could increase the distance between the cell wall and the

N-terminal ligand binding region [17]. Additionally, M. acridum

possessed a variable region in the N-terminal ligand binding

Figure 1. Maximum parsimony (MP) phylogenetic tree of 59 EF-1á sequences ofMetarhizium isolates. Bootstrap values are based on 1000
pseudoreplicates.
doi:10.1371/journal.pone.0059357.g001

Figure 2. Maximum parsimony (MP) phylogenetic tree of Mad1 full gene sequences of Metarhizium isolates. Bootstrap values are based
on 1000 pseudoreplicates.
doi:10.1371/journal.pone.0059357.g002
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region, which could putatively cause a difference in adherence.

However, when the Mad1 gene from M. acridum was inserted into

M. robertsii, there was no difference in cuticle adhesion or virulence

(St. Leger, pers. comm.). Conversely, M. acridum had the shortest

MAD2 protein, including a 12 amino acid deletion directly after

the Thr-rich repeats in domain B. This may also have a functional

implication that may limit its ability to associate with plants.

Phylogenetic analysis of 59 EF-1a,Mad1, and Mad2 also shows this

species is highly divergent from other Metarhizium species.

Within the MAD2 protein sequence, a variable region was

readily identified within the N-terminal ligand binding region.

Interestingly, the variability was conserved within a species. This

amino-terminal domain has been implicated in adhesive interac-

tions in the ALS proteins of C. albicans [20], which are similar to

the MAD1 and MAD2 proteins [17]. It may be possible that this

variability causes differences in adhesion to various plants among

species of Metarhizium.

Overall, genetic variation was slightly greater in the Mad2 open

reading frame (7.4%) in comparison to Mad1 (6.7%), but

noticeably higher in the Mad2 promoter region (9.9%) in

comparison to the Mad1 promoter (7.1%). Analysis of the Mad1

promoter did not identify any variable transcriptional elements.

Future research could focus on the expression of Mad2 between

species since there was variation present within the promoter

region. Several putative transcriptional elements have been

identified within the Mad2 promoter [21], however, the analyses

presented here focused on the variable STRE, PDS, degenerative

TATA box, and TATA box-like regions. The stress response

element (STRE) activates genes under various stress conditions,

including glucose starvation [22,23]. Similarly, the post diauxic

shift (PDS) element mediates transcriptional activation in response

to nutritional limitation [24,25]. The presence of these transcrip-

tional elements is consistent with the finding that Mad2 is

upregulated under nutrient deprivation [21].

Interestingly, it has been found that the expression of cell wall

and stress response genes evolved at an accelerated rate following

the transfer of M. robertsii from a semitropical to a temperate soil

community [26]. It was also found that cell wall genes with

significantly altered expression were enriched for TATA boxes.

Conversely, virulence determinants were unaltered [26]. M.

robertsii, which has demonstrated a more generalist ability to

colonize plant rhizosphere when compared to M. brunneum and M.

guizhouense [10], contained the most TATG repeats within the

degenerative TATA box region. It also contains a TATG repeat

prior to the TATA box-like sequence, which the other species lack.

Whether this contributes to the generalist nature of the plant

association is unknown. Also, the length of the MAD2 protein is

conserved within the PARB clade, including the Ontario isolates

of M. guizhouense. This is notable, since Ontario isolates of M.

robertsii, M. brunneum, and M. guizhouense have shown plant

rhizosphere associations [10].

Overall, variation within the DNA and protein sequences of the

Mad1 and Mad2 genes, were largely species-specific. This is

expected, as these genes would have diverged during speciation.

However, the higher amount of variation, especially in the

promoter region, suggests Mad2 had diverged more than Mad1,

and phylogenetic analysis indicated that Mad2 is more congruent

with the 59 EF-1a phylogeny, which is used for species

identification [1]. Also, variation within the TATA box-like region

of the Mad2 promoter was conserved within a clade. This would

suggest that in evolutionary terms, Mad2, the plant adhesin, has

diverged among Metarhizium lineages, contributing to clade- and

species-specific variation. Conversely, it appears that Mad1 has

been largely conserved. This is reflected in the average estimated

dN/dS ratio, which is higher in Mad2 (0.31) than in Mad1 (0.20),

suggesting that there is more stabilizing selection for Mad1, as

there is a higher relative abundance of nonsynonymous mutations.

Figure 3. Maximum parsimony (MP) phylogenetic tree of Mad2 full gene sequences of Metarhizium isolates. Bootstrap values are based
on 1000 pseudoreplicates.
doi:10.1371/journal.pone.0059357.g003

Table 1. Congruency values for pairwise comparisons of
Mad1 and Mad2 phylogenetic trees to the 59 EF-1a
phylogenetic tree.

