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ABSTRACT 

The present study examined a wrist extension-to-flexion contraction pattern that 

was theorized to result in proprioceptive neuromuscular facilitation. However, the 

“reversal of antagonists” contraction pattern may have, alternatively, interfered with 

motor learning-related increases in strength. Participants (N=24) were matched on 

predicted strength and randomly assigned to either the control or experimental group. 

Training occurred during three test sessions within a one-week period. Retention and 

transfer (crossed-condition) tests were administered during a fourth test session two-

weeks later. Both groups exhibited comparable increases in strength (20.2%) and 

decreases in muscle coactivation (35.2%), which were retained and transferred. 

Decreases in error and variability of the torque traces were associated with parallel 

decreases in variability of muscle activity. The reversal of antagonists technique did not 

interfere with motor learning-related increases in strength and decreases in variability. 

However, the more complex contraction pattern failed to result in proprioceptive 

neuromuscular facilitation of strength. 
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CHAPTER 1: INTRODUCTION 

Herman Kabat (1952) developed a series of therapeutic resistive exercise 

techniques based on the work of Sherrington (1906). Sherrington (1906) described a 

series of experiments that explored segmental reflexes and conditions that produced 

facilitation and inhibition of reflex muscle contractions. Kabat (1952) utilized these 

findings to develop contraction patterns that would evoke spinal reflexes to augment or 

reinforce weak voluntary drive of muscle in patient populations (Kabat, 1947; Kabat & 

Knott, 1948; 1953). The particular contraction pattern under investigation is the reversal 

of antagonists technique; it involves a quick reversal of antagonistic musculature. In the 

case of isometric contractions, the Golgi tendon organs (GTOs) are used to inhibit the 

agonist and facilitate the antagonist (which is the target muscle) prior to recruiting it as an 

agonist (Kroll, 1972a). 

The efficacy of the reversal of antagonists technique has been studied sporadically 

over the last 40 years with mixed results (Bohannon, 1985; Gabriel & Kroll, 1991; 

Gabriel, Basford, & An, 1997; 2001; Grabiner, 1994; Kroll, 1972a; Holt et al., 1969). The 

few studies that have reported increases in maximal voluntary contractions have been 

conducted on patient populations (Bohannon, 1985; Holt et al., 1969), which leads to the 

speculation that facilitation effects cannot be manifested unless there is an existing deficit 

in neural drive as might exist in a patient population (Bohannon, 1985; Gabriel, Basford, 

& An, 1997; Kroll, 1972a; 1972b).  

While the results of the facilitation effects are thus far equivocal, there is direct 

evidence that the reversal of antagonists may interfere with the early strength gains 

associated with motor learning (Gabriel & Kroll, 1991; Kroll, 1972a; 1972b), which has 
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particular implications for rehabilitation. The reversal of antagonists technique is a more 

complicated contraction pattern than agonist only resistive exercise. To be effective, the 

reversal sequence must occur within a very specific time period (1 second) corresponding 

to maximal changes within the spinal cord when the GTOs are activated (Moore & 

Kukulka, 1991). It is therefore reasonable to suggest that the reversal of antagonists 

technique is a more difficult task compared to agonist only contractions (Kroll, 1972a; 

1972b). 

Task complexity is a concern because the reversal of antagonists is used for stroke 

rehabilitation in older adults (Bohannon, 1985, Dickstein et al., 1986; Duncan et al., 

1998; Ernst, 1990; Lisiński, Huber, Samborski, & Witkowska, 2008) who already exhibit 

decrements in motor performance and learning (Shea, Park, & Braden, 2006, Voelcker-

Rehage, 2008). In support, Barry, Riek, and Carson (2005) provide evidence that task 

complexity for isometric contractions reduces motor output in older adults (65-80 years). 

The authors studied a visually guided aiming task that required the generation of 

isometric torques about the elbow joint to targets corresponding to 30 and 50% MVC, 

every 30 degrees in the frontal plane. There were simple contractions that required only 

flexion, extension, supination, or pronation. However, the off axes contractions were 

more complex and involved two in combination (i.e., flexion and supination, flexion and 

pronation, extension and supination, extension and pronation). Compared to the younger 

adults (19-29 years), deficits in the rate of force development exhibited by the older 

adults were exacerbated by the muscle coordination requirements for the more complex 

contraction combinations. Thus, there is a definite need to determine if the reversal of 

antagonist technique interferes with the early acquisition of muscular strength through 
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motor learning in a young healthy population (18-27 years) before examining the 

technique in an older population.  

1.1 Statement of the Problem 

The purpose of this study was to determine if the reversal of antagonists technique 

can result in facilitation of isometric muscle contractions or does it interfere with the 

acquisition of maximal strength increase through motor learning. The overarching 

research question being addressed was: what is the relative importance of motor learning 

and facilitatory techniques to the acquisition of muscle strength? 

1.2 Experimental Approach to the Problem 

A control group performed agonist only contractions consisting of maximal 

isometric wrist flexion strength trials. Assessment followed a measurement schedule that 

has previously been demonstrated to result in increases in maximal strength due solely to 

motor learning (Calder & Gabriel, 2007; Kroll, 1963a). There were three days of strength 

testing within a one-week period. Retention and transfer tests were administered two-

weeks following the last day of testing. The two-week retention and transfer tests were 

used to determine if motor learning had occurred (Etnier & Landers, 1998; Kantak & 

Winstein, 2012; Kohl & Gauadagnoli, 1998; Lai & Shea, 1999; Wright & Shea, 2001). It 

was hypothesized that increases in maximal isometric wrist flexion strength would be due 

to an increase in flexor carpi radialis (FCR) surface electromyographic (sEMG) activity 

(Tillin et al., 2011; McGuire et al., 2014) and/or a decrease in extensor carpi radialis 

(ECR) sEMG coactivity (Carolan & Cafarelli, 1992; Floeter, Danielian, & Kim, 2013; 

Geertsen, Lundbye-Jensen, & Nielsen, 2008). At the same, alterations in the magnitude 



     

 

4 

of joint torque and sEMG should be accompanied by reductions in the variability of these 

measures (McGuire et al., 2014). 

The experimental group performed the reversal of antagonists technique, designed 

to facilitate the wrist flexors during maximal isometric contractions. The contraction 

pattern involved a wrist extension-to-flexion sequence. The same measurement schedule 

as the control group was used to evaluate the potential interference of strength acquisition 

through motor learning (Gabriel & Kroll, 1991). In this case, maximal isometric wrist 

flexion strength and sEMG activity would be depressed relative to the control group 

(Gabriel & Kroll, 1991). Maximal isometric wrist flexion joint torque and sEMG activity 

would also exhibit greater variability (McGuire et al., 2014). Retention or transfer of 

increases in maximal isometric wrist flexion strength and sEMG activity would also be 

blunted in comparison to the control group (McGuire et al., 2014). It was equally possible 

that the reversal of antagonists technique resulted in proprioceptive neuromuscular 

facilitation: maximal isometric wrist flexion strength and sEMG activity would be greater 

than that of the control group (Grabiner, 1994; Kamimura et al., 2009). However, torque 

variability and sEMG variability would not be expected to be any greater than agonist 

only contractions (Gabriel, Basford, & An, 1997). It was equally possible for either 

interference or facilitation to occur, however based on review of the previous literature, 

as well as pilot testing performed, it was hypothesized that the experimental group would 

display similar trends as the control group. This would involve comparable increases in 

strength, accompanied by reductions in the variability of the torque and sEMG measures.  

In addition to torque and sEMG activity, maximal M-waves, Hoffman (H) reflexes, 

and V-waves were elicited using peripheral stimulation for all participants. The maximal 



     

 

5 

M-wave was designed as a control measure and represented the recruitment of the entire 

motoneuron pool when the median nerve was stimulated using a maximal stimulation. 

The H-reflex assessed spinal excitability at rest, while the V-wave represented changes in 

neural drive to the muscle during the maximal voluntary contractions.  

1.3 Significance of the Study 

According to the American Heart Association (2012), each year approximately 

795, 000 people are affected by a new or recurrent stroke in the United States (US), while 

an estimated 50,000 Canadians are affected by a new or current stroke (Hakin, Silver, & 

Hodgson, 1998). Approximately, 315,000 Canadians are living with stroke associated 

health complications (PHAC, 2011) and each year over 14,000 Canadians die from stroke 

(Statistics Canada, 2012). Worldwide, 366.93 out of every 100, 000 people have 

previously suffered from a stroke (Feign et al., 2013). Stroke has typically been 

categorized as a disease of the elderly with the majority of people affected by a stroke 

being over the age of 75 years. Recently this trend has changed, with the age 

demographics of those suffering from a stroke or living post-stroke decreasing (Feigin et 

al., 2003). A recent study conducted by Feigin and colleagues (2003) reported that more 

young to middle-aged (20-64 years) adults were experiencing strokes. In 2010, 31% of 

those who suffered from a stroke, 43% of those living post-stroke, and 22% of all stroke 

deaths were young to middle-age adults (Feigin et al., 2003). The broadening 

demographic only points to a problem that is increasing. 

 The increase in demand for post-stroke rehabilitation over the past 20 years has 

been so great that there is a drive towards the development and use of robotic 

manipulators capable of delivering therapy (Marchal-Crespo & Reinkensmeyer, 2009). 
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Results developed from this thesis could help guide the type of therapeutic techniques the 

robotic manipulators are designed to perform. Rehabilitation engineers and clinicians are 

collaborating on how to integrate the neurophysiological mechanisms underlying 

facilitation techniques with motor learning principles to optimize functional outcomes of 

physical therapy (Krakauer, 2006; Lu et al., 2011; Morales et al., 2011). The data 

generated by this thesis will be infinitely useful in understanding the best approach for 

the delivery of therapeutic resistive exercise. 

1.4 Basic Assumptions 

1. Maximal voluntary contractions represented the upper limit of the participants’ 

maximal strength. 

2. Participants did not perform any resistive exercises involving the forearm for the 

duration of the study.  

3. The two-week retention period was sufficient to ensure that hypertrophy and 

neurophysiological adaptations that occur with long-term resistive exercise had no 

influence upon the results.  

4. Alterations in the magnitude of sEMG activity from the flexor and extensor carpi 

radialis were indicative of changes in neuromotor control due to motor learning. 

5. The flexor and extensor carpi radialis were the main agonist and antagonist, 

respectively, involved in the task.  

1.5 Delimitations 

1. The proposed study only included university aged (18-27years) males who were 

right-hand dominant. 
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2. Only one joint, the wrist, was studied. 

3. Only the extension-to-flexion contraction pattern was studied 

4. This study investigated only isometric contractions.  

5. The sEMG activity of only the flexor and extensor carpi radialis was studied.  

6. The reversal of antagonists is the only facilitation technique that was studied.  

1.6 Limitations 

1. Since only university aged (18-27years) males who were right-hand dominant 

were studied, the results may not apply to left-handed people and/or those of a 

different age group.  

2. Since only the wrist joint was studied, the results may not apply to other joints, or 

complex actions at multiple joints. 

3. Since the extension-to-flexion sequence is the only contraction pattern that was 

studied, the results may not apply to the flexion-to-extension sequence.  

4. Since only isometric contractions were examined, the results may not apply to 

isotonic or eccentric contractions of the muscle, as occur during normal human 

movement.  

5. Since only the sEMG activity of the FCR and ECR were studied, the role of other 

forearm muscles during wrist flexion was not investigated.  

6. Since the reversal of antagonists is the only facilitatory technique that was 

studied, the results may not apply to other patterns, such as bilateral reciprocal 

contractions. 
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1.7 Summary 

Participants in this study performed maximal isometric contractions of the wrist 

extensors then immediately initiated maximal isometric contractions of the wrist flexors. 

The contraction pattern that participants performed is termed the “reversal of antagonists” 

technique and it is an integral part of therapeutic resistive exercise in stroke 

rehabilitation. It was theorized that proprioceptive feedback generated during wrist 

extension was used to augment the subsequent wrist flexion contraction. However, the 

more complex contraction pattern may have interfered with normal learning-related 

increases in strength through skill development. The continued use of the reversal of 

antagonists contraction pattern in rehabilitation, despite rather disquieting findings in the 

extant literature, was used to justify the study. 
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CHAPTER 2: LITERATURE REVIEW 

Participants in this study performed maximal isometric contractions of the wrist 

extensors then immediately initiated maximal isometric contractions of the wrist flexors. 

It is theorized that proprioceptive feedback generated during wrist extension is used to 

augment the subsequent wrist flexion contraction (Kabat, 1952; Kabat & Knott, 1948; 

1953; Moore & Kukulka, 1991). However, the more complex contraction pattern may 

interfere with motor learning-related increases in strength through skill development 

(Gabriel, Basford, & An, 1997; Gabriel & Kroll, 1991). This literature review will cover 

topics related to the biomechanics of the wrist musculature, the sensorimotor system 

relative to proprioceptive feedback that facilitates and inhibits muscle contractions, and 

increases in strength through motor learning.  

2.1 Anatomy of the Flexor Carpi Radialis and Extensor Carpi Radialis 

The flexor carpi radialis (FCR) muscle (Figure 1) is a pennate muscle located on 

the anterior aspect of the forearm, when in anatomical position. Originating on the medial 

epicondyle of the humerus, the FCR runs lateral to the flexor digitorum superficialis and 

inserts on the anterior aspect of the base of the second and third metacarpal bones 

(Martini & Nath, 2009). The primary functions of the FCR are to flex the wrist and act as 

a synergistic muscle with the extensor carpi radialis (ECR) during radial deviation 

(Bawa, Chalmers, Jones, Søgaard, & Walsh, 2000; Boles, Kannam, & Cardwell, 2000). 

The ECR is a muscle that acts as an antagonist muscle during wrist flexion. It originates 

on the lateral epicondyle of the humerus, runs laterally down the posterior aspect of the 

forearm, when in anatomical position, and inserts onto the lateral dorsal surface of the 

base of the third metacarpal bone (Figure 1) (Martini & Nath, 2009). The FCR is 
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innervated by the median nerve, which originates from the brachial plexus and is the only 

nerve to pass through the carpal tunnel, while the ECR is innervated by the radial nerve 

(Boles et al., 2000).  

 

 

a)  b)  

Figure 1. Anatomy of the forearm muscles with nerve innervation. a) Flexor carpi radialis 

muscle with median nerve innervation. b) Extensor carpi radialis with radial nerve 

innervation. Quiring, D.P. & Warfel, J.H. (1960). The extremities. Philadelphia: Lea and 

Febiger. Pages 32, 40.  
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The muscle fibres of the FCR originate from the superficial surface of a deep 

tendon that is shared with the pronator teres, flexor digitorum superficialis and, when 

present, the palmaris longus muscles (Segal, Wolf, DeCamp, Chopp, & English, 1991). 

The muscle fibre length of the FCR muscle is approximately 59.8 ± 1.5 mm (Gonzalez, 

Buchanan, & Delp, 1997; Loren et al., 1996). Segal and colleagues (1991) determined 

that fibres inserting along the midline of the tendon are longitudinally oriented, whereas 

fibres that insert along the sides of the tendon are at oblique angles. The same authors 

also examined the median nerve, which innervates the FCR. They noted that the nerve 

split into two divisions: the distal division, which supplies the medial oblique muscle 

fibres and the proximal division, which has two branches. The medial branch of the 

proximal division innervates the longitudinal fibres, while the lateral branch innervates 

the lateral oblique muscle fibres (Segal et al., 1991).  

 Previous research has modeled the wrist flexor and extensor muscles and 

predicted that the FCR muscle performs optimally (i.e., generates peak muscle force) 

when the wrist is in full wrist extension (Loren et al., 1996). Loren and colleagues (1996) 

anticipated that when the FCR was at its longest muscle length, hence while the wrist is 

in full extension, it would be able to generate maximal muscle force. It was predicted that 

peak muscle force generated by the FCR muscle ranged from 51.2 N to 60 N (Gonzalez 

et al., 1997; Loren et al., 1996). It was also speculated that the flexor moment arms were 

the greatest when the wrist was flexed and they would decrease as the wrist moved into 

extension (Loren et al., 1996). Loren and colleagues (1996), as well as, Gonzalez and 

colleagues (1997) examined the wrist flexor and extensor muscles for their 

biomechanical characteristics. It was determined that, when moving from flexion to 
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extension the maximal moment arm of the FCR ranged from 16 mm to 17.3 mm in length 

and this length was reached at an angle of approximately 40° (Gonzalez et al., 1997; 

Loren et al., 1996). Gonzalez and colleagues (1997) also examined the physiological 

cross sectional area (PCSA) of the muscles and determined that the PCSA of the FCR 

muscle was 20 mm
2
.  

 Loren and colleagues (1996) and Gonzalez and colleagues (1997) also examined 

the wrist extensors while defining the biomechanical characteristics of the wrist muscles. 

Both studies divided the ECR into its two components: the extensor carpi radialis brevis 

(ECRB) and the extensor carpi radialis longus (ECRL). It was determined that the ECRB 

has a fibre length ranging from 59 mm to 70.8 ± 1.7 mm, while the ECRL fibre length 

ranges from 94 mm to 127.3 ± 5.6 mm. (Gonzalez et al., 1997; Loren et al., 1996). The 

moment arms of the ECRB and ECRL were approximately 16mm and 10mm, 

respectively, with the PCSAs of the two muscles roughly 27mm and 15mm, respectively 

(Gonzalez et al., 1997).  

2.2 Examining Neural Activity 

2.2.1 Spinal and Supraspinal Control of Motoneuron Excitability 

 The motoneuron is an integral part of the motor unit, which is the functional unit 

of the neuromuscular system (Kabat, 1952). One motor unit is comprised of a single 

alpha motoneuron and all the muscle fibres that it innervates (Figure 2). Motoneurons are 

responsible for the excitation and/or inhibition of the muscle they are associated with. 

The excitability of a motoneuron is dependent on the total sum of the excitatory and 

inhibitory activity within the synaptic clefts (Åstrand & Rodahl, 1986). Motoneurons are 

controlled at two different levels: spinal and supraspinal. At the supraspinal level, 
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motoneurons are controlled by areas in the brain such as the cerebellum, cerebral cortex, 

and various nuclei (Bawa, 2002). At the spinal level, Renshaw cells, muscle spindle 

complexes, Golgi tendon organs, joint receptors, and cutaneous receptors control the 

excitability of motoneurons. Figure 3 depicts the various spinal and supraspinal 

mechanisms that affect the excitability of an alpha motoneuron. The following 

subsections review ways in which the sensorimotor system facilitates and inhibits muscle 

contractions at both levels. 

 

 

Figure 2. A motor unit consisting of an alpha motoneuron and all of the muscle fibres it 

innervates. Basmajian, J.V., & DeLuca, C.J. (1985). Muscles alive: their functions 

revealed by electromyography. Baltimore: Williams and Wilkins. Figure 1-7, p.12.  
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Figure 3. An alpha motoneuron and the spinal and supraspinal mechanisms that affect its 

excitability. Basmajian, J.V. & DeLuca, C.J. (1985). Muscles alive: their functions 

revealed by electromyography. (5
th

 ed.). Baltimore, MD: Williams & Wilkins. Figure 5.1, 

page 126.  
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2.2.1.1 Spinal Control 

 Therapeutic resistive exercise techniques attempt to activate sensorimotor 

receptors to facilitate muscle activity when there is a deficit in central nervous system 

(CNS) drive to the muscle (Kabat, 1952; Kabat & Knott, 1948; 1953). The type of 

sensory receptor activated depends on the particular technique being performed. This 

does not mean that a particular sensory receptor is activated in isolation. Rather, the goal 

is to manipulate the contraction so that it dominates the net sensory input resulting in 

either facilitation or inhibition (Kabat, 1952). Other receptors still contribute to the 

overall response. The following subsections review sensorimotor receptors that may 

impact the strength of an isometric contraction.  

