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Abstract

Experimental Extended X-ray Absorption Fine Structure (EXAFS) spectra carry

information about the chemical structure of metal protein complexes. However, pre-

dicting the structure of such complexes from EXAFS spectra is not a simple task.

Currently methods such as Monte Carlo optimization or simulated annealing are used

in structure refinement of EXAFS. These methods have proven somewhat successful

in structure refinement but have not been successful in finding the global minima.

Multiple population based algorithms, including a genetic algorithm, a restarting ge-

netic algorithm, differential evolution, and particle swarm optimization, are studied

for their effectiveness in structure refinement of EXAFS. The oxygen-evolving com-

plex in S1 is used as a benchmark for comparing the algorithms. These algorithms

were successful in finding new atomic structures that produced improved calculated

EXAFS spectra over atomic structures previously found.
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Chapter 1

Introduction

The aim of this thesis is to find a better method for determining the atomic structure

of a molecule using extended X-ray absorption fine structure (EXAFS). The thesis

uses the oxygen-evolving complex (OEC) in state S1 as an example for structure

refinement. The developed process can be applied to any given chemical structure

that has undergone x-ray absorption spectroscopy experimentation. In this chapter,

we introduce the biological background and terms, followed by the problem definition,

and finally elaborate on the computer science theories applied to the problem.

1.1 Biological Background

Photosystem II [1] is the protein complex responsible for the first stage of photosyn-

thesis. Photosynthesis is a process used by plants and other organisms to convert

light (photons) into energy. Photons, that are captured from the Sun or other light

sources, and water are processed through a water-oxidizing enzyme known as the

oxygen-evolving complex (OEC) [2]. The water molecule (H2O) is split into two

parts, O2 and H+. The O2 is released from the system, and the H+ will be stored

and used as a source of energy.

The OEC complex performs oxidation on two water molecules through a series of

intermediary states. The “S-State Cycle” [2] consists of 5 states: S0, S1, S2, S3, and

S4. During the transition between each state a hydrogen electron is released. After

1
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S4 concludes O2 is formed. For the purpose of this work, the resting or so-called

storage state S1 will be analysed. The atomic structure of the OEC molecule is

altered between each state.

The most significant feature of this compound is its inorganic core, which is

Mn4Ca1OxCl1−2(HCO3)y. It is not found anywhere else in biology and is an im-

portant biological blueprint for water spliting. By studying OEC the hope is to

understand how the oxidation of water can occur at such a low energy cost. Aquiring

a better understanding of how the water splitting process occurs will assist in creat-

ing biomimetic catalysts or engineered PSII enzymes for real world applications. A

visualization of the inorganic core of OEC in S1 is shown in Figure 1.1. This figure

was generated using the Visual Molecular Dynamics software [3].

Figure 1.1: OEC Atomic Structure in S1

1.2 X-ray Absorption Spectroscopy

The following overview is based on information contained in Matthew Newville’s

Fundamentals of XAFS (2004) [4]. X-Ray absorption fine structure (XAFS) is a
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Figure 1.2: EXAFS Spectra of OEC in S1

method used to measure the absorption coefficient of a material as a function of

energy. X-rays are part of the electromagnetic spectrum with wavelengths ranging

from 25Å to 0.25Å. All atoms resonate at a specific wavelength. The x-ray is tuned

to have the same wavelength as the target atom. A photon from an x-ray is absorbed

by an electron in a tightly bound quantum core level of an atom. Absorption only

takes place if the binding energy of the core level is less than the energy of the x-ray

photon. At the time of absorption a core electron moves to an empty outer shell

and another electron moves in to take its place. Eventually the affected electrons

decay to their original state. During this time fluorescence energies are emitted that

characterize a specific atom.

The absorption coefficients measured after the initial absorption are referred to as the

EXAFS. During the decay of the electrons to their original state, oscillations occur

in the measure of the absorption coefficient. The different frequencies found within

the oscillations correspond to different near-neighbour coordination shells, which can

be described and modeled according to the EXAFS equation. From the oscillations,

the number of neighbouring atoms, the distances to the neighbouring atoms, and

the disorder in the neighbour distances can be determined. The energy spectrum for

OEC in S1 is shown in Figure 1.2.
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1.3 Force Fields

The atoms within a molecule are consistently interacting with each other. Atoms

directly interact with neighbouring atoms with a bond or indirectly through van

der Waals forces. Calculating the forces involved within the molecule would require

a large amount of computing power to attain a high degree of accuracy. Instead,

classical formulas are used to calculate the energy within the system. There are

several different formulas for calculating classical force fields. This work will utilize

assisted model building with energy refinement (AMBER) [5] force fields for the

energy calculations. AMBER force fields are widely used with proteins and related

systems [6].

1.4 Problem Definition: Structure Refinement

Problem

The goal of this thesis is to examine different search heuristics to determine the best

method of finding the theoretical atomic structure of a molecule using the molecule’s

EXAFS spectrum for comparison. This problem contains two important but unre-

lated goals. The algorithm must be able to find an atomic structure whose EXAFS

spectrum matches the experimental EXAFS spectrum and has relatively low energy.

EXAFS can be used to identify properties of a molecule, but they do not provide

enough detail to determine the atomic structure of a molecule in 3-dimensional space.

Although an EXAFS spectrum allows you to identify how far apart atoms are from

each other, it does not give enough information to identify their dihedral angles.

Fortunately, EXAFS can be used to assist in determining the atomic structure of a

molecule. The energy spectrum given off by the molecule is unique to its structure,

which means that you can create an atomic structure, obtain its EXAFS spectrum,

and compare the results. The hope is that if you create an atomic structure whose

EXAFS spectrum closely matches the EXAFS spectrum of an actual model, then

there is a high likelihood that the created structure will closely match the actual

structure.

Using EXAFS spectrum comparison, the goal is to obtain a set of candidate atomic
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structures. Atomic structures that generate similar EXAFS spectra may have differ-

ent geometries. An expert will have to analyse the candidate solutions to determine

if any of these atomic structures are actually chemically feasible. Having a set of

candidate solutions will improve the odds of finding the actual solution.

The IFEFFIT XAFS data analysis suite [7] is used to simulate the EXAFS experi-

ments. This suite includes two applications that will be used: FEFF6, and IFEFFIT.

FEFF6 is used to simulate an XAFS experiment and IFEFFIT does post processing

of the simulated EXAFS spectra. During the atomic structure refinement, the gen-

erated atomic structures will be run through these applications to obtain an EXAFS

spectrum.

NAMD [8] will be used for the energy calculations. The NAMD Energy Plugin [9]

will calculate the potential energy of the generated atomic structure.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 gives an overview

of the various search algorithms used in this work. This chapter gives an overview

of evolutionary algorithms, and provides details on the different implementations of

genetic algorithms, restarting genetic algorithms, differential evolution, and particle

swarm optimization. Chapter 3 discusses previous research that has been performed

on the structure refinement problem and how other algorithms were used on similar

problems. Chapter 4 provides implementation details for the various algorithms,

such as the problem encoding and population generation. Chapter 5 outlines the

different experiments that will be performed. Chapter 6 discusses the results from

the experiments performed and provides detailed analysis of the findings. Chapter

7 summarizes the research conducted and outlines possible future work. Appendices

are also included in this thesis. The appendices contain summary tables of the best

fitness score found in each run for all experiments.



Chapter 2

Background

The purpose of this chapter is to assist the reader in understanding the search tech-

niques used in this thesis. Several different population based search algorithms, in-

cluding a genetic algorithm, restarting genetic algorithm, differential evolution, and

particle swarm optimization are defined in this chapter.

2.1 Genetic Algorithm

A genetic algorithm (GA) is a population-based metaheuristic optimization algorithm

that is based on Darwin’s theory of natural evolution. Over a period of time a

population of individuals mate and create offspring. Darwin theorized that not all

offspring are created equally and that eventually the weaker individuals would die

off as a result of not being well adapted to their environment, leaving the strong to

survive and reproduce. This same principle can be applied to a search algorithm

as a heuristic. A GA contains a population of individuals that are evolved to find

improved candidate solutions.

Figure 2.1 demonstrates how the basic GA operates. Initially a population of can-

didate solutions is generated. The individuals are evaluated based on an evaluation

function and are checked against the stopping criterion. If the stopping criterion

has not been reached the population goes through an evolutionary period where a

new population of candidate individuals are created from the last population. This

6
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iterative process, also called a generation, is repeated until the stopping criterion is

reached. The following subsections will explain each of these parts.