Promoter ORF (DNA) ORF Full gene**

region* (DNA) (Protein) (DNA)

Mad1 I-cong 2.03 1.66 1.66 1.66

p-value 1.6661026 2.3161024 2.3161024 2.3161024

MAST 11 9 9 9

Mad2 I-cong 2.03 1.84 1.84 1.84

p-value 1.6661026 1.9661025 1.9661025 1.9661025

MAST 11 10 10 10

*,800 base pair DNA sequence prior to open reading frame (ORF).
**Promoter and open reading frame DNA sequences combined.
doi:10.1371/journal.pone.0059357.t001
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One explanation for the results observed is that the stabilizing

selection for Mad1 has reduced variation and caused incongruency

with 59 EF-1a. The promoter regions are both equally congruent

to 59 EF-1a. While EF-1a is highly conserved [27], the 59 region

used in these analyses contains a large portion of intronic

nucleotides (.60% when aligned with GenBank Accession

AAR16425). As such, the promoter regions of the Mad genes

and the intronic regions of 59 EF-1a would both accumulate

random substitutions during evolution. Mad2, which has demon-

strated a degree of stabilizing selection, would have fewer

accumulated random mutations. Lastly, Mad1, which has shown

more stabilizing selection and less variation than Mad2, would

have accumulated even fewer random mutations, resulting in

more incongruency with the 59 EF-1a phylogenetic tree. Previous

studies on insect infection related genes (i.e. Pr1 and Ntl) have also

demonstrated a high degree of stabilizing selection [6,28].

There is evidence that plant host association may play an

important role in the evolutionary divergence within the genus

Metarhizium with the exception of the acridid-specific M. acridum

and possibly M. majus, which has demonstrated specificity for

Coleopteran insects, particularly scarabs [18,29,30]. Ontario

species of Metarhizium have shown plant rhizosphere specificity

[10] and M. robertsii is an endophyte [14]. Whole genome analyses

have also suggested that the genus Metarhizium evolved from

endophytes or plant pathogens [16].

While the Mad2 plant adhesin gene showed a higher amount of

variability thanMad1, and was more congruent with 59 EF-1a, it is
difficult to ascertain whether this is due to plant relationships

alone. Over the course of time, a number of factors may have

contributed differentially to the evolution of Metarhizium species.

The genetic differences found may be the residual effects derived

from an ancestral plant-associated relative. While phylogenetic

evidence suggests that plant interactions have had the greater role

in shaping the evolution of this fungal genera, it is possible that

insect associations may have been influential on the more recent

evolution of Metarhizium. While other abiotic and biotic factors

cannot be excluded in contributing to species divergences, it

appears that plant relationships have been a driving factor in the

evolution of Metarhizium species.

Methods

Metarhizium isolates
Fourteen isolates of Metarhizium, representing seven of nine

Metarhizium spp. complex species identified by Bischoff et al. [1],

were used in this study. Eight isolates were obtained from soil and

plant root samples from various locations in Ontario, Canada

[9,10]; M. robertsii isolates HKB1-1b, B18-ai, M31-ai, and G90-ai;

M. brunneum isolates 43a-2i, and G55-ai; and M. guizhouense isolates

B34-aiii, and B77-ai. Metarhizium isolates representing six species

were obtained from the USDA-ARSEF (Ithaca, New York);

ARSEF 6238 (M. guizhouense), ARSEF 439 (M. pingshaense) and ex-

type isolates ARSEF 7488 (M. lepidiotae), ARSEF 7486 (M. acridum),

ARSEF 2575 (M. robertsii), and ARSEF 1914 (M. majus) [1]. Isolates

were grown on potato dextrose agar (Difco) plates at 27uC for

10 days in order to obtain conidia.

DNA extraction
Conidia were inoculated into 50 mL 0.2% (w/v) yeast extract,

1% peptone, 2% dextrose (YPD) broth in flasks. The flasks were

incubated at 27uC and shaken at 200 rpm for 3 to 4 days, until

sufficient mycelia had accumulated. The mycelia were removed by

vacuum filtration onto FisherbrandH P8 filter paper, washed with

distilled water, and crushed in liquid nitrogen using a mortar and

pestle. DNA was extracted using the DNeasy Plant Mini Kit

(QIAGEN). Extracted DNA was quantified using a NanoVue

spectrophotometer (GE).

PCR, primer walking, gene cloning, and sequencing
Primers were designed by using the sequences of the Metarhizium

adhesin-like protein 1 (Mad1), and Metarhizium adhesin-like protein

2 (Mad2) derived from ARSEF 2575 [17], and deposited in

GenBank (accession No. DQ338437 and DQ338439, respective-

ly). The upstream sequence forMad1 was obtained using Y-shaped

adaptor dependent extension (YADE) [31].

PCR amplifications were performed in a total volume of 50 mL,
which included 5 mL 10X Standard PCR Buffer (NEB), 1 mL
dNTPs (10 mM each dATP, dCTP, dGTP, dTTP) (QIAGEN), 10

pmol each of the opposing amplification primers (Sigma), 0.5 mL
Taq polymerase (NEB), and 500ng genomic DNA. The following

PCR conditions were used for Mad1 amplification: initial de-

naturation, 1 minute at 94uC, then 30 cycles of denaturation,

1 minute at 94uC; annealing, 1 minute at 60uC; extension,

4.5 minutes at 72uC; and final extension, 10 minutes at 72uC.
The same PCR conditions were used for Mad2 amplification, with

an annealing temperature of 56uC and an extension time of

3 minutes. Table 2 lists the primers used to amplify all Mad1 and

Mad2 sequences.