Renshaw Cells 

As motoneurons traverse the spinal cord, they give off collateral branches that 

form excitatory synaptic connections with interneurons that are located within the 

ventromedial region of the spinal cord (Åstrand & Rodahl, 1986; Renshaw, 1941). These 

interneurons are known as Renshaw cells. Renshaw cells have inhibitory connections 

with the same or other alpha motoneurons and interneurons of that segmental level 

(Åstrand & Rodahl, 1986). Figure 4 outlines how a Renshaw cell affects motoneuron 

excitability.  

The Ia afferent enters through the dorsal root ganglion of the spinal cord and 

forms an excitatory connection with the alpha motoneuron innervating the agonist muscle 

and an inhibitory neuron that is in connection with the alpha motoneuron innervating the 

antagonist muscle (Åstrand & Rodahl, 1986). Arising from the motoneuron of the agonist 

muscle is a recurrent collateral branch that forms an excitatory connection with a 
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Renshaw cell (Åstrand & Rodahl, 1986). This Renshaw cell then forms inhibitory 

connections with the motoneuron of the agonist and with the Ia inhibitory interneuron of 

the antagonist. When the Ia afferent is stimulated, the motoneuron of the agonist muscle 

will be stimulated causing the agonist muscle to contract and the inhibitory interneuron 

will be stimulated which will inhibit the antagonist muscle (Åstrand & Rodahl, 1986). As 

well, the collateral branch may also excite the Renshaw cells, which will quiet the 

activity of the agonist and the inhibitory interneuron, allowing for more activity of the 

antagonist (Åstrand & Rodahl, 1986). While this reflex loop does quiet the activity of the 

agonist muscle, it can be beneficial because it provides a mechanism to protect against 

overloading of the muscle as the recurrent inhibition produced by the Renshaw cells acts 

to limit and stabilize motoneuron firing rates (Åstrand & Rodahl, 1986; Windhorst, 

1996).  
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Figure 4. The pathway of a Renshaw cell. Kandel, E.R., Schwartz, J.H., & Jessell, T.M. 

(2000). Principles of neural science (4
th

 Ed.). New York: McGraw-Hill. Figure 36-5b, 

page 722.  

 

Muscle Spindles 

Motoneuron excitability is also controlled by muscle spindle complexes. Muscle 

spindles are stretch receptors that relay information to the spinal cord and brain regarding 

the current muscle length and changes in muscle length (Kandel, Schwartz, & Jessell, 

2000; Macefield, 2005; Proske, 1997). These small, elongated structures are anchored in 

parallel to the contractile extrafusal muscle fibres (Emonet-Dénand, Hunt, & Laporte, 

1988; Kandel et al., 2000; Proske, 1997), therefore when a movement occurs that 

increases muscle length, the muscle spindle also stretches (Macefield, 2005). Edin and 
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Vallbo (1990) examined various muscle afferents and their responses when participants 

performed a slowly increasing isometric contraction, with a period of steadiness followed 

by a quick relaxation. The authors found that in the majority of muscle spindles 

examined, the discharge rates increased at the beginning of the contraction and then 

plateaued early while torque continued to increase (Edin & Vallbo, 1990). It was also 

noted that when subjects relaxed, the muscle spindles that increased in discharge rate 

displayed one of two reactions. They either displayed a short-lasting burst of accelerated 

discharge or a prompt cessation of the discharge when the tension began to fall. These 

results demonstrate that muscle spindles are also active during static contractions or 

contractions where no physical movement of the limb occurs.  

Muscle spindles consist of a connective tissue capsule that contains a group of 

muscle fibres termed intrafusal fibres (Emonet-Dénand et al., 1988; Lephart, Pincivero, 

Giraldo, & Fu, 1997; Proske, 1997). The ends of the spindle are contractile, while the 

central regions lack myofibrils and are non-contractile (Silverthorn, 2009). The 

contractile ends of the spindle are innervated by gamma motoneurons, and the central 

regions are wrapped by sensory nerve endings that are stimulated by muscle stretch 

(Emont-Dénand et al., 1988; Lephart, Pincivero, Giraldo, & Fu, 1997; Proske, 1997). 

There are two types of intrafusal fibres within a muscle spindle: nuclear bag fibres and 

nuclear chain fibres (Emont-Dénand et al., 1988). Nuclear bag fibres are relatively long 

(6-10mm) and thick (20µm in diameter), while nuclear chain fibres tend to be shorter (3-

4mm) and thinner (12µm in diameter) (Emont-Dénand et al., 1988; Proske, 1997). Bag 

fibres can be further subdivided into two types of fibres: bag1 and bag2 (Emont-Dénand et 

al., 1988; Proske, 1997). The arrangement of a muscle spindle can be seen in Figure 5.  
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Figure 5. A simplified diagram of a muscle spindle being innervated by type Ia and II 

afferents, as well as gamma innervation. Matthews, P.B.C. (1981). Evolving view on the 

internal operation and functional role of the muscle spindle. Journal of Physiology, 320: 

1-30. Figure 1, page 4.  

 

The muscle spindle relays information to the alpha motoneuron via the Ia afferent 

and gamma pathways (Kandel et al., 2000). The large Ia afferent (primary afferent 

endings) enters the capsule of the muscle spindle and branches repeatedly with each 

unmyelinated terminal region wrapping around the nucleated portion of each intrafusal 

fibre (Macefield, 2005; Proske, 1997). With the Ia afferent, a smaller group II fibre 

(secondary afferent endings) also enters the muscle spindle capsule and has branches that 

terminate on primarily bag2 and chain fibres (Macefield, 2005; Proske, 1997). While both 

afferent endings act as stretch receptors, the primary afferent endings have a higher 
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dynamic sensitivity (Macefield, 2005), which is usually ascribed to the bag1 fibres and 

their terminals (Emont-Dénand et al., 1988). This means that the primary endings are 

more sensitive to smaller changes in length than the secondary endings (Fallon & 

Macefield, 2007). Secondary afferent endings (Group II fibres) are normally responsible 

for signaling absolute muscle length (Fallon & Macefield, 2005). The intrafusal fibres of 

the muscle spindles also receive motor innervation from either gamma (γ) or fusimotor 

neurons (Macefield, 2005; Proske, 1997). It is generally agreed upon that bag1 fibres are 

innervated by dynamic (γD) axons, while static (γS) innervation is slightly disagreed upon 

(Proske, 1997). Although it has been suggested that γS-axons tend to predominately 

innervate bag2 and chain fibres (Proske, 1997). 

While at rest, the central region of the spindle is stretched enough to activate the 

sensory fibres, thus creating a tonic activation of the muscle (Harris, 1984; Silverthorn, 

2009). The gamma motoneurons play a crucial role in adjusting the sensitivity of the 

muscle spindle so it is always active no matter the length of the muscle (Silverthorn, 

2009). When a gamma motoneuron fires, the ends of the fibres contract and shorten 

which lengthens the central region and maintains the stretch on the sensory neurons 

(Silverthorn, 2009). Gamma motoneurons are typically activated at the same time that the 

alpha motoneurons of the muscle fire (Lephart et al., 1997). This coactivation occurs to 

prevent the central region from becoming too relaxed and losing the tonic activation that 

occurs in the muscle (Lephart et al., 1997).  

Golgi Tendon Organs 

A third mechanism controlling motoneuron excitability are the Golgi tendon 

organs (GTOs). Golgi tendon organs are found at the junction of tendons and muscles 
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and are placed in series with muscle fibres (Kandel et al., 2000; Macefield, 2005). These 

proprioceptors respond primarily to the tension a muscle develops during an isometric 

contraction and cause a relaxation reflex (Gregory & Proske, 1979; Guissard & 

Duchateau, 2006; Lephart et al., 1997; Schoultz & Swett, 1972). During stretching, it has 

been noted that GTOs reduce motor neuron excitability and they are known to be more 

responsive to the force of a contraction, rather than to the mechanical tension of a passive 

stretch (Fallon & Macefield, 2007; Guissard & Duchateau, 2006; Macefield, 2005). Edin 

and Vallbo (1990) studied various muscle afferents and their responses to isometric 

contractions. The authors demonstrated that during isometric contractions, GTOs 

produced a sustained increase of impulse rate and that the discharge rate was closely 

related to the active torque produced (Edin & Vallbo, 1990). Guissard and Duchateau 

(2006) also discussed GTOs and stated that GTOs appear to only be activated during 

large-amplitude stretching and that they are a contributor to the postsynaptic inhibition of 

the motor neuron pool that is occurring during the large-amplitude stretches.  

Golgi tendon organs are innervated by a single group Ib axon, which enters the 

capsule of the GTO and branches into many unmyelinated endings that wrap around and 

between collagen fibres (Figure 6) (Fallon & Macefield, 2007; Kandel et al., 2000). 

During an isometric contraction, the tendon of a muscle acts as an elastic component, 

which pulls the collagen fibres within the GTO tight, thus pinching the sensory endings 

of the Ib axon, increasing its firing rate (Kandel et al., 2000; Silverthorn, 2009). The 

increased firing rate of the Ib axon will excite the Ib inhibitory interneuron within the 

spinal cord, thus causing inhibition of the alpha motoneurons innervating the muscle, 

resulting in a decreased contraction level or ending the contraction altogether 
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(Silverthorn, 2009). Essentially, the GTOs are in place as a mechanism to prevent 

excessive contraction that may injure the muscle (Lephart et al., 1997).  

 

 

 

Figure 6. Anatomy of a Golgi tendon organ. Kandel, E.R., Schwartz, J.H., & Jessell, 

T.M. (1995). Essentials of neural science and behaviour. Stanford, Connecticut: 

Appleton and Lange. Figure 27-6c, page 507.  

 

Joint and Cutaneous Receptors  

Joint and cutaneous receptors are generally ignored when considering muscle 

force output during maximal voluntary contractions. During a fast maximal voluntary 

isometric contraction there is still joint compression (Amis, Dowson, & Wright, 1980) 
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and indentation of the skin of the limb secured within the strength testing device 

(Johansson & Westling, 1984), in addition to muscle and tendon lengthening (Maganaris 

& Baltzopoulos, 1999). Moreover, since these receptors have been shown to adapt with 

gradation of muscle force (Ashby, Hilton-Brown, & Stålberg, 1986), it is important to 

acknowledge their potential contribution (Johansson, 1991; Solomonow, 2006; Stubbs et 

al., 1998; Zimny & Wink, 1991). 

 Joint receptors are mechanoreceptors located at joints that recognize force applied 

across a joint (Figure 7) (Macefield, 2005). These receptors are primarily responsible for 

relaying information regarding the movement of a joint, acting as joint limit detectors, 

and acting as joint pain receptors or nociceptors (Macefield, 2005; Proske et al., 1988). 

Proske and colleagues (1988) review evidence that indicates that joint receptors most 

likely do not play a role in recognizing joint position, except perhaps towards the extreme 

ranges of motion of the joint. Joint receptors form a negative feedback loop with the Ib 

inhibitory interneuron (Kandel, Shwartz, & Jessell, 1995). When activated, the joint 

receptor will send signals to the Ib inhibitory interneuron, which will inhibit the agonist 

muscle, thus preventing the joint from moving outside of its normal range of motion 

(Kandel et al., 1995).  

 Cutaneous receptors are found within the layers of skin (Figure 7) (Kandel et al., 

1995). These receptors are primarily responsible for detecting movement of the skin, 

movement of the hair on the skin, or injury to the skin’s surface (Kandel et al., 1995; 

Macefield, 2005; Sulka & Rees, 1997). According to Macefield (2005) there are four 

different kinds of cutaneous afferents found in glabrous skin (hairless) and five classes 

from the hairy parts of skin. The four afferents found in glabrous skin are categorized into 
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fast-adapting (FA) and slow-adapting (SA) (Macefield, 2005). Within each category there 

is a type I (FAI and SAI) and type II (FAII and SAII) afferent. FAI afferents are generally 

activated by discrete stimuli, in a small-well defined area and are particularly sensitive to 

light stroking across the skin. While, FAII afferents are sensitive to brisk mechanical 

transients such as vigorous blowing across the skin or tapping across the area (Macefield, 

2005). SAI afferents have high dynamic sensitivity to indentation of the skin, whereas 

SAII afferents respond to forces applied normally to the skin, as well as laterally 

stretching of the skin. Within the hairy parts of the skin, two of the afferents found are 

hair units and field units (Macefield, 2005). Hair units respond to movements of the 

individual hairs or air puffs over the skin, whereas field units respond to actual skin 

contact. The intensity of the applied stimulus, will determine whether just the affected 

area or muscle contracts or the entire limb contracts to move away from the stimulus 

(Kandel et al., 1995).  

In addition to detecting movement associated with the skin or hairs on the skin, 

cutaneous receptors are also responsible for detecting pain or injury to the skin’s surface 

(Sluka & Rees, 1997). If the receptors detect a painful stimulus, there is a resulting 

increase in the primary afferents supplying the region the stimulus has been applied 

(Sluka & Rees, 1997). The cutaneous receptors that detect painful stimuli are called 

nociceptors, which are unencaspulated receptors that convey information to the CNS via 

two types of afferents: A-delta afferents and C-fibres (Sluka & Rees, 1997). A-delta 

afferents are thinly, myelinated axons that when stimulated a pricking pain is felt, 

whereas C-fibres are unmyelinated axons that produce a burning pain in addition to a 

tingling or tapping sensation when stimulated (Ochoa & Torebjörk, 1983). Once a 
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noxious stimulus has been detected on the skin’s surface, nociceptors are activated, 

increasing the activity of all cutaneous afferents, as well as the input to the dorsal horn of 

the spinal cord (Sluka & Rees, 1997). The increase activity to the dorsal horn results in 

increased excitability of the central neurons within the spinal cord (Sluka & Rees, 1997), 

which will result in contraction of the affected area or muscle, or even contraction of the 

entire limb segment (Kandel et al., 1995). 

 

 

Figure 7. Summary of the receptors and afferents involved in the spinal control of 

motoneuron excitability. Kandel, E.R., Schwartz, J.H., & Jessell, T.M. (2000). Principles 

of neural science (4
th

 Ed.). New York: McGraw-Hill. Figure 36-7a, page 724. 
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2.2.1.2 Supraspinal Control  

This subsection will focus on CNS control of the agonist-antagonist alpha 

motoneuron pool. Lamarre and colleagues (1978) demonstrated that after complete upper 

limb deafferentation, the inhibition of the antagonist muscle continued to precede the 

activation of the agonist muscle. It was concluded that these results proved that the 

stimulus creating the inhibitory reflex seen in the antagonist originated in the CNS, not 

from muscle spindles or Golgi tendon organs in the contracting agonist muscle. In 

agreement, Humphrey and Reed (1983) examined how monkeys learned to control the 

position of the wrist and demonstrated the existence of two motor control systems that are 

partially independent of one another. The first system related to the reciprocal activation 

of the antagonist muscles and the second was organized for the coactivation of the 

antagonist muscles (Humphrey & Reed, 1983).  

Frysinger and colleagues (1984) trained monkeys to perform two different 

contraction patterns, one that produced reciprocal activation of the antagonist, while the 

other required coactivation of the antagonist. The authors demonstrated that cerebellar 

Purkinje fibres play a role in reciprocal activation and coactivation of the antagonist 

muscles, selecting neural pathways that alternate between the two types of contractions 

(Frysinger et al., 1984). Similarly, Bourbannais and colleagues (1986) demonstrated that 

discharges within the monkey cerebellar cortex increase and are tightly correlated with 

velocity of stretch and muscle length, suggesting that the cerebellar cortex plays a role in 

monitoring muscle changes (Bourbonnais et al., 1986). 

De Luca and Mambrito (1987) examined myoelectric (ME) activity of various 

motor units from the thumb muscles in humans. The authors reported findings that extend 
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the primate work of Humphrey and Reed (1983) who suggested that there were two basic 

command systems: reciprocal innervation and coactivation of antagonist muscles. De 

Luca and Mambrito (1987) suggested that the corticomotoneuronal and 

rubromotoneuronal cells have connections to motor units in both the flexor and extensor 

muscle groups. These connections exert a “common drive” to both muscle groups at the 

same time to execute one of three of motor plans: (1) the extend command which inhibits 

the flexor motoneuron pool, (2) the flex command which inhibits the extensor 

motoneuron pool, and (3) the coactivate command activates both flexor and extensor 

motoneuron pools. Common drive was demonstrated in the firing rates of motor units of 

the agonist and antagonist muscles controlling the thumb during voluntary isometric 

contractions. The firing rates of agonist and antagonist muscles were shown to be highly 

correlated during flexion, extension, and coactivation tasks, suggesting that the nervous 

system controls the motoneuron pools in a uniform fashion, not individual motor units 

(De Luca & Mambrito, 1987).  

2.2.2 The Neurophysiogical Basis of PNF  

The strength of a muscle contraction depends on the number of motor units 

activated, which is ultimately a function of the level of excitation within the anterior 

horn. Proprioceptive neuromuscular facilitation techniques are designed to activate the 

segmental reflex system during voluntary muscle contractions (Kabat, 1952). It is 

theorized that proprioceptors can be used to provide facilitatory feedback to the anterior 

horn to augment weak CNS drive of the motoneuron pool in patient populations (Kabat, 

1952; Kabat and Knott, 1948; 1953). The central and peripheral motor system can then be 

combined to recruit additional motor units and increase the strength of muscle 
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contractions. The mechanism for sensorimotor integration of neural inputs is the 

subliminal fringe anterior horn cell (Harris, 1984). 

Figure 8 illustrates that subliminal fringe anterior horn cells are high threshold 

motoneurons that receive only a small number of synaptic connections from afferent 

terminals (Decker, 1962; Guyton, 1976; Ruch et al., 1963). When afferent fibres enter the 

dorsal root of the spinal cord they break into many branches, which form synaptic 

connections with many postsynaptic cells (Decker, 1962; Guyton, 1976; Ruch et al., 

1963). If the “right” number of branches synapse onto an individual motoneuron and are 

all activated at the same time, the motoneuron will reach threshold and send action 

potentials down the efferent fibre connected to it (Denny-Brown & Sherrington, 1928; 

Lloyd, 1945; Sherrington, 1931). In some cases, the afferent fibre only makes a few 

connections with a motoneuron, and therefore when stimulated does not excite that 

motoneuron, but may facilitate it by lowering its recruitment threshold. Motoneurons of 

this kind are said to be in the “subliminal fringe” and are only at a “facilitated level” of 

excitation (Lloyd, 1945; Sherrington, 1931). A subliminal fringe motoneuron may also 

receive synaptic connections from neighboring afferent fibres. If the direct afferent 

connections and enough neighboring afferent connections are active at the same time, the 

motoneuron can receive a sufficient amount of stimulation to bring it past a facilitated 

level into full excitation (Denny-Brown & Sherrington, 1928; Lloyd, 1945).  
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Figure 8. An example of the subliminal fringe. Diagram depicts two afferent fibres 

synapsing onto two motoneurons with collateral branches from each fibre synapsing onto 

a motoneuron in the subliminal fringe. Guyton, A.C. (1976). Textbook of medicine 

physiology. Philadelphia, PA: W.B. Saunders Company. Figure 47-4, page 629. 



     

 

30 

2.2.2.1 Static Contractions  

During maximal isometric contractions, it is theorized that autogenic inhibition 

due to the GTOs is the main inherent reflex that dominates the voluntary response 

(Laporte & Lloyd, 1952; Sharman, Cresswell, & Riek, 2006). While previous subsections 

have described how other proprioceptors may be involved, together the sum total is one 

of inhibition of the agonist as a protective mechanism. In support, Etnyre and Kinugasa 

(2002) and Moore and Kukulka (1991) have reported depression in the excitability of the 

agonist motoneuron pool following isometric contractions. It is therefore assumed that 

the motoneuron pool of the antagonist is in a facilitated state (Kabat, 1952; Morris & 

Sharpe, 1993). If at this moment, the force direction changes so that the antagonist is used 

as an agonist, the voluntary neural drive combines with the facilitating proprioceptive 

feedback to bring subliminal fringe anterior horns to threshold and increase the strength 

of the muscle contraction. However, concurrent proprioceptive facilitation has never been 

demonstrated in a definitive way. Rather, it has been inferred from the surface 

electromyogram and investigation of coactivity levels (Bazzucchi et al., 2006; 

Solomonow et al., 1988). It is also very difficult to separate segmental and supraspinal 

control of antagonist coactivation (Geertsen, Jensen, & Nielsen, 2008).  