Figure 2.1: Basic GA Flowchart

2.1.1 Population

The population is a key piece to a GA. Each individual in the population represents

a possible candidate solution to the problem that we are attemping to solve. The

representation of the individual is usually unique to the problem. Generating the

initial population can either be done randomly or by some procedural method. The

goal of generating the initial population is to create a diverse enough population from

which to evolve solutions.

During each generation a new population is created using the previous generation’s

population. Initially the best individuals from the previous population might be

copied directly into the new population using an operator called elitism. To obtain

the remaining individuals needed to fill the new population a selection process occurs.

Two individuals are chosen using a selection method and then one of three options can

occur: crossover, mutation, or replication. Crossover mixes two individuals together

to create two new individuals, mutation randomly modifies each individual separately,
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and replication copies the individuals. These individuals are then placed in the new

population and the process is repeated until the new population is the same size

as the previous population. Figure 2.2 depicts how evolution occurs in a GA. See

Subsection 2.1.4 for more details on the operators discussed.

Figure 2.2: GA Evolution

2.1.2 Evaluation Function

This operator determines the fitness of an individual. Each individual is evaluated

and given a fitness score to represent how well the individual performed on the prob-

lem. This operation is problem specific, and sometimes it can be very difficult to

determine how a problem should be evaluated. The evaluation function is impor-

tant for differentiating individuals. A poor evaluation function can make each of the

individuals appear to be similar when they actually have small key differences.

2.1.3 Stopping Criterion

Stopping criteria are used to determine when the GA should stop evolving. There are

generally three ways stopping criteria can be reached: a maximum number of itera-

tions is reached, the population has converged on the same solution, or an acceptably

high quality solution has been found.
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2.1.4 Genetic Operators

Each of the following operators is a component of a genetic algorithm. They facilitate

the evolutionary process in the effort to find better candidate solutions. Only a few

of the different methods will be described.

Selection Operator : The idea behind this operator is to put selection pressure on the

population during the evolutionary process. Individuals with a better fitness score

should be allowed a better chance of continuing on to the next population. During

the selection process two individuals are chosen using a selection method and then

are either bred together, mutated, or replicated and placed in the next population.

There are several varieties of selection methods but only tournament selection will be

explained as this is the method used here.

Tournament selection works by randomly selecting k individuals from the population,

where k is usually between 2 to 7, and selecting the individual that has the best fitness

score from the k individuals. The value of k should be relatively small compared to

the size of the population. If the value of k is too large it would defeat the purpose

of this selection method.

Crossover Operator : This operator is essential to evolving the individuals of the

population. Crossover is the mechanism by which two individuals breed to create

two new individuals. With respect to the evolutionary process, crossover exploits the

current information that is contained within the population in order to find improved

individuals.

For example, one-point crossover could be used. This crossover method works by

splitting the two individuals apart based on a randomly selected pivot point and

swapping the pieces. In Figure 2.3, the pivot point was selected between index 2 and

3. The information after the pivot point is swapped between the parents to create

the children. Each child will contain a piece of information from both parents.
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Parent 1 0 1 1 0 1 0 1 0

Parent 2 1 0 1 0 0 1 0 0

Child 1 1 0 1 0 1 0 1 0

Child 2 0 1 1 0 0 1 0 0

Figure 2.3: One-Point Crossover

Mutation Operator : The mutation operator is used to introduce random changes to

the individuals during evolution. Mutations to individuals are a way to explore new

areas of the search space. Depending on how the initial population was created there

may not be the necessary information in the population to find the optimal solution

with crossover alone. Mutations allow for new information to possibly be introduced

into the population. A common type of mutation is single-point mutation where a

single index in a given individual is modified. Figure 2.4 demonstrates single-point

mutation.

Individual 0 1 1 0 1 0 1 0

Mutant 0 1 1 1 1 0 1 0

Figure 2.4: Single-point Mutation

Elitism Operator : During each generation of the genetic algorithm a new population

is created using the individuals from the population in the previous generation. The

new population is bred from the previous individuals with the hopes of creating

better individuals. Sometimes this is not the case and the population can end up

losing valuable information from individuals that were not chosen during the selection

process. To prevent this from happening the elitism operator is used. The elitism

operator works by seeding the next generation’s population with the individuals with

the best fitness scores from the previous generation. Only a very small number of

individuals (at most 1%) are copied into the next generation.
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2.2 Recentering Genetic Algorithm

The recentering genetic algorithm (RGA) is a variation of the recentering-restarting

genetic algorithm (RRGA) [10] [11] which has had success in avoiding fixation on

local optima. RRGA works by performing a series of standard GA runs. Each run

uses the final population from the previous run as its starting population with some

adjustments. At the beginning of a run the RRGA selects a center, which is a possible

candidate solution to the problem, and at the end of each basic GA run the center

is compared to the best individual in the population. If the best individual is better

than the current center it is replaced with the best individual and the whole process

is repeated. The center is used as a baseline for generating the population in the next

run.

The RGA works similarly to the RRGA but there is no center for the population.

Instead a basic GA is allowed to run until the population’s fitness scores begin to con-

verge. After the population has converged upon a minimum diversity, new individuals

are introduced to the population. Individuals are considered to be the same if they

share the same fitness score. Duplicate individuals are removed from the population

and new individuals that have not yet been in any population take their place. For

example, if there is a population size of 100 and the convergence rate is 5% then after

all the duplicates are removed there will only be 5 individuals remaining and 95 new

individuals will be inserted into the population. Algorithm 1 shows the pseudo-code

of the restarting method.

Algorithm 1 Restarting the population

if population has converged to minimum diversity then

remove all duplicate individuals

while population not full do

generate new individual

insert new individual into the population

end while

end if
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2.3 Differential Evolution

Differential evolution (DE) [12] is a population based search metaheuristic designed to

iteratively improve candidate solutions to a problem. DE is well suited for problems

containing a nonlinear and non-differentiable continuous search space. DE works by

creating a new candidate solution using existing candidate solutions in the population

using a mutation operator. Once a new candidate solution is created the fitness scores

of each solution are compared and the candidate with the better fitness score is put

into the new population. Subsection 2.3.1 describes the operators used.

The candidate solutions found in the population of a DE are referred to as agents.

Each agent contains a vector of real numbers which represents its position within the

search space.

2.3.1 Mutation and Selection

The mutation operator is used to create new individuals from the existing individuals.

Individuals are combined using the mathematical formula, shown in Algorithm 2,

to create new individuals. Algorithm 2 describes the pseudocode for the mutation

operator. The mutation operator is performed once for each agent in the population.

To locate a new agent’s position first three different agents must be randomly selected

from the population. The agent’s position is combined with the three other agents’

positions to create a new position. Each position index within the agent is updated

either based on the three other agents selected or the value from the previous agent

is copied. The new agent’s position is evaluated based on the fitness function. If

the agent’s new position has resulted in an improved fitness score the new position

replaces the old one. If not, the new position is discarded. The variable F ∈ [0, 2] is

known as the differential weight, and variable CR ∈ [0, 1] is known as the crossover

probability. Both of these variables are user defined.
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Algorithm 2 Mutation

for each agent X in the population do
pick three agents a, b, c randomly from the population
pick random index R ∈ {1, . . . , n}
copy agent Xi to y
for each position index yj in [y1, . . . , yn] do
rj = U(0, 1)
if rj < CR or R == j then
yj = aj + F (bj − cj)

else
yj = Xij

end if
end for
if f(y) < f(Xi) then
Xi = y

end if
end for

2.4 Particle Swarm Optimization

Particle swarm optimization (PSO) [13] [14] is a population based search metaheuris-

tic designed to iteratively optimize a problem. PSO is well suited for problems con-

taining a nonlinear and non-differentiable continuous search space. The candidate

solutions found within a PSO are known as particles. Each of these particles repre-

sents a candidate solution’s position within the search space. The particles’ positions

are updated to move around the search space based on a mathematical formula. The

process of how a particle’s position is updated is detailed in Subsection 2.4.3. During

the evolution of the population each particle is updated once.

2.4.1 Particle

Each particle represents a candidate solution to the problem. An individual particle

contains both a position (p), and a velocity (v). The position and velocity are each

a vector of real numbers where the size of the vector depends on the problem. The

position represents a possible solution to the problem.

Each particle also contains an archive of its personal best position (pBest). After a

particle’s position is updated based on the mathematical formula described in Sub-
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section 2.4.3, its fitness score (see Subsection 2.1.2) is updated. The new fitness score

is compared with the fitness score of the current best position’s fitness score. If the

new position’s fitness score is better than the current best position’s fitness score, the

new position becomes the current best position.