The 59 region of the translation elongation factor 1-alpha (EF-

1a) gene was amplified according to previously described

conditions [1,32,33] for isolates ARSEF 2575 (M. robertsii) and

ARSEF 439 (M. pingshaense).

Full DNA sequences for Mad1 and Mad2 were obtained for all

isolates by primer walking (DNA Walking Speedup kit; Seegene).

Amplified PCR products were separated by gel electrophoresis,

excised, and purified with a QIAquick gel extraction kit

(QIAGEN). Purified PCR products were cloned using pGEM-T

Easy, as per manufacturer’s instructions (Promega). Plasmid DNA

was extracted using a GenElute Plasmid Miniprep Kit (Sigma),

and inserts were sequenced using vector sequencing primers (SP6

and T7) by the Core Molecular Biology Facility at York University

(Toronto, Canada).

The 59 EF-1a sequences were obtained from GenBank for

isolates HKB1-1b (HM748301), B18-ai (HM748302), M31-ai

(HM748303), G90-bi (HM748304), 43a-2i (FJ229493), G55-ai

(HM748305), B77-ai (HM748307), B34-aiii (HM748308), ARSEF

Table 2. Primers used to amplify all Mad1 and Mad2
sequences in Metarhizium isolates.

Gene: Isolate(s) Primer Sequence (59–39)

Mad1: All Isolates (F) GCT TGT GCC CTG TGT TCC

(R) AAG ATT ACA GAA TGC CAG CCC T

Mad2: A2575, HKB1-1b,
B18-ai, M31-ai,

(F) GCG GCT AAT TTT TGA CTA C

G90-bi, 43a-2i, G55-ai,
A7488, A7486

(R) TCA TAG CAC AAA TGA GTT GTA T

Mad2: A439 (F) GGA TAT TCA GTC GTG GCT

(R) TCA TAG CAC AAA TGA GTT GTA

Mad2: A6238, A1914 (F) GCT TGC TCG TTA GAC ACA

(R) TTA GTG TCG GAG GAA TAG AT

Mad2: B34-aiii, B77-ai (F) AGT GAC TTG GTG GGA TAA G

(R) TTA GTG TCG GAG GAA TAG AT

doi:10.1371/journal.pone.0059357.t002

Metarhizium Plant and Insect Adhesin Genes

PLOS ONE | www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e59357



7488 (EU248865), ARSEF 7486 (EU248845), ARSEF 6238

(EU248857), and ARSEF 1914 (EU248868). GenBank accession

numbers for the Mad genes and 59 EF-1a sequenced for this study

were: HKB1-1b (Mad1: KC484637; Mad2: KC484624), B18-ai

(Mad1: KC484638; Mad2: KC484625), M31-ai (Mad1:

KC484639; Mad2: KC484626), G90-bi (Mad1: KC484640;

Mad2: KC484627), 43a-2i (Mad1: KC484642; Mad2:

KC484629), G55-ai (Mad1: KC484643; Mad2: KC484630), B34-

aiii (Mad1: KC484644; Mad2: KC484631), B77-ai (Mad1:

KC484645; Mad2: KC484632), ARSEF 7488 (Mad1:

KC484648; Mad2: KC484635), ARSEF 7486 (Mad1:

KC484649; Mad2: KC484636), ARSEF 6238 (Mad1:

KC484646; Mad2: KC484633), ARSEF 2575 (59 EF-1a:
KC484650), ARSEF 1914 (Mad1: KC484647; Mad2:

KC484634) and ARSEF 439 (Mad1: KC484641; Mad2:

KC484628; 59 EF-1a: KC484651).

Sequence and phylogenetic analysis
DNA sequences were aligned using Clustal_X 2.1 [34] using the

default settings. Translated protein sequences were identified

through a multiple sequence alignment with protein sequences

derived from ARSEF 2575 [17], for MAD1 and MAD2 (accession

No. ABC65821 and ABC65823, respectively). Pairwise compar-

isons were carried out using EMBOSS Needle [34,35]. The

nonsynonymous/synonymous rate ratio (dN/dS) was estimated

using the ETH Codon Suite, which uses an empirical codon

substitution matrix [36], and estimates dN and dS according to

Nei and Gojobori [37].

Molecular phylogenetic analysis of the 59 EF-1a, Mad1 and

Mad2 sequences was conducted in order to evaluate the

phylogenetic relationship of the genes. Maximum parsimony

(MP) phylogenetic trees were constructed using PHYLIP 3.69

[38], as previously described [10]. Nonparametric bootstrapping

was conducted using 1000 pseudoreplicates, with 10 random

addition replicates per parsimony run, and subtree pruning and

regrafting (SPR) branch swapping. The congruency index (Icong)

and maximum agreement subtree (MAST) were calculated using

the Icong online tool [39], which calculates the MAST values

following Berry and Nicolas [40].
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