2.3 Resistance Training  

2.3.1 Neuro-motor Aspects of Strength  

2.3.1.1 Muscle Coordination 

 It is well documented that during the early phases of strength training there is a 

marked increase in strength that occurs in the absence of muscle hypertrophy (Duchateau 
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& Enoka, 2002; Gabriel, Kamen, & Frost 2006). In 1963(a), Kroll demonstrated an 

increase in strength after three consecutive days of testing, and termed this the “quick 

jumps in strength phenomenon”. The strength of the participants continued to increase 

over the 3-week and 3-month retention periods without any resistive exercise in between 

test sessions. Since the time-interval between retention tests would allow for the 

dissipation of any physiological adaptations (i.e., detraining), it has been argued that 

neural and/or learning mechanisms are responsible for the early strength gains. Kroll 

(1974) later hypothesized that the quick jump in strength phenomenon may be due to 

improved neuromotor coordination control mechanisms involving the agonist and 

antagonist muscle groups. 

Since the early work of Kroll (1963a; 1974) a number of investigators have 

continued to examine the role motor learning may play during the early phases of 

learning. Smith (1974) studied two different contraction schedules (massed versus 

distributed) and determined that contraction schedule did not play a role in strength 

acquisition. However, he did conclude that the strength-learning curves were quite 

similar to motor-learning curves typically seen during skill acquisition. More recent work 

on learning-related increases in strength has shown that there is a reduction in antagonist 

coactivation (Carolan & Cafarelli, 1992) and/or an increase in agonist muscle activation 

(Calder & Gabriel, 2007). In a companion study, McGuire and colleagues (2014) have 

demonstrated that early increases in strength are associated with alternating decreases and 

increases in antagonistic coactivity as the nervous system learns to balance competing 

factors related force output and joint stability. For example, it is possible to increase 

maximal muscle force by a reduction in antagonist coactivation (Carolan & Cafferelli 
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1992). However, if there is an increase in force output directly from agonist muscle itself, 

then a compensatory increase in antagonist coactivation would be required to provide 

joint stability (Bazzucchi et al. 2006; Solomonow et al. 1988). 

2.3.1.2 Muscle Activation 

In addition to alterations in agonist-antagonist coordination, resistive exercise 

results in neural adaptations that increase muscle activation. The increase in neural drive 

to the muscles arise from both spinal and supraspinal control centers and it is very 

difficult to disentangle adaptations in the two (Geertsen, Jensen, & Nielsen, 2008). 

Furthermore, the time-course of these neural adaptations is uncertain as they are 

generally assessed in response to a progressive resistive exercise (PRE) program lasting 

six-weeks or longer, when the tasks are well-learned (Duchateau & Enoka, 2002; Gabriel, 

Kamen, & Frost, 2006). 

The V-wave is typically used to measure the level of central drive from the 

excited motoneuron pool during a maximal contraction. A supramaximal stimulus is 

applied to the peripheral nerve as would occur during an interpolated twitch to produce 

an M-wave in the middle of the contraction. The descending drive to the muscle 

counteracts the antidromic propagation of action potentials produced by stimulation of 

the peripheral nerve, which causes collision within the sensorimotor reflex loop 

associated with the H-reflex. The reappearance of the H-reflex during the maximal 

voluntary contraction is termed the V-wave (Aagaard et al., 2002; Sale et al., 1983), and 

its magnitude is proportional to the amount of central drive to the muscle (El Bouse, 

Gabriel, & Tokuno, 2012). It is commonly said that H-reflex “piggy backs” off of the 

descending drive to the muscle. In contrast, when the H-reflex is elicited without a 
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voluntary contraction, it is thought to reflect alterations in spinal excitability while 

acknowledging the potential for presynaptic inhibition (Misiaszek, 2003; Zher, 2002).  

 Progressive resistive exercise (PRE) has been documented to increase V-wave 

amplitude, which has been interpreted as an increase in voluntary activation of the muscle 

(Aagaard et al., 2002; Sale et al., 1983; Vila-Chã et al., 2012). In 1983, Sale and 

colleagues examined the effects of weight training on two forms of the V-wave (V1 and 

V2). Both forms of the V-wave were observed to be potentiated during maximal 

voluntary contractions. Aagaard et al. (2002) and Vila-Chã et al. (2012) used the V-wave, 

M-wave, and H-reflex to isolate spinal and supraspinal adaptations associated with PRE. 

Aagaard and colleagues (2002) examined a 14-week resistive exercise program for the 

leg muscles. During a ramp increase in isometric force from 0 to 100% MVC, H-reflex 

amplitude increased 20% while the V-wave increased by 50%. However, resting H-reflex 

and Mmax remained unchanged. These adaptations were associated with a 23 to 50% 

increase in MVC with training. Similarly, Vila-Chã and colleagues (2012) found that 

after a 3-week heavy strength training program, there was a significant increase V/Mmax, 

whereas the resting Hmax/Mmax ratio remained unchanged.  

Studies utilizing the V-wave are consistent with transcutaneous magnetic 

stimulation (TMS) of the motor cortex following resistive exercise. Griffin and Cafarelli 

(2007) showed that training-related increases in sEMG were associated with an increase 

in the magnitude of motor evoked potentials from the exercised muscle but the M-wave 

remained unchanged. Taken together, the findings presented, thus far, show that training-

related increases in muscle activation may arise from both spinal and supraspinal sources. 
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Changes in muscle activation ultimately affect motor unit activity patterns. A 

number of authors have demonstrated that training-related early increases in strength 

following resistive exercise are caused by an increase in motor unit discharge rate 

(Christie & Kamen, 2010; Kamen & Knight, 2004; Leong et al., 1999; Patten, Kamen, & 

Rowland, 2001). Age-related differences in motor unit discharge rate following resistive 

exercise have also been examined. Similar to younger adults, older adults who engage in 

resistive exercise training have higher motor unit discharge rates than those who are not 

active (Leong et al., 1999). However, older adults exhibit lower motor unit discharge 

rates than younger adults during maximal isometric contractions, suggesting that older 

adults may have an impaired ability to fully recruit the surviving motor units (Clarke & 

Fielding, 2012; Connelly et al., 1999; Kamen, Sison, Du, & Patten, 1995; Patten & 

Kamen, 2000). Evidence to the contrary was recently reported by Christie and Kamen 

(2010), who reported no differences between young and older adults with respect to the 

central activation ratio, as assessed by supramaximal 50Hz stimulation of the peripheral 

nerve during maximal voluntary contractions. This technique is however not without its 

methodological challenges that affect its interpretation (Behm, Power, & Drinkwater, 

2001). 

 Motor unit synchronization is described as multiple motor units firing 

simultaneously or near-simultaneously more often than normal (Kamen & Roy, 2000). In 

1975, Milner-Brown and colleagues examined motor unit synchronization in weight-

lifters and concluded that motor unit synchronization was found to be greater in the 

weight-lifters than in the control group. Since then, the techniques used to examine motor 

unit synchronization have undergone re-evaluation (Kamen & Roy, 2000; Semmler & 
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Nordstrom, 1999). Fling and colleagues (2009) reported that, while their experimental 

evidence was a “bit equivocal”, synchronization levels tend to be greater at higher force 

levels (80% MVC) and in strength-trained than untrained individuals. Furthermore, motor 

unit synchronization levels are similar among young and older adults (Kamen & Roy, 

2000).  

 Motor units have been shown to fire at relatively consistent intervals regardless of 

the firing rate, whereas doublet firing is a phenomenon seen when a motor unit fires twice 

in a very short interval of time (Garland & Griffin, 1999). This phenomenon has been 

demonstrated to be prevalent during the onset of a muscle contraction (Van Cutsem et al., 

1998). Van Cutsem and colleagues (1998) showed that resistive exercise not only 

increased maximum isometric strength but there also was an increase in both the maximal 

rate force development and in the frequency of doublets. 

2.3.2 Reversal of Antagonists Technique 

Herman Kabat (1952) developed a series of therapeutic resistive exercise 

techniques based on the work of Sherrington (1906). Sherrington (1906) described a 

series of experiments that explored segmental reflexes and conditions that produced 

facilitation and inhibition of reflex muscle contractions. Kabat (1952) utilized these 

findings to develop contraction patterns that would evoke spinal reflexes to augment or 

reinforce weak voluntary drive of muscle in patient populations (Kabat 1947; Kabat & 

Knott, 1948; 1953). The particular contraction pattern under investigation is the reversal 

of antagonists technique; it involves a quick reversal of antagonistic musculature. In the 

case of isometric contractions, the GTO’s are used to inhibit the agonist and facilitate the 

antagonist (which is the target muscle) prior to recruiting it as an agonist (Kroll, 1972a). 
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The reversal of antagonists technique has been studied sporadically over the last 

40 years with mixed results. Kroll (1972a) examined the reversal of antagonists during 

maximal isometric contractions of the elbow flexors and extensors in college-age females 

and failed to show any increases in strength. Kroll (1972a) further noted that there was a 

“tendency” for the contraction to be stronger when it occurred first rather than following 

an isometric contraction of the antagonist. The two additional studies of the elbow flexors 

and extensors during a reversal of antagonists on a similar population failed to observe 

any evidence of facilitated maximal isometric strength or increased sEMG activity 

(Gabriel & Kroll, 1991; Gabriel et al., 1997). The few studies that have reported increases 

in maximal voluntary contractions have been conducted on patient populations 

(Bohannon, 1985; Holt et al., 1969), which leads to the speculation that facilitation 

effects cannot be manifested unless there is an existing deficit in neural drive (Kroll, 

1972a; 1972b) as might exist in an older adult population (Connelly et al., 1999; Kamen, 

Sison, Du, & Patten, 1995; Patten & Kamen, 2000). 

Two studies have shown that the reversal of antagonists technique does not result 

in an increase in maximum strength but does enhance the rate of torque development of 

the subsequent contraction. Grabiner (1994) showed the intensity (percent MVC) of the 

conditioning isometric contraction of the antagonist was directly proportional to sEMG 

activity and the rate of torque development during the subsequent “isokinetic” 

contraction of the agonist. In partial agreement, Gabriel and colleagues (2001) also 

reported an increase in the maximal rate of isometric elbow extension torque 

development during the reversal of antagonists. However, the lack of increase in sEMG 

activity led the authors to suggest the effects were primarily biomechanical in nature. The 
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conditioning contraction of the flexors altered extensors so they were at optimal length 

just prior to being recruited as an agonist, or there was storage and reutilization of elastic 

energy in the extensor tendons. 

While the results of the facilitation effects are thus far equivocal, there is direct 

evidence that the reversal of antagonists may interfere with the early strength gains 

associated with motor learning, which has particular implications for rehabilitation. In 

two separate studies Kroll (1972a; 1972b) showed that when complex contraction 

patterns of antagonistic muscle groups were performed on the same day, training-related 

increases in strength due to motor learning were suppressed. Gabriel and Kroll (1991) 

then tested the specific hypothesis that the reversal of antagonists may interfere with 

early strength gains due to motor learning. Untrained college-age females were assessed 

for muscle strength and endurance using a measurement schedule that would allow for 

detraining effects of any potential physiological adaptations. There were five test sessions 

at two-week intervals with a cross-over of conditions on the last day of testing, and no 

resistive exercise of any type was allowed for the duration of the study. There were five 

baseline maximal isometric contractions followed by a 30-trial fatigue series. A control 

group performed flexion only contractions while an experimental group performed the 

extension-to-flexion contraction pattern.  

The control group maintained baseline maximal isometric elbow flexion strength 

and sEMG across the four days of testing, then strength and sEMG decreased when 

required to perform the extension-to-flexion contraction pattern. Conversely, the 

experimental group exhibited a progressive decrease in maximal isometric elbow flexion 

strength and sEMG, but rebounded when allowed to perform flexion only contractions on 
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the last day. The results for the mean of the 30-trial fatigue series were similar except the 

control group also exhibited a “quick jump” in fatigue resistance. While biceps brachii 

sEMG increased there was no concomitant decrease in triceps brachii sEMG 

(coactivation) as would be predicted by the proposed neuromotor coordination control 

hypothesis (Kroll, 1974). Gabriel and colleagues (1997) later reproduced the Gabriel and 

Kroll (1991) study but focused on the elbow flexion-to-extension maximal isometric 

contraction pattern. Since elbow flexion strength is “generally” greater than extension 

strength in females (Kroll, 1972a; 1972b), it was hypothesized the extensors would be 

susceptible to facilitation effects. In this case, the control and experimental groups 

exhibited a “quick jumps” in both strength and fatigue resistance without any evidence of 

facilitation. Furthermore, learning-related strength gains were associated with an increase 

in sEMG activity from both the agonist and antagonist muscle groups. 

The data on whether or not the reversal of antagonists interferes with early 

strength gains through motor learning is thus far equivocal. However, the reversal of 

antagonists technique is a more complicated contraction pattern than agonist only 

resistive exercise. To be effective, the reversal sequence must occur within a very 

specific time period (1 second) corresponding to maximal changes within the spinal cord 

when the GTOs are activated (Moore & Kukulka, 1991). It is therefore reasonable to 

suggest that the reversal of antagonists is a more difficult task compared to agonist only 

contractions (Kroll, 1972a; 1972b). 

Task complexity is a concern because the reversals of antagonists is used for 

stroke rehabilitation in older adults (Bohannon, 1985, Dickstein et al., 1986; Duncan et 

al., 1998; Ernst, 1990; Lisiński et al., 2008) who already exhibit decrements in motor 
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performance and learning (Shea, Park & Braden, 2006, Voelcker-Rehage, 2008). In 

support, Barry, Riek, and Carson (2005) provide evidence that task complexity for 

isometric contractions reduces motor output in older adults (65-80 years). The authors 

studied a visually guided aiming task that required the generation of isometric torques 

about the elbow joint to targets corresponding to 30 and 50% MVC, every 30 degrees in 

the frontal plane. There were simple contractions that required only flexion, extension, 

supination, or pronation. However, the off axes contractions were more complex and 

involved two in combination (i.e., flexion and supination, flexion and pronation, 

extension and supination, extension and pronation). Compared to the younger adults (19-

29 years), deficits in the rate of force development exhibited by the older adults were 

exacerbated by the muscle coordination requirements for the more complex contraction 

combinations.  

2.4 Measuring Sensorimotor Responses 

2.4.1 M-wave 

 Electrical stimulation of the peripheral nerve excites the motoneuron pool, 

resulting in a massed action potential travelling directly to the muscle causing an 

involuntary contraction (Christie, Inglis, Boucher, & Gabriel, 2005; Frigon, Carroll, 

Jones, Zehr, & Collins, 2007). The electrical events associated with the evoked muscular 

contraction can be monitored with surface electrodes. A massed muscle action potential 

is recorded that is termed the “M-wave”. As the stimulation level increases, the amplitude 

of the M-wave will increase until the maximum M-wave (Mmax) is reached. The Mmax is 

the point at which the amplitude of the M-wave ceases to increase further even as the 

stimulation level continues to increase (Tucker & Tüker, 2007). It is generally accepted 
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that the Mmax represents the activity of the whole motor neuron pool being recruited 

(Crone, Johnsen, Hultborn, & Ørsnes, 1999; Frigon et al., 2007; Scaglioni, Narici, 

Maffiuletti, Pensini, & Martin, 2003).  

 The amplitude of the Mmax can be affected by several factors such as length of 

experiment (Crone et al., 1999), electrode placement (Bromberg & Spiegelberg, 1997; 

Van Dijk, van der Kamp, van Hilten, & van Someren, 1994), age of the participants 

(Scaglioni et al., 2003), and position of the joint or muscle length (Cresswell, Loscher, & 

Thorstensson, 1995; Frigon et al., 2007; Kim, Date, Park, Choi, & Lee, 2005). However, 

it is not affected by changes at the level of the spinal cord (Christie et al., 2005; Frigon et 

al., 2007). It is generally accepted that the Mmax does not fluctuate significantly across 

days (Christie et al., 2005) and remains stable as long as recording conditions are 

unchanged and muscular fatigue is absent (Crone et al., 1999). Crone and colleagues 

(1999) examined the Mmax in the soleus and found that during a 2-hour long experiment, 

the amplitude of the Mmax decreased by 38% from beginning to end because of repeated 

stimulation of the peripheral nerve over the long period of time. These findings suggest 

that the length of a testing session should be taken into consideration when planning an 

experiment that requires obtaining Mmax. As well, the length of time should be taken into 

consideration if other reflexes (such as the H-reflex or V-wave) are being recorded and 

normalized to the values of the Mmax (Crone et al., 1999).  

 The location of the recording electrode is also of importance when trying to 

obtain Mmax. Some would argue that the recording electrode should be placed over the 

motor point to obtain the largest amplitude Mmax, but according to Bromberg and 

Spiegelberg (1997) and Van Dijk and colleagues (1994), recording over the motor point 
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is not always the most accurate location. Van Dijk and colleagues (1994) studied thenar 

and hyopthenar muscles and determined that only 62% of the time, the maximum 

amplitude response was recorded over the motor point and the rest of the time it was 

recorded 1cm away from the motor point. Similarly, Bromberg and Spiegelberg (1997) 

mapped out a 1cm x 1cm grid and found that adjustments in electrode placement even 

less than 1cm could result in large changes in the amplitude. The authors also concluded 

that slight changes in the reference electrode placement could also have an effect on the 

shape of the waveform produced (Bromberg & Spiegelberg, 1997).  

As mentioned, age also has an effect on Mmax amplitude (Scaglioni et al., 2003). 

Scaglioni and colleagues determined that an elderly population (mean age 73 years) 

presented with amplitudes for Mmax that were 57% lower than a younger population 

(mean age 25 years). These results demonstrate that as age increases, the amplitude of the 

Mmax decreases, therefore age should be taken into account when examining Mmax data 

and comparing it among different populations. 

2.4.2 H-reflex  

The Hoffman reflex (H-reflex) is an evoked monosynaptic reflex observed when a 

peripheral nerve is stimulated using a low-level electrical stimulation (Brinkworth, 

Tuncer, Tucker, Jaberzadeh, & Türker, 2007; Stein & Thompson, 2006; Zehr, 2002). 

Considered a measure of spinal excitability (Aagaard, Simonsen, Anderson, Magnusson, 

& Dyhre-Poulsen, 2002), the H-reflex has been used to study changes in neural activity 

during resistive exercise (Aagaard et al., 2002; Vila-Chã, Falla, Velhote-Correla, & 

Farina, 2012) and neuromuscular disorders (Upton, Sica, & McComas, 1972). 
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When the peripheral nerve is stimulated using a low intensity current, action 

potentials are elicited in the axons of the sensory Ia afferents specifically because of their 

low threshold, large axon diameter (Aagaard et al., 2002; Brooke et al., 1997; Zehr, 

2002). These action potentials propagate to the spinal cord, where they give rise to 

excitatory postsynaptic potentials, which in turn elicit action potentials which travel from 

the alpha motoneurons to the muscle and are recorded as an H-reflex (Figure 9) (Aagaard 

et al., 2002).  

 

 

Figure 9. Pathways excited when a peripheral nerve is stimulated to evoke an H-reflex 

and/or M-wave. Picture displays increasing level of stimulation from left to right. 