2.4.2 Global Best Position

The global best position (gBest) is the particle position that has produced the best

fitness score. The gBest is updated at the end of each iteration of the population.

2.4.3 Particle Update

Each particle’s position vector is updated based on their current velocity vector. The

velocity vector of each particle position is updated each generation based on the

formula shown in Equation 2.1.

v = ωv + φrp(pBest− p) + ϕrg(gBest− p) (2.1)

In this equation rp, rg ∼ U(0, 1), and ω, φ and ϕ are user defined. The parameter ω

(inertia) controls the efficiency of the particle moving through the search space. The

parameters φ (social) and ϕ (cognitive) control the magnitude of the force pulling

the particle towards the pBest and gBest. The particle’s position vector is updated

based on the particle’s new velocity vector as shown in Equation 2.2.

p = p+ v (2.2)



Chapter 3

Previous Research

Before we can begin explaining the techniques we used in the next chapter, it is

necessary that we survey related research in this field. Section 3.1 reviews the previous

work that has been done on the structure refinement of OEC and Section 3.2 reviews

research that has been performed on structure refinement in other applications.

3.1 Quantum Mechanics/Molecular Mechanics

In previous work [15] the authors used density functional theory quantum mechan-

ics/molecular mechanics (DFT-QM/MM) and refined quantum mechanics/molecular

mechanics (R-QM/MM) to find close approximations of the experimental EXAFS

spectrum of OEC in S1. The EXAFS spectrum used in their calculations was at a

poorer resolution compared to the spectra used in the experiments in our work. DFT-

QM/MM [16] uses the atoms’ spatially dependent electron density to determine the

position of each atom. Since DFT largely uses function approximations this approach

is very limited.

To increase their accuracy the researchers used R-QM/MM. This approach iteratively

adjusted the molecular structure of the molecule and attempted to minimize a scoring

function defined in terms of the sum of squared deviations between the experimental

and calculated EXAFS spectra. A quadratic penalty was applied to each atom to

ensure that the atoms’ positions did not deviate too far from their original positions

15
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Algorithm DFT-QM/MM [17] R-QM/MM [17]
Best RMSD 1.2679 1.2437

Table 3.1: Results of Previous Work

in order to keep the energy of the system at a minimum.

The researchers speculated that even though the R-QM/MM technique was able to

generate an EXAFS spectrum closer to the experimental spectrum their solution was

only a local solution because it was based on their original DFT-QM/MM solution.

Later in [17] the same research group repeated their original experiments performed

in [15] with updated X-ray diffraction (XRD) data that had a closer resolution of

1.9Å. They had success in rerunning the DFT-QM/MM, and R-QM/MM experiment

but still had the same speculations about remaining in a local optimum. Their paper

included the best atomic structures they were able to achieve. We have analyzed

these structures using the same EXAFS spectra fitness score (see Section 4.4) and

included them in Table 3.1.

3.1.1 Genetic Algorithm

A study conducted in [18] had success in EXAFS fitting using an annealing evolu-

tionary algorithm. The researchers combined a genetic algorithm with a simulated

annealing algorithm in order to locate the global optima. During each generation new

candidate solutions were either accepted or rejected according to the Metropolis cri-

terion, which is used to control the distribution of the population. For their EXAFS

spectrum analysis the researchers were able to generate an EXAFS spectrum using

an equation. The equation was able to generate an EXAFS spectrum based on five

structural control parameters: coordination distance (r), coordination number (N ),

Debye-Waller factor (σ), electron mean free path (λ) and ∆E0. The control parame-

ters were randomly generated using specific constraints for each. Least squares fitting

was used as an objective function between the experimental and calculated EXAFS

spectra. The experimental EXAFS spectrum was generated from two Cu samples.

Using the annealing evolutionary algorithm, the researchers were able to find more

accurate results than existing methods at the time.
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3.2 Previous Applications

In this section, we look at previous applications of GA, DE, and PSO to biological

problems, specifically concentrating on those that attempt to identify structures.

3.2.1 Genetic Algorithms

In [19] a genetic algorithm is used to search for solutions to the side-chain packing

problem. Each chromosome represented a list of amino-acid residues with a possible

rotamer. The method was able to find improved low energy conformations over

conventional methods.

The Laboratory of Crystallography in Zurich, Switzerland developed a method for

predicting stable crystal structures and low-energy structures using a genetic algo-

rithm [20]. Each chromosome represented a possible crystal structure, which is a

set of atomic coordinates. The GA population was produced either randomly or by

user input. Populations were also seeded by the best found crystal structures of pre-

vious GA experiments. The lab tested both traditional methods such as simulated

annealing and basin hopping against their evolutionary algorithms, but preferred the

results of the evolutionary algorithm because of its ability to find solutions without

knowledge of the problem itself and its ability to move out of local optima.

3.2.2 Differential Evolution

In [21] a differential evolution algorithm for protein structure optimization. They

used a simple representation for the protein structure known as hydrophobic/polar

(HP). This allowed them to constrain the system to minimize the search space. The

individuals in the DE consisted of a vector of values between [−π, π] which represent

the angles between three monomers. The study was able to find the ground state

energy values for problems with smaller sets of amino acids but the researchers found

that DE had a tougher time finding the optimal solution as the problem size grew

larger.
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3.2.3 Particle Swarm Optimization

In [22] particle swarm optimization was used to prediction crystal structures. PSO

was selected for comparison against traditional evolutionary methods. The goal was to

find optimal structures with the lowest energy. The initial population was generated

randomly based on a starting structure. Each of the new random structures was

optimized locally before starting the PSO experiment. The local optimization was

done using traditional conjugate gradient algorithms. The researchers found that

PSO was an efficient method for finding low energy atomic configurations.



Chapter 4

Methodology

In this chapter we describe the methodologies we used with the various evolutionary

algorithms in our research. Section 4.1 explains how a molecule’s atomic structure

is translated to a more usable encoding. The different methods used for population

generation are outlined in Section 4.2. Section 4.3 defines the genetic operators used

in the GA and RGA and Section 4.4 reviews how each individual will be evaluated.

4.1 Problem Encoding

A molecule consists of a number of atoms. Each of these atoms has its own 3-

dimensional position within the molecule. For the structure refinement problem the

individual 3-dimensional position values are not important. The important infor-

mation about this problem is how the atoms are positioned with respect to each

other. Two different forms of representation were used in this work. For each of these

representations the number values are shown in Angstroms (Å).

4.1.1 Representation 1

The initial run of experiments used a representation that maintained the initial atomic

positions of each atom. The 3-dimensional coordinates were treated as a list of co-

19



CHAPTER 4. METHODOLOGY 20

X Y Z
14.451 -13.346 1.133
15.336 -13.488 2.014
13.005 -13.364 1.452
0.019 0.011 0.045
... ... ...

Figure 4.1: Representation 1

14.451
-13.346
1.133
15.336
-13.488
2.014
13.005
...

Figure 4.2: Representation 2

ordinates as shown in Figure 4.1. Using this representation meant that during any

form of crossover the tuple of X, Y and Z values would stay together if crossover is

suitably implemented.

4.1.2 Representation 2

Algorithms such as particle swarm optimization and differential evolution called for

a more flexible representation. Therefore, the other representation used was simply a

list of values. The initial list of 3-dimensional coordinates was converted to a single

list of decimal points as shown in Figure 4.2. It is important to note that both of

these representations are showing the same information. For fitness evaluation the

list of numbers was converted back to a list of 3-dimensional coordinates by taking

segments of three numbers to create a 3-dimensional position.
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4.2 Population Generation

An initial population of different individuals needed to be created in order to begin

refining the OEC atomic structure using an evolutionary algorithm. The initial OEC

atomic structure came from the crystallographic photosystem II (PSII) structure [23].

It is available in the Protein Data Bank (PDB) [24] as PDB ID 3ARC. Two forms

of population generation were used during the experiments conducted in this work:

random, and molecular dynamics simulation. The atomic structure obtained from

the PDB contained 1269 chemical elements. For the purposes of OEC structure

refinement only 79 specific atoms were required for EXAFS spectra analysis.

4.2.1 Random

A population can be generated randomly based on a starting molecule. To create

a random candidate individual each atomic position within the atomic structure is

randomly moved by a user defined range. This means that if the user defined range

is 0.05Å then each atomic position will be randomly moved to a new atomic position

that is a euclidean distance 0.05Å away from its original position.

4.2.2 Molecular Dynamics Simulation

An alternative method of population generation was needed to generate individuals

that were usable in the experiments. To ensure that the atomic structure was as stable

as possible, the structure was put into a molecular dynamics simulation. While in this

simulation the molecule is allowed to act as if it were in the real world. The atoms

were allowed to move freely in space until the overall temperature of the system was

reasonably low. This acted as the baseline atomic structure for all tests. NAMD [8]

was used to run the molecular dynamics simulations.

Once the atom structure was stable the temperature within the system was increased.

The increased temperature causes the atoms to oscillate their positions but still re-

main chemically feasible. During this process stapshots of the molecule’s atomic

structure were recorded. The simulation was allowed to run for 10000 steps and
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10000 snapshots of the atomic structure were recorded. Each of these snapshots

creates a feasible individual for the experiments.

Since 10000 individuals is more than enough individuals to seed the populations the

best individuals were picked. The generated atomic structures were run through

IFEFFIT [7] and compared to the target EXAFS spectra. The top 3% (roughly

300) individuals were used to generate the initial populations in the evolutionary

algorithms.

4.3 Genetic Operators

In this section each of the genetic operators will be explained briefly. The parameters

are summarized in Table 4.1.

Crossover One-point

Mutation 0.05

Tourament Size 3

Table 4.1: GA Operators

4.3.1 Crossover

The basic one-point crossover operator was chosen for the experiments, as described

in Subsection 2.1.4. One point crossover is generally less destructive to the individuals

than other forms of crossover.

4.3.2 Mutation

For the mutation operator a single atomic coordinate will be moved. A random

atomic coordinate is selected from the individual and its position is altered randomly

by 0.05Å using Euclidean distance. The resulting position will be 0.05Å away from

its original position. In order to determine how much distance the atomic position
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Element 1% Difference 5% Difference

O 0.025Å 0.5Å

Mn 0.01Å 0.5Å

Ca 1Å 5Å

C 0.5Å 5Å

N 0.5Å 5Å

H 5Å 5Å

Table 4.2: Minimum Move Required at 1%

should be moved, an analysis was needed to learn more about how changing atomic

positions affects the calculated EXAFS spectra.

The analysis consisted of moving each atom, individually, in a variety of directions and

calculating its RMSD score. Each atom was moved in a total of six directions (±X,

±Y, and ±Z), at a variety of distances (0.001Å, 0.005Å, 0.01Å, 0.025Å, 0.05Å, 0.1Å,

0.5Å, 1Å, and 5Å). This was done to determine how much movement was required of

an atom to make a significant change to the RMSD score. Table 4.2 shows the results

of how much movement is required to produce a 1% and 5% change to their RMSD

scores. Since there is more than one instance of each chemical element in OEC, the

distance chosen was the first distance that produced the minimum change because

the goal was to find the absolute minimum for each chemical element.

The value of 0.05Å was chosen for the experiments as a middle ground that could

be applied to each chemical element. It should be noted that the value of 0.05Å is

particular to OEC. A similar analysis could be performed to determine the minimum

move distance for each element in another chemical complex.

4.3.3 Selection

Tournament selection was used as the selection operator for the genetic algorithms.

A tournament size of 3 was used in all experiments.
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4.4 Fitness: EXAFS Spectra

The goal of structure refinement as shown in Section 1.4 is to find a calculated EXAFS

spectrum that matches the experimental EXAFS spectrum. To calculate how close

the calculated EXAFS spectra is to the experimental EXAFS spectra, the root-mean-

square deviation (RMSD), see Equation 4.1, will be computed between the calculated

and experimental EXAFS spectra. Each spectrum is recorded at an increment of 0.05

k/A-1 which allows the energy levels (EXAFSχk3) to be compared at each increment.

The goal is to get the RMSD value as low as possible because then the calculated

and experimental EXAFS spectra match as closely as possible. It is not reasonable to

expect the RMSD to be zero, because the experimental EXAFS spectra is not perfect.

The environment in which the EXAFS spectra is recorded creates small errors in the

result.

RMSD =

√∑n
t=1 (x1,t − x2,t)2

n
(4.1)



Chapter 5

Experimental Design

This chapter contains the design details of each experiment. For each experiment,

the system parameters and experimental setup are discussed.

5.1 Genetic Algorithms

5.1.1 Purpose

The purpose of this study is to determine how well a genetic algorithm performs on

the structure refinement problem (Section 1.4). Previous studies [15] [17] have shown

that iterative algorithms work well in finding candidate solutions to the problem.

This study will demonstrate how well the population based search algorithms GA,

and RGA perform on the structure refinement problem.

5.1.2 Population

During the initial stages of testing, a random population of candidate solutions was

generated using the technique described in Subsection 4.2.1. The candidate solutions

that were generated using the random method had either high fitness scores, or were

chemically infeasible and an EXAFS spectrum could not be generated. Candidate

25
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Experiment Set 1 2 3 4 5 6
Crossover Rate 80 80 70 80 70 80
Mutation Rate 20 10 30 10 30 20

Elitism Size 0 0 0 1 1 1
Generations 30 30 30 30 30 30

Population Size 50 50 50 50 50 50

Table 5.1: System parameters for the basic GA runs

solutions that were able to generate EXAFS spectra were repeatedly generated until

there were enough to fill the GA population but the experiments were unable to

produce a candidate solution that had an EXAFS spectrum that improved upon the

starting candidate.

This led to a change in the way the initial population was created. The initial

population for the basic GA, and RGA was created from a random sampling of the

300 candidate solutions that were generated using the molecular dynamics simulation

discussed in Subsection 4.2.2. During the restarting process of the RGA new candidate

solutions were randomly selected from the remaining candidate solutions within the

300.

5.1.3 System Parameters

Two evolutionary algorithms were used in this experiment: GA, and RGA. The

system parameters for the GA can be seen in Table 5.1, and the system parameters

for the RGA can be seen in Table 5.2. These parameters were empirically determined.

The fitness function used for the GA, and RGA is defined in Subsection 4.4.

The number of generations could not be specified for the RGA experiments because

of the restarting process. Details of the genetic operators are outlined in Section 4.3.

Representation 1 (Subsection 4.1.1) was chosen for the individuals as a direct mapping

to the problem.
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Experiment Set 1 2 3 4 5 6 7 8
Crossover Rate 80 80 80 80 70 70 70 70
Mutation Rate 20 20 20 20 30 30 30 30

Elitism Size 1 1 1 1 1 1 1 1
Population Size 50 50 50 50 50 50 50 50

Convergence Rate 10 5 10 5 10 5 10 5
Number of Restarts 3 3 5 5 3 3 5 5

Table 5.2: System parameters for the RGA runs

5.2 Genetic Algorithm: Post-Optimization

5.2.1 Purpose

The purpose of this study is to improve upon the results found in the study discussed

in Section 5.1. The results of the GA experiments (see Section 6.1) suggested that

the candidate solutions found could be improved upon. Two evolutionary algorithms,

differential evolution, and particle swarm optimization, were chosen to perform a local

search of the search space to locate improved candidate solutions. These algorithms

were selected based on their success with continuous space problems.

5.2.2 Population

The initial population for the DE, and PSO were generated using the random gen-

eration technique described in Subsection 4.2.1. The seed candidate solution for the

random generation was the best found candidate solution from the RGA experiments,

which had an RMSD of 1.046. The random generation technique was used in this

experiment because it is suspected as the best technique to find the local optimum

in this situation.

5.2.3 System Parameters

Two algorithms were used in this experiment: DE, and PSO. The system parameters

for the DE can be seen in Table 5.3, and the system parameters for the PSO can

be seen in Table 5.4. The initial movement radius shown in the system parameters
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Experiment Set 1 2
Initial Movement Radius 0.05 0.25

Generations 30 30
Population Size 50 50

Table 5.3: System parameters for the Post-Optimization DE runs

Experiment Set 1 2
Initial Movement Radius 0.05 0.25

Generations 30 30
Population Size 50 50

Table 5.4: System parameters for the Post-Optimization PSO runs

tables defines the user defined range that was used to generate the initial population.

The fitness function used for the DE, and PSO is defined in Subsection 4.4.

An alternative individual representation was used for this experiment. DE, and PSO

are algorithms that are better suited for problems that can be represented as a vector

of real numbers. The individual representation that was used in the GA viability

experiment was translated into a vector of real numbers (see Subsection 4.1.2).