Adapted from Preston, D.C. &Shapiro, B.E. (1998). Eletctromyography and 

neuromuscular disorders: clinical-electrophysiologic correlations. Boston: Butterworth-

Heinemann. Figure 4-8, p.52. 
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 The H-reflex not only reflects spinal excitability, but can also reflect the level of 

presynaptic inhibition of the Ia afferent synapses (Hultborn et al., 1987). According to 

Aagaard and colleagues (2002) at a particular level of stimulus, an increase in H-reflex 

amplitude could represent an increase in the excitability of the alpha motoneuron and/or a 

decrease in the level of presynaptic inhibition. Presynaptic inhibition occurs through the 

action of an inhibitory interneuron that acts on the Ia afferent terminals (Zehr, 2002). This 

action leads to a decrease in the neurotransmitter release, as well as a reduction in 

motoneuron depolarization induced by Ia activity (Zehr, 2002). According to Zehr 

(2002), presynaptic inhibition has been shown to alter the afferent signal that evokes an 

H-reflex, which can lead to different patterns of motoneuron excitability. In discussing 

the H-reflex and presynaptic inhibition, Zehr (2002) also discusses a few of the factors 

that can affect presynaptic inhibition. He states that these factors include, but are not 

limited to, descending supraspinal commands and afferent feedback from peripheral 

receptors such as muscle spindles, GTOs, or cutaneous receptors. To control for these 

factors, it is important to ensure participant posture is maintained throughout the test 

sessions, as well as that the intention of the participant remains the same.  

The H-reflex is commonly measured in relation to the Mmax (Brinkworth et al., 

2007; Zehr, 2002). An important methodological control is to use a stimulation intensity 

that is calibrated as a percentage of Mmax. A fixed percentage between 5 and 20% of Mmax 

is used to minimize collision and gauge the number of motoneurons that are involved. 

For example, if a stimulation level that produced an M-wave that is 20% of Mmax is used, 

it is assumed that there are a fixed number of motoneurons (20% of the motoneuron pool) 

that are being recruited each time the peripheral nerve is stimulated (Hugon, 1973). This 
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allows researchers to conclude that alterations in H-reflex amplitude are due to changes 

in spinal excitability or presynaptic inhibition, not stimulus intensity. 

The H-reflex is a highly variable reflex that is known to fluctuate greatly from 

trial to trial (Brinkworth et al., 2007; Christie, Kamen, Boucher, Inglis, & Gabriel, 2010). 

According to Brinkworth and colleagues (2007), the size of the H-reflex is a function of 

three factors: 1) the precision of the stimulus intensity; 2) the excitability of the entire H-

reflex arch; and 3) the accuracy of the recording. To help minimize variability, the 

placement of the electrodes and position of the participant should remain consistent 

throughout test sessions (Zehr, 2002), stimulation levels should remain constant (Zehr, 

2002), testing sessions should occur at the same time each day (Guette, Gondin, & 

Martin, 2005), and the H-reflex should be normalized to a percentage of the Mmax to 

ensure consistency among participants (Brinkworth et al., 2007). Factors such as age 

(Scaglioni et al., 2003) and caffeine intake (Walton, Kalmar, & Cafarelli, 2003) should 

also be taken into account.  

2.4.3 V-wave 

 The V-wave is typically used to measure the level of central drive from the 

excited motoneuron pool during a maximal contraction (Aagaard et al., 2002; Sale, 

MacDougall, Upton, & McComas, 1983; Vila-Chã et al., 2012). The V-wave uses the 

same reflex-arc as the H-reflex but has been termed the V-wave to indicate its presence 

during volitional activity but absence during rest (Aagaard et al., 2002). Supramaximal 

nerve stimulation of the peripheral nerve, similar to that used to evoke an M-wave, during 

maximal voluntary contraction will elicit a V-wave (Aagaard et al., 2002; 2003; Vila-Chã 

et al., 2012). Efferent motor action potentials generated during voluntary contractions 
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collide with antidromic motor action potentials evoked by supramaximal peripheral nerve 

stimulation, allowing the evoked H-reflex response to pass to the muscle (see Figure 10) 

(Aagaard et al., 2002; Upton, McComas, & Sica, 1971; Vila-Chã et al., 2012). Therefore, 

the V-wave can be used as an indication of the magnitude of antidromic clearing, and 

thereby reflect the frequency and number of efferent impulses in the alpha motoneuron 

axons during voluntary muscle activation (Aagaard et al., 2002). The supramaximal 

stimulation of the peripheral nerve results in both large and small motoneurons being 

recruited (Aagaard et al., 2002).  

Several factors have been known to affect the amplitude of the V-wave, as well as 

its latency. Upton and colleagues (1971) studied the potentiation of late responses (V-

waves) in muscles during contractions and found that as the electrodes were moved 

proximally along the muscle, the latency of the V-wave decreased, suggesting 

involvement of the spinal cord in the production of the V-wave. As well, the V-wave is 

affected by the same factors involved in the H-reflex: (1) changes in motor neuron 

responsiveness, (2) synaptic transmission efficacy at Ia afferent terminals, and/or (3) 

postsynaptic inhibition (Vila-Chã et al., 2012). 
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Figure 10. Spinal circuitry pathway followed when eliciting a V-wave. Aagaard, P., 

Simonsen, E.B., Anderson, J.L., Magnusson, P., & Dyhre-Poulsen, P. (2002). Neural 

adaptations to resistance training: changes in evoked V-wave and H-reflex responses. 

Journal of Applied Physiology, 92: 2309-2318. Figure 2, page 2311. 
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CHAPTER 3: MATERIALS AND METHODS 

 This chapter will focus on the methodology that was used to answer the research 

question presented in Chapter 1. A discussion of the sample size estimation performed 

and the subjects will be followed by a description of the experimental design including 

the measurement schedule, apparatus and testing position, as well as the testing protocol. 

This chapter will finish by detailing the techniques that were utilized, followed by a 

discussion of the statistical analyses that were used.  

3.1 Sample Size Estimation and Description of Participants 

Sample size estimation was accomplished using means, standard deviations, and 

the intraclass reliability coefficient for maximal isometric wrist flexion strength obtained 

using a measurement schedule similar to that proposed in this study. Kroll (1963a) 

studied the effects of repeated assessment of maximal isometric wrist flexion strength. 

Participants were tested on three successive days, followed by another three successive 

days of testing three weeks, and three months later. The means, standard deviations, and 

intraclass reliability coefficient of interest were for the initial three consecutive days and 

the first retest three weeks later. The calculations, reported in Appendix A, resulted in a 

sample size of 10 participants per group for a total of 20. However, to protect against the 

fact that observed error variances and reliability may be lower, the study aimed to recruit 

13 participants per group for a total of 26 participants. 

Inclusion criteria included the stated absence of neurological or musculoskeletal 

disorders of the upper limb, right-hand dominance, and had not performed any forearm 

resistance training in the past year. Participants completed a PAR-Q questionnaire and if 
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they answered “yes” to any questions, especially those pertaining to hypertension, they 

were excluded from the study. All participants completed written informed consent forms 

as approved by Brock University Research Ethics Board (REB#12-281) (Appendix B). 

 3.2 Preliminary Procedures  

 Prior to the first testing session, participants were invited into the laboratory to 

become familiarized with the nature of the experiment and the equipment. Participants 

then signed an informed consent document (Appendix B), which outlined the 

requirements of participation, including the inherent risks, possible benefits, and the right 

to discontinue at any point in time without prejudice. Next, participants filled out a PAR-

Q and demographics questionnaire (Appendix B). Anthropometric measurements of the 

forearm were then taken (Appendix B) and upon completion of these procedures, all four 

testing sessions were scheduled.  

3.3 Experimental Design  

3.3.1 Apparatus and Testing Position  

All procedures took place inside the Faraday cage within the Electromyographic 

Kinesiology Laboratory at Brock University. Participants were seated at a testing table at 

a height that allowed the elbow to rest at 160° of extension (Figure 11). A custom-made 

jig was designed to isolate the hand during isometric contractions of the wrist flexors and 

extensors. Restraints for the hand were mounted onto a lever arm that was attached to a 

load cell (JR3 Inc., Woodland, CA). The load cell was secured to base of the testing 

table. The hand was placed in a half-supinated position within restraints that contacted 

the volar and dorsal surfaces (Figure 12). Each surface was padded with 1 cm of foam. 
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The forearm and hand were placed so that the axis of rotation of the wrist was aligned 

with the axis of rotation of the lever arm on the load cell, just beyond the surface of the 

table. As well, there were restrains for the forearm to minimize extraneous movements. It 

was required for the arm not being tested to rest on the testing table. An oscilloscope 

(VC-6525, Hitachi, Woodbury, NY) was placed at eye level in front of the participant 

(Figure 13). The oscilloscope was used to display the torque levels achieved during the 

contractions. 
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Figure 11. Experimental apparatus and testing position of the participant during each testing session. 

160° 
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Figure 12. Apparatus and load cell set-up. A) Hand restraints; B) Load cell attached to testing table; C) Wrist axis of rotation aligned 

with lever axis of rotation; D) Forearm restraints. 

A 

B 

C D 
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Figure 13. A participant’s view of the oscilloscope displaying their maximum torque level and target lines. 

Oscilloscope 

displaying 

torque level 
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3.3.2 Measurement Schedule  

There were four separate testing sessions, each lasting approximately 1.5 hours. 

The first three sessions occurred over three days with 48 hours between each session and 

the fourth session occurred two weeks after the third session. Participants were randomly 

assigned to one of two groups: a control group or an experimental group. The control 

group performed 5-second maximal isometric contractions of the wrist flexors. The 

experimental group executed a 5-second maximal isometric contraction of the wrist 

extensors immediately prior to a 5-second maximal isometric contraction of the wrist 

flexors. Anthropometric data obtained during the preliminary test session was used to 

predict each participant’s maximal isometric wrist flexion strength. Participants were 

then ranked and matched and randomly assigned by pairs into either the control or 

experimental group. Green and colleagues (2012) showed that a multiple regression 

equation that included body weight, segment length and limb circumference was an 

excellent predictor (R
2
=0.56) of maximal isometric elbow flexion strength. A pilot study 

(N=6) was conducted to develop a similar multiple regression equation for maximal 

isometric wrist flexion strength (R
2
=0.86). The resulting equation was: 

Predicted peak torque (Nm) = -29.85958 + 0.25507(Weight) + 1.68481(Wrist 

Circumference) 

The first three test sessions were identical for both groups, with the exception of 

the contraction pattern performed. The fourth test session (retention/transfer test) 

followed a similar protocol, except the participants performed five of their assigned 

contraction pattern (retention test), followed by five of the opposite contraction pattern 

(transfer test). The order of the contractions was counter-balanced across the two groups. 
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Five maximal M-waves and ten H-reflexes were evoked in the flexor carpi 

radialis (FCR) before and after maximal isometric strength assessment. Starting with M-

wave data collection, there was 15-seconds between each evoked potential. Hoffman (H) 

reflexes were then evoked at 15-second intervals, five-minutes after the last maximum 

M-wave. Another five-minute rest period preceded maximal isometric strength 

assessment. Participants then performed ten trials of their assigned contraction pattern. 

Each maximal isometric contraction was five seconds in duration with three-minutes of 

rest between each contraction to minimize fatigue (Clarke & Stull, 1969). The V-wave 

was evoked in the middle of each maximal isometric wrist flexion strength trial. The 

protocol for all four sessions can be seen in Figure 14. 
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Figure 14. Testing protocol that was carried out during all four sessions for both groups. During the first three sessions, participants 

performed the assigned contraction pattern. During the fourth session participants performed five of the assigned contraction pattern 

and five of the non-assigned contraction pattern. 
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3.3.3 Recording Voluntary EMG 

At the beginning of each session, the right forearm was prepped for testing. The 

electrode locations were shaved, cleansed with isopropyl alcohol, and lightly abraded 

(NuPrep®, Weaver and Company, Aurora, CO) to maintain skin-electrode impedance 

below 10 kΩ (Grass EZM Electrode Impedance Meter, Astro-Med Inc., Warwick, RI). 

Using an impedance meter (Grass EZM Electrode Impedance Meter, Astro-Med Inc., 

Warwick, RI) skin impedance was measured before and after the protocol each test 

session for both the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) 

muscles. During each test session, a thermometer was also secured on the skin’s surface 

beside the FCR electrodes to monitor skin temperature. The motor points of the FCR and 

ECR were then located using a low-level repeated electrical stimulation on the skin’s 

surface. The motor point was defined as the point at which a muscle twitch was still 

visible with the lowest level of stimulation. Once located, these points were marked with 

indelible ink for electrode placement. Pediatric-sized electrodes (3mm electrode 

diameter, F-E9M 11mm, GRASS Technologies, Astro-Med, Inc., Warwick, RI) with an 

inter-electrode distance of 1cm were placed in a bipolar electrode configuration and used 

to measure the electrical activity of the FCR and ECR muscles during voluntary and 

evoked contractions. The electrodes were affixed with a two-sided tape and electrolyte 

gel (Signa Gel®, Parker Laboratories, Fairfield, NJ). A self-adhesive ground electrode 

was placed on the dorsal side (back) of the hand (Figure 15) for electrical safety and to 

minimize noise.  

To ensure the electrode placement was consistent throughout testing sessions, the 

electrodes were traced with indelible ink. The participants were asked to maintain these 



     

 

57 

tracings between sessions and were welcome to come to the laboratory to have the 

tracings maintained if needed. Although, maintaining the tracings was helpful for the 

investigator, it was not necessary. If a participant was unable to maintain a tracing, the 

location of electrode placement was found using the protocol to locate the motor point 

that is discussed above. These procedures have been shown to result in high intraclass 

reliability coefficients suitable for documenting surface electromygraphic (sEMG) 

activity obtained over long periods of time (Calder et al., 2005; Christie et al., 2010; 

Gabriel, 2002; Gabriel, Basford, & An, 2001).  
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Figure 15. Experimental setup of sEMG electrodes.  
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3.3.4 Evoked Potentials 

 The median nerve supplying the FCR was stimulated (Grass Telefactor S88, 

Astro-Med Inc) to obtain the M-wave, H-reflex, and V-wave. Palpating the biceps tendon 

in the bicipital groove and moving medially located the median nerve; a pulse can be 

found where the cathode was placed. The cathode (3.2 cm diameter, 879100, Axlegaard 

Manufactoring Co., Ltd., Fallbrook, CA) and anode (5 cm, diameter, CF5000, Axlegaard 

Manufactoring Co., Ltd., Fallbrook, CA) were self-adhesive pad electrodes (Figure 16). 

The anode was placed on the posterior aspect of the upper arm directly below the 

cathode. Both electrodes were connected in series with an isolation unit (Grass Telefactor 

SIU8, Astro-Med Inc., West Warwick, RI) and a stimulator (Grass Telefactor S88, Astro-

Med Inc.) that delivered a constant current (150 mA) square-wave pulse, 0.5 ms in 

duration. The level of stimulation needed to obtain a maximum M-wave was found by 

slowly increasing the voltage level until the amplitude plateaued (Tucker & Tüker, 2007). 

H-reflexes were evoked by using a stimulation level that evoked a M-wave that had an 

amplitude that was 5±3% of the maximum M-wave (Christie et al., 2005). V-waves were 

obtained using supramaximal (110%) stimulation during the voluntary isometric wrist 

flexion contractions (Aagard et al., 2002; 2003; Vila-Chã et al., 2012).    

3.3.5 Instructions to Participants  

During the voluntary contractions, participants were instructed by the investigator 

to maximally contract their forearm muscles. A target line representing the participant’s 

maximum force was presented on the oscilloscope (Hitachi, VC-6525). This target line 

served two functions. First, participants were instructed to contract as hard and as fast as 

possible in order to move their trace to or above the target line. Second, participants were 
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instructed to maintain their force trace parallel to the target line in order to maintain a 

steady force level. Along with the visual feedback presented on the oscilloscope, 

participants were shown a picture of what an “optimal” force trace looks like. This was 

presented as a frame of reference to help participants understand the task. Participants 

were instructed that they were required to use the visual feedback during all maximal 

voluntary contractions. The visual feedback was only provided during the first three test 

sessions. During the retention test, all visual feedback was removed to assess motor 

learning.  

 The work-to-rest ratio for the voluntary contractions was controlled by a tape 

recording. For the control group, the tape recording said: “Ready…Three, two, one, flex”. 

When the word “flex” was heard, the participants were required to flex at the wrist, as 

hard and as fast as possible. Participants held the contraction until they heard the word 

“relax”. The sequence was repeated ten times, with three-minutes between each 

contraction. Instructions for the experimental group said: “Ready…Three, two, one, 

extend”. Participants then extended the wrist, as hard and as fast as possible when they 

heard the word “extend”. The contraction was held until the tape recording instructed 

them to “flex” wherein an immediate maximal wrist flexion was required. The 

participants maintained the wrist flexion contraction until they heard the word “relax”. 

Ten extension-to-flexion contraction patterns were completed at three-minute intervals. 

No verbal encouragement was provided during the voluntary contractions. After 

receiving instructions, the participant was asked to repeat the instructions and 

expectations, to ensure that they understood the task and the visual feedback they were 

receiving.  
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Figure 16. Setup of stimulation electrodes. 

 

  

Cathode placement 

on the median nerve. 
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directly in line on the 

opposite side of the 

joint. 
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3.4 Signal Processing  

All data was collected inside the Faraday cage located in the Electromyography 

Laboratory which maintained a signal to noise ratio of approximately 20 dB. The sEMG 

signals were amplified (Grass P511, Astro-Med, Inc., Warwick, RI) to maximize the 

resolution of the 16-bit analogue-to-digital convertor (PCI-6251, DATAQ Instruments, 

Akron, OH) and band-passed filtered (3-1000 Hz). Both force and sEMG signals were 

digitized at 2048 Hz (DASYLab, DASYTEC National Instruments, Amherst, NH). The 

force signal was low-passed filtered (20 Hz, 3 dB) using a 4th order Butterworth digital 

filter offline in MATLAB (The Mathworks Inc., Natick, MA).  

3.5 Data Reduction and Criterion Measures 

The following criterion measures were obtained from a one-second window in the 

middle of each five-second-wrist flexion contraction: mean maximal torque, and root-

mean-square (RMS) sEMG amplitude for the FCR and ECR. (Figure 17-18). The peak-

to-peak amplitude of the M-waves, H-reflexes and V-waves were also determined (Figure 

19-20) for reliability purposes.  

Additionally, variability measures were calculated on the MVCs to assess 

learning. Variability in maintaining a constant torque was assessed by calculating the 

RMS error of the middle 3.5 seconds of the torque trace. This measure represents the 

variability of the horizontal portion of the torque trace itself, not relative to the horizontal 

target line. Prior to the RMS error calculation, the torque trace was normalized to its 

maximum value. To assess the variability in the shape of the entire waveform, variance 

ratios (VRs) for torque, and the FCR and ECR sEMG waveforms were calculated.  
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For every block of 5 contractions for each participant, VRs were calculated in the 

following way for torque and FCR and ECR sEMG. First, a mean waveform was 

calculated for the block of five trials. For each individual waveform within the block of 

five trials, the squared deviation (variance) between each point and its corresponding 

mean point across waveforms was calculated. The mean of the squared deviations was 

then calculated to represent the mean variance “within” waveforms. A grand mean, which 

was a single value for all the data points constituting the five trials, was then determined. 

The squared deviation between each point of the five waveforms and the grand mean was 

then calculated. The mean of these squared deviations then represented the variance 

“between” waveforms. Statistically, the VR is interpreted in a way similar to the 

intraclass correlational analysis of variance model (Christie et al., 2010). The lower the 

variance “within” each waveform, the smaller the differences that can be detected 

between waveforms, resulting in a higher variance “between” waveforms. Thus, a lower 

VR (within/between) indicates a higher reproducibility of waveform shape.  

 Prior to calculating the VR, the sEMG signals were first linear envelope detected 

at 20 Hz with a zero phase shift 4th order Butterworth digital filter. Force was similarly 

filtered at the same low-pass cutoff frequency. The signals were then aligned 500 ms 

before to 500 ms after the force onset and termination, respectively. Finally, each signal 

was time-normalized by interpolating each trace to 8,000 data points. The VR was then 

calculated for each block of five trials. The VR was calculated according to the following 

formula:  
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where T is the number of data points required (8,000), N is the number of trials in the VR 

(five per ratio), y represents a single trace with t being each point (t1 is the first point of a 

single trial), therefore  
 
 is the average of the five trials at each point, and  ̅ is the single 

value of an averaged waveform across all points. All data reduction was performed using 

MATLAB software (The Mathworks, INC., Natick, MA).  
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Figure 17. Criterion measures (torque, RMS) extracted from a 1-sec window occurring immediately before the stimulation during the 

5-sec isometric flexion strength trial. Grey traces represent sEMG activity of the FCR and ECR. Black trace represents torque.  
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Figure 18. Criterion measures (torque, RMS) extracted from two 1-sec windows, occurring immediately before the stimulation during 

the flexion portion and in the middle of the extension portion of the trial. Grey traces represent sEMG activity of the FCR and ECR. 

Black trace represents torque.
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Figure 19. Defining peak-to-peak amplitude of an H-reflex. 
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Figure 20. Defining peak-to-peak amplitude of a V-wave.
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3.6 Statistical analysis 

Prior to the main analyses, all data were screened to determine if there were 

outliers greater than three standard deviations associated with technical errors. Since the 

experimental design involved repeated measures, the assumptions for a split-plot factorial 

(SPF-p.qr) analysis of variance (ANOVA) were tested. The assumptions included 

normality (probability plots), and homogeneity of variances and sphericity (Mauchley’s 

test). Participants completed ten trials of maximal isometric strength assessment on each 

of the four test days, for a total of forty trials, however, only twenty-five trials were 

analyzed (five contractions from each day 1-3, five retention contractions, and five 

transfer contractions). Table 1 illustrates the specific statistical model that was used to 

evaluate the criterion measures. The SPF-p.qr ANOVA had one between-subjects factor 

(p=group) and two within-subjects factors (q=blocks and r=trials). When appropriate, 

Bonferroni-corrected orthogonal contrasts were performed for savings analysis to assess 

retention and transfer. More complex first-order interactions were explored using 

orthogonal polynomials to evaluate trends in the mean across days (Kirk, 2012). 

Significance was established at the 0.05 probability level. 

Intraclass correlational analysis of variance was used to assess the reliability of 

the criterion measures as outlined in Christie and colleagues (2010). Reliability analysis 

of the data required two different ANOVA models: one to examine the consistency of 

scores within subjects, and the other to test the stability of the means across test days. The 

first model was a fully nested ANOVA with trials nested within days, and days nested 

within subjects. The mean squares obtained from the fully nested model were used to 

calculate the intraclass reliability coefficient (R). Details of the calculations are presented 
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in Appendix C. The stability of means across test days was then evaluated using a 

complementary two-factor (days × subjects) ANOVA. 
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Table 1. Sample Split-plot Factorial (SPF-p-qr) ANOVA for mean torque across test sessions.  

Source df SS MS F p  

Between Groups      

Groups 1 303.02 303.02 3.00 0.097 

Subjects(Groups) 22 2224.67 101.12   

      

Within Groups      

Blocks 4 208.80 52.20 9.36 <0.0001 

Groups x Blocks 4 18.29 4.57 0.82 0.516 

Blocks x Subjects(Groups) 88 490.78 5.78   

      

Total 119 3245.57 27.27   

*Significance at p < 0.05. 



     

 

72 

CHAPTER 4: RESULTS 

4.1 Participant Characteristics 

In total, 26 male participants volunteered to participate in the study and completed 

the introduction session. However, only 25 participants completed all four testing 

sessions. To maintain equal groups, data for 24 participants was used in the final analysis. 

The data for the matched pair of the participant who did not complete the four testing 

sessions was omitted from the statistical analysis. This resulted in a final sample size of 

24 participants, with 12 participants in each group. 

The participants’ (N=24) physical characteristics, predicted peak torque, baseline 

isometric mean torque and baseline surface electromyographic (sEMG) root-mean-square 

(RMS) amplitude for the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) are 

presented in Table 2. Paired samples t-tests were performed on each physical 

characteristic (refer to Table 2), predicted peak torque and baseline torque and sEMG 

measures to ensure there were no statistical differences between the two groups. 

 At the beginning and end of each test session, skin impedance and temperature 

were recorded. Mean values and standard deviations for skin impedance recorded on the 

FCR and ECR, as well as skin temperature measured on the FCR are presented in Table 

3. The average skin impedance decreased by 1.71 kΩ (Δ24%) for the FCR and 0.72 kΩ 

(Δ14%) for the ECR. Despite a significant t-test (p < 0.05), no practical significance can 

be placed on small changes in impedance below 10 kΩ, while these values are still well 

within the accepted range for sEMG (Hewson et al., 2003). There was a significant (p < 

0.05) increase in skin temperature (1.26°C, or Δ4%). It has been argued that a 

comparably small change might alter the sEMG signal (Rutkove, 2000; Winkel & 
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Jørgensen, 1991). However, only the first five contractions performed were analyzed as 

part of the experimental design, which should minimize temperature related-effects on 

the sEMG signal (Masuda et al., 1999).  
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Table 2. Means (M) and standard deviations (SD) for the physical characteristics of the 

participants by Group. 

Physical Characteristic Flexion Group 

M ± SD (n=12) 

PNF Group  

M ± SD (n=12) 

Age (years) 23.42 ± 2.31 23.33 ± 2.31 

Height (cm) 179.4 ± 5.89 178.5 ± 5.70 

Weight (kg) 79.15 ± 8.65 77.60 ± 8.44 

Wrist Circumference (cm) 16.76 ± 0.53  16.63 ± 0.88 

Predicted Peak Torque (Nm) 18.59 ± 2.80 17.94 ± 3.36 

Torque (Nm) – Day 1 14.40 ± 4.29 12.65 ± 4.74 

FCR sEMG (mV) – Day 1 0.31 ± 0.19 0.33 ± 0.22 

ECR sEMG (mV) – Day 1 0.14 ± 0.10 0.14 ± 0.05 

Significant difference between groups, * = p < 0.05 

 

 

 

 

 

Table 3. Means (M) and standard deviations (SD) for impedance and temperature at the 

beginning (pre) and end (post) of all test sessions. 

Measurement Pre 

 M ± SD 

Post 

 M ± SD 

Impedance – FCR (kΩ) 7.05 ± 2.21 5.34 ± 2.30* 

Impedance – ECR (kΩ) 5.12 ± 2.02 4.40 ± 1.74* 

Temperature (°C) 30.60 ± 1.13 31.86 ± 1.01* 

Significant difference between pre and post, * = p < 0.05 
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4.2 Data Screening  

 Prior to analysis, the data were screened for outliers, which were defined as 

values that fell three standard deviations away from the variable mean. Any value that 

fell outside the ±3 standard deviation range was examined to determine if it was 

physiologically reasonable or so extreme that it might be due to technical error. It was 

determined that all observed values would be included in the analysis  

4.3 Statistical Assumptions 

 All data were tested for the assumptions of a split-plot factorial (SPF-p.qr) 

analysis of variance (ANOVA). Probability plots, and skewness and kurtosis measures 

were examined for each variable. For all variables, skewness values were below 3, while 

kurtosis values were below 9. It has been stated that ANOVA results are robust to 

departures from normality for balanced designs with moderate sample sizes (Glass, 

Peckham, & Sanders, 1972). 

The assumption of homogeneity of variances was analyzed using Mauchly’s test 

of sphericity. The tests were significant (p’s < 0.05) for most variables. In such cases, 

either Greenhouse-Geisser Epsilon (G-G) or the Huynh-Feldt Epsilon (H-F) corrected 

degrees of freedom F-tests may be used. However, significant experimental effects were 

well beyond the 0.05 probability level, with little difference between the uncorrected and 

the corrected F-tests. Similarly, if an experimental effect was non-significant, the 

probability values were greater than 0.05 for both uncorrected and corrected F-tests. 
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4.4 Reliability Analysis 

4.4.1 Mean Torque 

The first five trials on the four days of testing were used for reliability analysis of 

criterion measures obtained during voluntary contractions. Tables 4 and 6 present the 

means, standard deviations and ANOVA F-ratios used to evaluate the stability of the 

measures for the control and experimental groups, respectively. The expected increase in 

mean maximal isometric torque associated with repeated strength assessment occurred 

for both the control (4.5 Nm, 23.4%) and experimental (3.1 Nm, 19.6%) groups. The 

intraclass correlation coefficients, true score error (between subjects), day-to-day error, 

and trial-to-trial error are reported in Tables 5 and 7. The lack of stability in means was 

compensated by highly consistent scores within subjects. The intraclass correlation 

coefficient was 0.80 for the control group and 0.94 for the experimental. 

 4.4.2 Surface Electromyographic Activity 

From the first to last test session, the control (2.9%) and experimental (6.9%) 

groups exhibited significant increases in FCR sEMG RMS amplitude (see Tables 4 and 

6). While statistically significant, the practical importance of such changes is debatable as 

the degrees of freedom for the F-test are quite large (McIntosh & Gabriel, 2012). 

Nevertheless, the consistency of participants within both groups was high (see Tables 5 

and 7). Flexor carpi radialis sEMG RMS amplitude had an intraclass correlation 

coefficient of 0.84 for the control group and 0.92 for the experimental groups. 

  Both groups exhibited a decrease in ECR sEMG RMS amplitude across the four 

days. The decrease was significant for the experimental group, which experienced a 
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50.1% reduction in sEMG activity while the control group only underwent a 3.4% 

decrease. The slight decrease in means for the control group had a modest impact on the 

intraclass correlation coefficient. Participants in the control group were still considered 

very consistent with an intraclass correlation coefficient of 0.82 (Table 5).  

It would appear that the lack of stability in ECR sEMG RMS means across days 

contributed to a reduction in the intraclass correlation coefficient in the experimental 

group. The observed intraclass correlation coefficient of 0.15 would normally be deemed 

too low for data analysis (Table 7). However, inspection of Figure 21 suggests that the 

intraclass correlation coefficient was highly influenced by homogeneous scores for the 

experimental group. In comparison to the control group, the effect can be observed as a 

greater clustering of individuals’ means (circles) around the group mean (dotted line). 

The vertical lines are standard deviations of all the scores across days and trials for the 

individual participant to illustrate consistency. The decrease in means across days would 

increase the vertical bars to some degree more than the control group (the SEM was 0.24 

mV rather than 0.20 mV). The slightly higher SEM does not account for the clustering of 

individual means (circles) around the group mean (dotted line), which lowers the between 

subjects mean squares (true score). The intraclass correlation coefficient is therefore 

artificially lower than what would normally be expected due to an experimental effect. 

Therefore, the ECR data was used for further analyses. 

4.4.3 Evoked Potentials 

Both groups exhibited a significant decrease in maximal M-wave peak-to-peak 

(P-P) amplitude across the four test sessions. There was 12.8% decrease for the control 

group and a 12.5% decrease for the experimental group, see Tables 4 and 6, respectively. 
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While both groups exhibited a similar decrease in stability of the means across test days, 

the consistency of participants within groups was lower for the control (R=0.63) than for 

the experimental (R =0.82) group. Inspection of Tables 5 and 7 reveals that the control 

group (29.4%) had a lower true score variance than the experimental group (52.8%), 

respectively. Figure 22 shows that the lower intraclass correlation coefficient for the 

control group was due to more homogeneous scores. The effect is illustrated as a tighter 

clustering of the individual means (circles) around the group mean (dotted line) for the 

control group than for the experimental group. The analysis once again reveals that an 

experimental effect can decrease the stability of means across days while the consistency 

of scores within subjects can remain high, albeit somewhat lower due to an increase in 

the SEM reducing the true score variance. 

The H-reflex could be evoked in only fourteen participants while the V-wave 

could be observed in only eight participants. Since the reasons for the low response rate 

are technical which are easily solved for future studies, a reliability analysis of these 

measures is warranted but the low numbers prevent hypothesis testing in the current 

study. Both groups exhibited significant alterations in H-reflex P-P amplitude across the 

four test days. There was a 41.3% decrease for the control group while the experimental 

group exhibited a 12.5% increase, see Tables 4 and 6, respectively. As discussed above, 

the decrease in stability of the means across test days had only a modest impact upon the 

consistency of the scores (see Tables 5 and 7). The intraclass correlation coefficient was 

0.82 for the control group and 0.90 for the experimental group.  

Similar to the H-reflex, the control and experimental groups exhibited significant 

alterations in the V-wave P-P amplitude but opposite in the direction of change. There 
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was an 11.3% decrease for the control group while the experimental group exhibited a 

21.6% increase, see Tables 4 and 6, respectively. A decrease in stability of the means 

across test days has previously been shown to have a modest impact upon the 

consistency. However, it is important to note for future work, that the portion of the 

variance due to trial-to-trial error was higher in comparison to the other measures 

presented thus far (see Tables 5 and 7). As a result, the intraclass correlation coefficient 

was 0.75 for the control group and 0.79 for the experimental group. The consistency of 

participants within both groups would be considered sufficient to use the measure for 

further analysis had the response rates been greater.
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Table 4. Analysis of variance for test days (1-3) and retention test (4) for the flexion group for torque, flexor carpi radials surface 

electromyographic root-mean-square amplitude (FCR RMS), extensor carpi radialis surface electromyographic root-mean-square 

amplitude (ECR RMS), maximal M-wave peak-to-peak amplitude (M-wave P-P), H-reflex peak-to-peak amplitude (H-reflex P-P), 

and V-wave peak-to-peak amplitude (V-wave P-P). 

 Torque 

(Nm) 

FCR RMS 

(µV) 

ECR RMS 

(µV) 

M-wave 

P-P (mV) 

H-reflex 

P-P (mV) 

V-wave 

P-P (mV) 

Test Day M ± SD M ± SD M ± SD M ± SD M ± SD M ± SD 

1 14.4 ± 4.2 310.5 ± 188 136.6 ± 99 6.57 ± 2.12 0.63 ± 0.53 1.51 ± 1.14 

2 17.8 ± 3.7 412.9 ± 327 139.4 ± 97 6.92 ± 2.64 0.55 ± 0.44 1.35 ± 0.77 

3 18.7 ± 4.4 410.7 ± 282 141.1 ± 95 7.28 ± 3.40 0.45 ± 0.33 1.86 ± 2.10 

4 18.9 ± 6.3 319.8 ± 150 132.0 ± 103 5.73 ± 3.17  0.37 ± 0.40 1.34 ± 0.36 

Percent Change 23.8% (4.5) 2.9% (9.3) -3.4% (-4.6) -12.8% (-0.84) -41.3% (-0.26) -11.3% (-0.17) 

ANOVA F-Ratios df       

Days 3 119.99** 33.27** 0.49 26.36** 14.08**
+ 

2.01
+
 

Subjects 11 143.71** 148.17** 62.62** 78.43** 65.23**
+ 

23.10**
+
 

Days × Subjects 33 20.62** 22.82** 12.46** 28.99** 11.49**
+
 6.66**

+
 

Within Cells 192       

Significant difference between days, * = p < 0.05, ** = p < 0.01. The following formula was used to calculate percent change between 

test session 1 and 4: Percent change = (1 – (smaller number/larger number)) × 100 from Day 1 to Day 4. The voluntary surface 

electromyographic activity is in microvolts for precision in calculating percent changes. 
+
 denotes a difference in df because of a 

different sample size.  
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Table 5. Intraclass correlation analysis of variance for test days (1-3) and retention test (4) for the flexion group for torque, flexor carpi 

radials surface electromyographic root-mean-square amplitude (FCR RMS), extensor carpi radialis surface electromyographic root-

mean-square amplitude (ECR RMS), maximal M-wave peak-to-peak amplitude (M-wave P-P), H-reflex peak-to-peak amplitude (H-

reflex P-P), and V-wave peak-to-peak amplitude (V-wave P-P). 

Source 
df Torque 

 

FCR RMS ECR RMS M-wave 

P-P  

H-reflex 

P-P 

V-wave 

P-P 

MS
Subjects 11 314.66 0.84 0.12 78.43 2.45

+
 17.17

+
 

MS
Days within Subjects 36 63.28 0.13 0.02 28.77 0.44

+
 4.26

+
 

MS
Within Cells 192 2.19 0.01 0.0002 0.25 0.04

+
 0.74

+
 

    
           2.19 (8.1%) 0.01 (8.5%) 0.002 (17.2%) 0.25 (2.9%) 0.04 (17.1%) 0.74 (35.5%) 

    
         12.12 (45.3%) 0.03 (38.9%) 0.004 (37.0%) 5.70 (67.6%) 0.08 (37.1%) 0.70 (30.9%) 

      
         12.57 (46.6%) 0.04 (52.9%) 0.005 (45.3%) 2.48 (29.4%) 0.10 (45.8%) 0.65 (30.9%) 

Grand Mean  17.45 Nm 0.36 mV 0.14 mV 6.63 mV 0.50 mV 1.51 mV 

SEM  3.47 Nm 0.16 mV 0.07 mV 2.43 mV 0.26 mV 0.75 mV 

R  0.80 0.84 0.82 0.63 0.82 0.75 

+
 denotes a difference in df because of a different sample size. 
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Table 6. Analysis of variance for test days (1-3) and retention test (4) for the  PNF group for torque, flexor carpi radials surface 

electromyographic root-mean-square amplitude (FCR RMS), extensor carpi radialis surface electromyographic root-mean-square 

amplitude (ECR RMS), maximal M-wave peak-to-peak amplitude (M-wave P-P), H-reflex peak-to-peak amplitude (H-reflex P-P), 

and V-wave peak-to-peak amplitude (V-wave P-P). 

 Torque 

(Nm) 

FCR RMS 

(µV) 

ECR RMS 

(µV) 

M-wave 

P-P (mV) 

H-reflex 

P-P (mV) 

V-wave 

P-P (mV) 

Test Day M ± SD M ± SD M ± SD M ± SD M ± SD M ± SD 

1 12.7 ± 4.7 322.9 ± 224 137.7 ± 51 7.37 ± 3.53 0.70 ± 0.46 0.91 ± 0.37 

2 13.8 ± 5.1 397.8 ± 378 113.9 ± 51 7.69 ± 3.78 1.36 ± 2.01 1.23 ± 0.38 

3 15.0 ± 5.1 341.9 ± 280 88.4 ± 42 5.18 ± 2.08 0.96 ± 1.53 0.96 ± 0.78 

4 15.8 ± 6.1 346.9 ± 307 68.7 ± 25 6.45 ± 4.27 0.80 ± 0.84 1.16 ± 0.12 

Percent Change 19.6% (3.1) 6.9% (24) -50.1% (-62.7) -12.5% (-0.92) 12.5% (0.10) 21.6% (0.25) 

ANOVA F-Ratios df       

Days 3 59.61** 7.92** 63.86** 76.23** 41.72**
+
 1.44

+
 

Subjects 11 260.53** 188.99** 16.50** 167.95** 453.97**
+
 10.34**

+
 

Days × Subjects 33 9.24** 15.52** 9.46** 26.10** 47.71**
+
 2.55*

+
 

Within Cells 192       

Significant difference between days, * = p < 0.05, ** = p < 0.01. The following formula was used to calculate percent change between 

test session 1 and 4: Percent change = (1 – (smaller number/larger number)) × 100 from Day 1 to Day 4. The voluntary surface 

electromyographic activity is in microvolts for precision in calculating percent changes. 
+
 denotes a difference in df because of a 

different sample size.  
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Table 7. Intraclass correlation analysis of variance for test days (1-3) and retention test (4) for the PNF group for torque, flexor carpi 

radials surface electromyographic root-mean-square amplitude (FCR RMS), extensor carpi radialis surface electromyographic root-

mean-square amplitude (ECR RMS), maximal M-wave peak-to-peak amplitude (M-wave P-P), H-reflex peak-to-peak amplitude (H-

reflex P-P), and V-wave peak-to-peak amplitude (V-wave P-P). 