5.3 Alternative Algorithms

5.3.1 Purpose

The purpose of this study is to determine how well DE, and PSO perform on the

structure refinement problem. In Section 5.2 DE, and PSO were used as a post-

optimization of the results found in Section 5.1. In this study DE, and PSO will be

more directly compared with the algorithms used in Section 5.1.

5.3.2 Population

The initial population for both the DE, and PSO will be created from a random

sampling of the 300 candidate solutions that were generated using the molecular

dynamics simulation discussed in Subsection 4.2.2.
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Exp. Set 1 2 3 4 5 6
Pop. Size 50 50 50 50 50 50

Gens. 100 100 100 200 200 200
Velocity 0.01 0.05 0.1 0.01 0.05 0.1

Exp. Set 7 8 9 10 11 12
Pop. Size 100 100 100 100 100 100

Gens. 100 100 100 200 200 200
Velocity 0.01 0.05 0.1 0.01 0.05 0.1

Table 5.5: System parameters for the PSO runs

5.3.3 System Parameters

Two algorithms were used in this experiment: DE, and PSO. The system parameters

for the DE can be seen in Table 5.6, and the system parameters for the PSO can

be seen in Table 5.5. The fitness function used for the DE, and PSO is defined in

Subsection 4.4.

Representation 1 (See Subsection 4.1.1) was chosen as the individual representation

for both the DE, and PSO. Since each index within the individual is a 3-dimensional

coordinate, these values are updated using standard vector arithmetic at each index.

The velocity parameter found in Table 5.5 represents the random range that was

used to generate the initial velocity vector of each particle in the PSO. For example,

a velocity parameter of 0.01 means that each velocity vector was generated using

random values between -0.01 and 0.01.

The DE, and PSO experiments were initially run using a variety of different tuning pa-

rameters. The PSO algorithm has three tunable user defined parameters: inertia, so-

cial and cognitive. The values used in this experiment were selected based on the work

performed by Eberhart, and Shi [25] and are shown in Table 5.7. The DE algorithm

has two tunable user defined parameters: differential weight, and crossover proba-

bility. Several different combinations of values for differential weight, and crossover

probability were used but the parameters that produced the best results were from a

research paper by Hvass Laboratories [26] and are shown in Table 5.8.
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Experiment Set 1 2 3 4
Population Size 50 50 100 100

Generations 100 200 100 200

Table 5.6: System parameters for the DE runs

Inertia 0.729844
Social 1.496180

Cognitive 1.496180

Table 5.7: Algorithm parameters for the PSO runs

5.4 Atom Subsets

5.4.1 Purpose

The purpose of this study is to attempt to reduce the search space of the structure

refinement problem. Table 5.9 outlines the number of atoms within the OEC. If we

could reduce the number of atoms needed to move during the evolutionary process

it would reduce the search space. This study will show how a GA performs on the

structure refinement problem when certain chemical elements are kept rigid. A rigid

chemical element means that the chemical element will not be evolved during the run.

The position of the rigid chemical elements will be the same in each individual in the

population.

5.4.2 System Parameters

A basic GA was used in this experiment. The system parameters used during the

experiment are shown in Table 5.10. Table 5.11 outlines the different experiments

that were run. Each experiment contains a different combination of rigid and flexible

chemical elements but each experiment used the same GA system parameters. The

fitness function used for GA is defined in Subsection 4.4.

Differential Weight 0.4717
Crossover Probability 0.8803

Table 5.8: Algorithm parameters for the DE runs
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Chemical Element Sum
Mn 4
Ca 1
O 26
C 14
N 6
H 28

Table 5.9: Chemical Element Breakdown

Runs 10
Population size 50
Crossover rate 0.7
Mutation rate 0.3
Elitism Size 1

Table 5.10: GA Subset Parameters

Exp. Set 1 2 3 4 5
Flexible
Atoms

Mn,
Ca,
C, O,
N, H

Mn,
Ca,
C, O,
N

Mn,
Ca,
C

Mn,
Ca,
O

Mn,
Ca,
N

Rigid
Atoms

H H, N,
O

H, N,
C

H, C,
O

Exp. Set 6 7 8 9
Flexible
Atoms

Mn,
Ca,
C, O

Mn,
Ca,
C, N

Mn,
Ca,
O, N

Mn,
Ca

Rigid
Atoms

H, N H, O H, C H, C,
O, N

Table 5.11: Experiments with different subsets



Chapter 6

Analysis and Discussion

This chapter contains the discussion of results found from the previous chapter’s ex-

periments. The complete results for each experiment can be found in the Appendices.

6.1 Genetic Algorithms

Table 6.1 and Table 6.2 provide a summary of the results from the basic GA, and

RGA experiments respectively. Full results can be found in Appendix A. The bolded

values represent the experiments with the best fitness scores. Each experiment in the

results table was run 30 times.

The Mann-Whitney U test [27] is a nonparametric test to determine if two groups are

equivalent without assuming the groups have a normal distribution. Mann-Whitney

U tests were performed on the results of the basic GA, and RGA experiment sets

using a confidence interval of 95%. The results of the basic GA experiments in

Table 6.1 showed very little statistical significance. Experiments 3 and 5 show the

best statistical performance over the other experiments which coincides with these

Experiment Set 1 2 3 4 5 6
Best RMSD 1.2471 1.1880 1.1173 1.2349 1.0533 1.2287

Average Best RMSD 1.3518 1.3610 1.2942 1.3658 1.3044 1.3294

Table 6.1: Basic GA Results

32
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Experiment Set 1 2 3 4
Avg. Num. Generations 61 73 86 106

Best RMSD 1.1297 1.1174 1.0388 0.9649
Average Best RMSD 1.2532 1.2468 1.2252 1.2149

Experiment Set 5 6 7 8
Avg. Num. Generations 72 83 100 133

Best RMSD 1.1170 1.0012 1.0353 0.9992
Average Best RMSD 1.2229 1.2119 1.1808 1.1856

Table 6.2: RGA Results

experiments having the best fitness and average fitness scores. The results of the RGA

experiments revealed that experiment 8 was able to perform statistically better than

the other experiments. Experiments 3, 4, 5, 6, and 7 show little statistical difference

and experiments 1, and 2 performed the worst. A comparison of the basic GA, and

RGA experiments showed that the RGA performed statistically better than the basic

GA.

A closer look at the data revealed that the basic GA experiments were converging

early on local optima. The RGA experiments initially converged on similar optima

but were able to find new optima after each restarting phase. Figure 6.1 shows what

a typical RGA run looks like at each generation. One would notice that there are

several spikes in the graph where the average fitness jumps. These spikes represent a

restart in the population. During each restart the average fitness of the population

is disrupted but the fitness quickly improved showing an overall downward trend.

The number of generations in each RGA run varied based on when the population

converged. Table 6.2 contains the average number of generations each run had for

each experiment.

At first it may seem biased that the RGA was able to find a better candidate solution

than the GA because it was allowed to see more unique individuals and ran for more

generations but the GA had some pitfalls when it was allowed the same privileges.

Increasing the size of the GA’s population had little affect on its ability to find

improved candidate solutions. Increasing the number of generations for the GAs

also did not affect the solutions. The GA runs would typically converge quickly and

become stuck in a local optimum. Figure 6.2 shows the average best fitness for GA

experiment 3.
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Figure 6.1: Example Run of a Restarting Genetic Algorithm

The experiments that produced the best candidate solutions for both the GA, and

RGA were experiments that contained a crossover rate of 70% and a mutation rate of

30% compared to the other experiments that contained a crossover rate of 80% and

a mutation rate of 20%. Since the higher mutation rate performed better than the

higher crossover rate this may indicate that the algorithms favoured receiving new

information, through exploration, than exploiting the information already contained

within the population. Using a higher mutation rate may also indicate that the

problem is better suited to be solved using a less discrete search method such as PSO

since the candidate solutions operate on a continuous space.