Source df 
Torque 

 

FCR RMS ECR RMS M-wave 

P-P  

H-reflex 

P-P 

V-wave 

P-P 

MS
Subjects 11 503.97 1.47 0.01 167.95 27.71

+
 2.61

+
 

MS
Days within Subjects 36 26.00 0.12 0.01 30.28 2.85

+
 0.55

+
 

MS
Within Cells 192 1.93 0.10 0.001 0.12 0.06

+
 0.25

+
 

    
           1.93 (6.31%) 0.10 (8.0%) 0.001 (26.9%) 0.12 (0.92%) 0.06 (3.3%) 0.25 (60.8%) 

    
         4.81 (15.71%) 0.02 (22.3%) 0.02 (69.8%) 6.03 (46.3%) 0.56 (30.0%) 0.06 (14.4%) 

      
         23.90 (77.98%) 0.08 (69.7%) 0.0001 (3.4%) 6.88 (52.8%) 1.24 (66.8%) 0.10 (24.8%) 

Grand Mean  14.31 Nm 0.35 mV 0.10 mV 6.67 mV 0.96 mV 1.07 mV 

SEM  2.90 Nm 0.17 mV 0.13 mV 6.97 mV 0.52 mV 0.29 mV 

R  0.95 0.92 0.15 0.82 0.90 0.79 

+
 denotes a difference in df because of a different sample size. 
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Figure 21. Means and standard errors for ECR sEMG RMS amplitude across both groups. Subjects 1-12 are the control group, while 

13-24 are the experimental group.  
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Figure 22. Means and standard errors for M-wave peak-to-peak amplitude across both groups. Subjects 1-12 are the control group, 

while 13-24 are the experimental group.
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4.5 Magnitude Variables 

On the first three testing days, participants performed ten maximal voluntary 

isometric contractions of the pattern they were assigned: either a 5-second isometric wrist 

flexion contraction or a 5-second isometric wrist extension contraction immediately 

followed by 5-second isometric wrist flexion contraction. During the retention test, 

performed two-weeks after session three, participants performed five contractions 

consisting of the pattern they were assigned (retention test), followed by five of the 

opposite contraction pattern (transfer test). The first five contractions from days 1-3 were 

assessed, as well as the five retention and five transfer contractions from day 4. For 

statistical analysis, the data were divided into five blocks. Blocks 1-3 represent the five 

contractions completed on the first three days of testing, while Block 4 consists of the 

five retention contractions and Block 5 the five transfer contractions. For each measure, a 

split-plot factorial ANOVA was performed to assess differences between the two groups. 

If the omnibus F-test was significant, orthogonal contrasts were performed to assess 

changes in performance between Block 3 and 4, retention on Block 4 relative to Block 1, 

and transfer on Block 5 relative to Block 1. The probability level was Bonferoni-

corrected for each successful comparison. 

4.5.1 Mean Torque 

 The p-value was non-significant for both the Groups main effect (p > 0.05) and 

the Group × Blocks (p > 0.05) interaction term. Before examining the significant main 

effect for Blocks (p < 0.05), it was important to determine if there was a difference in 

mean strength level between groups. The grand mean difference between groups was 

3.12 Nm (18%), which is not trivial for wrist flexion strength and might lead to the 
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suspicion that the study is underpowered. However, as will be detailed in subsequent 

paragraphs, the sEMG magnitudes for both groups were nearly identical and the addition 

of a large number of participants would “not” result in significant differences. The 

differences in mean strength level between groups were most like due to the matching 

based on predicted strength (see Figure 23). The prediction equation had a standard error 

of estimate of 2.43 Nm. Further, the differences between groups on the first test session, 

while non-significant, was 1.75 Nm (12%). The data were therefore collapsed across 

groups for further analysis of the Blocks main effect. 

The means and standard errors for each group across the five blocks can be seen 

in Figure 24. Orthogonal contrasts showed a significant (p < 0.01) increase from Block 1 

to the retention test on Block 4 (3.81 Nm, 20.2%). The transfer test on Block 5 was also 

significantly (p < 0.01) greater (2.41 Nm, 15.1%) than Block 1. There was no significant 

difference (p > 0.05) between Blocks 3 and 4. 

4.5.2 Surface Electromyographic Activity 

 Figure 25 illustrates the means and standard errors for both FCR and ECR sEMG 

RMS amplitude for both groups. Similar to mean torque, the Group main effect (p > 

0.05) and the Group × Blocks (p > 0.05) interaction term were non-significant for the 

FCR sEMG RMS amplitude. There was, however, a slight decrease in FCR sEMG RMS 

amplitude amounting to 8.2% (0.026 mV, 26 µV) for the Blocks main effect that was of 

interest to explore further (p > 0.05). The FCR sEMG RMS amplitude increased across 

the first three blocks then decreased until Block 5. The overall pattern of means followed 

a quadratic trend that accounted for 64.2% of the variance (p < 0.05). While the quadratic 
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trend was significant, orthogonal contrasts detected no significant differences between 

individual means. 

The Group main effect (p > 0.05) and the Group × Blocks (p > 0.05) interaction 

term were non-significant for ECR sEMG RMS. There was a significant main effect for 

Blocks (p < 0.05) that was explored further with orthogonal contrasts. The sEMG RMS 

amplitude of the ECR exhibited a 19.5% (0.0224 mV or 22.4 μV) decrease from Block 1 

to the retention test on Block 4 (p < 0.05). The decrease in sEMG RMS amplitude 

continued for a total of 59.7% (0.0513 mV or 51.3 μV) between Block 1 and the transfer 

test on Block 5 (p < 0.01). There was no significant difference (p > 0.05) between Blocks 

3 and 4. 

4.5.3 Muscle Coordination 

 To assess potential changes in muscle coordination across the blocks, coactivation 

ratios were calculated by dividing the ECR sEMG RMS amplitude (antagonist) by the 

FCR sEMG RMS amplitude (agonist). The means and standard errors are presented in 

Figure 26. The Group main effect (p > 0.05) and the Group × Blocks interaction term (p 

> 0.05) were non-significant for coactivation ratio. There was a significant main effect 

for Blocks (p < 0.05) that was explored further with orthogonal contrasts. The 

coactivation ratio exhibited a 36.1% decrease from Block 1 to the retention test on Block 

4 (p < 0.01). The decrease in coactivation ratio was maintained so that there was a 35.2% 

reduction between Block 1 and the transfer test on Block 5 (p < 0.05). No significant 

difference was observed between Blocks 3 and 4 (p > 0.05).
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Figure 23. Correlation between predicted peak torque and observed peak torque on day 1. 
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Figure 24. Mean torque for both the flexion and PNF groups across the five blocks. Each block is a mean of five contractions. 

Standard errors are represented by the vertical lines.
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Figure 25. Surface electromyographic RMS amplitude for both the flexion and PNF groups across the five blocks. Each block is the 

mean of five contractions. Standard errors are represented by the vertical lines.
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Figure 26. Coactivation ratios for both the flexion and PNF groups across the five blocks. Each block is the mean of five contractions. 

Standard errors are represented by the vertical lines.
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4.6 Variability 

Target variability was defined as the variability in maintaining a constant torque 

and represents the variability of the horizontal portion of the torque trace itself, not 

relative to the horizontal target line. During each test session, participants were instructed 

to try as hard as possible to maintain a steady force during each contraction, therefore 

normalized RMS error of the middle 3.5 seconds of the contraction was calculated to 

assess the variability between days in maintaining a steady torque. The variance ratio 

(VR) was calculated for the torque trace, as well as for both the FCR and ECR sEMG 

waveforms. The VR quantifies the variability in the shape of the entire waveform and can 

provide insight into the stability of motor performance (Figure 27). Split-plot factorial 

ANOVAs were used to assess differences between the two groups for the measures of 

variability 

4.6.1 Target Variability 

 The means and standard errors for normalized RMS error for each group are 

depicted in Figure 28. The Group main effect (p > 0.05) and the Group × Blocks 

interaction term (p > 0.05) were non-significant for RMS error. There was a significant 

main effect for Blocks (p < 0.01) that was explored further with orthogonal contrasts. The 

RMS error exhibited a 30.5% decrease from Block 1 to the retention test on Block 4 (p < 

0.01). The reduction in RMS error continued so that a 26.2% difference was observed 

between Block 1 and the transfer test on Block 5 (p < 0.01). No significant difference was 

observed between Blocks 3 and 4 (p > 0.05). 
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4.6.2 Motor Output Variability 

4.6.2.1 Torque Variance Ratio 

 Figure 29 shows the means and standard errors for the torque VR. There was no 

main effect for Groups (p > 0.05) but the Group × Blocks interaction term was significant 

(p < 0.05). Orthogonal polynomials were used to analyze differences in trends for the 

means across blocks between the two groups. The analysis is more efficient because it 

does not involve numerous comparisons to describe the underlying interaction effects. 

The control exhibited a 51.6% decrease in torque VR between Block 1 and 4. However, 

the transfer condition resulted in an increase in torque VR so that there was only a 1.1% 

difference between Blocks 1 and 5. The result was a significant quadratic trend that 

accounted for 98% of variance in means across blocks (p < 0.01). In contrast, the 

experimental group exhibited a 69.3% decrease in torque VR from Block 1 to 5. The 

linear trend component was significant, which accounted for 75.1% of the variance in 

means across blocks (p < 0.01). 

4.6.2.2 Surface Electromyographic Variance Ratio 

 The variance ratios for the FCR sEMG waveform followed the same pattern as 

means for the torque VR (see Figure 30). The Group main effect was not significant (p > 

0.05) but the Group × Block interaction term was significant (p < 0.05). The control 

group exhibited a 15.0% decrease in FCR VR between Block 1 and 4. However, the 

transfer condition resulted in an increase in FCR VR so that there was only a 0.5% 

difference between Blocks 1 and 5. The result was a non-significant quadratic trend that 

accounted for 80% of variance in means across blocks (p > 0.05). In contrast, the 

experimental group exhibited a 17.6% decrease in torque VR from Block 1 to 5. Only the 
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linear trend component was significant, which accounted for 90% of the variance in 

means across blocks (p < 0.05). 

Alterations in the variance ratios for the ECR sEMG waveform are presented in 

Figure 31. The control group had a lower (12.3%) ECR VR than the experimental group, 

resulting in a probability value of p=0.05. The Group × Block interaction term had a 

probability value of p < 0.05 that was explored further with orthogonal polynomials for 

trend analysis. 

The control group exhibited a 9.4% decrease in ECR VR between Block 1 and 4. 

However, the transfer condition resulted in an increase in ECR VR beyond Block 1; there 

was only a 1.8% difference between Blocks 1 and 5. The result was a significant 

quadratic trend that accounted for 67% of variance in means across blocks (p > 0.05). In 

contrast, the experimental group exhibited a 12.1% increase in ECR VR from Block 1 to 

the retention test on Block 4. There was then a 15.1% decrease in ECR VR for the 

transfer test on Block 5. The pattern of means across blocks therefore followed a 

quadratic trend that accounted for 87.1% of the variance (p < 0.05). 
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Figure 27. Sample force and sEMG traces collected during Block 1, the retention test, 

and the transfer test for two participants, one from the flexion group and the other from 

the PNF group. Gray shading represents plus-minus one standard error. Figures provide a 

qualitative view of motor output variability.
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Figure 28. Normalized RMS error for target variability across the five blocks. Each block is the mean of five contractions. Standard 

error is denoted by the vertical lines.  
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Figure 29. Torque waveform variability as measured by variance ratios across the five blocks. Each block is a mean of five 

contractions. Standard error is denoted by the vertical lines.  
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Figure 30. Flexor carpi radialis sEMG variability as measured by variance ratios across the five blocks. Each block is the mean of five 

contractions. Standard error is denoted by the vertical lines.  
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Figure 31. Extensor carpi radiailis variability as measured by variance ratios across the five blocks. Each block is a mean of five 

contractions. Standard error is denoted by the vertical lines.  
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CHAPTER 5: DISCUSSION 

 In the present study, the control group performed maximal voluntary isometric 

contractions of the wrist flexors, while participants in the experimental group completed 

a maximal isometric contraction of the wrist extensors immediately prior to an isometric 

contraction of the flexors. The wrist extension-to-flexion contraction pattern was 

theorized to result in proprioceptive neuromuscular facilitation (PNF). However, it was 

equally possible that the “reversal of antagonists” contraction pattern interfered with 

motor learning-related increases in strength. For the purposes of this study, motor 

learning was defined as a change in strength, coactivation level, and/or variability of the 

task performance that occurred during the initial learning phase (first three test sessions) 

and was retained during the 2-week retention test and/or transfer test.  

Participants (N=24) were matched in pairs based on predicted strength and 

randomly assigned to either the control or experimental group. All participants completed 

four testing sessions; the first three occurring during a one-week period (48 hours 

between each session) and the fourth two-weeks after the third session. The first three 

sessions were identical for all participants with the exception of the contraction pattern 

performed. Participants performed ten maximal voluntary isometric wrist contractions, as 

assigned, during each session. Retention and transfer tests were administered in 

succession during the fourth session, two-weeks later. The control and experimental 

conditions were crossed during the transfer test: the control group performed the 

“reversal of antagonists” contraction pattern and the experimental group completed 

agonist only contractions. The transfer test was used to explore if any motor-learning 

adaptations that occurred during the learning phases and retained during the retention 
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test, could be transferred to a different type of contraction pattern. Results from the 

transfer test may provide insight into the functional significance of each contraction 

pattern and whether or not it would be useful to retain in rehabilitation programs.  

The contraction pattern had no effect on the “quick jumps in strength” phenomenon 

that is due solely to the administration of maximal isometric contractions for strength 

assessment (Calder & Gabriel, 2007; Kroll, 1963a; McIntosh & Gabriel, 2012). There 

were no differences in the magnitude of muscle activity, and both groups exhibited the 

same motor learning-related decreases in coactivation. As well, both groups exhibited 

similar decreases in task variability (RMS error). The alterations outlined above were 

retained over a two-week period, as there were no significant differences between the 

final testing session (Block 3) and the retention test (Block 4). As well, these alterations 

were present during the transfer task when the conditions were crossed. The groups did 

however exhibit differences in motor output variability (VRs). When required to perform 

the reversal of antagonists contraction pattern the control group underwent an increase in 

variability whereas the experimental group had a pronounced decrease in variability with 

agonist only contractions. The FCR VR (agonist) followed the same trends as the torque 

VR, while the most pronounced differences were with respect to the ECR VR 

(antagonist). For ECR VR, the two groups exhibited opposite adaptations. The control 

group had a decrease in variability until participants performed the reversal of antagonists 

contraction during the transfer test, while the experimental group had an increase in 

variability until participants performed agonist only contractions during the transfer test. 
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5.1 Reliability 

 Reliability analyses were performed on each group, to assess the stability and 

consistency of each measure. The following paragraphs will focus on the reliability 

results for only those measures used for hypothesis testing. The intraclass correlation 

coefficient (ICC) for mean torque across trials and days was 0.80 for the control and 0.95 

for the experimental groups, suggesting good consistency. These values are within the 

range (0.93-0.95) of what has been previously reported (Kroll 1962; 1963a; 1963b) for 

the wrist flexors over multiple studies. 

 Intraclass correlation coefficients for FCR sEMG RMS amplitude were 0.84 and 

0.92 for the control and experimental groups, respectively. El Bouse, Gabriel, and 

Tokuno (2013) reported a comparably high ICC of R=0.95. In contrast, Barr et al. (2001) 

reported an ICC of R=0.37. Differences between values could be attributed to the fact 

Barr et al. (2001) performed reliability analysis on log-transformed signals that were 

normalized with respect to the maximal voluntary contraction (MVC). Normalization 

alters the “spread of scores”, decreasing the between subjects variance, producing the 

same effect depicted in Figure 21. The result is an artificially lower ICC as described in 

Section 4.4.2. 

 Intraclass correlation coefficients for ECR sEMG RMS amplitude were 0.82 and 

0.15 for the control and experimental groups, respectively. The explanation for the low 

ICC value for this measure can be found in Section 4.4.2, as well as justification for using 

this measure in the final analysis. For the control group, true score variance accounted for 

45.3% of the total variance, whereas for the experimental group it only accounted for 

3.4% of the total variance. The experimental group was naturally more homogenous with 
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respect to ECR sEMG RMS amplitude, and it underwent systematic changes across test 

sessions suggestive of experimental effect “not” error. The two factors combined so that 

the majority of variance (69.8%) for the experimental group was day-to-day error. The 

intraclass correlation coefficient for the experimental group is similar to the ICC 

(R=0.22) reported by Barr et al. (2001) who produced the same effect through 

normalization. 

5.2 A Comparison of Normal Values 

 In the current study, isometric wrist flexion torque was 15.9 ± 5.4 Nm. These 

values are similar to those previously reported for college-age males: 11.3 ± 3.0 Nm (Al-

Eisawi et al., 1998), 14.81 ± 5.2 Nm (Vanswearingen, 1983), 13.7 ± 3.5 Nm (Seo et al., 

2008). Other investigators have reported higher values: 25 ± 6 Nm (Harbo, Brincks, & 

Anderson, 2012), 24.9 ± 5.9 Nm (Salonikidis et al., 2009), and 25.5 ± 6.1 Nm 

(Salonikidis et al., 2011). Differences between studies may be attributed to differences in 

test position and isolation of the joint within the apparatus. Static forearm position in 

pronation/supination and flexion/extension can affect muscle length and moment arms 

resulting in large differences in wrist joint torque (Buchanan et al., 1993; Gonzalez, 

Buchanan, & Delp, 1997). The mechanics of the task and the recruitment of additional 

muscle synergies can also be affected by whether or not participants “gripped” a handle 

or performed isometric contractions with an open hand to minimize involvement of the 

fingers (Sanes, 1986; Hallbeck, 1994; Leger & Milner, 2000). 

There is one study on maximal isometric wrist flexion strength that has reported 

non-normalized sEMG values. Flexor carpi radialis sEMG RMS amplitude was 344.5 ± 

265 µV during maximal isometric wrist flexion, which is comparable to 420 ± 90 µV 
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reported by Mizuno, Secher, and Quistorff (1994). To offer a further basis of comparison, 

Axelson (2005) observed an activation level of 290 µV (129-806 µV) during maximal 

effort, ballistic wrist flexion. Axelson (2005) is also the only investigator to provide 

sEMG activity levels for the ECR. The current study observed an ECR sEMG RMS 

amplitude of 113.0 ± 84 µV, which is within the range of 36 µV (1-141 µV) reported by 

Axelson (2005). The lack of comparative values for sEMG encouraged an additional 

examination of the FCR maximal M-wave peak-to-peak (P-P) amplitude data, although it 

was not used in the analyses. The P-P amplitude of the maximal M-wave was 6.65 ± 3.2 

mV, which is within the range of 4.41 ± 0.87 mV (2.18–6.10 mV) reported by Christie et 

al. (2005).  

5.3 Hypotheses for the Magnitude Variables 

The previous section showed that the current thesis has added value in providing 

non-normalized sEMG means, standard deviations, and intraclass reliability coefficients 

for the FCR and ECR necessary for pre-experimental planning of the appropriate sample 

size for future experiments using a maximal isometric wrist flexion model. The data were 

reliable and the values are within expected ranges as reported within the literature. The 

following paragraphs and sections, will discuss the main hypotheses for the magnitude 

variables. It is important to remember that that the retention (Block 4) and transfer (Block 

5) tests were administered without any feedback.  

5.3.1 Mean Torque 

Both groups exhibited the “quick jumps in strength” phenomenon first 

demonstrated by Kroll in 1962. That is, a measurement schedule consisting of the 

administration of maximal isometric contractions for strength assessment, which results 
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in a significant increase in strength in the absence of any other training. Hellebrandt 

(1958) proposed that motor learning plays a significant role in strength development as 

early as 1958, but Kroll (1962) provided evidence that it may actually contaminate 

baseline measures prior to resistive exercise intervention. As a result, a familiarization 

period is necessary to subtract-out motor learning effects from intervention studies 

(Calder & Gabriel, 2007; Green, Parro, & Gabriel, 2014). 