The best candidate solution found by the RGA can be seen in Figure 6.3. The humps

on the calculated EXAFS spectrum appear to be getting close to the experimental

EXAFS spectrum except in a few instances. Where k is between 7.5 and 10 the

experimental EXAFS spectrum is more chaotic and the calculated EXAFS spectrum

is having a tougher time conforming. The chaotic nature of the data may be due

to the margin of error in collecting the experimental EXAFS spectrum. A future

technique may be to smooth out the experimental EXAFS spectrum in order to

get a more accurate RMSD comparison. Another structure refinement technique

could be to reduce the range on k for comparison. Comparing the RMSD between

k = [1, 7.5] may produce improved results because the fitness function would contain

fewer erroneous data points.
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Figure 6.2: Performance of GA Experiment 3
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Figure 6.3: Best OEC EXAFS Spectra Comparison from RGA
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Experiment Set 1 2
Best RMSD 0.9973 1.4118

Average Best RMSD 1.1386 1.7267

Table 6.3: Results of DE Post-Optimization

Experiment Set 1 2
Best RMSD 0.7977 0.9296

Average Best RMSD 0.9001 1.2445

Table 6.4: Results of PSO Post-Optimization

6.2 Genetic Algorithm: Post-Optimization

Table 6.3 and Table 6.4 provide a summary of the results from the DE, and PSO

experiments respectively. Full results can be found in Appendix A. The bolded

values represent the experiments with the best fitness scores. Each experiment in the

results table was run 30 times.

The two algorithms were performed using individuals generated using two different

initial movement radii. Using the larger initial movement radius of ±0.25Å had a

negative impact on the DE, and PSO candidate solutions. The large initial movement

radius caused the experiments to move from the initial local optimum, that was found

using the RGA, into sub-optimal solutions. As we decreased the initial movement

radius the results started to improve. Using the smaller initial movement radius of

±0.05Å provided the best results.

The results from the DE experiments were never able to improve upon the seed

candidate solution. Decreasing the initial movement radius improved the results

for the DE but it was still unable to produce results that improved upon the seed

candidate solution.

In contrast, the results from the PSO experiments were very successful. Using the

initial movement radius of ±0.05Å the PSO was able to greatly improve upon the

seed candidate solution. Figure 6.4 shows the best EXAFS spectra after optimization

from the PSO. The RMSD score of the candidate solution was significantly reduced

which shows that PSO works very well as a post-optimization strategy.

Mann-Whitney U tests were performed on the results of the DE, and PSO experiment
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Figure 6.4: OEC EXAFS Spectra Comparison

sets and the results from the RGA experiment sets in Section 6.1 using a confidence

interval of 95%. The results of the PSO experiments were statistically better than

the results of the DE experiments. The improved results found using the reduced

initial movement radius were statistically consistent. Comparing the PSO experiment

results with the RGA experiment results showed that the PSO performed statistically

better than the RGA. It is worth noting that although the DE experiments could not

improve upon the seed candidate solution the results of the DE compared to the RGA

were statistically better.

6.3 Alternative Algorithms

Table 6.5 and Table 6.6 provide a summary of the results from the DE, and PSO

experiments respectively. Full results can be found in Appendix A. The bolded

values represent the experiments with the best fitness scores. Each experiment in the

results table was run 30 times.

Experiment Set 1 2 3 4

Best RMSD 0.9793 0.9405 1.0357 0.9646

Average Best RMSD 1.1120 1.0540 1.1453 1.0624

Table 6.5: Results for the DE runs
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Exp. Set 1 2 3 4 5 6
Best RMSD 0.7735 0.6840 0.7498 0.6109 0.6653 0.6621

Average Best RMSD 0.9136 0.9004 0.9049 0.8025 0.7907 0.7933

Exp. Set 7 8 9 10 11 12
Best RMSD 0.7392 0.6881 0.7306 0.6546 0.6571 0.6688

Average Best RMSD 0.8775 0.8856 0.8836 0.7750 0.7714 0.7594

Table 6.6: Results for the PSO runs

The DE, and PSO experiments performed very well on the structure refinement prob-

lem. These algorithms were able to succeed in finding better candidate solutions to

the problem than the results from the RGA in Section 6.1 and the PSO in Section 6.2.

Mann-Whitney U tests were performed on the results of the DE, and PSO experiment

sets using a confidence interval of 95%. The results from testing only the PSO ex-

periment set revealed that there were two clear statistical groupings. The two groups

consisted of the experiments with a generation count of 100, and the experiments

with a generation count of 200. The results within each of these two groups had no

statistical difference but the group with a higher generation count performed statis-

tically better than the other group. Modifying the initial velocity speeds had little

statistical effect on the solutions. The results of the DE showed the same outcomes.

Two statistical groups formed from the experiments that had the same number of

generations. The experiments with the greater number of generations performed sta-

tistically better than the other group.

The two experiment sets shared exactly the same statistical conclusions. The popu-

lation sizes had no effect on the results of the experiments. The experiments with a

population size of 50 performed statistically the same as the ones with a population

size of 100. This characteristic could be caused by the method by which the popula-

tions are initialized. The molecular dynamics simulation causes the individual atoms

to oscillate back and forth. The individuals used in the initial populations may have

been similar enough that there was some overlap in the search space. Having two

statistical groups forming around the number of generations only makes sense. The

group with the greater generation count was allowed more time to explore the search

space.

Mann-Whitney U tests were also performed on the results of the DE, and PSO ex-

periment sets, and also the experiment sets from the RGA in Section 6.1. The tests
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Figure 6.5: Performance of PSO Experiment 11 and DE Experiment 2

showed that PSO performed statistically better than DE, and RGA performed sta-

tistically worse than DE, and PSO. These results were actually not that surprising

considering the results from the analysis done in Section 6.2 showed that PSO worked

well on the structure refinement problem.

Figure 6.6 demonstrates one of the best candidate solutions. It can be seen that the

candidate solution has produced an EXAFS spectrum that is a close approximation of

the experimental EXAFS spectrum. The remaining differences in the EXAFS spectra

may be due to errors in the experimental EXAFS spectrum. Figure 6.5 shows the

performce of the best performing experiments for PSO and DE. Both algorithms show

a steep downward trend within the first 20 generations but the PSO is able to progress

at a faster rate.

The results found in this section indicate that algorithms that operate on a continuous

space perform better than those that use a more discrete search space. We suspect

that this may be true only for smaller search spaces. The complex analyzed in this

work is relatively small with only 79 atoms required for EXAFS spectra comparison.

If one was attempting to optimize the EXAFS spectrum and the force fields involved,

the search space would grow to 1269 atoms. This is an exponential increase is degrees

of freedom. In this case a genetic algorithm may be better suited.

Table 6.7 provides a comparison of the results found in a previous study [17] to the

results found in this work. Each of the algorithms used was able to find a better

candidate solution for OEC in S1. The major difference between the candidate solu-
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Figure 6.6: OEC EXAFS Spectra Comparison

Algorithm Best RMSD
DFT-QM/MM [17] 1.2679
R-QM/MM [17] 1.2437
GA 1.0533
RGA 0.9649
Post-Optimized PSO 0.7977
DE 0.9405
PSO 0.6109

Table 6.7: Summary of Best Candidate Solutions

tions found in the previous study [17] and this work is that their candidate solutions

have also had their force fields optimized. We suspect that the previous researchers’

goals of optimizing both the force fields and EXAFS spectrum is what caused their

candidate solutions to become stuck in a local optimum. Force field calculations do

play an important role in creating a stable candidate solution but these alterations

to the atomic structure may be better suited as a post-optimization.
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6.4 Atom Subsets

6.4.1 Analysis

The results of the atom subset experiments revealed some interesting insights into

the structure refinement of atomic structures. Figure 6.8 contains a summary of

the results from the atom subset experiments. The most significant result was that

keeping the hydrogen elements rigid actually had little effect on the final results. This

is not surprising since the study in Subsection 4.3.2 already revealed that moving a

hydrogen element had very little impact on the fitness score.

Knowing that the hydrogen element has little impact on the results of atomic structure

refinement means that it could be removed from the individuals. Removing the

hydrogen element would decrease the chromosome length from 79 to 51. The reduced

chromosome length would allow for more different combinations to be attempted and

reduced degrees of freedom.

Since the manganese (Mn), and calcium (Ca) are at the core of the OEC molecule

these chemical elements could not be left rigid during the experiments. Leaving any

of the other chemical elements rigid during the experiments showed little improve-

ment. Keeping the carbon (C), oxygen (O), or nitrogen (N) elements rigid during

the experiments either caused the RGA run to become stuck in an early local op-

tium or created atomic structures that would become unable to perform the EXAFS

calculations. The N/A’s within Figure 6.8 represent results that were unable to be

calculated successfully. The populations of most of the runs were becoming polluted

with invalid atomic configurations that could not produce EXAFS spectra.

In order to make the atomic structure refinement work using only a subset of the atoms

would require the assistance of a molecular dynamics simulation such as NAMD [8].