There was a 20.2% increase in maximal isometric wrist flexion strength observed 

in the present study, which is greater than the 8-15% gains observed by Kroll (1963a), 

who used a similar measurement schedule. However, participants in the current work 

performed ten contractions on each consecutive test session versus five contractions as 

required by Kroll (1963a). It was shown that massed practice (ten contractions/day) 

allowed for better entrainment of an internal model of the resistive exercise task 

performance (McGuire et al., 2014). The consecutive days then allowed for refinement 

and consolidation of the internal model through distributed practice (McGuire et al., 

2014). The increase in strength was retained over a two-week rest period and transferred 

when the experimental conditions were crossed, which suggests “relative permanence for 

the practiced skill” and that motor learning had occurred (Etnier & Landers, 1998; 

Kantak & Winstein, 2012; Kohl & Gauadagnoli, 1996; Lai & Shea, 1999; Wright & 

Shea, 2001). Further support for motor skill learning is given by the fact that any gains 

associated with physiological adaptations would have dissipated (Häkkinen & Komi, 

1983; Mujika & Padilla, 2001). 

Consistent with Gabriel, Basford, and An (1997), the reversal of antagonists 

contraction pattern did not interfere with motor learning-related increases in strength. In a 
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previous study by Gabriel and Kroll (1991), participants who performed maximal 

isometric elbow extension-to-flexion contractions underwent a progressive decrease in 

baseline strength and mean strength-endurance (fatigue resistance). In contrast, 

participants who performed maximal isometric contractions of the elbow flexors in 

isolation, maintained baseline strength and increased mean strength-endurance. Similar to 

the present study, a tape recording regulated the work-to-rest ratio by providing cues for 

the timing of contractions throughout all phases of the resistive exercise task. At the same 

time, participants had to monitor an oscilloscope to obtain feedback about task 

performance. It may be speculated that the reversal of antagonists resulted in the same 

type of division of attention that occurs with paired auditory and visual stimuli which 

increases reaction time (Kroll, 1961; Wulf & Shea, 2002). However, if participants were 

well-practiced on a simple reaction time task, both simple reaction time and initial paired 

response reaction time would be unrelated to delays in the second response due to the 

psychological refractory period (Kroll, 1961). It is reasonable to suggest that the massed 

trials on each test day allowed our experimental group to become sufficiently well-

practiced and demonstrate an increase in strength with a more complex contraction 

pattern. In support, Gabriel, Basford, and An (1997) used a measurement schedule that 

included a 30-trial fatigue series, consistent with a massed practice pattern. Participants in 

the experimental group also performed a 30-trial fatigue series consistent with a massed 

practice pattern. Moreover, when allowed to perform flexion only contractions in the 

crossed condition, the experimental group returned to baseline strength levels and they 

exhibited a significant increase in mean strength-endurance.  
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While the reversal of antagonists did not interfere with the “quick jumps in the 

strength” phenomenon, it also did not result in proprioceptive neuromuscular facilitation. 

These findings support the contention that facilitation effects cannot be manifested unless 

there is an existing deficit in neural drive as might exist in a patient population (Holt et 

al., 1969; Bohannon, 1985; Bohannon, 1986; Kroll, 1972a; 1972b; Gabriel et al., 1997). 

For example, it is possible that maximal isometric contractions of the wrist extensors 

resulted in autogenic inhibition of the ECR and facilitation of the FCR by Golgi tendon 

organs (GTOs) just prior to a maximal isometric contraction of the wrist flexors. 

However, normal sensorimotor integration would suppress the facilitated contraction 

through the Renshaw cell recurrent inhibition (Alvarez & Fyffe, 2007; Cavallari et al., 

1984; Katz & Pierrot-Deseillgny, 1998), or even the GTOs from the FCR (Moore & 

Kukulka, 1991). It is also possible that central agonist facilitation and antagonist 

inhibition mechanisms supersede or at least modulate proprioceptive reflex circuits in 

able-bodied participants under baseline conditions (Geertsen, Lundbye-Jensen, & 

Nielsen, 2008; Kasai & Komiyama, 1988). In support of this idea, the only evidence of 

proprioceptive neuromuscular facilitation of strength and sEMG activity in an able-

bodied population occurred after serial contractions resulting in a 30% decrement in 

strength (Hellebrandt et al., 1950; 1951a; 1951b). Execution of facilitatory techniques 

after the fatigue series resulted in a recovery of strength and sEMG (Hellebrandt et al., 

1950; 1951a; 1951b). Gabriel, Basford, and An (2001) demonstrated the same facilitatory 

effects for when muscle tendon vibration was applied after a 30-trial fatigue series 

resulting in a 25% decrement in strength. 
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5.3.2 Surface Electromyographic Activity 

Both the control and experimental groups exhibited a slight increase in FCR 

sEMG RMS amplitude across the three consecutive test sessions, which may be 

interpreted as an increase in neural drive to the muscle (Sale, 1988; Moritani, 1993; 

Enoka, 1997). However, a “slight” decrease was evident during the retention test two-

weeks later, with a further reduction during the transfer task (the crossed condition) 

returning close to initial levels. At the same time, there was a reduction in ECR sEMG 

RMS amplitude that was most evident during the retention test and transfer task, which 

may be interpreted as a reduction in antagonist coactivation to increase the expression of 

agonist muscle force (Sale, 1988; Moritani, 1993; Enoka, 1997). 

Alterations in agonist-antagonist muscle activity levels have been observed 

following resistive exercise regimens that involved several hundred contractions (Carolan 

& Cafarelli, 1992; Laroche et al., 2008; Tillin et al., 2011). The present study 

corroborates earlier findings for the elbow (McGuire et al., 2014) that alterations in 

agonist-antagonist muscle activity levels can be observed with a limited number (5–10) 

of contractions. In contrast, Green, Parro, and Gabriel (2014) report no overt changes in 

agonist-antagonist sEMG magnitude over 15 maximal isometric contractions of the 

dorsiflexors, consistent with the observations of Cannon and Cafarelli (1987) for the 

adductor pollicus muscle. Participants in the Cannon and Cafarelli (1987) study 

completed 15 contractions, three days a week for 5 weeks. Training-related alterations 

may have involved changes in motor unit (MU) discharges rates, which do not 

significantly affect the magnitude of the sEMG signal at full recruitment (Gabriel & 

Kamen, 2009). The hypothesis is consistent with the observation that the adductor 
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pollicis has a narrow recruitment range and relies on increases in discharge rates during 

force gradation (Kukulka & Clamann, 1981). Kamen and Knight (2004) showed that ten 

maximal isometric contractions of the knee extensors separated by a one-week interval 

resulted in a 16% increase in strength and a 19% increase in MU discharge rates in the 

vastus lateralis. Thus, it is possible that adaptations in MU discharge rates with a limited 

number of contractions might also exist for another larger muscle group like the tibialis 

anterior (Green, Parro, & Gabriel, 2014).  

Across the consecutive test sessions there was a 15.8% increase in FCR sEMG 

RMS amplitude while ECR sEMG RMS amplitude decreased 16%. In comparison to the 

first test day, the alterations were retained and continued upon re-test two-weeks later: a 

5.0% increase in FRC sEMG RMS amplitude and 26% decrease in ECR sEMG RMS 

amplitude were observed. The transfer task (crossed condition) followed the same 

patterns. Insight into the functional significance of alterations in FCR and ECR sEMG 

RMS amplitude is better provided by the coactivation ratio which showed a progressive 

decrease across all testing blocks: practice, retention, and transfer, amounting to 35.2%. 

The present work extends the earlier findings for adaptations in coactivation 

during the “quick jumps in strength” phenomenon. When “only” a total of 15 maximal 

isometric contractions were administered, participants alternated between decreases and 

increase in coactivation (Calder and Gabriel, 2007). Because the experimental set-up for 

testing the elbow was similar to the present study, it may be speculated that participants 

were attempting to find the “optimal” balance between two competing functions ascribed 

to the antagonist: (1) generating minimally sufficient limb stiffness to decrease force 

RMS error (Gribble et al. 2003; Osu et al., 2004), (2) while allowing the agonist muscle 
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to contract unimpeded to maximize the expression of force (Kroll, 1981; Cannon & 

Cafarelli, 1987). 

 A re-analysis of Calder and Gabriel (2007) data for measures of variability later 

revealed that the massed practice of 15 contractions during one session allowed 

participants to make a better connection between force variability (RMS error) and the 

variability of motor output (force VR) than did five contractions on three consecutive 

days, as seen with the distributed practice schedule (McGuire et al., 2014). Thus, the 

massed practice pattern of ten maximal isometric contractions administered on each of 

three consecutive days allowed for successful initial entrainment, which was refined and 

updated resulting in a progressively decreasing coactivation ratio (Milner & Cloutier, 

1998; Gribble et al., 2003; Mattar and Ostry, 2007). 

Interpretation of sEMG activity is not without controversy. Recent modelling and 

simulation studies have suggested that it is possible for peripheral-related changes within 

the muscle to lengthen the intracellular action potential (IAP), which would be detected 

as an increase in sEMG amplitude. Such changes might occur in calcium-mediated 

potentiation of skeletal muscle (Arabadzhiev, Dimitrov & Dimitrov, 2014). If muscle 

potentiation played a role in augmenting sEMG RMS amplitude, the first contraction of 

each consecutive day would serve as a conditioning stimulus and have the lowest scores 

(Inglis et al., 2011). However, as part of reliability analysis we observed a 15% linear 

decrease across trials 1 through 5. Furthermore, if peripheral-related training adaptations 

had occurred within the muscle, they would have been dissipated over the two-week rest 

period prior to the retention test (Häkkinen & Komi, 1983; Mujika & Padilla, 2001). 

Cross-talk also looms as a causal factor in the coactivation results (Etnyre & Abraham, 
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1988; Mogk & Keir, 2003). Extensive testing with electrode configuration and placement 

during pilot work reduced the observed cross-correlation coefficients between the FCR 

and ECR sEMG from Rxy=0.60 to Rxy=0.00. Further evidence in favor of the absence of 

cross-talk, is the observation that the FCR and ECR sEMG RMS means followed 

opposite patterns of change across test sessions. 

Since net torque is the summation of all the muscle forces surrounding the joint 

(Winter, 2009), interpretation of the coactivation ratio based on the kinesiological 

function of the FCR and ECR during maximal isometric wrist flexion would seem 

straightforward. However, it is more complicated than it would first appear (Tillin et al., 

2011). Based on the works of Gonzalez, Buchanan, and Delp (1997), Leger and Milner 

(2000), Axelson and Hagbarth (2003), it was assumed that the FCR and ECR would be 

representative of the flexors and extensors involved in the task. In reality, there is no way 

to know the exact distribution of forces within any given muscle group, termed in the 

indeterminate problem (Crowninshield & Brand, 1981). In the simplest case, 

musculoskeletal anatomy can be used to create an EMG-force relationship to help derive 

a solution. The physiological cross-sectional areas and moment arms can be used to 

calculate the joint moment potential of each muscle (Ramsay, Hunter, & Gonzalez, 

2009). Electromyographic activity is then used to provide information about the amount 

of muscle activation and therefore its relative force contribution to net joint torque 

(Buchanan et al., 1993). There are a number of biomechanical modelling methods used to 

calibrate the sEMG signal to convert the amplitude into force, yet it remains an active 

area of research with no generally accepted solution (Erdemir et al., 2007). The ultimate 

goal for some investigators is to obtain more accurate antagonist muscle force estimates, 
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so the functional impact of coactivation upon joint mechanics may be determined 

(Doorenbosch & Harlaar, 2003; Kellis & Katis, 2008; Tillin et al., 2011). 

Non-normalized sEMG was analyzed in the present work because calibrating 

sEMG activity with respect to force is an inappropriate data transformation that violates 

assumptions required for statistical analysis (Inglis et al., 2013). However, to provide 

insight into the functional significance of changes in the coactivation ratio, a “post 

mortem” sEMG-force calibration procedure may be performed.  The ECR sEMG RMS 

amplitude during antagonist muscle action (wrist flexion contractions) was normalized 

with respect to the RMS amplitude recorded when it contracted as an agonist (wrist 

extension contractions). The result provides a “rough” estimate of the sEMG unit per 

isometric force during antagonist muscle function at the wrist (Delp, Grierson, & 

Buchanan, 1996; Aagaard et al., 2000; Yang & Winter, 1984). It is acknowledged that 

fascicle lengths, pennation angle, and muscle moment arms can change even during an 

isometric flexion versus extension contractions (Maganaris, 2000; Simoneau et al., 2012). 

However, the impact of these variables is the same across test sessions, and it is the 

pattern of change that is of interest. 

The following analysis is for the experimental group because maximal isometric 

elbow extension strength trials were completed as part of the protocol. Because the two 

groups followed the same patterns of change in coactivity, it is reasonable to assume that 

the control group followed the same pattern of change for calibrated ECR sEMG. The 

experimental group exhibited a linear decrease in ECR coactivity from 58.0 ± 24.9% of 

its maximum on Block 1 down to 23.6 ± 9.6 % on Block 5. Thus, no matter how 

antagonist coactivation was assessed, the results showed a decrease associated with 
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motor-skill learning to allow for more efficient agonist muscle contractions (Cannon & 

Cafarelli, 1987; Floeter, Danielian, & Kim, 2013; Kroll, 1981). 

5.4 Variability 

5.4.1 Target Variability 

In the current study, participants were required to contract as hard and as fast as 

possible, and then maintain the maximum portion of the force trace parallel to a target 

line on the oscilloscope. The addition of a target line was to help instruct participants how 

to properly execute a task, as all resistive exercise requires specific technique (Escamilla, 

2001; Escamilla et al., 2001; Hay et al., 1983; Madsen & McLaughlin, 1984; 

Selvanayagam et al., 2011; Steinkamp et al., 1993). To assess task variability, the RMS 

error of the middle 3.5 seconds of the force trace was calculated. Target variability does 

not refer to the difference between the participants’ force trace and target line; rather it 

examines the stability of the force trace itself. 

Consistent with previous literature, RMS error decreased with practice of the task 

(McGuire et al., 2014; Newell et al., 2003; Van Dijk et al., 2007). The force trace became 

more stable as participants in both groups increased in strength. The decrease in RMS 

error was evident during both the retention test and transfer task (crossed condition). The 

relative permanence of the RMS error decrease and the reduction in RMS error 

transferred to a new task is additional evidence that motor-skill learning had occurred 

(Etnier & Landers, 1998; Kantak & Winstein, 2012; Kohl & Gauadagnoli, 1996; Lai & 

Shea, 1999; Wright & Shea, 2001). Further, the more complex contraction pattern did not 

interfere with the reduction in RMS error for either the experimental or control groups. 
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5.4.2 Motor Output Variability 

5.4.2.1 Torque Variance Ratio 

 Variability of motor output as defined by the variance ratio was recently 

introduced (Green, Parro, & Gabriel, 2014; McGuire et al., 2014) and as a result, there is 

limited comparative literature. Both groups exhibited similar reductions in torque VR 

across the first four blocks of testing: acquisition and retention. A reduction in torque VR 

means the shape of the torque-time curves became more reproducible, regardless of the 

complexity of the contraction pattern (Green, Parro, & Gabriel, 2014; McGuire et al., 

2014). The relative permanence of decreased motor output variability is further evidence 

that motor-skill learning was involved in the task (Etnier & Landers, 1998; Kantak & 

Winstein, 2012; Kohl & Gauadagnoli, 1996; Lai & Shea, 1999). 

To examine skill-related changes in force variability, Newell et al. (2003) 

reported decreases in RMS error, Salonikidis et al. (2009) showed reductions in the 

coefficient of variation, while Van Dijk et al. (2007) demonstrated decreases in the 

standard deviation. All of the cited measures are similar to force RMS error used to 

assess task performance, but do not provide insight into the underlying variability of 

motor output that generated the task (McGuire et al., 2014). McGuire et al. (2014) 

previously demonstrated that different practice schedules can produce the same results in 

terms of task performance (decreased RMS error) but have different effects in terms of 

the variability of motor output (torque VR). While the reduction in RMS error transferred 

to the reversal of antagonist contraction pattern for the control group, the more complex 

task increased torque VR to initial levels. 
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 To explain the difference between the torque RMS error and VR, the similarities 

of the testing protocol to reaction time experiments involving paired auditory and visual 

stimuli will be discussed (Kroll, 1961; Wulf & Shea, 2002). Kroll (1969) showed that if 

participants were well-practiced on a simple reaction time task, both simple reaction time 

and initial paired response reaction time are unrelated to delays in the second response 

due to the psychological refractory period. Likewise, the measurement schedule allowed 

the control group to become well-practiced on agonist only contractions, so that 

performance (reduced RMS error) was transferred to the more complex contraction 

pattern. Gauadagnoli et al. (1996) stated:  

“Theorists have suggested that participants’ primary concern early in 

practice is to understand what it to be done and how performance is 

evaluated, rather than determining the most efficient way of meeting the 

task demands.”  

The continued decrease in RMS error simply reflects a transfer of understanding the 

demands of the task while the higher VR merely reflects the beginning of an iterative 

process associated with a new contraction pattern (McGuire et al., 2014; Proteau, 

Marteniuk, & Lévesque, 1992). 

5.4.2.2 Surface Electromyographic Variance Ratio  

The FCR VR supports the pattern of change observed for torque VR. That is, the 

FCR VR for the control group decreased straight through to the retention test, but 

increased when required to perform the reversal of antagonist during the transfer test. In 

contrast, the experimental group exhibited a decrease in FCR VR across all five blocks of 

testing. The FCR VR increased for the control group but decreased for the experimental 
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during the transfer task (crossed-condition) because of the difference in task complexity 

(Onushko, Kim, & Christou, 2014). Parallel changes in agonist sEMG VR and force VR 

while practicing a resistive exercise task is consistent with findings for the dorsiflexors 

(Green, Parro, & Gabriel, 2014) and the biceps brachii (McGuire et al., 2014). Decreases 

in the variability of motor unit activity patterns, have been shown to coincide with the 

decrease in force variability (Christou & Carlton, 2001; Knight & Kamen, 2001; Kornatz 

et al., 2004). 

It would appear that motor learning related differences in outcomes between the 

two contractions patterns were most evident in the ECR VR. For the control group, the 

ECR VR followed the same pattern of changes as both the FCR VR and torque VR. 

There was a decrease that was present upon the retention test and increase when the 

reversal of antagonists was performed during the transfer task (crossed condition). The 

experimental group had a generally higher ECR VR than the control group. The ECR VR 

increased across the three test sessions and was still higher for the retention test. When 

the experimental group was allowed to perform isolated contractions of the wrist flexors, 

ECR VR decreased. 

It is very tempting to explain the higher variability in ECR sEMG only in terms of 

task complexity (Wright & Shea, 2001). However, it must be remembered that the whole 

purpose of the reversal of antagonists technique is to evoke segmental reflexes that would 

impact the subsequent voluntary contraction. A number of authors have reported that the 

basic proprioceptive mechanisms are indeed operative (Kasai & Komyama, 1988; 

Kizuka, Asami, & Tanii, 1997; Gollhofer et al., 1998; Hultborn et al., 1996). 

Furthermore, there is the potential for training-related descending modulation of these 
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reflexes before the onset of the contraction (Geertsen, Lundbye-Jensen, & Neilsen, 2008; 

Lévénez et al., 2005). Participants also attended to auditory cues for the timing of the 

contraction pattern. The “reaction-time-like” experimental protocol could have easily 

modulated transcortical reflex loops (Kizuka, Asami, & Tanii 1997). Descending control 

signals driving the ECR coactivation may therefore be occurring against the backdrop of 

increased competitive facilitatory and inhibitory inputs to the α-motoneuron (Ashby, 

Hilton-Brown, & Stålberg, 1986; Duclay et al., 2011). An increase in the variability of 

ECR sEMG activity as the muscle switched instantaneously from contraction as an 

agonist to antagonist, might be expected to occur independent of task complexity 

(Gabriel, Basford, & An, 2002). 

The sEMG signal processing and calculation of the VRs also makes it possible to 

conceptualize this measure as an assessment of muscle force-pulse variability (Gabriel, 

Basford, & An, 2002). Overall, sEMG VR findings support the observations that 

learning-related increases in the performance of maximal effort contractions are 

associated with decreases in both task variability and variability of the underlying force 

pulses (Gabriel, 2002; McGuire et al., 2014).  