Once the candidate individuals were allowed to evolve for a few generations some

corrections to their atomic structures would have to be made using the molecular

dynamics simulation.
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Exp. Set 1 2 3 4 5
Best
RMSD

1.2031 1.1730 2.4481 1.2566 2.4951

Average
RMSD

1.2615 1.2656 N/A N/A N/A

Exp. Set 6 7 8 9
Best
RMSD

1.1681 2.5213 N/A 2.4986

Average
RMSD

N/A 2.5720 N/A 2.5158

Table 6.8: Experiments with different subsets



Chapter 7

Conclusions and Future Work

This thesis studies the performance of multiple population-based search algorithms

on the structure refinement problem using EXAFS spectra comparison. The experi-

mental EXAFS spectrum for the oxygen-evolving complex was used for testing. We

have shown that a basic GA, and RGA perform well at finding close candidate so-

lutions to the experimental EXAFS spectrum. DE and PSO were performed as a

post-optimization of the basic GA, and RGA in order to improve upon their results.

The PSO was successful in finding an improved optima. DE and PSO were then run

as a more direct comparison to the basic GA and RGA. These algorithms were able

to outperform the GA and RGA results showing that algorithms that perform on a

continuous space are better suited for this type of problem. Although these algo-

rithms were successful in finding a new optimum for the oxygen-evolving complex in

S1, future testing on other states of the oxygen-evolving complex or other complexes

should be performed.

This work was primarily a study of the computational side of the structure refinement

problem. The atomic structures produced in this work were only validated against the

experimental EXAFS spectrum. A biologist will still have to verify which candidate

solutions are potential solutions to the problem. Future research into using popu-

lation based search algorithms on the structure refinement problem would benefit

from including force field calculations on the candidate solutions. A multi-objective

approach where each atomic structure’s EXAFS spectrum is refined as well as the

potential energy of the atomic structure is minimized should be investigated.

43
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A molecular dynamics simulation was used to generate individuals that were appro-

priate to seed the initial populations of the algorithms examined in this work. Future

work might benefit from repeated use of the molecular dynamics simulation. Once a

candidate solution is located this candidate could be placed back into the molecular

dynamics simulation where a new batch of candidate solutions could be generated

to seed another round of refinement. This method would allow the search algorithm

to continue to be single objective because the molecular dynamics simulation would

correct any issues with the atomic structures force fields.
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Run Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6
1 1.3428 1.2424 1.2945 1.3701 1.3247 1.3709
2 1.2471 1.4306 1.2552 1.3575 1.2755 1.3693
3 1.2992 1.1880 1.2144 1.3787 1.2790 1.3007
4 1.2942 1.3885 1.3071 1.3315 1.1618 1.3522
5 1.3993 1.2563 1.2518 1.4015 1.3237 1.3224
6 1.3332 1.4274 1.3800 1.4087 1.1610 1.4091
7 1.3636 1.3646 1.1959 1.3598 1.2899 1.4123
8 1.3438 1.3635 1.1173 1.4316 1.3449 1.2376
9 1.4919 1.3106 1.3297 1.3641 1.3053 1.2287
10 1.3178 1.3209 1.2607 1.3783 1.3115 1.3195
11 1.2693 1.4062 1.2732 1.4141 1.0533 1.2933
12 1.3241 1.4196 1.2254 1.4146 1.3025 1.3349
13 1.2751 1.3636 1.3250 1.3602 1.3073 1.3483
14 1.3123 1.2769 1.2198 1.3791 1.2695 1.3819
15 1.3578 1.4808 1.3391 1.2739 1.2064 1.3494
16 1.4347 1.2823 1.3326 1.4350 1.2647 1.3639
17 1.3475 1.4272 1.2402 1.3066 1.2606 1.3500
18 1.3017 1.4155 1.3969 1.3482 1.3344 1.2709
19 1.4571 1.2273 1.2620 1.3697 1.3756 1.3409
20 1.3927 1.3743 1.3054 1.2994 1.2210 1.2913
21 1.3439 1.4167 1.4121 1.3950 1.2945 1.2885
22 1.3002 1.4028 1.2122 1.3428 1.3311 1.3075
23 1.4578 1.3585 1.2837 1.3818 1.4682 1.2890
24 1.2869 1.2723 1.3317 1.3860 1.2917 1.4294
25 1.2641 1.4774 1.3325 1.3635 1.4501 1.3429
26 1.4350 1.4298 1.2616 1.2349 1.3040 1.2469
27 1.3986 1.3895 1.3587 1.2431 1.3799 1.3247
28 1.2988 1.3234 1.3017 1.3468 1.4099 1.3936
29 1.5162 1.3651 1.4062 1.4813 1.3823 1.2933
30 1.2920 1.3698 1.3462 1.3864 1.3653 1.2905

Table A.1: Best RMSD for GA Experiments
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Run Exp. 1 Exp. 2 Exp. 3 Exp. 4
1 1.2063 1.1545 1.3276 1.3535
2 1.2706 1.3501 1.1927 1.2102
3 1.2187 1.2426 1.2577 1.1344
4 1.1297 1.2421 1.2153 1.2447
5 1.2374 1.2040 1.1132 1.2955
6 1.3025 1.2099 1.2803 1.1923
7 1.2421 1.2348 1.1689 1.2160
8 1.2530 1.2545 1.1457 1.2248
9 1.2328 1.2873 1.2249 1.0913
10 1.2511 1.2604 1.1526 1.2068
11 1.2877 1.3057 1.2437 1.2651
12 1.3789 1.1638 1.1807 1.0660
13 1.3211 1.2366 1.2122 1.2409
14 1.2915 1.2242 1.2830 1.2336
15 1.2111 1.2352 1.2853 1.2984
16 1.3023 1.1174 1.1367 1.2162
17 1.2594 1.2762 1.2255 1.0912
18 1.1899 1.2912 1.4292 1.2518
19 1.3177 1.2182 1.0388 1.2069
20 1.2636 1.3225 1.2516 1.2213
21 1.2414 1.2857 1.1815 1.1947
22 1.2334 1.2494 1.1230 1.2673
23 1.1386 1.2704 1.2364 1.2601
24 1.2662 1.1787 1.1568 1.1883
25 1.2814 1.1977 1.2121 0.9649
26 1.2450 1.2847 1.4148 1.1812
27 1.1692 1.2193 1.2055 1.2463
28 1.2842 1.3093 1.2208 1.2043
29 1.2352 1.2636 1.2778 1.3322
30 1.2996 1.2837 1.2801 1.2700

Table A.2: Best RMSD for RGA Experiments
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Run Exp. 5 Exp. 6 Exp. 7 Exp. 8
1 1.1343 1.2256 1.1484 1.1490
2 1.2821 1.1523 1.2118 1.2394
3 1.4133 1.2554 1.1787 1.0956
4 1.2993 1.1361 1.2471 1.2195
5 1.1944 1.2295 1.1991 1.2188
6 1.1386 1.1675 1.2531 1.2680
7 1.2247 1.2105 1.2039 1.2358
8 1.2763 1.2174 1.1696 1.0953
9 1.2225 1.2553 1.2451 1.3076
10 1.2309 1.2084 1.1692 1.3195
11 0.9992 1.1406 1.4056 1.2381
12 1.1867 1.2006 1.1978 1.1554
13 1.2022 1.1954 1.2086 1.1898
14 1.0740 1.1270 1.1835 1.2645
15 1.2094 1.1233 1.2236 1.2669
16 1.1295 1.1478 1.1672 1.3418
17 1.2555 1.0729 1.2260 1.1329
18 1.1199 1.1670 1.2066 1.0012
19 1.0545 1.2809 1.3594 1.2314
20 1.0443 1.1192 1.1395 1.2430
21 1.0532 1.1698 1.1891 1.1267
22 1.1794 1.1955 1.1170 1.2810
23 1.1758 1.1470 1.2526 1.3144
24 1.2687 1.2614 1.3395 1.0967
25 1.2854 1.2504 1.2935 1.2893
26 1.1247 1.0353 1.2713 1.2048
27 1.0728 1.0982 1.3057 1.2983
28 1.2216 1.2005 1.1184 1.0877
29 1.2834 1.1705 1.1771 1.2324
30 1.1015 1.2206 N/A 1.1261