5.5 Conclusions 

The present study showed that the proprioceptive neuromuscular facilitation 

(PNF) technique did not interfere with the “quick jumps in strength” phenomenon. The 

control and experimental groups exhibited comparable increases in strength, which was 

both retained and transferred (crossed conditions). A decrease in the ECR-to-FCR sEMG 

RMS coactivation ratio was the main neuromotor adaptation, which was retained and 

transferred. 
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The reversal of antagonists technique did not interfere with motor learning-related 

decreases in target variability (RMS error) or variability of the torque traces (motor 

output). Comparable adaptations were attributed to the massed practice pattern because 

the reduction in torque VR acquired by the control group did not transfer during the 

crossed condition (the reversal of antagonist contraction pattern). Changes in RMS error 

and torque VR were associated with alterations in FCR and ECR sEMG VRs. Reductions 

were retained by both groups. The decrease in sEMG VR transferred to the simple 

contraction pattern for the experimental group but not to the complex contraction pattern 

for the control group, cross-validates the effect of a massed practice pattern. The 

experimental group had a greater ECR sEMG VR during wrist flexion. The increase in 

variability was attributed to a complex mixture of segmental inputs due to the 

“conditioning” contraction and/or the “reaction-time like” experimental protocol, not 

necessarily task complexity. 

The results of the present study support the hypotheses that were predicted. The 

control group displayed increases in strength with concurrent decreases in the variability 

of the torque and sEMG measures, while the experimental group displayed results 

supporting the trends seen in the control group. 

5.6 Future Directions and Implications 

Now that it has been established that the reversal of antagonist technique does not 

interfere with the “quick jumps in strength” phenomenon if a massed practice pattern is 

employed, the next step is to determine if PNF is effective when there is a deficit in 

muscle activation as might exist in an older adult population (Kamen, Sison, Du, & 

Patten, 1995; Patten & Kamen, 2000; Connelly et al., 1999). Since task complexity of 
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isometric contractions can reduce motor output in older adults (Barry, Riek, & Carson, 

2005), it would be important to determine if a massed contraction pattern would be 

sufficient to produce comparable strength gains to agonist only contractions. Using 

isometric contractions, Onushko, Kim, and Christou (2014) also showed that practicing 

with easier tasks might be advantageous to improve motor learning in older adults. This 

is particularly relevant because the reversal of antagonists technique resulted in higher 

antagonist sEMG variability. Chen, Kwon, Fox, and Christou (In Press) recently 

demonstrated that older adults had impaired motor learning-related alterations in 

antagonist coactivity during a maximal resistive exercise task that was used to assess skill 

transfer. 

Ultimately, the present thesis topic is important because the reversal of antagonist 

contraction pattern is part of a suite of proprioceptive neuromuscular techniques that are 

widely applied for stroke rehabilitation in an older adult population, but there is scant 

evidence of their therapeutic benefit (Gowland et al., 1992; Westwater-Wood, Adams, & 

Kerry, 2010; Kollen et al., 2009). At the same time, health-care costs associated with 

changing population demographics are driving a move towards robotic assisted 

technology for stroke rehabilitation (Marchal-Crespo & Reinkensmeyer, 2009; Sale et al., 

2014; Farmer et al., 2014). Such a device has, for example, already been developed for 

the wrist (Krebs et al., 2007). While several different training modalities are being 

explored (Basteris et al., 2014), it is generally agreed that the main benefit is related to 

dose-response effect (Fasoli et al., 2003). A robotic rehabilitation device can more 

efficiently deliver a larger number of contractions (termed, sensorimotor training) to the 

patient than a therapist can while using traditional techniques. The larger number of 
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contractions is tantamount to massed-practice where improvements are attributed to 

motor-learning (Fasoli et al., 2003). These issues converge now that PNF contraction 

patterns are being introduced as part of the therapeutic program delivered by robotic 

devices. The trade-off between increasing α-motoneuron recruitment and reducing 

antagonist coactivity must be assessed (Gowland et al., 1992).  
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APPENDIX A 

Sample Size Estimation 

Sample size estimation was based on the primary focus of this thesis: expected 

changes in maximal isometric strength due solely to measurement schedule. Sample size 

estimation was based on the procedures outlined by Cohen (1988). Cohen (1988) 

recommends a ratio of 4:1 to balance the risk of a Type I error against committing a Type 

II error. The condition is satisfied with the probability of α=0.05 for a Type I error and a 

probability of β=0.20 for a Type II error so that the power (1 - β) of the test is 0.80. The 

most difficult aspect of the sample size estimation is to determine a reasonable effect-size 

(ES) that is deemed non-trivial by the investigator.  

The first phase of sample size estimation was to gain an understanding of the 

variability of the criterion measure and the magnitude of the effect size through a “post-

mortem” power analysis of a similar study. Means, standard deviations, and intraclass 

reliability coefficients were obtained from a similar study on measurement schedule 

effects upon maximal isometric wrist flexion strength in 20 college age male participants 

(Kroll, 1963a). The means for the first (49.91 ± 5.71 lbs) and third (51.10 ± 5.84 lbs) 

consecutive days of testing for Test Condition 1 were used to calculate Cohen’s effect 

size “d” for correlated measures (Case 4). Three consecutive days of testing resulted in a 

3.5% (1.69 lbs) increase in maximal isometric wrist flexion strength (d4' = 1.69 lbs). The 

slight decrease in the stability between means across days resulted in an intraclass 

reliability coefficient of R=0.91, which is still considered quite high but reflects the 

intrusion of learning effects (Kroll, 1963a). 
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Post-mortem power analysis was accomplished using the non-central t-

distribution, where the error term was for correlated measures. Since the experimental 

design involves repeated measures, the intraclass reliability coefficient replaces the 

Pearson’s correlation coefficient between paired observations: 

       √   

     

       
   

, 

where    

 and    

 are the standard error of the means for the first and third consecutive 

test session, respectively. The resulting effects-size is: 

  
   

      

 

  
        

          
      

Figure 21 shows that the Kroll (1963) means, standard deviations, reliability coefficient, 

and effect-size resulted in a post-mortem power on 0.80. Post-mortem power analysis is 

only meaningful if the goal is not to determine how many participants would be required 

for the observed effect-size to achieve significance (Lenth, 2001). In this case, by 

coincidence, 20 participants resulted in a power of 0.80 (see Figure 21, left panels).  

A similar effect-size was observed as a 3.9% increase in maximal isometric 

dorsiflexion strength following three days testing, with a 48 hour rest between test 

sessions (MacIntosh & Gabriel, 2012). The small increase in means across test days had 

little effect on the reliability with an intraclass correlation coefficient of R=0.98. Motor 

learning-related increases in maximal isometric strength of wrist flexors can range from 

8-15% with progressively decreasing reliability coefficients down to R=0.80 (Kroll, 
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1963a). A 5 percent (d=4.5) increase in maximal isometric strength of the wrist flexors 

has been chosen to balance the need to observe an effect-size that is both statistically 

significant and practically important while securing a reliable criterion measure. Using 

the same means, standard deviation, and approximated reliability coefficients for the non-

central t-distribution, an estimated sample size of between 10 and 11 participants is 

required (see Figure 21, right panel). However, to guard against the possibility that the 

observed variability might be greater than estimated, or that participants may withdraw 

from the study, 14 matched pairs will be used for a total of 28 participants.
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Figure 32. Normal curves and sample size estimation. Each curve in the right figure represents a sample size decrease of 1 participant, 

starting with the black curve (N=20).
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APPENDIX B 

Informed Consent 

Date:  

Project Title: Proprioceptive neuromuscular facilitation of the wrist flexors. 

 

Principal Student Investigator: Jessica McGuire, Masters Student 

Department of Kinesiology 

Brock University 

(905)-688-5550 ext. 3965 

jm08ya@brocku.ca 

 

Faculty Supervisor: David A. Gabriel, Ph.D., FACSM 

Department of Kinesiology       

Brock University 

(905) 688-5550 Ext. 4362 

dgabriel@brocku.ca 

 

INVITATION 

 

You are invited to participate in a study being conducted by Jessica McGuire and 

supervised by David Gabriel. The purpose of this research project is to investigate the use 

of a proprioceptive neuromuscular technique (PNF) on muscle electrical activity and 

force production in the wrist flexors. Participants are required to be college-aged males 

between 18-30 years, be in overall good health and have no neurological or orthopedic 

disorders.  

 

WHAT’S INVOLVED 

 

As a participant you will be asked to participate in four separate testing sessions. The first 

three sessions will occur on consecutive days and the fourth session will occur two-weeks 

after the third session. Each session will be approximately 1 and one-half hours in length. 

 

Upon arrival in the lab, you will be asked to complete a PAR-Q questionnaire and a 

demographic questionnaire (information regarding age, height, weight and weight-

training experience), as well as have measurements taken of your forearm (forearm 

length and circumference). This will only occur during the first test session.  

 

The following paragraphs outline the procedures in sequence that will be followed during 

all four testing sessions. The dominant forearm will be prepared for testing. Small areas 

on the forearm will be shaved, lightly abraded, and cleansed with alcohol. These areas 

correspond to the locations where the electrodes for recording muscle electrical activity 

will be placed. The procedure is similar to the more familiar electrocardiogram for 

measuring the electrical activity of the heart muscle. The recording electrodes for forearm 
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muscle electrical activity are small metallic discs about the size of a shirt button; they 

will be placed on the skin surface, over the muscles of interest. We are interested in 

recording electrical activity from muscles on the front (flexor carpi radialis, or FCR) and 

back (extensor carpi radialis, or ECR) of the forearm, which are depicted in the figure 

below. 

 

 

Next, landmarks for the locations of the electrodes will be located using a low-level 

repeated electrical stimulation on the skin’s surface. The level of electrical stimulation 

will be small and barely perceptible. A metallic probe electrode will explore the skin 

surface to locate the recording point (“x”) for each muscle identified in the figure above. 

This is the point where the investigator observes a minimally visible muscle twitch, and it 

will be marked with indelible ink. There will be one pair of electrodes for each muscle, 

each pair placed on the belly of the muscle just below the point marked “x”. A ground 

electrode for electrical safety will be placed on the back of the hand. 

The median nerve which runs next to the tendon of the biceps brachii will then be 

stimulated by placing a pad electrode about the size of a quarter on the elbow crease. 

While relaxing the forearm, there will be an electrical stimulation applied to the median 

nerve that is strong enough to “briefly” flex the wrist involuntarily. At this point, the 

level of electrical stimulation “may” be perceived as uncomfortable but has been reported 

to be quite tolerable. You are free to discontinue the procedure if you find it 

unacceptable. 

The involuntary wrist flexion is the result of a large amount of electrical activity 

generated in the muscle called an “M-wave”. A total of 5 stimulations will be required to 

obtain the 5 M-wave responses. There will be 15 seconds between each stimulation. 

Next, a barely perceptible level of electrical stimulation will be applied to the median 

nerve. No movement will occur but we will still be able to record a small amount of 

electrical activity from the muscle called an “H-reflex”. A total of ten responses are 

necessary, each response occurring at 15 second intervals. 

During the next phase of the study you will be asked to perform 10 maximal effort wrist 

flexion contractions while your hand is secured within a testing device so that there is no 

movement at the elbow, wrist or hand. Thus, while the contractions are forceful, there 

will be no movement (isometric). Each contraction will last 5-seconds and there will be 

3-minutes of rest between each contraction.  
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This study is a two-group design and you will be randomly assigned to one of the two 

groups. One group will perform wrist flexion only (Group 1) and the other group will 

perform wrist extension immediately before wrist flexion (Group 2) for all four sessions. 

Performing wrist extension-to-flexion is analogous to “crouching” down just before 

jumping up.  

Halfway through each flexion contraction for both groups, the median nerve will be 

stimulated at the same level required to obtain an M-wave. However, because the 

electrical stimulation occurs during a voluntary contraction, it results in a different 

pattern of electrical activity from the muscle, termed the “V-wave”. After the five 

contractions, while you are resting, 5 M-waves and 10 H-reflexes will be evoked in the 

same manner as at the start of the testing session.  

Before leaving the lab, the positions of the recording electrodes will be marked with a 

non-toxic indelible ink and you will be asked to maintain these locations over the testing 

sessions. You are welcome to come to the lab for help to retrace the electrode at any time, 

before the location is lost. Maintaining the recording points is only to save time and is not 

a critical issue. If the tracings are not visible upon returning to the lab, the recording 

points (“x”) will be identified once again using the same method as described above. 

 

POTENTIAL BENEFITS AND RISKS 

Although there are no direct benefits from participating in this study, it should be known 

that your willingness to participate in this experiment will help the researcher and other 

scientists optimize therapeutic resistive exercise for patients suffering from muscle 

weakness. Participating in the current research will also provide you with an opportunity 

to gain exposure to research and develop knowledge about the neuromuscular system and 

muscle contractions.  

It is not possible to predict all risks and discomforts associated with any research, but 

according to previous research and experience, the researcher anticipates no major risks 

associated with this protocol.  

1. Participants may sometimes feel a mild discomfort during the preparation of the 

skin for electrode placement. On occasion, some participants may experience skin 

irritation associated with the placement of electrodes, but this is usually very mild 

and will subside in a few hours, or a day.  

2. It may be necessary to remove hair over the muscle to record its electrical 

activity. As a result, it is possible that the participant may be cut by the razor 

while shaving the skin. To minimize the possibility of wound infection, a new 

disposable safety razor will be used for each participant. The area will also be 

cleansed with alcohol and a Band-Aid will be applied if necessary. 

3. There are two possible risks associated with electrical stimulation in a healthy-

able bodied population:  

a. The first concern is electrical safety which is maintained by grounding 

both the participant and laboratory equipment. Electrical safety is further 
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enhanced by the use of an isolation unit that separates the participant from 

the stimulator.  

b. The second risk is that the participant perceives the electrical stimulus to 

the nerve as noxious, resulting in vasovagal syncope (i.e., fainting). If the 

electrical stimulation pads are placed correctly over the nerve, the actual 

physical discomfort is minimal. However, there is no way to predict how 

someone will respond subconsciously to the electrical stimulation. The 

student-investigator will constantly monitor the participant for how well 

the procedures are being tolerated and will discontinue the protocol if the 

participant expresses a desire to stop or if the initial signs of fainting are 

present. A participant has never fainted in the laboratory while following 

these guidelines. If fainting does indeed occur, the student investigator has 

been certified in CPR and first aid. Because this reaction is not under the 

control of the participant, they will be discontinued from further study. 

4. There is a very slight possibility of muscle soreness from isometric contractions 

of the forearm muscles, but this is typically very mild. It will not interfere with 

normal daily activities and should dissipate within 72 hours.  

5. Maximal isometric contractions are associated with an increase in blood pressure. 

You must make sure that you do NOT hold your breath during maximal exertions. 

If you have received medical clearance and/or are already physically active, the 

risks are minimal. If any box on the PAR-Q form is checked “yes”, especially 

ones that may identify or point towards hypertension, participants must be 

automatically excluded from the study.  

 

CONFIDENTIALITY 

 

Confidentiality of information concerning all participants will be maintained throughout 

the research and during the publication of the study. The data will be coded without 

personal reference to you and all information that can be related back to you will be kept 

in a locked office, to which only the investigating team has access to. Names or material 

identifying participants will not be released without written permission except as such 

release is required by law.  

 

VOLUNTARY PARTICIPATION 

 

Participation in this study is voluntary. Refusal to participate if any component of the 

study or the study as a whole will NOT result in loss of access to any services or 

programs at Brock University you are entitled to. If you wish to withdrawal from this 

study at any time during the course of the research, please inform the investigator, Jessica 

McGuire. 

 

PUBLICATION OF RESULTS 
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Results of this study may be published in professional journals and presented at 

conferences. If you would like feedback about the results, you may request for the 

researcher to contact to you once they are published.  

 

CONTACT INFORMATION AND ETHICS CLEARANCE 

If you have any questions about this study or require further information, please contact 

the principle investigator, Jessica McGuire, or the faculty supervisors, David Gabriel 

using the contact information provided above. This study has been reviewed and received 

ethics clearance through the Research Ethics Board at Brock University [12-281]. If you 

have any comments or concerns about your rights as a research participant, please contact 

the Research Ethics Office at (905) 688-5550 Ext. 3035, reb@brocku.ca. 

 

Thank you for your assistance in this project. Please keep a copy of this form for your 

records. 

 

 

CONSENT FORM 

 

I agree to participate in this study described above. I have made this decision based on 

the information I have read in the Information-Consent Letter. I have had the opportunity 

to receive any additional details I wanted about the study and understand that I may ask 

questions in the future. I understand that I may withdraw this consent at any time. 

 

Name: __________________________________________________________________ 

 

Signature: _______________________________ Date: 

___________________________ 

 

 

 

  

mailto:reb@brocku.ca
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Ethics Clearance 
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PAR-Q Form 
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Demographic Information and Physical Activity Questionnaire 

Participant Number_______ 

 

Age:     

 

Weight:     

 

Height:     

 

Sex: ________________ 

 

 

How many times a week do you participate in physical activity (moderate to vigorous)? -

_______ 

 

On average, how many hours per a week (total) do you participate in physical activity? 

_______ 

 

Do you participate in any racquet activities or physical activities that mainly use the 

upper limbs? If so, please list activities and frequency:  

 

________________________________________________________________________ 

 

________________________________________________________________________  

 

What other physical activities do you participate in?  

 

________________________________________________________________________ 

 

________________________________________________________________________ 

 

Do you weight train? If so, how many times a week do you weight train?  _____ 

 

On average, how many hours per week do you weight train?   

 

What percentage of time weight training do you spend training: 

  

Upper body: ________ 

  

Lower body: ________ 

 

 

How long have you been weight training (please circle): 

 

0-3 months  4-6 months  7-12 months  1-5 years  more than 5 years 
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Anthropometric Measurements 

Participant Number: ______ 

 

Anthropometric Measurements 

 

 

Forearm Length (olecranon process to styloid process of ulna) ___________ 

 

Hand Length (styloid process of ulna to tip of third finger) ___________ 

 

Elbow Circumference (circumference at olecranon process) __________ 

 

Wrist Circumference (circumference at distal space to styloid process of ulna) 

__________ 

 

Wrist breadth (distance between radial prominence and ulnar styloid process) 

____________ 

Forearm Circumference Proximal _________ Distal ________ 

 

Hand Thickness (thickness of base of hand, cross-section height thenar eminence and 

hypothenar eminence) ________ 

 

Hand breadth (measured across the distal ends of the metacarpal bones) ________ 

 

Lever Length (styloid process of ulna to base of third finger) __________ 
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APPENDIX C 

Reliability 

 Reliability was assessed using two different analysis of variance (ANOVA) 

models. The first ANOVA was used to establish “consistency” of the measures using a 

fully nested model wherein trials were nested within days, which were in turn nested 

within subjects. The mean squares from the fully nested model outlined below were used 

to calculate the intraclass correlation coefficient, which was used to assess consistency. 

The second ANOVA model was used to examine the “stability” of the means across test 

sessions. This model had two factors (days × subjects) and the repeated measurements 

(trials) on each subject in each day constituted a “within-cells” replication of measures. 

Therefore, for a measure to be considered reliable, it must have exhibited both 

consistency and stability. The intraclass correlation coefficients (R) were calculated as 

follows: 

   
     

 

     
  

   
 

  
 

   
 

     

  

     
             

   
   

               

  
 

   
   

                 

     
 

The mean squares for subjects (          ), days (      ), and trials (        ) were 

extracted from the fully nested ANOVA to calculate the reliability coefficient. In the 

above equations a’ was the number of days and n’ was the number of trials. The total 
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variance was the sum of all variances. The portion of variances attributable to day-to-

day (   
     ), trial-to-trial (   

     ), and between-subjects       
       error was 

computed to identify the amount of variability at each level of measurement (Calder et 

al., 2005; Christie et al., 2010). 