Table A.3: Best RMSD for RGA Experiments
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Run Exp. 1 Exp. 2
1 1.1609 1.7515
2 1.1319 1.5903
3 1.1182 1.7561
4 1.1205 1.7175
5 1.1934 1.6874
6 1.1322 1.7442
7 1.1222 1.6023
8 1.1722 1.8597
9 1.1717 1.8060
10 1.0968 1.7440
11 1.1343 1.4118
12 1.1545 1.7996
13 1.0831 1.8263
14 1.1588 1.6057
15 1.1657 1.7369
16 1.1458 1.6848
17 1.1698 1.6669
18 1.1936 1.6874
19 1.1171 1.8532
20 1.1182 1.7480
21 1.1347 1.8118
22 1.1066 1.6816
23 1.0855 1.7415
24 1.2093 1.8370
25 0.9973 1.7543
26 1.1234 1.7459
27 1.1482 1.7013
28 1.1784 N/A
29 1.1409 N/A
30 1.1513 N/A

Table A.4: Best RMSD for Post-Optimized DE Experiments
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Run Exp. 1 Exp. 2
1 0.9151 0.9296
2 0.8902 1.2441
3 0.9391 1.1869
4 0.8935 1.3929
5 0.9083 1.1275
6 0.8565 1.0846
7 0.8802 1.1160
8 0.9659 1.2459
9 0.8876 1.2899
10 0.9062 1.3036
11 0.8453 1.2866
12 0.8882 1.1360
13 0.9810 1.2542
14 0.9469 1.0714
15 0.8264 1.2136
16 0.8939 1.1847
17 0.9315 1.5407
18 0.9200 1.1791
19 0.9031 1.3381
20 0.8645 1.2664
21 0.8973 1.5527
22 0.8743 1.1913
23 0.9037 1.2747
24 0.9206 1.2567
25 0.9425 1.3737
26 0.9557 1.2934
27 0.7977 1.2228
28 0.8896 1.0576
29 0.9214 1.3527
30 0.8299 1.1649

Table A.5: Best RMSD for Post-Optimized PSO Experiments
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Run Exp. 1 Exp. 2 Exp. 3 Exp. 4
1 1.0947 1.0369 1.1534 1.0627
2 1.1838 1.1350 1.1317 1.0745
3 1.0542 0.9405 1.2284 1.0905
4 1.1576 0.9870 1.0357 1.0362
5 1.0615 0.9695 1.1977 1.1983
6 1.0462 1.0739 1.1583 0.9944
7 1.1524 0.9966 1.2570 1.1107
8 1.0714 1.0861 1.1033 1.0569
9 1.1384 0.9984 1.1251 1.0422
10 1.1492 0.9429 1.2231 1.0622
11 1.0862 1.0276 1.1332 1.1233
12 1.0723 1.1215 1.1791 1.0546
13 1.1322 0.9958 1.1528 1.0272
14 0.9945 1.0380 1.1504 1.0770
15 0.9793 0.9829 1.1058 1.1498
16 1.2365 1.1555 1.0402 1.0309
17 1.0162 1.0647 1.2093 1.0624
18 0.9918 1.1114 1.1733 1.0123
19 1.1503 0.9863 1.0506 1.0933
20 1.1360 1.0286 1.1565 1.0631
21 1.0469 0.9740 1.1425 0.9867
22 1.2461 1.1057 1.1287 0.9860
23 1.1370 1.1796 1.1840 1.1172
24 1.1202 1.0440 1.0851 1.1081
25 1.1940 1.0880 1.1462 1.0102
26 1.1322 1.0817 1.1781 1.0887
27 1.2220 1.0682 1.0399 0.9646
28 1.0922 1.0686 1.0731 1.0709
29 0.9973 1.1550 1.1918 1.0569
30 1.1940 1.1176 1.1818 1.0252

Table A.6: Best RMSD for DE Experiments
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Run Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6
1 0.8197 0.7489 0.9836 0.8171 0.8470 0.6556
2 1.0025 0.9738 0.9658 0.7014 0.8052 0.7628
3 0.7872 0.9279 0.9754 0.7798 0.7241 0.8674
4 0.8424 0.6840 0.9000 0.7208 0.8335 0.7605
5 0.8995 1.0466 0.7647 0.7617 0.7355 0.8063
6 0.9506 0.8541 0.9073 0.7812 0.8220 0.8825
7 0.8528 1.0103 0.9102 0.7378 0.7840 0.7886
8 0.8986 0.8520 0.8979 0.9230 0.7311 0.6846
9 0.9755 0.8705 0.8353 0.8099 0.7756 0.7687
10 0.9383 0.8888 0.9919 0.9178 0.6710 0.7855
11 0.9011 0.7625 0.8584 0.6058 0.6837 0.7721
12 0.9912 0.9123 0.8404 0.6938 0.8538 0.7805
13 0.7735 0.8613 0.8323 0.7980 0.8345 0.8875
14 0.8914 0.8162 0.8897 0.7468 0.6688 0.8332
15 0.9159 0.8654 0.8637 0.7844 0.7967 0.8173
16 0.9804 0.9103 0.8477 0.7551 0.7858 0.7499
17 0.8443 0.8958 0.9534 0.8967 0.7419 0.6823
18 0.9484 0.9315 0.8881 0.7634 0.7249 0.7694
19 1.0433 0.8812 0.7498 0.8150 0.7001 0.7305
20 0.8857 0.9461 0.9195 0.6873 0.6568 0.7606
21 0.8449 0.9020 0.8648 0.7039 0.7107 0.7979
22 0.9429 0.9750 0.8999 0.7616 0.7578 0.7790
23 0.8644 0.9197 1.0113 0.7503 0.7884 0.7927
24 0.9459 0.9313 0.9418 0.8278 0.6979 0.7586
25 1.0301 0.7882 0.9926 0.7165 0.7547 0.7584
26 0.9285 0.9310 0.9590 0.7146 0.7541 0.7428
27 1.0634 0.8417 0.9220 0.7324 0.7986 0.6429
28 0.9197 1.0061 0.9515 0.7003 0.8918 0.7439
29 0.7917 1.0398 0.9433 0.8628 0.7662 0.7845
30 0.8423 0.9242 0.8145 0.9149 0.8186 0.7857

Table A.7: Best RMSD for PSO Experiments
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Run Exp. 7 Exp. 8 Exp. 9 Exp. 10 Exp. 11 Exp. 12
1 0.9270 0.8076 0.9662 0.7244 0.6398 0.6932
2 0.7905 0.8177 0.8218 0.7407 0.7283 0.6880
3 0.9417 0.9338 0.9220 0.6915 0.7256 0.7270
4 0.8550 0.8481 0.8518 0.7126 0.7067 0.7775
5 0.8616 0.7913 0.8582 0.6661 0.7306 0.7404
6 0.9856 1.0768 0.9277 0.7531 0.8182 0.7138
7 0.9107 1.0613 1.1638 0.7320 0.7380 0.7533
8 0.8585 0.9062 0.9856 0.7270 0.6905 0.7260
9 0.8223 0.9639 0.9816 0.7079 0.7306 0.6772
10 0.8071 0.9237 0.7306 0.7501 0.8087 0.6601
11 1.0090 0.7786 0.8236 0.6771 0.7501 0.7306
12 1.0178 0.9102 0.9673 0.7748 0.7043 0.7589
13 0.8550 0.9328 0.8439 0.6876 0.7324 0.6743
14 0.8156 0.8014 0.8637 0.6440 0.7555 0.7693
15 0.7392 0.8737 0.8853 0.6973 0.7604 0.7208
16 0.9616 0.6881 0.7609 0.8127 0.7124 0.7813
17 0.8477 0.8879 0.8338 0.6749 0.7411 0.7694
18 0.8817 1.0310 0.8838 0.7172 0.7446 0.6504
19 0.8584 0.7231 0.8812 0.8473 0.7526 0.7592
20 0.9008 0.9182 0.7702 0.8641 0.8013 0.6955
21 0.8728 0.8939 0.7786 0.7013 0.8071 0.8554
22 0.8521 0.7832 0.8041 0.7332 0.7241 0.7648
23 0.7795 0.8741 0.8847 0.7919 0.7109 0.7622
24 0.8601 0.8460 0.8822 0.7956 0.7456 0.8122
25 0.7956 1.0012 0.9158 0.8009 0.7591 0.7142
26 0.8813 0.9367 0.8132 0.8801 0.6765 0.6888
27 0.9053 0.7580 0.8559 0.8477 0.8089 0.6963
28 0.9357 0.9317 0.9111 0.7787 0.7570 0.7423
29 0.7806 0.8921 0.9109 0.8378 0.7654 0.7802
30 0.9345 0.8313 0.9112 0.7535 0.7615 0.8331

Table A.8: Best RMSD for PSO Experiments


